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Abstract

Polymorphic and metamorphic malware use code obfuscation techniques to construct new variants which preserve the
semantics of the original but change the code syntax, evading current compiled code based detection methods. Dynamic
slicing is a technique that, given a variable of interest within a program, isolates a relevant subset of executed program
code that influences that variable. Using dynamic slicing tocondition semantic traces identifies ‘core’ behaviours that,
as part of an overall semantics based approach, has the potential to play a significant r̂ole in detecting difficult malware
variants. We preface this by a discussion of the motivation and the contextual role for this form of slicing in semantics based
matching. A brief outline of the semantic trace mapping algorithm is presented with an example. We complete the report with
presentation of our test data generation technique using backward domain reduction with some examples as a stand-alone
step in the process of genearting data inputs for producing unique semantic program traces.



1 Overview of the detection process

We begin this document by presenting a brief overview of how we plan to use semantics to detect malware variants. This
section is the work of David Clark and Laurence Tratt. The remainder of the document is the work of Khalid Alzarouni and
David Clark with occasional advice from Laurence Tratt.

1.1 The approach and some applications

We present an outline solution to a specific problem: the ability of polymorphic and metamorphic malware to use semantic
equivalence tables together with a rewriting engine to alter their signature each time they are copied. The key idea is touse a
finite set of finite semantic traces as a semantic version of a “signature” for a known malware. Once the signature is extracted
a semantic simulator can be used to attempt to match behaviours.

With the challenge of real-time detection of variants in mind we present the scheme in two phases. The initial, preparatory
phase is when the semantic signature is constructed via analysis of the malware. The second, detection phase attempts to
match semantic signatures with a candidate program. For thepurposes of this outline we do not treat the question of infection
but this is a straightforward extra step using abstraction and trace matching techniques.

The outline given in what follows is not the only possible wayto instantiate our framework. Our proposal offers the
following advantages over existing detection methods:

• This approach can be used in much the same way that signaturesare currently used to detect malware but clearly can
shorten and decentralise the process of recognising new malware and distributing new signatures.

• It could also speed up ‘central’ detection of malware variants by anti-virus software providers, for example.

• A possibility is the use of the approach in real-time detection of malware variants.

1.2 Preparatory phase: constructing the semantic signature

We assume that we have a known malware program, identified from its syntactic signature using standard methods. The
known malware may not be “vanilla”, i.e. may not be the original program before metamorphosis or polymorphosis, but
may be the result of several transformations. What is important is that it retains the same behaviour as the original, “vanilla”
program. Note that in this initial phase we aim to detect variants of known programs rather than different programs with
different behaviours. This latter problem could be tackledusing a variation on our approach. This would require a research
program to develop ‘positive’ security guidelines which unknown malware with unknown behaviours would violate. The
semantic signature we construct is not a complete semanticsfor the malware. Technically it is an abstraction of a slice of
part of the semantics of the malware. Since it is only part of the semantics there can never be iron-clad guarantees that it
will always detect a variant or that what it detects is alwaysa variant. However there are some things we can guarantee, for
example that any manipulations we perform on the semantics in the course of developing the signature are “safe” in the sense
that they do not introduce anything that was not there to begin with. In addition, the selection of the part of the semantics
used in the signature is done with a guarantee of a certain type of limited coverage with respect to all the possible behaviours
of the malware. Finally, note that each step in the preparatory phase may be allowed to be performed with some human
intervention as there is no real-time consideration.

• Reverse engineer the compiled code. The first step is to distinguish code and non-code and turn the binary code into a
simple assembly language or equivalent.

• Generate the Control Flow Graph. This is the first abstraction on the malware.

• Analyse the CFG. Analysis of the CFG can be partly or possibly entirely automated. The aim of the analysis is to extract
a set of test inputs that produce a finite set of finite execution traces that cover all reachable executable statements in
the malware. This does not necessarily cover all possible behaviours of the malware. Call the test setT .

• Generate the semantic traces. Run the malware on the inputs in the test set,T , using a semantic simulator for the as-
sembly language. Each input produces a corresponding semantic trace which contains information about the evolution
of both the code and the state of the machine during the execution run.
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• Slice the semantic traces. Slicing is a syntax based algorithm which produces a smaller program that has the same
semantic effect with respect to a slicing criterion. Here weslice on the value of all variables at the end of the trace.
This in general produces a smaller trace and can remove some effects of obfuscation. Even a small reduction in the
trace length can improve the speed of the matching algorithmperformed later in the detection step.

• Abstract the sliced semantic traces. Finally, abstractions are applied to each sliced trace. The basic one is to remove
the syntax of the commands from the traces, retaining the information about the evolution of the state, but there are
others which can deal with infection, variable renaming, and other obfuscations. Call the set of abstracted, sliced traces
T R .

• Semantic Signature. Each sliced trace corresponds to an input fromT . The semantic signature,P , is then the set of
pairs consisting of each input, with its resulting, sliced trace.

P = {(ti, τi) | ti ∈ T, τi ∈ T R, whereτi is generated byti usingM}

1.3 Detection phase: using the semantic signature

• Reverse engineer the compiled code. Here we automatically generate the assembler code for a candidate program,C.

• Generate semantic traces. The tests developed in the previous phase are applied to thecandidate using the semantic
simulator. For each testti ∈ T a semantic trace inT R′ is generated.

• Abstract the semantic traces. This step corresponds to the abstraction of the sliced traces in the Preparatory phase and
and can be automated.

• Candidate’s semantic signature. After abstraction we have the candidate’s semantic signature,C, again a set of pairs.

C = {(ti, τ
′
i) | ti ∈ T, τ ′

i ∈ T R
′, whereτ ′

i is generated byti usingC}

• Match traces. For eachti the corresponding signature traces forM andC are compared. The algorithm used is a form
of sub trace inclusion match, in which for eachti the algorithm checks whether the sequence of nodes inτi occurs in
τ ′
i , possibly with interpolations of extraneous nodes.

In what follows we flesh out this overview.

2 Introductory remarks

Malware writing and malware detection is big business. It isa combative and fast evolving part of IT and computer science.
From the detection point of view the gold standard for some time has been the libraries of ‘signatures’ which must be kept
complete and as up to date as possible. These libraries allowrecognition of stored, known malware without false positive
identifications. One weakness of the libraries approach is the time gap between identification and signature dissemination.
As long as this gap is short this weakness is acceptable. In recent years the development and increasing proliferation of
self-modifying metamorphic and polymorphic malware has dramatically sped up the production of malware variants. The
former use a table of semantic equivalences to preserve semantics while altering the syntax of the machine code so that after
execution the stored executable has a different signature.This report takes a single but significant step in the direction of
detecting such variants on a known program.

The primary contributions of this report are threefold. It identifies a suitable assembly language which is sufficiently
expressive to be able to become a representative of widely used assembly languages such as FASM [1] and NASM [2], and
has a sufficiently well defined semantics so as to be amenable to semantics based analysis. It defines a notion of slicing forthe
traces that occur in the semantics and provides a slicing algorithm. Finally, it proves that this algorithm is correct. This report
also provides a discussion of the strengths and weaknesses of the slicing semantic traces approach with respect to finding
malware variants, although no formal guarantees are provided at this stage. Last but not least, the report discusses briefly the
algorithms of mapping semantic traces with respect to a set of obfuscation techniques which are incorporated with the trace
slicing algorithm. To fully appreciate this contribution,it is necessary to understand the context in which we proposeto apply
the slicing algorithm.
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Our overall approach is based on the semantic simulation of the execution of a suspected malware program. We assume
that this program is aconservative, simple obfuscation of another. It is conservative becausethere has been no variable
renaming (although fresh variables may have been introduced) during the transformation and it is simple because it is not
an infection (or contained within) another program. Even with these assumptions there are some considerable theoretical
difficulties in using semantic traces directly. Determining whether one program is semantically equivalent to anotheris
not in general decidable, or even partially decidable. Consequently, it is not possible in the general case to provide safety
guarantees for semantics based detection in the traditional correct program analysis style. Either detection is general and
partial, but statistically significant (low false positiverate), or guarantees are absolute but detection is specific to a limited,
fixed set of transformations [19]. We have developed this slicing algorithm as part of an overall approach which aims to be
general and partial.

Specifically, we intend that there is an initial analysis phase for the known malware. In this phase it is reverse engineered
to an AAPL program and its control flow graph (CFG) is extracted. On the basis of the CFG a set of test inputs,I, are
derived which guarantee a coverage property, manifested asa finite set of finite traces, with respect to the CFG. We call
this set of finite traces theapproximation semanticsof the malware. The traces in this approximation semantics are then
conditioned by dynamic backward slicing using all variablevalues at the end of the trace. This conditioning produces smaller
traces, closer to traces of the vanilla (or unobfuscated) malware, reducing the complexity of the abstract trace matching
phase. Further abstraction removes command syntax and retains execution contexts (i.e., program environment and memory
sequences). Then the detection algorithm uses each semantic trace slice pairs (i.e. trace slices of a known malware program
and an obfuscated variant) as graphs to identify multiple potential mappings between the pair of traces. The slicing algorithm
improves the detection of malware variants in two ways. First, the algorithm detects code obfuscating techniques and removes
the effects of code obfuscations. Second, it computes a set of correct semantic trace slices for the malware matching algorithm
(detector) to inspect against semantic trace slices of a known malware program. Thus, the slicing approach helps the malware
detector in producing fast and accurate detection results.

Moreover, we present a method for mapping semantic traces ofprogram executions of two program variants. The map-
pings generated can be the key to detect and determine if one program is a variant of another program. This can be useful
when obfuscation techniques are deployed during the generation of new malware variants. Unlike some static analysis ap-
proaches for mapping and detecting program variants, our method is implemented at the level of executable binaries of the
two program variants and does not require access to the programs source code. In particular, the approach refines the set of
mappings by comparing the execution contexts (i.e.semantics) associated with the mapped trace slices.

The remainder of this report is structured as follows. Section 3 explains the syntax the semantics of our programming
language, AAPL. Section 4 presents the semantic trace slicing algorithm and its correctness proof. Section 5 highlights the
strengths and limitations of the algorithm. Section 6 describes the related research work in the area of dynamic program
slicing and slicing binary executables. Section 7 briefly discusses the actual approach of mapping individual semantictraces
and presents its algorithms. Section 8 outlines our approach in finding a set of test data inputs via backward domain analysis
technique. Section 9 concludes the report.

3 Programming Language

In this section we introduce our simple abstract assembly programming language (AAPL) which is used by our dynamic
slicing algorithm and for reasoning about code obfuscatingtransformations in malware program variants. Our main objective
is to have an indicative intermediate representation of assembly programs that aid in supporting various program analysis
approaches such as generating CFGs, PDGs, etc.; moreover, this approach allows us to investigate semantic properties of
code independently of the target architecture. This enables its use to employ source analysis techniques on low-level code.

3.1 Syntax

Programs written in AAPL consist of a sequence of statements. Every program statement contains a commandC and,
optionally, a labelL. We define program registers to be a finite set of assembly registers which represent a small fixed set
of word-sized containers during program execution. We define PC as the program counter register to hold the memory
address of the next command to be executed andSP as the stack pointer register which points to a region of memory. Our
programming language semantics are similar to those presented in [19], except that our language treats memory addresses as
unsigned integer numbersZ⊥ and assumes they hold either integer values or commands.
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R ::= {PC , SP, R0 , R1, ..., Rn}

E ::= n | L | R | ∗E | E1 op E2 (op ∈ {+,−, ∗, /, ...})

B ::= true | false | E1 < E2 | ¬B1 | B1 &&B2

A ::= R := E | SKIP | JMP E | ∗R := E | CALL E | RTN

C ::= CA := A

| CB := B JMP E

P ::= Σ(C)

(a)

B = {true, false} (truth values)

n ∈ Z (unsigned integers)

ρ ∈ E = R → Z⊥ (environments)

m ∈ M = Z → Z⊥ ∪ C (memory)

ξ ∈ X = E × M (execution contexts)

S = C × X (program states)

(b)

Figure 1. Instructions Syntax and Value Domain

Figure 1 describes the programming syntax of AAPL. A programP is a sequence of commandsΣ(C). There are two
types of commands in AAPL, actions and conditional jump commands. An action commandCA may perform the following:
evaluating an expression to a register (R := E ), loading the result of an expression into a memory locationpointed to by a
register, performingSKIP (i.e. nop) operation. An unconditional jump command may perform jumps based on an expression
value, a call by expression value and a return to a memory location specified by the stack pointerSP . A conditional jump
commandCB performs a jump to a location specified by the value of expressionE when the Boolean expressionB evaluates
to true (e.g.B̂[[B ]] = true).

In Figure 1b, we letρ describe theenvironmentof program registers, including the program counter, during program
execution. An environmentρ ∈ E maps a register to its content value, i.e.ρ : R → Z⊥. Moreover, thememoryin the
language describes the actual contents of program registers and locations represented by arithmetic expressions.

3.2 Semantics

The semantics of the programing language is presented in Figure 3. The semantics of actions describes how the memory
and the environment pair (ρ′,m ′) of the next command to be executed in the program is evaluated. The execution of program
P = Σ(C) starts by executing the initial command ofP that is specified by the program counterPC . PC always points to the
memory location of the first command in the program. That is, asequence of program commands stored in the memory are
reachable through execution at runtime via memory locations pointed to byPC . The memory location values are computed
during program execution and assigned toPC . Thus,PC should hold a valid memory address. For instance, when executing
a call command, the location of the next command in the program is stored in the stack memory indexed bySP . Also, in the
semantics of return command (RTN), the program counter retrieves the location of the next command to be executed from
the stack.

The behaviour (i.e, the set of traces) of a program during theexecution is described by the set ofexecution contextsX ,
whereX = E ×M is a pair of the environment and memory of the program being executed [19]. A program executionstate
s ∈ S is a pair of command and execution context, (C , ξ). The set of program execution states, denoted byS = (C × X ),
describes both the program command and the execution context of the program in each state. The transition functionĈ :

S
PC
→ Σ(S ) specifies transition relation between states by determining the memory content pointed to byPC and evaluating

the next command to be executed. That is, for a given states Ĉ(s) provides the next program states ′ via evaluatings .
For instance, for the unconditional jump command,JMP E , the arithmetic expressionE in the current command must be
evaluated and the result is assigned to the program counterPC which represents the location of next program command (i.e.
C ′ = m(ρ(PC ))). Figure 2 shows a fragment of a malware routine written in AAPL and its single execution trace, which
represents the the program environment and memory evolution (the notation of the execution traceTtc is explained in the
following section).

4 The Semantics Trace Slicing Algorithm

We considerT ∗ to be the set of finite sequences of program execution states.A program execution traceTtc ∈ T ∗ consists
of a sequence of program states< s1, ..., sn > of length|Ttc| ≥ 0 that has actually been produced by executing the program
with initial states0 and a test inputtc: si ∈ Ĉ(si−1) for all i, 1 ≤ i ≤ n.
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P :
1 R0:=n

2 R1:=m

3 Loop: (R0 >= 3) JMP Exit

4 *R1:=*R0+4

5 R0:=R0+1

6 R1:=R1+1

7 JMP Loop

8 Exit: JMP ...

(a)

Ttc :
s1 R0:=n, (ρs1

(R0 7→ 1,R1 7→ 0),ms1
(R0,R1))

s2 R1:=m, (ρs2
(R0,R1 7→ 2), ms2

(R0,R1))

s3 Loop: (R0 >= 3) JMP Exit, (ρs3
(R0,R1),ms3

(R0,R1))

s4 *R1:=*R0+4, (ρs4
(R0,R1),ms4

(R0,R1 7→ (m33(R0) + 4)))

s5 R0:=R0+1, (ρs5
(R0 7→ 2,R1),ms5

(R0,R1))

s6 R1:=R1+1, (ρs6
(R0,R1 7→ 3),ms6

(R0,R1))

s7 JMP Loop, (ρs7
(R0,R1),ms7

(R0,R1))

s8 Loop: (R0 >= 3) JMP Exit, (ρs8
(R0,R1),ms8

(R0,R1))

s9 *R1:=*R0+4, (ρs9
(R0,R1),ms9

(R0,R1 7→ (ms8
(R0) + 4)))

s10 R0:=R0+1, (ρs10
(R0 7→ 3,R1),ms10

(R0,R1))

s11 R1:=R1+1, (ρs11
(R0,R1 7→ 4),ms11

(R0,R1))

s12 JMP Loop, (ρs12
(R0,R1),ms12

(R0,R1))

s13 Loop: (R0 >= 3) JMP Exit, (ρs13
(R0,R1),ms13

(R0,R1))

s14 Exit: JMP ...

(b)

Figure 2. A sample program in AAPL and its execution trace. (a) a sample program; (b) an execution
trace on input: n = 1, m = 2

The execution traceTtc of a program captures the complete runtime information of the program’s execution, which can
later be used by our slicing algorithm. The information thatthe trace holds consists of both the command (the syntax) trace and
execution context reference (the semantics) trace. For example,Ttc =< s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14 >
is the program execution trace when the program in Figure 2 isexecuted on the input datan = 1, m = 2. Notationally, each
program state in an execution trace is subscripted with its position. We letPOST to denote the set of positions of program
execution statesS in a program execution traceT . Also, in order to map a particular execution position to theexecution state
in T , we define the auxiliary functionState : POST → S .

Unlike some traditional slicing algorithms proposed in theliterature [3, 13], where the control flow graph of the program is
staticallyanalysed and the full dynamic program dependence graph (DPDG) is constructed in order to perform the slice, the
algorithm that we present,Semantic Trace Slicing(STS), does not require the computation of either control dependencies or
the program dependence graph. Instead, the STS algorithm involves the following:on-the-flycomputation of data dependence
edges from the trace, constructingdynamic data dependencygraph and performing the slice for a given slicing criterion.
Therefore, the trace slice, which is computed from the program execution trace, is the transitive closure of data dependencies
in the DDDG relevant to the trace slicing criterion. The following three subsections present definitions, overview and a
description of the STS algorithm.

4.1 Definitions

We present a few definitions that are included in the STS algorithm. In these definitions, and throughout the rest of the
report, we use the termstatenodes to denote program execution states in an execution trace. Also, AAPL uses registers,
R (i.e, the environmentρ(R)) and direct memory locations (i.e, addressing memory locations with an immediate offset, a
register, or a register with an offset) in order to perform data manipulations during program execution, such as retrieving and
storing data from memory.

We use the termdata manipulatorto denote registers and memory locations that are used to process the program data.

Definition 1 (data manipulator (DM )). In AAPL, adata manipulatoris a program register or memory location used to
perform data definition and manipulation operations. The value of a data manipulator is described as either the environment
value,ρ(DM) in the case of a register or the memory valuem(DM) in the case of a memory location.

During program executionDM can be defined or used at any point via a state node (e.g. assignment or memory update
operations). In order to capture data dependency information in an execution trace, the following definitions are introduced.
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Semantics of Arithmetic Expressions:

Ê : E×X → Z⊥

Ê[[n]]ξ = n

Ê[[L]]ξ = n

Ê[[R]]ξ = ρ(R)

Ê[[∗E ]]ξ = if (∃n Ê[[E ]]ξ ∈ n) thenm(n); else⊥

Ê[[E1 op E2]]ξ = if (Ê[[E1]]ξ ∈ Z andÊ[[E2]] ∈ Z) thenÊ[[E1]]ξ op Ê[[E2]]ξ; else⊥

Semantics of Actions:

Â : A×X → X

Â[[SKIP]]ξ = ξ whereξ = (ρ,m)

Â[[R := E ]]ξ = (ρ′,m) whereξ = (ρ,m) andρ′ = ρ(R 7→ Ê[[E]]ξ)

Â[[∗R := E ]]ξ = (ρ,m ′) whereξ = (ρ,m) andm ′ = m(ρ(R) 7→ Ê[[E]]ξ)

Â[[JMP E]]ξ = (ρ′,m) whereξ = (ρ,m) andρ′ = ρ(PC 7→ Ê[[E]]ξ)

Â[[CALL E]]ξ = (ρ′,m ′) whereξ = (ρ,m), ρ′ = ρ(PC 7→ Ê[[E]]ξ,SP 7→ SP − 1) andm ′ = m(ρ(SP − 1) 7→ ρ(PC + 1))

Â[[RTN]]ξ = (ρ′,m) whereξ = (ρ,m) andρ′ = ρ(PC 7→ m(ρ(SP)),SP 7→ SP + 1)

Semantics of Commands:

Ĉ : S
PC
→ Σ(S ) (determines transition relation between states viaPC)

Ĉ[[CA]]ξ = (ξ′,C ′) whereξ = (ρ,m), ξ′ = Â[[A]]ξ andC ′ =

{

m(ρ(PC )) if A := JMP ∪ CALL ∪ RTN
m(ρ(PC + 1)) otherwise

Ĉ[[CB ]]ξ = (ξ′,C ′) whereξ = (ρ,m), and

(ξ′,C ′) =

{

ξ′ = (ρ′,m), ρ′ = ρ(PC 7→ Ê[[E ]]ξ),C ′ = m(ρ(Ê[[E ]]ξ)) if B̂[[B ]]ξ = true
ξ′ = ξ,C ′ = m(ρ(PC + 1)) otherwise

Figure 3. Semantics of the abstract assembly programming language (AAPL)

Definition 2 (definition positiondef(p)). Letdef(p) be the set ofDM whose values are defined at positionp in an execution
traceT .

Definition 3 (use positionuse(p)). Letuse(p) be the set ofDM whose values are used at positionp in an execution traceT .

Definition 4 (Def-clear path). ∀i, k ∈ POS, dm∈DM andi < k. The path< i, ..., k > is Def-clear path iff∀j ∈< i, ..., k >,
dm /∈ def(j).

Definition 5 (recent definition positiondp(dmi)). For an execution traceT , let i∈POST anddm be aDM in T . The function
dp(dmi) computes the position of most recent data definition ofdm with respect to any given point,i, in T . dp(dmi) = k iff
∃ < k, ..., i >,dm∈def(k) and< k + 1, ..., i > is Def-clear path ork = 0 (no definition exists fordmi).

The most recent definition ofDM can be computed as a program executes by updating therecent definition positionof
DM . dp(DM) allows one to keep track of positions of state nodes which define programDM in a trace. For instance, if
a data manipulatordm is defined at positioni ∈ POST in T then for a given positionj ∈ POST wherei < j, dp(dmj)
represents the positioni of that state.
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Definition 6 (dynamic data dependencesi
ddd
→ sj). In an execution traceT , let i, j∈POS wherei < j andsi, sj ∈T . sj is

(directly) data dependent onsi iff:

1. there exists a data manipulatordm∈DM in T such thatdm ∈ use(j), and

2. dp(dmj)= i

Note that condition 2 in Definition 6 ensures thatdm is not redefined after positioni in the trace. Due to Definition 5
capturing most recent definitions of data manipulators during in the execution trace.

During an execution of a program with a test input, data dependence edges and adynamicdata dependence graph can be
constructed from an execution trace and information gathered at runtime.

Definition 7 (data dependence edgeDE). A data dependence edge is an ordered pair of positions of program states in an
execution trace. A directed edgeDE is constructed between a pair of positions of state nodes in an execution trace, s.t.

DE=(j, i), iff si
ddd
→ sj .

Definition 8 (dynamic data dependence graph (DDDG)). a dynamic data dependence graph is a set of data dependence
edgesDE which represents the data dependencies between state nodesin a program execution trace.

Since we are interested in slicing execution traces of assembly code, the definitions below capture the notion of the
semantic trace slice.

Definition 9 (trace slicing criterion (TSC)). A trace slicing criterion of an AAPL programP executed on program input (test
case)tc is a pair,TSC =(tc, dm, k), wheredm is a set of program data manipulators after the execution of program state at
positionk in a program execution trace.

Definition 10. DDDGTSC is the set of data dependence edges obtained fromDDDG by computing backward reachability in
DDDG from the position specified bydp(dmk) for eachdm in the trace slicing criterionTSC.

Definition 11 (semantic trace slice (STS).). A semantic trace slice of an AAPL program execution traceT is an execution
trace T ′ which is a projection ofT relevant to the value of the slicing criteriondm. That is,T ′ is T state nodes not in
DDDGTSC left out.

An important property ofSTS is that it preserves the effect of the original program execution trace on the data manipulator
chosen at the selected point of interest within the trace. Although any static data slice of a program can be computed by
a pure static analysis, the computation of dynamic data slice requires runtime information. The runtime information is
generated as the program is executed with a given program input. This dynamic information provides the control flow path
the program follows to reach the specific state of the programcommand in the slicing criterion. Definition 11 captures the
set of all reachable program execution states from positionk in the execution pathT that directly or indirectly affects data
manipulatordm in TSC. Thus, the semantic trace slice preserves the program’s behaviour with respect to a slicing criterion
data manipulator and removes any irrelevant state nodes from T , producing a more precise slice. This definition will be
applied by our algorithm.

4.2 Overview of the STS Algorithm

Dynamic slicing algorithms typically first carry out all thestatic computation of the control dependencies and then con-
struct the dynamic program dependence graph (DPDG) to calculate the slice. The generated slices are program statements
which may be a subset of the original program [13, 3]. Our goalis to slice execution traces of a program under inspection
and to generate trace slices that are a subsequence of the original execution trace which can be used to detect malware vari-
ants. Moreover, we observe that the execution trace captures the full control flow and data manipulation information of the
program’s execution for a given input. Therefore, a programtrace abstracts away the effect of control dependencies andwe
know the complete path followed during the execution in which the value of theTSC data manipulator is computed. For
this reason, we propose a precise trace slicing algorithm that does not perform any static evaluation of control dependency or
PDG. We refer to this algorithm as thesemantic trace slicing(STS) algorithm.
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The STS algorithm employs the dynamic definition-update analysis of the data manipulators to recover dynamic data de-
pendencies between program execution states. When a program execution begins, the algorithm performs dynamic definition-
update of all data manipulators in each executed nodes viadp() function (Definition 5). This allows the algorithm to compute
new data dependencies in a dynamic fashion from the execution trace and then to construct theDDDG.

The construction of aDDDG with dynamic definition-update analysis of DMs allows the production of precise dynamic
slices for any data manipulators at any execution position in the trace. For example, if we need the dynamic data slice for
the value of a data manipulatordm at positionp in the program execution trace, we begin traversing the computedDDDG
from the definition position ofdm which is recovered from the definition-update analysis (i.edp(dmp)). Thus, the algorithm
needs to traverse the execution trace only once to compute data dependencies during the computation of any trace slice.

In essence, this algorithm produces a precise trace slice that consists of only those program execution states in the execution
traceTtc which contribute to the computation of the value of slicing criterion.

4.3 Description of the STS Algorithm

The STS algorithm handles execution traces of an assembly level program. For a given execution trace, it analyses an
execution state by state and generates theDDDG. Then a slice is computed with respect to the slicing criterion.

During the execution of the program with a test casetc, the execution states of program commands are stored asstate
nodesin an execution traceTtc. The STS algorithm uses data dependence relations that are established between state nodes
in the program execution trace with respect to an inputtc. The STS algorithm presents the notion of dynamic dependence
edges for identifying trace slices. The data dependence associated with each command in a program arises as a state node of
the command is created in the program execution trace. New dependence edges,DE, between program state nodes are only
established when their associated dynamic data dependenceexists. That is, as dependence edges are established, theDDDG
for a particularTtc is created. During the execution of a program, let assume that a dynamicoutgoing dependence edge is
established from a state nodesj at positionj with already existed state nodesi in the execution traceTtc (i.e,i < j). Then the
updatedDDDG after the execution of the state nodesj is DDDG← DDDG ∪ {DE}, whereDE =(j, i). After constructing
theDDDG for the execution traceTtc, our STS algorithm computes thebackwardreachable subgraph with respect to any
givenTSC, and all state nodes that appear in the reachable subgraph are contained in the semantic trace slice. That is, the
execution trace slice is computed by traversing only the relevant dynamic dependence edges in theDDDG.

Algorithm 1 shows the pseudo code for the semantic trace slice algorithm. It constructs theDDDG for a program execution
traceTtc via computing data dependence edges between state nodes inTtc. Then the algorithm computes the trace slice. In the
first step of Algorithm 1, the program is executed with inputtc up to execution positionk. During the execution, the algorithm
computes data dependence edges for each executed command. This step is a while loop (steps 8 to 12). On each iteration
of the while loop, a new state nodesj is selected andDE is computed. In step 10, the procedure finddatadepedge(sj)
identifies data dependence edges by finding the state node at position dp(dmj) that define data manipulatordm which is
being used at positionj. The procedure is presented in more detail in steps 15 to 22. If there exists a definition position node
dp(dmj) in the execution traceTtc such thatdp(dmj) < j then the procedure creates a dependence edgeDE=(j, dp(dmj))
and includes it into the setDDDG. In steps 23 to 27, the procedure updatedp(j) updatesrecent definition positionsof all
data manipulators that are defined in the current statesj such thatdp(dm)=j if dm∈def(j). The process of identifying data
dependencies for state nodes in a trace and creating dependence edges inDDDG continues until the execution trace reaches
positionk. Finally, the procedure computeSTS() in steps 28 to 39 performs backward slice and produces the sequence of
state nodes inTtc that can be reachable from the slicing criterion viaDE in DDDG.

Example 1. We illustrate the working of STS algorithm with the aid of thefollowing sample AAPL program of Figure 2a and
its execution trace of Figure 2b. When Algorithm 1 is appliedfor the program traceTtc of Figure 2b fordm=R0 at position
14, theDDDG andSTS are computed and presented in Figure 4. The semantic trace slice for R0 at position14 in Ttc is
computed in the following way:

After the initialisation step in computeSTS() (steps 29-30 of Algorithm 1), all nodes in the trace areset as not marked
and not visited, the slice set is set empty and the algorithm marks the most recent definition node ofR0 (i.e. dp(R014)=10).
After the first iteration of the while loop,STS=s10 and the following state is set as marked and not visited inTtc in step 38:
{s5} because it is reachable froms10 in theDDDG of Figure 4a. After the second iteration of the while loop in step 34, the
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Algorithm 1 Semantic Trace Slicing Algorithm

1 Input: A programP and a trace slicing criterionTSC = (tc, dm, k)
2 Output: A semantic trace sliceSTS

3 begin
4 Ttc: a sequence of state nodes
5 DE := (S, S): a dynamic dependence edge where

S is an index of a state node in the traceTtc

6 DDDG: a set of dynamic dependence edges
7 ExecuteP on inputtc up to positionk:
8 while Ttc ← EXE(P,tc,k) does not reach execution positionk do
9 Select current executed statesj in Ttc

10 find datadepedge(j);
11 updatedp(j);
12 end while
13 computeSTS();
14 end

15 procedurefind datadepedge(j)
16 for all dm∈use(j) do
17 if ∃zdp(dj) ∈ Ttc s.t.dp(dmj) < j then
18 create dynamic data dependence edgeDE =(j, dp(dmj))
19 DDDG← DDDG ∪ {DE}
20 end if
21 end for
22 end procedure

23 procedureupdatedp(j);
24 for all dm∈def(j) do
25 update definition position fordm with positionj: dp(dm)← j
26 end for
27 end procedure

28 procedurecomputeSTS()
29 STS ← ∅
30 Set all state nodes inTtc as not marked and not visited
31 Setsdp(dmk) ∈ Ttc as marked and not visited state
32 while there exists marked and not visited state inTtc do
33 Select marked and not visited statesq ∈ Ttc

34 Setsq as visited inTtc andSTS ← STS ∪ {sq}
35 for all outgoing dep. edges fromsq to some statesi in DDDG s.t.DE =(q, i) do
36 Find and marksi ∈ Ttc

37 end for
38 end while
39 end procedure

slice containss10 ands5 is set as marked and not visited state inTtc so far. The following is the outcome of the remaining
while loop iterations of Algorithm 1:

• After third iteration:STS= < s5, s10 > and marked and not visited nodes inTtc ={s1}.

• After fourth iteration:STS= <s1, s5, s10 > and marked and not visited nodes inTtc ={φ}.

9



    

6

10

543

11 12

7

2

1

8

13 14

9

(a)

STS :
s1 R0:=n, (ρs1

,ms1
)
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Figure 4. (a) DDDG of the program in Fig.2a with respect to its Ttc in Fig.2b. (b) STS for R0 at position
14 in Fig. 2b computed by Algorithm 1.

4.4 Correctness Proof

In this section we prove that our algorithm produces a correct trace sliceSTS for a given program execution traceT ∈S∗

with respect toTSC. Recall from the semantics of AAPL in Section 3, that the transition functionĈ transforms states into
s′ if Ĉ[[c]]ξ = s′ wheres = (c, ξ) ands′ = (c′, ξ′). Since our slicing notion handles program execution tracesand produces
trace slices, the definitions below introduce labeled transitions with the label identifying thesliced program state inT (if
any):

• T ⊢ s
s
→ s′ if Ĉ[[c]]ξ=s′ ands=(c, ξ)∈STS;

• T ⊢ s
τ
→ s′ if Ĉ[[c]]ξ=s′ ands=(c, ξ) /∈ STS;

• T ⊢ s
τ
⇒ s′ for the reflexive transitive closure ofT ⊢ s

τ
→ s′;

• T ⊢ s
s
⇒ s′ if ∃s′1 s.t.T ⊢ s

s
→ s′1 andT ⊢ s′1

τ
⇒ s′.

That is, if the execution trace can have sliced program states then these states appear in the trace slice, but not the vice
versa. In the following definitions, we present the notion ofa weak simulation relation between two program states. First,
we define theslice successorlabel which describes the transition between the sequence of sliced states in an execution trace.

Definition 12 (slice successor ). Lets=(c, ξ), ands′′=(cs′′ , ξs′′) wheres, s′′∈T . s′′ is the successor ofs in the traceT ,
s s′′ iff s, s′′∈STS and one of the following must hold:

1. T ⊢ s
s
→ s′′ (i.e. s′′ is the immediate child ofs) or,

2. T ⊢ s
s
⇒ s′′, and∃s′ s.t. s′ /∈ STS, T ⊢ s

s
→ s′ andT ⊢ s′

τ
⇒ s′′.

Note that for each sliced program state in an execution trace, there exists only one slice successor state. A definition of
weak simulationbetween two program states in two different execution traces is introduced below. The definition uses a
general notion of states transition⇒ between program states in a trace.

Definition 13 (weak simulation). A binary relation⋄ is a weak simulation if∃s∈ T1 and∃n∈ T2 and whenevers ⋄ n and
T1 : s⇒ s′ then∃n′ s.t. s′ ⋄ n′ andT2 : n⇒ n′.

We define the notion of relevant data manipulators in an execution trace which will be used for a weak simulation relation
R and the correctness proof.

Definition 14 (relevant data manipulators). Let i∈POST in a traceT andsi =(csi
, ξsi

)∈T . We defineRDM(i), the set of
relevant data manipulators at positioni such thatdm∈RDM(i) iff ∃k ∈POST and there exists a path,< i, ..., k >∈T s.t.
dm∈use(k), and< i, ..., k − 1 > is a Def-clear path wrtdm.
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That is, the notion ofRDM() describes the set of data manipulators that are not re-defined along a particular sequence of
states in a trace. In the following definition, we present a relation R and later show it is a weak simulation in Theorem 1 if

the trace sliceSTS is closed under
ddd
→ . That is, lets, m∈T , if s

ddd
→ m andm∈STS thens∈STS.

Definition 15 (relationR). Letsi =(csi
, ξsi

)∈T andnj =(cnj
, ξnj

)∈STS. We definesi R nj to hold iff:

1. csi
=cnj

2. ∃dm∈RDM(i), ρsi
(dm)=ρnj

(dm) andmsi
(dm)=mnj

(dm).

That is, the relationR holds between a statesi of the original execution trace and a statenj of the trace slice wheneversi

is a sliced state and it corresponds to the sliced statenj in the trace slice.

Example 2. Consider program statess10 ∈ Ttc in Fig.2 ands′3 ∈ T ′
tc in Fig.5, whereSTS = < s1, s5, s10 >. We have

s′3∈STS, cs10
=cs′

3
, R0∈RDM(10), ρs10

(R0)=ρs′

3
(R0) andms10

(R0)=ms′

3
(R0) and hences10R s′3.

The following theorem presents the notion of semantic traceslice correctness. It guarantees that there is a weak simulation
relationR between the original execution trace and the trace slice in particular the slice criterionTSC in both traces satisfies
the relationR. We provide a proof sketch to show the correctness property.

Theorem 1. Let i, j∈POST1
, s=State(i), s′′=State(j)∈T1 andx, y∈POST2

,n=State(x), n′′=State(y)∈T2. Assume

that STS is closed under
ddd
→ Whenevers R n andT1 ⊢ s s′′ then

∃n′′ s.t.s′′R n′′ andT2 ⊢ n n′′.

Proof Sketch: From s R n we infer n ∈ STS andcs = cn. We also infer that∃dm ∈ RDM(i): ρs(dm) = ρn(dm) and
ms(dm)=mn(dm). FromT1 ⊢ s  s′′ we infers, s′′∈STS, so withs′′ =(cs′′ , ξs′′ ) ∃ n′′ =(cn′′ , ξn′′) s.t. T2 ⊢ n  n′′,
and thusn′′∈STS. We now show thats′′R n′′:

1. There are two cases to show thatcs′′ =cn′′ :

• ∀dm∈def(j), ∃E s.t. Ĉ[[dm :=E]]ξs′′ = Ĉ[[dm :=E]]ξn′′ and thuscs′′ =cn′′ .

• if def(j)= def(y)=φ, then∃dm∈RDM(j), dm =use(j)=use(y) andρs′′(dm)= ρn′′(dm) andms′′(dm)=
mn′′(dm).

2. For a givendm∈RDM(j), ρs′′(dm)=ρn′′(dm) andms′′(dm)=mn′′(dm) hold in two cases:

• if dm ∈ def(i), and sincecs = cn from s R n then∃E s.t. cs = cn = (dm := E), thuss′ = Ĉ[[dm := E]]ξs and
n′ = Ĉ[[dm :=E]]ξn and froms  s′′ andn  n′′, we infer thatρs′(dm)=ρs′′ (dm) andms′(dm)=ms′′ (dm)
andρn′(dm)=ρn′′ (dm) andmn′(dm)=mn′′(dm), and thusρs′′(dm)=ρn′′(dm) andms′′(dm)=mn′′(dm).

• if dm /∈ def(i), thendm ∈ RDM(i), and the claim follows from∀dm ∈ RDM(i) : ρs(dm) = ρn(dm) and
ms(dm)=mn(dm) sinceξs′′ =ξs =ξn =ξn′′ wrt dm.

�

Example 3. The trace slice computed in Fig. 4b for registerR0 in the program trace in Figure 2 is not ”executable” in
the sense that it does not correspond to an execution but we can produce an ”executable” programP ′ from the trace slice
via extracting the command sequenceP ′ =Σ(C) from the trace slice in Fig.4b. Then, in Fig.5, we execute theprogramP ′

with the same program input (n = 1, m = 2) and produce the execution trace (a projection) which agrees with the original
trace (in Fig. 2) on the values of the slicing criterion. So weare saying that we have the correct sub trace if we can execute
the program projection from the input and agree with the original trace at the corresponding program point. Therefore, the
observable behaviour of programP ′ trace is similar to the observable behaviour in the originalprogram trace of figure 2
with respect to the slicing criterion.
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P
′ :

1 R0:=n

2 R0:=R0+1

3 R0:=R0+1

(a)

T
′

tc :
s
′

1 R0:=n, (ρs′
1
(R0 7→ 1,R1),ms′

1
)

s
′

2 R0:=R0+1, (ρs′
2
(R0 7→ 2,R1), ms′

2
)

s
′

3 R0:=R0+1, (ρs′
3
(R0 7→ 3,R1), ms′

3
)

(b)

Figure 5. (a) The program P ′ is produced by extracting the command sequence from the trace slice
in Fig. 4b; (b) an execution trace of P ′ on input tc : n=1, m=2.

5 Strengths and Limitations of the STS Algorithm

The main motivation for our STS Algorithm is to minimize the false-negative rate in detecting obfuscated malware vari-
ants. This can be accomplished by removing the effects of theobfuscation techniques (deobfuscation) and capturing thetrue
semantics of program traces using slicing. Thus, the power of our STS algorithm relies on the ability to handle malware
obfuscating transformations. We discuss below the set of obfuscating transformations that are used to generate new malware
variants and STS algorithm can handle, we call this setSTS-handledobfuscations.STS-handledobfuscations are code trans-
formations that add new (syntax) code lines to create new program variants while preserving the data dependence structure of
the original program.Code reordering: This obfuscation technique, commonly is applied on independent commands where
their order in the code do not affect other commands. The execution order of commands can be maintained using uncon-
ditional jumps. Thus, new variants of the program can be created with the same semantics but different syntax.Garbage
insertion: This transformation technique introduces commands that have no semantics effect on the program execution. The
main objective of the technique is to create new program variants that preserve the original program semantics but contain
different syntax.Equivalent functionality: This obfuscation technique replaces commands with other equivalent commands
that perform the same operations of the original code.Opaque predicate: A predicate whose value is known a prior to a code
transformation but is hard to determine by examining the obfuscated code [7]. This technique obfuscates the program control
flow and makes it difficult to analyze statically.

Limitations. The STS algorithm has some limitations. The slicing algorithm is not resilient with respect to data obfusca-
tion and variable renaming techniques. Introducing new data dependences between program registers and memory locations
is an obfuscation technique which can not be handled via our slicing algorithm (STS-unhandled obfuscation class). This
transformation technique obfuscates a program via creating dependencies between variables using rewriting assignments or
introducing new ones [7, 16]. For instance, malware writersmay use this technique to split a register into two registersor
to transform a registerR0 into the expressionR1 ∗ R0 + R2 whereR1 andR2 contain dummy constant values. Thus, this
technique increases the number of data dependencies in the obfuscated variant which causes to have different semanticsof
trace slices comparing with the malware parent trace slices. An example in Fig.6 illustrates this transformation technique.
Variable renamingis an obfuscation technique which used by malware writers toobfuscate their code and to produce new
malware variants by simply changing registers and variablenames in the program. An ongoing research investigation fora
possible solution to this obfuscation class is presented briefly in the following section.

6 Review of related work

Dynamic slicing has been extended from the traditional slicing techniques for debugging programs [4] to a wider set of
applications such as dynamic slicing for concurrent programs [17, 20], and software testing [15]. Dynamic slicing approach
takes into the consideration only one execution history of aprogram to compute a slice. Thus, it may significantly reducethe
size of the slice as opposed to the approach of static slicing. To present all of dynamic program slicing approaches wouldbe
out of scope of this report. A survey of dynamic program slicing techniques and applications can be found in [22, 21].

In dynamic slicing techniques that depend on an execution trace, the computed dynamic slice is a subset of the original
program. Korel et al. [13, 14] extended Weiser’s static slicing algorithm to the dynamic approach. They incorporated the
execution history of a program as a trajectory to find the statements that actually affect a variable at a program point. Thus,
the resulting slices are more compact and precise than the program slices proposed by Weiser. Agrawal and Horgan [3]
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O(P ) :
1 R0:=n

2 R1:=m

3 Loop: (R0 >= 3) JMP Exit

4 *R1:=F(*R0)

5 R0:=R0+1

6 R1:=R0+R1

7 R1:=R1+1

8 R1:=R1-R0

9 JMP Loop

10 Exit: JMP ...
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Figure 6. An obfuscated code variant of program P in Fig.2 and its DDDG after applying data obfus-
cations.

provided a novel approach for computing dynamic program slices via program dependence graphs (PDGs). Their algorithm
uses the reduced dynamic dependence program (RDDP) where a new node is created if it introduces a new dependence edge
with other existing nodes in RDDP. However, different occurrences of the same node cannot be distinguished in RDDP. None
of the above mentioned slicing methods provide a way to capture the runtime values of variables in a program slice without
at least re-executing the slice. On the contrary, our approach extracts a dynamic trace slice from an execution history.The
computed slice preserves the semantics of the original program execution trace.

Zhang et al. [23, 24] present a dynamic slicing technique that depends on a recorded execution history. Their limited
preprocessing (LP) algorithm performs some preprocessingto first augment the record with summary information and then
it uses demand driven analysis to extract dynamic dependences from the augmented record. In this sense, our approach is
similar to the approach of Zhang et al. In our approach, the data dependence information is computed on-the-fly during the
program execution and is not used to augment the execution trace, but it is mainly used to construct the DDDG.

In terms of slicing binary executables, it is hard to find practical slicing solutions for binary executable programs in
the literature. The existing techniques proposed in the literature perform static slicing only. Cifuentes and Fraboulet use
intraprocedural slicing for handling indirect jumps and function calls in their binary translation framework [6]. Debray
et al. [11] and Kiss et al. [12] presented methods for the interprocedural static slicing of binary executables. However,
these approaches requires extracting static data dependence information from a CFG. On the contrary, our algorithm does
not rely on a CFG but it computes these information from a program execution trace. Bergeron et al. [5] propose a static
slicing technique for analyzing assembly code to detect malicious behavior. Their approach compares program slices against
behavioral specifications (e.g. a set of API signatures) to detect potentially malicious code. However, since their method
is purely based on signatures of function calls and sequenceof commands, it lacks the ability to handle certain obfuscation
techniques such as code reordering and equivalent functionality.

7 Mapping Semantic Traces

The objective of the mapping process is to automatically identify a correspondence betweenexecuted program states
(nodes) from the two semantic traces. The two semantic traces are produced by collecting the execution traces of two program
variants. We assume that one variant of the program created after applying semantics preserving program transformations
[7, 8]. In establishing a map between a pair of semantic execution traces it is our objective to provide an algorithm which
producescompleteandcorrect results. That is our algorithm finds as many true mappings as possible (completeness) and it
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finds only true mappings.
Our method needs a pair of execution traces for two variants of a program, it establishes a correspondence between the
executed states by examining thesemanticdetails of individual states in both execution traces. The mapping process consists
of three main steps:

• State matching. For each given program state in the trace, the semantic value is produced i.e. theexecution context.
The semantic values are used to compare two program states and to identify potential mappings or exclude mappings
and states throughout the next two steps.

• Redundant abstraction. Our matching method begins by examining each execution trace of two program variants
for any redundantprogram states. This process abstracts away program statesthat contain similar semantic details of
already executed states in the trace. The outcome of this step is an ordered sequence ofsemanticallyunique program
states of a given execution trace. Algorithm 2 outlines the redundant abstraction procedure.

• Trace mapping. Given a pair of ordered sequences of unique execution states, an iterative algorithm is used to establish
mappings between the states (nodes). For each state in the first sequence, the algorithm identifies a correspondence
candidate state in the other sequence.

Next we discuss the details of how thesemanticvalues of execution states are used in the state matching step. Then we
discuss the details of redundant abstraction and trace mapping algorithms.

Label Category Obfuscation
gi Garbage insertion {} → {C}
eo Equivalent operation {op} → {ōp}
op Opaque predicate {} → {PT/F}
rr Register renaming {Rx} → {Ry}
cs Command split {C} → {Cx, Cy}
cm Command merging {Cx, Cy} → {Cxy}
cr Command reorder {(Cx, Cy)} → {(Cy, Cx)}

Table 1. Obfuscating transformations.

7.1 State Matching

Before we present our algorithm of mapping a pair of execution traces of two program variants, we introduce the matching
step between a pair of execution states. The mapping algorithm establishes mappings between two execution traces based
on the successful matches of execution states. When thestate matchingstep matches a pair of execution states, it essentially
compares thesemanticvalues produced by both states. Thesemanticvalues produced by an execution state can either
represent a set ofenvironmentvalues or a set ofmemoryvalues. Since our mapping step deals with execution traces of
obfuscated program variants, program syntax, i.e.commands, may be altered and also some program variables may be
replaced with different ones. Thus, establishing an exact match between execution states is unlikely to succeed. Therefore
our state matchingstep uses the results computed from individual instructions and ignores commands syntax such that the
derivedsemanticresults can be easily matched even if program obfuscations have affected the corresponding instructions.
For execution traces with long execution state sequences, it is unlikely to map traces based on semantic results of execution
states that do not correspond to each other. However, there is a chance of false (i.e.coincidental) mappings between a pair of
execution traces with very short execution state sequences. Thus, to avoid such false mappings, our state matching method
consists of the followingsemanticcomponents:

• Environment values (EV). To match environments of execution states, the environment values are extracted from
execution states and represented in single values. Each environment of an execution state returns a single value (EV )
which represents theevaluated datavalue of a data manipulator at that particular execution state. When matching a
pair of execution states, we look for a match in the evaluateddata values of both states. Given two execution statess1

ands2 with their data valuesEV1 andEV2, respectively. We considers1 matchess2 if the value ofEV1 is similar to
the value ofEV2.
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Algorithm 2 Redundant Abstraction

1 Input: a semantic traceST
2 Output: A non-redundant nodes listworklist
3 redundantlist: a redundant list ofST nodes

4 redundancyabstraction(ST ){
5 worklist← ST
6 i← first index(worklist)
7 while worklist 6= φ do
8 j ← i + 1
9 while nj 6= ⊥ do

10 if statematching(ni,nj) then
11 redundantlist← redundantlist ∪ {nj}
12 worklist← worklist− {nj}
13 end if
14 j ← next jth index(worklist)
15 end while
16 i← next ith index(worklist)
17 end while
18 return(worklist)

• Memory values. When we match memories of execution states, it is unlikely to find truematches of memory addresses
between execution states of both variants. That is because memory locations of two program variants may vary at
runtime. Also, matching the offsets of memory address of both variants may not be effective in finding matches
because assume that programs might incorporate dynamic code generation and code reordering techniques to execute
new code with different memory layout (i.e. offset). Therefore, memory values are used to establish matches between
corresponded execution states instead. Memory addresses are only used to obtain the memory valuesMV of data
manipulators in execution states where memory updates havebeen performed. The memory match step is performed
between a pair of execution states that have updated memory values. The comparison ofMVs can be performed in the
same fashion as that forEVs.

7.2 Trace Mapping

This section describes the trace mapping algorithm and how the algorithm establishes mappings between a pair of exe-
cution traces of two program variants. As stated in the introduction section, that the goal is to map two trace variants ofa
program where another program variant may has been producedvia some program transformations (obfuscation). Semantic
preserving program obfuscations can have significant affects on program syntax, i.e. program commands. In particular,ob-
fuscating transformations mayrenameprogram registers,add irrelevant commands to the original program, e.g. garbage and
opaque predicate commands, or some transformations maysplit, reorderor mergecommands. Table 1 contains some code
transformation techniques deployed in creating new program variants.

An example in Figure 7, illustrates the above obfuscation affects on program syntax. In this figure each program command
is labeled by a letter. New commands that have been introduced in the program variant are labeled by the obfuscations labels
that have been used to create these commands. Correspondingcommands in the original and obfuscated variants are labeled
with a anda′, respectively. We use subscripts to show the correspondence between one command in one variant and multiple
instructions in the other variant.

Fig.3 presents our trace mapping algorithm which has been developed to identify mappings between a pair of execution
traces of two variants of a program under the presence of the above mentioned obfuscating transformations.

8 Test Data Generation via Dynamic Domain Reduction (DDR)

The objective of the test data generation analysis is to compute the set of constraints in the initial domains of program
inputs which is consistent with state update and leads to final input domains. The Dynamic Domain Reduction (DDR)
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P :
a R0:=n

b R1:=m

c R2:=R1

d R3:=R2+R0

e R4:=R1+k

f R5:=1

(a)

P
′ :

a
′ R0:=n

cr1 JMP rr1

gi1 R22:=R22+1

op1 P
T JMP cm

rr1 R11:=m

gi2 R22:=R22+1

cr2 JMP op1

cm R3:=R11+R0

e
′

1 R4:=k

e
′

2 R4:=R4+R11

rr2 R15:=1

(b)

Figure 7. A sample program (a) and its variant (b) after applying program obfuscation techniques in
table 1.

a b c d e f

rr1cr1a’ gi2 cr2 op1 cm e’1 e’2 rr2

Figure 8. Mapping execution states of execution trace variants.

analysis consists of two steps:

• Forward dynamic domain reduction analysis

• Backward domain substitution analysis

The objective of the Dynamic Domain Reduction process [18] is to automatically identify and generate the reduced value
domains of program inputs which represent the program outputs.

Example 4. Let’s consider the path: 123 of the code below:

1. z=x+100
2. if (z < 20) {
3. y = 1;

else
4. y = 2;
}

Let assume the initial value domains of program inputs arex := y := z := [−127, +128]. The dynamic domain reduction
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Algorithm 3 Mapping Semantic Traces

1 Input: a pair of execution tracesSTa andSTb

2 Output: a list of pairs of mapped execution statesmappedlist

3 begin
4 worklistA: an ordered list of unique execution states
5 worklistB: an ordered list of unique execution states
6 perform Redundancy Abstraction process on both tracesSTa andSTb

7 worklistA← redundancyabstraction(STa);
8 worklistB ← redundancyabstraction(STb);
9 set all elements inworklistA as unvisited

10 i← first index(worklistA)
11 j ← first index(worklistB)
12 while ni 6= ⊥ do
13 if nj 6= ⊥ then
14 if state matching(ni, nj) then
15 mappedlist← mappedlist∪ {(ni, nj)};
16 worklistA← worklistA− {ni};
17 worklistB ← worklistB − {nj};
18 i← next index(worklistA)
19 j ← first index(worklistB)
20 else
21 j ← next index(worklistB)
22 end if
23 else
24 setni from unvisited to unmapped node inworklistA
25 i← next index(worklistA)
26 j ← first index(worklistB)
27 end if
28 end while
29 end

analysis would produce the set of domain constraints as follow:

−127 < x < 128 ∧ −127 < y < 128 ∧ −127 < z < 128 (FC1)
−127 < x < 128 ∧ −127 < y < 128 ∧ −27 < z < 228 (FC2)
−127 < x < 128 ∧ −127 < y < 128 ∧ −27 < z < 20 (FC3)
−127 < x < 128 ∧ y = 1 ∧ −27 < z < 20 (FC4)

In Example 4, after each program command evaluation, the DDRstep updates the domains of program inputs. In particular,
the analysis has performed three domain updates till the final domain of program inputs is produced. The final output of DDR
analysis is represented in the form of a set of constraints (line 4).

8.1 Backward domain substitution analysis (BDS)

We propose ourBackward domain substitutionapproach which uses the set of reduced domains generated viathe forward
analysis and computes the subset of values of program inputs. The BDS analysis starts backward from the set of final con-
straints of program inputs and computes the next constraint. The inverse function of each program assignment command is
computed and used to evaluate the set of constraints of program inputs. The BDS analysis is a bottom-up approach where the
last command of the program is evaluated first using the output constraint of DDR analysis. Then the analysis propagates with
new computedbackwardconstraints of input domains till the start of the program isreached. The output of BDS analysis is
a subset of input domains whose values can exercise the analysed program path.
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Two types of program commands are considered during the BDS analysis:assignment updateandcondition check. The
first type of commands defines and updates values of program variables. While the second type of commands evaluates
a predicate and based on the evaluation outcome the control flow is determined. Thus, a newbackwardconstraint can be
computed as follows:

• Assignment update: the evaluation of the inverse function of the assignment update with the last backward constraint
forms the new backward constraint.

• Condition check: the new backward constraint is computed bytaking the intersection of the last backward constraint
before the predicate statement and the forward constraint after the predicate. .

Example 5. Let’s compute a possible input domain values which exercises the path: s123456e for the following program
using both the forward and backward techniques:

s. input(x,y)
1. if (x <= 90) {
2. if(y <= 15) {
3. x + +;
}
}

4. if(x == 91) {
5. y = 20;
6. x = 100;
}

e. output(x,y);

Forward Analysis (Domain Reduction):

s.

{(x, [−127, 128]), (y, [−127, 128])}
1.

{(x, [−127, 90]), (y, [−127, 128])}
2.

{(x, [−127, 90]), (y, [−127, 15])}
3.

{(x, [−126, 90]), (y, [−127, 15])}
4.

{(x, [91, 91]), (y, [−127, 15])}
5.

{(x, [91, 91]), (y, [20, 20])}
6.

{(x, [100, 100]), (y, [20, 20])}
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Backward Analysis (Domain substitution):

Recall that the BDS analysis starts from the last statement in the path (i.e. linee) and finishes in the first statement (i.e. line
s), the input of theBackwardanalysis is the computed domain in the forward analysis:

e.
{(x, [100, 100]), (y, [20, 20])}

6.
{(x, [−127, 128]), (y, [20, 20])}

5.
{(x, [−127, 128]), (y, [−127, 128])}

4. (FC3 ∩BC5) {(x, [91, 91]), (y, [−127, 15])}

3.
{(x, [90, 90]), (y, [−127, 15])}

2.
{(x, [90, 90]), (y, [−127, 15])}

1.
{(x, [90, 90]), (y, [−127, 15])}

8.2 Abstract Interpretation

Abstract Interpretation [9, 10] defines the approximation correspondence between the concrete semanticsC[[P]] of a syn-
tactically correct programP ∈ P, whereP is a given programming language, and an abstract semanticsA[[P]] which is a
safe/sound approximation of the concrete semanticsC[[P]].

The abstract analysis of a programP is asymbolicinterpretation of this program, using abstract values instead of concrete
values (i.e. semantics). An abstract value represents a setof concrete values or properties of such a set. LetZc be thecon-
cretesemantic domain which is a posetPS(Zc,⊑c), i.e. partially ordered by the approximation ordering⊑c. The abstract
semanticsZa is also a posetPS(Za,⊑a) which is partially ordered by the abstract ordering⊑c.

8.2.1 Backward Abstract Domain Interpretor

The backward abstract domain interpretor starts in a reverse way, by proceeding from the last command in a path, with the
outputstore listΣfout of the forward abstract domain interpretor on all possible paths. For each of the different types of

commands, we have described a transformation which specifies the new store(s)Σ
′
for the next commandc′ in the selected

path. The algorithm essentially performs applications of these transformations until all stores are stabilised and the data
values of program variables are generated.

Semantics rules:

f−1
c : Cmd→ ℑ(Cmd)

f−1
c [[x := e]]Σ := Σ′ where,
Σ′ = {σ[var 7→ {v}] | σ ∈ Σ ∧ σ[x 7→ valx] ∧ var ∈ Var(e) ∪ x ∧

v ∈ evaluate assignment(e, valx, x)} ∪Σ

f−1
c [[c1; c2]]Σ = f−1

c [[c1]] ◦ f−1
c [[c2]]Σ

f−1
c [[if b c1 c2]]Σ = Σ′ whereΣ′ =

{

f−1
b ◦ f−1

c1
Σ if b = true

f−1
¬b ◦ f−1

c2
Σ if b = false

f̂∗
while b do c = f−1

c [[while b c]]Σ =W ◦ f−1
b

[[¬b]]Σ whereW = lfpλχ. ∪ f−1
b

[[b]](f−1
c )[[c]]χ)

Figure 9. Backward Rules for the Semantics in Fig. ??
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8.3 Backward Rules

This section presents rules applied within the backward step for computing domains of values for program variables. First
the semanticsbackwardrule for Boolean expressions is introduced then the semantics backwardrules for commands are
presented. Later in this section the set ofbackwardrules for the arithmetic expressions are presented in the sketch Algrithm
??The functionevaluateInverseExp in Algorithm will be presente.

8.3.1 Backward Rule for Boolean Expressions.

When computing the backward values of domains, thebackwardrule for a Boolean expression propagates the values of
variables for which the Boolean expressionb holds to the next store listΣ′. Let denote the store list after evaluating the
Boolean expressionb in the Forward Analysiswith σb ∈ ΣFA whereσb contains the domains of variables for which the
Booleanb holds. Also, let denote the current store list in theBackward Analysiswith δ ∈ Σ. In order to compute the right
domains of variables for the Boolean expressionb in the backward analysis, the domains of variables in the current store,
Σ, are updated via intersecting the domains inσb with the storeδ. Thus, thebackwardrule for Boolean expressions ensures
that the variables associated with the Boolean expressionb are updated with values that satisfy the Booleanb. This rule is
formally defined as:

f−1
b [[b]]Σ = Σ′ whereΣ′ = {σb ∈ ΣFA ∩ δc ∈ Σ} ∪Σ

8.3.2 Backward Rules for Commands

• Assignment: Algorithm ?? presents the set of rules which handles thebackwardcomputation of an assignment com-
mandx := e where the domain value of an expressione needs to be updated/modified with respect to the domain value
of the variablex. The procedure computes the backward domain values forx and for any variablesvar referenced in
expressione.

f−1
c [[x := e]]Σ := Σ′ where,

Σ′ = {σ[var 7→ {v}] | σ ∈ Σ ∧ σ[x 7→ valx] ∧ var ∈ Var(e) ∪ x ∧
v ∈ evaluate assignment(e, valx, x)} ∪Σ

• Sequential: The backward rule of sequential commands, e.g.,c1; c2 processes the later command(s) first (as opposed
to the order taken in Forward Analysis). The rule is defined as:

f−1
c [[c1; c2]]Σ = f−1

c [[c1]] ◦ f−1
c [[c2]]Σ

• Conditional: The backward rule for the conditional commands processes one of the branches (true or false branch) in
the reverse order. The command(s) of the conditional command is already determined during the Forward Analysis,
thus, the rule treats the branch as a sequential command which composed of a Boolean expression and a command i.e.
f̂∗

c [[b; c]]:

f−1
c [[if b c1 c2]]Σ = Σ′ whereΣ′ =

{

f̂∗
c [[b; c1]] = f−1

b ◦ f−1
c1

Σ if b = true
f̂∗

c [[¬b; c2]] = f−1
¬b ◦ f−1

c2
Σ if b = false

• While Loop: The backward rule for a while loop command evaluates thebackwarddomains of program variables that
are referenced in the loop Boolean expressionb and all variables that are re-defined and referenced inside the body of
the loop i.e. the sequence of commands within the loopc. The rule simply starts the evaluation backwards from the
Boolean expression¬b which exists the body of the loop and processes the sequence of commandsbi; ci for each loop
iterationi generated via the Forward Analysis.

Example 6. Consider the following program which only consists of a while loop command:

while b do c;
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whereb is a Boolean expression andc is a program command. Let assume that the body of the loop get executedk
times during the Forward Analysis, thus the generated sequence of commands would look like the following:

b1; c1 1st iteration of the while loop

b2; c2

...

bk; ck kth iteration of the while loop (i = k)

¬bk+1; skip k + 1 iteration exists the loop (i = k + 1)

In the Backward Analysis, the rule of the while loop command starts from the last command executed i.e.¬bk+1 and
finishes after evaluating the commandsb1; c1. Thus, for this particular example, the backward rule is defined as:

f̂∗
c [[while b do c]]Σ = f̂∗

b [[bi]](f̂
∗
c [[ci]]) ◦ f̂∗

b [[¬bk+1]]Σ, wherei = k, k − 1, k − 2, . . . , 1
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Algorithm 4 Backward Assignment Evaluation Rules

procedure: evaluate assignment(e, vale, x)
input : ′′x := e′′: An expressione to be evluated, its value i.e.,f∗[[e]] = vale , and the variablex
output : Evaluates the set of input valuesVal of x

switch e do
casen

x 7→ {Ido}; //whereIdo is the set of initial values in the initial store listΣo. return ;
end
casevar

if var == x then
x 7→ {Id}; // whereId is the values ofx in the current store, i.e. no updates required forx.
return ;

end
else ifvar 6= x then

x 7→ {Id};
var 7→ {valx| σ[x 7→ valx] ∧ σ ∈ Σ} ;
//wherevalx is the set of values ofx in the current store.;
return ;

end
end
casee1 op e2

switch e1 op e2 do
casen op n

x 7→ {Ido};
return ;

end
case(n op var) || (var op n)

valvar 7→ evaluateInverseExp(valx , valn, op);
if var 6= x then

valx 7→ {Ido};
end

end
caseLvar op Rvar

if Lvar == Rvar then
compute the domain ofvar: x := var op var;
valLvar 7→ compute var dom(valx, Lvar, op);
if x 6= Lvar then

set domain ofx: valx 7→ {Ido};
end

end
else

propagatevalx to varl andvarr for: x := varl op varr :
if value domains of bothLvar andRvar in FA step before current command are set to some constant numbersthen

no need to propagatevalx into the variables,Lvar op Rvar. valx 7→ {Ido};
end
else ifvalLvar in FA step before current command is a constant number[n, n] ∧ valRvar is not a constant numberthen

propagatevalx into Rvar only: valRvar 7→ evaluateInverseExp(valx , valLvar , op);
if x 6= Rvar then

valx 7→ {Ido};
end

end
else ifvalRvar in FA step before current command is a constant number[n, n] ∧ valLvar is not a constant numberthen

propagatevalx into Lvar only; valLvar 7→ evaluateInverseExp(valx , valRvar , op);
if x 6= Lvar then

valx 7→ {Ido};
end

end
else ifvalue domains of bothRvar ∧ Lvar in FA step before current command are NOT set to some constantnumbersthen

split domain(Lvar op Rvar,valx ,valLvar ,valRvar );
if x 6= Lvar ∧ x 6= Rvar then

valx 7→ {Ido};
end

end
end

end
See Algorithm 5 for details of the cases below:
case(e op var) || (var op e)

end
case(e op n) || (n op e)

end
caseel op er

end
end

end
end
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Algorithm 5 Continuation of evaluateassignment procedure in Algorithm 4

continue-procedure: evaluate assignment(e, vale, x)

case(e op var) || (var op e)
if valvar is constant in FA step before current commandthen

vale 7→ evaluateInverseExp(valx , valvar , op);
evaluate assignment(e, vale, x);

end
else

if ∀v ∈ ref(e), valv is constant in FA before current commandthen
vale 7→ [[e]]ΣFA;
valvar 7→ evaluateInverseExp(valx , vale, op);

end
else

split domain(e op var,valx,vale,valvar );
evaluate assignment(e, vale, x);

end
end

end
case(e op n) || (n op e)

vale 7→ evaluateInverseExp(valx , valn, op);
evaluate assignment(e, vale, x);

end
caseel op er

split domain(el op el,valx,valel
,valer );

evaluate assignment(el, valel
, x);

evaluate assignment(er, valer , x);
end

9 Conclusion

In this report, we have introduced our new algorithm to sliceexecution traces with a sketch of the correctness proof. The
algorithm supports the process of capturing semantic details of trace slices for detecting obfuscated malicious code.The
slicing in this context has two roles: to reverse engineering the effect of obfuscations and to produce smaller semantictraces
of suspicious program executions for matching. We have introduced a simple programming language (AAPL) which provides
a high level imperative representation of the assembly code. Also, the semantic trace mapping approach and the backward
domain reducation technique in finding test data inputs havebeen presented and their components discussed briefly. The
describtion of the semantic trace mapping algorithm and thetest data generation technique using backward domain reduction
have been presented. The trace matching algorithm uses sliced traces to finding possible mappings between execuation
states. The proposed test data generation technique helps to approximate the set of possible input values at each program
point. These can be used to find exact test inputs with aid of search-based techniques.

Our preliminary experience has shown that the trace slicingalgorithm can be of a great help for malware detectors during
the process of matching obfuscated malicious program variants. However, more research and experimentation is needed to
better understand the advantages and limitations of our slicing and mapping algorithms in handling more advanced code
transformation techniques. So far we have performed experiments with programs that have been transformed via theSTS-
handledobfuscations (see Section 5). We are planning to perform experiments on obfuscated programs withSTS-unhandled
obfuscations to determine the usability and scalability inproducing correct sub trace matches. In particular, we are interested
in dealing with variable renaming obfuscation via applyingthe trace slice to all possible data manipulators exist in a given
execution trace. In this case, we may decrease the complexity problem of comparing semantic traces of malware variants
without relying on variable names.

We are currently investigating how to develop a framework for determining the set of approximate semantic traces with
respect to possible program execution paths in a program CFG. As a first step in this direction, we observe that for each
(unique) execution path in a program CFG, there may exists a set of execution traces that might have similar semantics.
Hence, an interesting research task consists in characterising the set of semantic abstractions which describe the relation
between the abstract environment (i.e., approximate semantic traces) and the concrete environment (i.e., the controlflow
graph). This characterisation may be described as a Galois connection between two domains and may help us in reasoning
about the minimisation of false negatives in matching traceslices.
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