Semantic Malware Detection
Technical Report TR-10-03, 16 February 2010

Khalid Alzarouni David Clark Laurence Tratt

E-mail:khal i d. al zar ouni @cl . ac. uk, david.j.clark@ecl.ac.uk, |aurie@ratt.net

Abstract

Polymorphic and metamorphic malware use code obfuscadiohniques to construct new variants which preserve the
semantics of the original but change the code syntax, egatlinrent compiled code based detection methods. Dynamic
slicing is a technique that, given a variable of interesthivita program, isolates a relevant subset of executed progra
code that influences that variable. Using dynamic slicingoadition semantic traces identifies ‘core’ behavioursttha
as part of an overall semantics based approach, has the patéa play a significant éle in detecting difficult malware
variants. We preface this by a discussion of the motivatiahthe contextual role for this form of slicing in semantieséd
matching. A brief outline of the semantic trace mapping dthm is presented with an example. We complete the reptit wi
presentation of our test data generation technique usirgkivard domain reduction with some examples as a stand-alone
step in the process of genearting data inputs for producimgue semantic program traces.

1 Overview of the detection process

We begin this document by presenting a brief overview of haplan to use semantics to detect malware variants. This
section is the work of David Clark and Laurence Tratt. Theagmer of the document is the work of Khalid Alzarouni and
David Clark with occasional advice from Laurence Tratt.

1.1 The approach and some applications

We present an outline solution to a specific problem: thetgloif polymorphic and metamorphic malware to use semantic
equivalence tables together with a rewriting engine ta dfteir signature each time they are copied. The key ideausé¢m
finite set of finite semantic traces as a semantic version sigmature” for a known malware. Once the signature is etdrhac
a semantic simulator can be used to attempt to match betraviou

With the challenge of real-time detection of variants in dwve present the scheme in two phases. The initial, prepgrato
phase is when the semantic signature is constructed vigsasalf the malware. The second, detection phase attempts to
match semantic signatures with a candidate program. Fauitposes of this outline we do not treat the question of iidac
but this is a straightforward extra step using abstractiahteace matching techniques.

The outline given in what follows is not the only possible wayinstantiate our framework. Our proposal offers the
following advantages over existing detection methods:

e This approach can be used in much the same way that signareresrrently used to detect malware but clearly can
shorten and decentralise the process of recognising newarahnd distributing new signatures.

e It could also speed up ‘central’ detection of malware vasgdny anti-virus software providers, for example.

e A possibility is the use of the approach in real-time detectf malware variants.
1.2 Preparatory phase: constructing the semantic signature

We assume that we have a known malware program, identifi@d iteosyntactic signature using standard methods. The
known malware may not be “vanilla”, i.e. may not be the oradiprogram before metamorphosis or polymorphosis, but
may be the result of several transformations. What is ingmaiit that it retains the same behaviour as the originahifted
program. Note that in this initial phase we aim to detectarats of known programs rather than different programs with
different behaviours. This latter problem could be tackisihg a variation on our approach. This would require a retea
program to develop ‘positive’ security guidelines whichknown malware with unknown behaviours would violate. The
semantic signature we construct is not a complete semdntitee malware. Technically it is an abstraction of a sli€e o
part of the semantics of the malware. Since it is only parhefdemantics there can never be iron-clad guarantees that it
will always detect a variant or that what it detects is alwaysriant. However there are some things we can guarantee, fo
example that any manipulations we perform on the semamtiteicourse of developing the signature are “safe” in theesen
that they do not introduce anything that was not there torbegth. In addition, the selection of the part of the semantic
used in the signature is done with a guarantee of a certagndf/fimited coverage with respect to all the possible betag
of the malware. Finally, note that each step in the prepargibase may be allowed to be performed with some human
intervention as there is no real-time consideration.

e Reverse engineer the compiled codibe first step is to distinguish code and non-code and twribitary code into a
simple assembly language or equivalent.

e Generate the Control Flow GrapfThis is the first abstraction on the malware.

e Analyse the CFGAnalysis of the CFG can be partly or possibly entirely audted. The aim of the analysis is to extract
a set of test inputs that produce a finite set of finite exeautiaces that cover all reachable executable statements in
the malware. This does not necessarily cover all possitilesdeurs of the malware. Call the test gét

e Generate the semantic traceRun the malware on the inputs in the test §gtusing a semantic simulator for the as-
sembly language. Each input produces a corresponding siertrace which contains information about the evolution
of both the code and the state of the machine during the draaquin.

e Slice the semantic tracesSlicing is a syntax based algorithm which produces a smptegram that has the same
semantic effect with respect to a slicing criterion. Hereshee on the value of all variables at the end of the trace.
This in general produces a smaller trace and can remove sfiewtsenf obfuscation. Even a small reduction in the
trace length can improve the speed of the matching algonithrformed later in the detection step.

e Abstract the sliced semantic tracdsinally, abstractions are applied to each sliced trace Qdsic one is to remove
the syntax of the commands from the traces, retaining trenmdtion about the evolution of the state, but there are
others which can deal with infection, variable renamingl atiner obfuscations. Call the set of abstracted, slicegsa
TR .

e Semantic SignatureEach sliced trace corresponds to an input ffBmThe semantic signatur®, is then the set of
pairs consisting of each input, with its resulting, sliceate.

P=A{(t;,7) | t: € T, € TR, wherer; is generated by; using M }
1.3 Detection phase: using the semantic signature

e Reverse engineer the compiled coHlere we automatically generate the assembler code fordidate program('.

e Generate semantic trace§he tests developed in the previous phase are applied watigidate using the semantic
simulator. For each test € T a semantic trace i R’ is generated.

e Abstract the semantic trace$his step corresponds to the abstraction of the sliceésracthe Preparatory phase and
and can be automated.

e Candidate’s semantic signaturafter abstraction we have the candidate’s semantic sigadt, again a set of pairs.

C={(t,7]) | t; e T, € TR', wherer] is generated by; usingC'}

e Match traces For each; the corresponding signature traces férandC' are compared. The algorithm used is a form
of sub trace inclusion match, in which for eaghthe algorithm checks whether the sequence of nodesadcurs in
7/, possibly with interpolations of extraneous nodes.

In what follows we flesh out this overview.

2 Introductory remarks

Malware writing and malware detection is big business. dté@mbative and fast evolving part of IT and computer science
From the detection point of view the gold standard for sommethas been the libraries of ‘signatures’ which must be kept
complete and as up to date as possible. These libraries etlovgnition of stored, known malware without false positiv
identifications. One weakness of the libraries approacheagime gap between identification and signature disseimat
As long as this gap is short this weakness is acceptable. centeg/ears the development and increasing proliferation of
self-modifying metamorphic and polymorphic malware haanaitically sped up the production of malware variants. The
former use a table of semantic equivalences to preservesiesiwhile altering the syntax of the machine code so that af
execution the stored executable has a different signaftines report takes a single but significant step in the dicectf
detecting such variants on a known program.

The primary contributions of this report are threefold. démtifies a suitable assembly language which is sufficiently
expressive to be able to become a representative of widely assembly languages such as FASM [1] and NASM [2], and
has a sufficiently well defined semantics so as to be amer@mbégriantics based analysis. It defines a notion of slicintpéor
traces that occur in the semantics and provides a slicirayighgn. Finally, it proves that this algorithm is correchis report
also provides a discussion of the strengths and weakneg#®s slicing semantic traces approach with respect to fapdin
malware variants, although no formal guarantees are pedwvadithis stage. Last but not least, the report discusseffytttie
algorithms of mapping semantic traces with respect to afsgbfoscation techniques which are incorporated with theer
slicing algorithm. To fully appreciate this contributiahis necessary to understand the context in which we projoseply
the slicing algorithm.

Our overall approach is based on the semantic simulationeoéxecution of a suspected malware program. We assume
that this program is @onservativesimple obfuscation of another. It is conservative becdlisee has been no variable
renaming (although fresh variables may have been intratjutéring the transformation and it is simple because it is no
an infection (or contained within) another program. Evethwiese assumptions there are some considerable thabretic
difficulties in using semantic traces directly. Determ@ivhether one program is semantically equivalent to anather
not in general decidable, or even partially decidable. €quoently, it is not possible in the general case to providetpa
guarantees for semantics based detection in the traditingect program analysis style. Either detection is gehand
partial, but statistically significant (low false positiva&te), or guarantees are absolute but detection is spexifidiited,
fixed set of transformations [19]. We have developed thi@radialgorithm as part of an overall approach which aims to be
general and partial.

Specifically, we intend that there is an initial analysisgghfor the known malware. In this phase it is reverse engateer
to an AAPL program and its control flow graph (CFG) is extrdct®©n the basis of the CFG a set of test inpdisare
derived which guarantee a coverage property, manifestedfiaite set of finite traces, with respect to the CFG. We call
this set of finite traces thapproximation semanticsf the malware. The traces in this approximation semantiesteen
conditioned by dynamic backward slicing using all variald@ues at the end of the trace. This conditioning producedlem
traces, closer to traces of the vanilla (or unobfuscatedyvara, reducing the complexity of the abstract trace matghi
phase. Further abstraction removes command syntax aridsreteecution contexts (i.e., program environment and nmgmo
sequences). Then the detection algorithm uses each sertrant slice pairs (i.e. trace slices of a known malware amog
and an obfuscated variant) as graphs to identify multipteqttal mappings between the pair of traces. The slicingrétgm
improves the detection of malware variants in two ways.tRing algorithm detects code obfuscating techniques andves
the effects of code obfuscations. Second, it computes d setr@ct semantic trace slices for the malware matchingrétym
(detector) to inspect against semantic trace slices of wkmoalware program. Thus, the slicing approach helps thevaral
detector in producing fast and accurate detection results.

Moreover, we present a method for mapping semantic tracpsogfam executions of two program variants. The map-
pings generated can be the key to detect and determine ifrogegm is a variant of another program. This can be useful
when obfuscation techniques are deployed during the geoera new malware variants. Unlike some static analysis ap
proaches for mapping and detecting program variants, otliadds implemented at the level of executable binaries ef th
two program variants and does not require access to thegmegsource code. In particular, the approach refines thd set o
mappings by comparing the execution contexts §amantickassociated with the mapped trace slices.

The remainder of this report is structured as follows. $&c8 explains the syntax the semantics of our programming
language, AAPL. Section 4 presents the semantic trac@gladgorithm and its correctness proof. Section 5 highighe
strengths and limitations of the algorithm. Section 6 déssrthe related research work in the area of dynamic program
slicing and slicing binary executables. Section 7 briefscdsses the actual approach of mapping individual semaadies
and presents its algorithms. Section 8 outlines our apprivafinding a set of test data inputs via backward domain aigly
technigue. Section 9 concludes the report.

3 Programming Language

In this section we introduce our simple abstract assemladgramming language (AAPL) which is used by our dynamic
slicing algorithm and for reasoning about code obfuscdtimgsformations in malware program variants. Our mainaibje
is to have an indicative intermediate representation ofralty programs that aid in supporting various program aigly
approaches such as generating CFGs, PDGs, etc.; mordugespproach allows us to investigate semantic properfies o
code independently of the target architecture. This esdtdeise to employ source analysis techniques on low-leds c

3.1 Syntax

Programs written in AAPL consist of a sequence of statemdeNgry program statement contains a commaéhdnd,
optionally, a labelL. We define program registers to be a finite set of assemblgtezgiwhich represent a small fixed set
of word-sized containers during program execution. We @efi’ as the program counter register to hold the memory
address of the next command to be executed#nas the stack pointer register which points to a region of mgnour
programming language semantics are similar to those piexben[19], except that our language treats memory addsesse
unsigned integer numbers, and assumes they hold either integer values or commands.

R == {PC, SP, R0, R1, ..., Rn}
B = {true, false} (truth values)
Euz=n|L|R|+«E|EiopEy (op€{+,—,%/,...})))
n ez (unsigned integers)
B ::=true| false| E1 < Es|-B1| B1 & B> f_R .) .
= environments
Au=R:= E|SKIP|JW E|+R:= E|CALL E | RTN e A (envi)
meEM=Z—7, UC (memory)
Cr=COa=4 X=ExM t text
=& X execution contexts
| Cg:=BJIW E iec N (ot)
= rogram states
P ::=3X(C) x (prog)

b
@ (b)

Figure 1. Instructions Syntax and Value Domain

Figure 1 describes the programming syntax of AAPL. A prograns a sequence of commani$C). There are two
types of commands in AAPL, actions and conditional jump ca@nds. An action comman@d, may perform the following:
evaluating an expression to a regist8r:& F), loading the result of an expression into a memory locapioimted to by a
register, performingKIP (i.e. nop) operation. An unconditional jump command may perform jsrbased on an expression
value, a call by expression value and a return to a memoryitotapecified by the stack pointéP. A conditional jump
commandCp performs a jump to a location specified by the value of exfjwads when the Boolean expressidhevaluates
to true (e.g.B[B] = true).

In Figure 1b, we lefp describe theenvironmenbf program registers, including the program counter, dupnogram
execution. An environment € £ maps a register to its content value, i2.: R — Z . Moreover, thememoryin the
language describes the actual contents of program regjetelrlocations represented by arithmetic expressions.

3.2 Semantics

The semantics of the programing language is presented urd-B) The semantics of actions describes how the memory
and the environment paip/; m’) of the next command to be executed in the program is evaluaterlexecution of program
P = ¥(C) starts by executing the initial command®that is specified by the program counf&r'. PC' always points to the
memory location of the first command in the program. That se@uence of program commands stored in the memory are
reachable through execution at runtime via memory locatfinted to byPC'. The memory location values are computed
during program execution and assignedd. Thus,PC should hold a valid memory address. For instance, when &recu
a call command, the location of the next command in the pragsesstored in the stack memory indexed$%. Also, in the
semantics of return commanBTN), the program counter retrieves the location of the nextroamd to be executed from
the stack.

The behaviour (i.e, the set of traces) of a program duringeiteeution is described by the setefecution context&’,
whereX = £ x M is a pair of the environment and memory of the program beirgeted [19]. A program executictate
s € S is a pair of command and execution context, £). The set of program execution states, denoted by (C x X),
describes both the program command and the execution ¢aftéhe program in each state. The transition funcébn

s 3(S) specifies transition relation between states by determithie@ memory content pointed to IRC' and evaluating
the next command to be executed. That is, for a given stét@) provides the next program staté via evaluatings.

For instance, for the unconditional jump commadliP F, the arithmetic expressiofi in the current command must be
evaluated and the result is assigned to the program coftttevhich represents the location of next program command (i.e.
C’" = m(p(PC))). Figure 2 shows a fragment of a malware routine written inPAAand its single execution trace, which
represents the the program environment and memory evol(itie notation of the execution tra@g. is explained in the
following section).

4 The Semantics Trace Slicing Algorithm

We considerT™ to be the set of finite sequences of program execution stat@ogram execution tracg,. € 7™ consists
of a sequence of program states1, ..., s, > of length|T;.| > 0 that has actually been produced by executing the program
with initial states, and a test inputc: s; € C(s;—1) foralli, 1 <i <n.

s1 RO: =n, (ps,(RO— 1,R1— 0), ms, (RO,R1))
52 RL: =M (ps, (RO,RL— 2), m., (RO,RL))
P s3 Loop: (RO >= 3) JMP Exit, (ps;(RO,RL), ms,(RO,RL))
1 RO: =n S4 *R1: =xRO+4, (ps,(RO,R1), ms, (RO,RL— (m33(RO) + 4)))
2 R1: =m S5 RO: =RO+1, (ps,(RO— 2,R1), ms,(RO,R1))
3 Loop: (RO >= 3) JMWP Exit 56 R1: =R1+1, (ps,(RO,RL— 3), ms,(RO,R1))
4 *R1: =« RO+4 s7 JWP Loop, (ps,(RO,RL), ms,(RO,RL))
5 RO: =RO+1 ss Loop: (RO >= 3) JMP EXit, (pss(RO,RL), mss(RO,RL))
6 R1: =R1+1 S9 *R1: =xRO+4, (ps,(RO,R1), msy (RO,R1— (msy(RO) +4)))
7 JMP Loop S10 RO: =RO+1, (ps,,(RO— 3,R1), ms,,(RO,R1))
8 Exit: JMP ... 511 Rl: =R1+1, (ps,, (RO,Rl— 4), ms,, (RO,RL))
S12 JMP Loop, (ps;,(RO,RL), ms,,(RO,RL))
(@) s13 Loop: (RO >= 3) JMP Exit, (ps;4(RO,RL),ms,,(RO,RL))

814EXitZ JMP ...

(b)

Figure 2. A sample program in AAPL and its execution trace. (a) a sample program; (b) an execution
trace oninput: n=1,m =2

The execution tracé;. of a program captures the complete runtime information efgtogram’s execution, which can
later be used by our slicing algorithm. The information thattrace holds consists of both the commahd éyntaxtrace and
execution context referencé semantigdrace. For examplé,;. =< s1, sa, S3, S4, S5, S6, 57, S8, S9, S10, S11, S12, S13, S14 >
is the program execution trace when the program in Figureeasuted on the input date= 1, m = 2. Notationally, each
program state in an execution trace is subscripted withasstipn. We letPOS to denote the set of positions of program
execution stateS in a program execution tradé Also, in order to map a particular execution position togRecution state
in T', we define the auxiliary functioftate : POSt — S.

Unlike some traditional slicing algorithms proposed inliterature [3, 13], where the control flow graph of the pragiia
staticallyanalysed and the full dynamic program dependence graph @Pconstructed in order to perform the slice, the
algorithm that we presengemantic Trace Slicin@TS), does not require the computation of either contrpkedéencies or
the program dependence graph. Instead, the STS algoritlatvés the following:on-the-flicomputation of data dependence
edges from the trace, constructidgnamic data dependengyaph and performing the slice for a given slicing criterion
Therefore, the trace slice, which is computed from the @ogexecution trace, is the transitive closure of data degrerids
in the DDDG relevant to the trace slicing criterion. The following tarsubsections present definitions, overview and a
description of the STS algorithm.

4.1 Definitions

We present a few definitions that are included in the STS dlgor In these definitions, and throughout the rest of the
report, we use the terstatenodes to denote program execution states in an executios. trlso, AAPL uses registers,
R (i.e, the environmeng(R)) and direct memory locations (i.e, addressing memory lonatwith an immediate offset, a
register, or a register with an offset) in order to perforrtadaanipulations during program execution, such as retrgeand
storing data from memory.

We use the terrdata manipulatoto denote registers and memory locations that are used tegsdhe program data.

Definition 1 (data manipulatorpA/)). In AAPL, adata manipulators a program register or memory location used to
perform data definition and manipulation operations. Thiigaf a data manipulator is described as either the envirenin
value,p(DM) in the case of a register or the memory valu€D M) in the case of a memory location.

During program executio®M can be defined or used at any point via a state node (e.g. assigior memory update
operations). In order to capture data dependency infoomatian execution trace, the following definitions are idtroed.

Semantics of Arithmetic Expressions:
E:ExX— 7

E[n]¢ = n
E[L]¢ =n
E[R]¢ = p(R)

E[«E]¢ = if (3n E[E]¢ € n) thenm(n); else L
E[E, op Ex]¢ = if (E[E\]¢ € Z andE[E;] € Z) thenE[E; ¢ op E[E>]¢; elsel

Semantics of Actions:

A[SKI P)¢ = ¢ where¢ = (p, m)
[R:=EJ¢=(p/,m) where¢ = (p,m)andy’ = p(R +— E[E]S)
[*R := E]¢ = (p,m') wheret = (p,m) andm’ = m(p(R) — E[E]¢)
A[IMP EJ¢ = (', m) where¢ = (p, m) andp’ = p(PC — E[E]¢)
A[CALL EJ¢ = (p/,m") where¢ = (p,m), p = p(PC — E[E]¢, SP +— SP — 1) andm’ = m(p(SP — 1) — p(PC + 1))
A[RTNJ¢ = (p', m) where¢ = (p, m) andp’ = p(PC — m(p(SP)),SP +— SP +1)

Semantics of Commands:

¢: 5% 2(S) (determines transition relation between statesi¥i§
ElCale = (¢ C) where¢ = (p, m), & = A[AJ¢ andC’ = { moPO)) A= IUPUCAL URTN
Clesle = (¢, C) where¢ = (p,m), and
. 0 = { ¢ =(p',m),p = p(PC — E[E[¢), C" = m(p(E[E]¢)) if B[B]¢ =true
’ & =¢&0C" =m(p(PC+1)) otherwise

Figure 3. Semantics of the abstract assembly programming language (AAPL)

Definition 2 (definition positiondef(p)). Letdef(p) be the set oD M whose values are defined at positjpin an execution
traceT'.

Definition 3 (use positioruse(p)). Letuse(p) be the set oDM whose values are used at positipin an execution tracé’.

Definition 4 (Def-clear path) Vi, k € POS, dme DM andi < k. The path< i, ..., k > is Def-clear path iff/j e< i, ...,k >,
dm ¢ def(j).

Definition 5 (recent definition pOSitiOdp(d_mi)). For an execution trac#’, leti € POSt anddm be aDM in T'. The function
dp(dm') computes the position of most recent data definitiatvefwith respect to any given point,in 7. dp(dm') = k iff
I<k,...,i >dmedef(k) and< k + 1, ...,7 > is Def-clear path ok = 0 (no definition exists fodm").

The most recent definition DM/ can be computed as a program executes by updatingdeat definition positionf
DM. dp(DM) allows one to keep track of positions of state nodes whicmdgirogramD)M in a trace. For instance, if
a data manipulatodm is defined at position € POSt in T then for a given positiorj € POSt wherei < j, dp(d_mj)
represents the positiarof that state.

Definition 6 (dynamic data dependens:ﬁdid s;). In an execution trac&’, leti, j € POS wherei < j ands;,s; €T. s; is
(directly) data dependent of iff:

1. there exists a data manipulatém € DM in T such thatdm € use(j), and
2. dp(dm’)=i

Note that condition 2 in Definition 6 ensures théat is not redefined after positionin the trace. Due to Definition 5
capturing most recent definitions of data manipulatorsmdyin the execution trace.

During an execution of a program with a test input, data ddpeoe edges anddynamicdata dependence graph can be
constructed from an execution trace and information gathat runtime.

Definition 7 (data dependence ed@#’). A data dependence edge is an ordered pair of positions ofrarogtates in an
execution trace. A directed eddeF is constructed between a pair of positions of state nodesiiex@cution trace, s.t.

DE=(j,4), iff s; “% 5.

Definition 8 (dynamic data dependence gragh)DG)). a dynamic data dependence graph is a set of data dependence
edgesDE which represents the data dependencies between state imcalpgogram execution trace.

Since we are interested in slicing execution traces of dslseoode, the definitions below capture the notion of the
semantic trace slice.

Definition 9 (trace slicing criterion(SC')). A trace slicing criterion of an AAPL prograri? executed on program input (test
case)icis a pair, TSC = (tc, dm, k), wheredm is a set of program data manipulators after the executiormogmm state at
positionk in a program execution trace.

Definition 10. DDDGrs¢ is the set of data dependence edges obtained f/iiG by computing backward reachability in
DDDG from the position specified kip(dm”*) for eachdm in the trace slicing criterioril’SC.

Definition 11 (semantic trace slice (STS).A semantic trace slice of an AAPL program execution trdds an execution
trace T” which is a projection ofl" relevant to the value of the slicing criteriahm. That is, 7" is T state nodes not in
DDDG s left out.

An important property o675 is that it preserves the effect of the original program ekieaurace on the data manipulator
chosen at the selected point of interest within the traceghoAigh any static data slice of a program can be computed by
a pure static analysis, the computation of dynamic dat@ skquires runtime information. The runtime information is
generated as the program is executed with a given program. ifipis dynamic information provides the control flow path
the program follows to reach the specific state of the programmand in the slicing criterion. Definition 11 captures the
set of all reachable program execution states from positionthe execution patf’ that directly or indirectly affects data
manipulatordm in TSC'. Thus, the semantic trace slice preserves the programéa/mir with respect to a slicing criterion
data manipulator and removes any irrelevant state nodes ftoproducing a more precise slice. This definition will be
applied by our algorithm.

4.2 Overview of the STS Algorithm

Dynamic slicing algorithms typically first carry out all tis¢atic computation of the control dependencies and then con
struct the dynamic program dependence graph (DPDG) to lesdcthe slice. The generated slices are program statements
which may be a subset of the original program [13, 3]. Our go#b slice execution traces of a program under inspection
and to generate trace slices that are a subsequence ofgimabexecution trace which can be used to detect malware var
ants. Moreover, we observe that the execution trace captinesfull control flow and data manipulation information bét
program’s execution for a given input. Therefore, a progtae abstracts away the effect of control dependenciesiand
know the complete path followed during the execution in vahtite value of th&/'SC' data manipulator is computed. For
this reason, we propose a precise trace slicing algoritiatrdibes not perform any static evaluation of control depeager
PDG. We refer to this algorithm as teemantic trace slicingSTS) algorithm.

The STS algorithm employs the dynamic definition-updatdyaisof the data manipulators to recover dynamic data de-
pendencies between program execution states. When a pregegution begins, the algorithm performs dynamic definiti
update of all data manipulators in each executed node#yjaunction (Definition 5). This allows the algorithm to comput
new data dependencies in a dynamic fashion from the execuéioe and then to construct thiDG.

The construction of &DDG with dynamic definition-update analysis of DMs allows thedwction of precise dynamic
slices for any data manipulators at any execution positicthé trace. For example, if we need the dynamic data slice for
the value of a data manipulatdm at positionp in the program execution trace, we begin traversing the coetDDDG
from the definition position ofim which is recovered from the definition-update analysisdp@lm?)). Thus, the algorithm
needs to traverse the execution trace only once to comptaaldpendencies during the computation of any trace slice.

In essence, this algorithm produces a precise trace shteohnsists of only those program execution states in theutios
traceT;. which contribute to the computation of the value of slicimgezion.

4.3 Description of the STS Algorithm

The STS algorithm handles execution traces of an assemidy peogram. For a given execution trace, it analyses an
execution state by state and generated2b®G. Then a slice is computed with respect to the slicing coteri

During the execution of the program with a test casethe execution states of program commands are storsthtes
nodesn an execution tracé;.. The STS algorithm uses data dependence relations thastatdished between state nodes
in the program execution trace with respect to an inpufThe STS algorithm presents the notion of dynamic deperedenc
edges for identifying trace slices. The data dependenceiassd with each command in a program arises as a state hode o
the command is created in the program execution trace. Nperaience edged)F/, between program state nodes are only
established when their associated dynamic data dependgiste That is, as dependence edges are establishedDibe
for a particularT;. is created. During the execution of a program, let assunteatignamicoutgoing dependence edge is
established from a state nosleat position; with already existed state nodgin the execution tracé;. (i.e,i < j). Then the
updatedDDDG after the execution of the state nogeis DDDG «+— DDDG U { DE}, whereDE = (j,4). After constructing
the DDDG for the execution trac&;., our STS algorithm computes thackwardreachable subgraph with respect to any
givenTSC, and all state nodes that appear in the reachable subgragortained in the semantic trace slice. That is, the
execution trace slice is computed by traversing only thevasit dynamic dependence edges infiieDG.

Algorithm 1 shows the pseudo code for the semantic trace algorithm. It constructs thBDDG for a program execution
traceT;. via computing data dependence edges between state nddesTien the algorithm computes the trace slice. In the
first step of Algorithm 1, the program is executed with infautip to execution positioh. During the execution, the algorithm
computes data dependence edges for each executed comntasdiep is a while loop (steps 8 to 12). On each iteration
of the while loop, a new state node is selected andFE is computed. In step 10, the procedure folmtadepedgeé;)
identifies data dependence edges by finding the state nodssitibp dp(dm’) that define data manipulatdin which is
being used at positiofp The procedure is presented in more detail in steps 15 td ##ere exists a definition position node
dp(dm?) in the execution tracg}. such thatip(dm’) < j then the procedure creates a dependence Bége (4, dp(dm’))
and includes it into the sddDDG. In steps 23 to 27, the procedure updd;j) updatesecent definition positionsf all
data manipulators that are defined in the current staseich thatip(dm) = j if dm € def(j). The process of identifying data
dependencies for state nodes in a trace and creating depmenedges irDDDG continues until the execution trace reaches
positionk. Finally, the procedure compufTS() in steps 28 to 39 performs backward slice and prodieesdquence of
state nodes iff;. that can be reachable from the slicing criterion Xi& in DDDG.

Example 1. We illustrate the working of STS algorithm with the aid offiblleowing sample AAPL program of Figure 2a and
its execution trace of Figure 2b. When Algorithm 1 is appfi@dhe program tracé’;. of Figure 2b fordm = R0 at position
14, the DDDG and STS are computed and presented in Figure 4. The semantic traoe f&r RO at position14 in 7;. is
computed in the following way:

After the initialisation step in comput8TS() (steps 29-30 of Algorithm 1), all nodes in the tracesateas not marked
and not visited, the slice set is set empty and the algoritlamksthe most recent definition noderf (i.e. dp(R0**)=10).
After the first iteration of the while loo 7S = s1¢ and the following state is set as marked and not visit€t,irin step 38:
{s5} because it is reachable from in the DDDG of Figure 4a. After the second iteration of the while loop tieps34, the

Algorithm 1 Semantic Trace Slicing Algorithm

1 Input: A programP and a trace slicing criterioRSC = (tc, dm, k)
2 Output: A semantic trace slic67S

3 begin

4 Ty.: asequence of state nodes

DE := (S, 5): adynamic dependence edge where

S is an index of a state node in the traGe

DDDG' a set of dynamic dependence edges

ExecuteP on inputtc up to positionk:

while T3, — EXE(P,tc,k) does not reach execution positiodo
Select current executed statein 7y,

10 find_datadepedge();

11 updatedp(y);

12 end while

13 computeSTS();

14 end

(]

© 00 N o

15 procedurefind_datadepedge()

16 for all dm € wuse(j) do

17 if 32 € T, s.t.dp(dm’) < j then

18 create dynamic data dependence eBge= (j, dp(dm’))
19 DDDG — DDDG U {DE}

20 endif

21 end for

22 end procedure

23 procedure updatedp(y);

24 for all dm edef(j) do

25 update definition position fafm with position;: dp(dm) « j
26 end for

27 end procedure

28 procedure computeSTS()

29 STS «— 0

30 Set all state nodes ifi,. as not marked and not visited

31 Setsgpamk) € Tic as marked and not visited state

32 while there exists marked and not visited statdjndo

33 Select marked and not visited statee 7.

34 Sets, as visited inT;. andSTS — STS U {sq}

35 for all outgoing dep. edges from) to some stats; in DDDG s.t. DE = (¢,) do

36 Find and marks; € T;.
37 end for
38 end while

39 end procedure

slice containss;g and s is set as marked and not visited statelin so far. The following is the outcome of the remaining
while loop iterations of Algorithm 1:

o After third iteration: ST'S = < s5, s10 > and marked and not visited nodeslin. = {s1 }.

o After fourth iteration: STS = < sy, s5 $10 > and marked and not visited nodeslifh. = {¢}.

STS :
S1 RO: =n, (psy,ms;)

S5 RO: =R0+11 (pSsymSS)
s10 RO:=RO+1, (psig, Msiy)

(b)

Figure 4. (a) DDDG of the program in Fig.2a with respect to its T3, in Fig.2b. (b) ST for R0 at position
14 in Fig. 2b computed by Algorithm 1.

4.4 Correctness Proof

In this section we prove that our algorithm produces a cotrace sliceSTS for a given program execution trages S*
with respect taI'SC. Recall from the semantics of AAPL in Section 3, that the sition functionC transforms state into
s if C[c]¢ =5 wheres = (¢,¢) ands’ = (¢, ¢'). Since our slicing notion handles program execution tracesproduces
trace slices, the definitions below introduce labeled items with the label identifying theliced program state V" (if
any):

o THs3sif Cle]¢=5"ands=(c, &) € STS;

e THs5sif Clc]é=5"ands=(c,&) ¢ STS;

e T+ s = s forthe reflexive transitive closure Gf - s = s';
e THs3sif3s)st.THs>s)andT - s) = 5.

That is, if the execution trace can have sliced programstaten these states appear in the trace slice, but not the vice
versa. In the following definitions, we present the notioraafeak simulation relation between two program statest,Firs
we define theslice successdabel which describes the transition between the sequerstieed states in an execution trace.

Definition 12 (slice successor). Lets=(c,), ands” = (cq,&s) Wheres, s” € T. s” is the successor afin the traceT’,
s ~ s iff 5,5 € STS and one of the following must hold:

1. T+ s> s (i.e.s" is the immediate child of) or,
2. T+ s= ", and3s’ s.t. s’ ¢ STS,TF s S ¢andTF s = s”.

Note that for each sliced program state in an execution ttaeee exists only one slice successor state. A definition of
weak simulatiorbetween two program states in two different execution gasentroduced below. The definition uses a
general notion of states transitien between program states in a trace.

Definition 13 (weak simulation) A binary relatione is a weak simulation iis € 77 and 3n € 75 and wheneves ¢ n and
T, : s = s thendn’ st.s’ on’ andTh : n = n'.

We define the notion of relevant data manipulators in an di@ttrace which will be used for a weak simulation relation
R and the correctness proof.

Definition 14 (relevant data manipulatorshet: € POSt in a traceT ands; = (cs,, ;) € T. We defineRDM(4), the set of
relevant data manipulators at positiarsuch thatdm € RDM(i) iff 3k € POS and there exists a path; i, ...,k > €T s.t.
dmecuse(k), and< i, ...,k — 1 > is a Def-clear path wrtlm.

10

That is, the notion oRRDM() describes the set of data manipulators that are not reedkéitong a particular sequence of
states in a trace. In the following definition, we presentlatien R and later show it is a weak simulation in Theorem 1 if

the trace sliceéSTS is closed undet’. That is, lets, meT, if s 44 1 andm e STS thens € STS.
Definition 15 (relationR). Lets; =(cs,,&s,) €T andn; = (cy,, &n;) € STS. We define; R n; to hold iff:
1 ocs,=cn;
2. 3me RDM(i), ps, (dm) = py, (dm) andims, (dm) = my,, (dm).

That is, the relatior? holds between a statg of the original execution trace and a stateof the trace slice whenevey
is a sliced state and it corresponds to the sliced state the trace slice.

Example 2. Consider program states,, € T}, in Fig.2 andsj € T/, in Fig.5, whereSTS = < sy, s5 510 >. We have
53 €TS8, cs,, =cg,, ROE RDM(10), ps,, (R0) = py; (R0) andms,, (R0) =m,, (R0) and hences o 1t 5.

The following theorem presents the notion of semantic tsdice correctness. It guarantees that there is a weak dionla
relation R between the original execution trace and the trace slicaitiqular the slice criterioffSC' in both traces satisfies
the relationR. We provide a proof sketch to show the correctness property.

Theorem 1. Leti, j € POSt,, s = State(i), s" = State(j) € Ty andx, y € POSt, ,n= State(x),n” = State(y) € T>. Assume

that STS is closed und& Wheneves R n andT} F s ~ s then
In” st.s"Rn' andTh - n ~ n”.

Proof Sketch From s R n we infern € STS andc¢s = ¢,. We also infer thaBdm € RDM(i): ps(dm) = p,(dm) and
ms(dm)=my,(dm). FromT; s ~ s"” we infers, s” € STS, so withs” = (cg», &) A" = (cpr, Enrr) s.t. Ta B~ 0’|
and thusn” € STS. We now show that”” R n'":

1. There are two cases to show that=c,,:

o Vdmedef(j),3E s.t. C[dm:= E]¢, = C[dm:= E]¢,» and thus:,: = ¢,
o if def(j) =def(y) = ¢, thenddm € RDM(j), dm = use(j) =use(y) andps- (dm) = pn (dm) andmg. (dm) =

My (dm).
2. For a givenim € RDM(j), ps(dm) = pp» (dm) andmg (dm) = m,,» (dm) hold in two cases:

o if d_mAe def(i), and since:s = ¢, from s R n then3E s.t. ¢s = ¢, = (dm:= E), thuss’ = C[[d_m := EJ¢s and
n' =C[dm:= E]¢, and froms ~ s” andn ~ n”, we infer thatpy (dm) = ps (dm) andmg (dm) = mg (dm)
andp,/ (dm) = pnr (dm) andm,, (dm) = my, (dm), and thugps (dm) = p, (dm) andmy (dm) = my,» (dm).

o if dm ¢ def(i), thendm € RDM(i), and the claim follows fronvdm € RDM(i) : ps(dm) = p,(dm) and
ms(dm) = m, (dm) sincelyr =& =&, =& Wit dm.
O

Example 3. The trace slice computed in Fig. 4b for registgf in the program trace in Figure 2 is not "executable” in
the sense that it does not correspond to an execution but we@maluce an "executable” progran®’ from the trace slice

via extracting the command sequeriee=%(C') from the trace slice in Fig.4b. Then, in Fig.5, we executeptogram P’

with the same program inputu(= 1, m = 2) and produce the execution trace (a projection) which agmeéh the original
trace (in Fig. 2) on the values of the slicing criterion. So are saying that we have the correct sub trace if we can execute
the program projection from the input and agree with the oréd trace at the corresponding program point. Therefoles t
observable behaviour of prograi’ trace is similar to the observable behaviour in the origipabgram trace of figure 2
with respect to the slicing criterion.

11

P :

T RO =n s1 RO:=n, (py (RO~ LRL),my)

2 RO: =RO+1 sh R0:=RO+1, (py, (RO~ 2,R1),m,;)
3 RO:=RO+1 s5 RO:=RO+1, (py;,(RO— 3,R1),my)

(@) (b)

Figure 5. (a) The program P’ is produced by extracting the command sequence from the trace slice
in Fig. 4b; (b) an execution trace of P’ on input tc: n=1,m=2.

5 Strengths and Limitations of the STS Algorithm

The main motivation for our STS Algorithm is to minimize tredde-negative rate in detecting obfuscated malware vari-
ants. This can be accomplished by removing the effects afilfiescation techniques (deobfuscation) and capturintytiee
semantics of program traces using slicing. Thus, the pofveunSTS algorithm relies on the ability to handle malware
obfuscating transformations. We discuss below the setfofsglting transformations that are used to generate newaral
variants and STS algorithm can handle, we call thisS3e&$-handledbfuscationsSTS-handledbfuscations are code trans-
formations that add new (syntax) code lines to create negrpro variants while preserving the data dependence steuatu
the original programCode reordering This obfuscation technique, commonly is applied on indel@at commands where
their order in the code do not affect other commands. Thewtkatorder of commands can be maintained using uncon-
ditional jumps. Thus, new variants of the program can betetewith the same semantics but different synt@arbage
insertion This transformation technique introduces commands that no semantics effect on the program execution. The
main objective of the technique is to create new programamésithat preserve the original program semantics but itonta
different syntax.Equivalent functionality This obfuscation technique replaces commands with ottpeivalent commands
that perform the same operations of the original cédigaque predicateA predicate whose value is known a prior to a code
transformation but is hard to determine by examining theistdited code [7]. This technique obfuscates the progratnodon
flow and makes it difficult to analyze statically.

Limitations. The STS algorithm has some limitations. The slicing algponiis not resilient with respect to data obfusca-
tion and variable renaming techniques. Introducing new dapendences between program registers and memory featio
is an obfuscation technique which can not be handled via lating algorithm STS-unhandled obfuscation clasg his
transformation technique obfuscates a program via crgdiépendencies between variables using rewriting assigtsoe
introducing new ones [7, 16]. For instance, malware writeey use this technique to split a register into two registers
to transform a registeR0 into the expressioi1 * R0 + R2 whereR1 and R2 contain dummy constant values. Thus, this
technique increases the number of data dependencies imthscated variant which causes to have different semagtics
trace slices comparing with the malware parent trace slié@sexample in Fig.6 illustrates this transformation teicjuie.
Variable renamings an obfuscation technique which used by malware writexsbfascate their code and to produce new
malware variants by simply changing registers and variablaes in the program. An ongoing research investigatioa for
possible solution to this obfuscation class is presentedlyin the following section.

6 Review of related work

Dynamic slicing has been extended from the traditionalrgli¢echniques for debugging programs [4] to a wider set of
applications such as dynamic slicing for concurrent progrfl 7, 20], and software testing [15]. Dynamic slicing aygmoh
takes into the consideration only one execution historymrfogram to compute a slice. Thus, it may significantly redhee
size of the slice as opposed to the approach of static slidimgresent all of dynamic program slicing approaches wbeld
out of scope of this report. A survey of dynamic program sliciechniques and applications can be found in [22, 21].

In dynamic slicing techniques that depend on an executameirthe computed dynamic slice is a subset of the original
program. Korel et al. [13, 14] extended Weiser’s staticisjcalgorithm to the dynamic approach. They incorporated th
execution history of a program as a trajectory to find theestants that actually affect a variable at a program pointisTh
the resulting slices are more compact and precise than tigrgm slices proposed by Weiser. Agrawal and Horgan [3]

12

O(P) :

1 RO: =n

2 R1: =m

3 Loop: (RO >= 3) JMP Exit
4 *R1: =F(* R0)

5 RO: =RO+1

6 R1: =RO+R1

7 R1: =R1+1

8 R1: =R1- RO

9 JMP Loop

10 Exit: JMP ...

@

(b)

Figure 6. An obfuscated code variant of program P in Fig.2 and its DDDG after applying data obfus-
cations.

provided a novel approach for computing dynamic prograoeslivia program dependence graphs (PDGs). Their algorithm
uses the reduced dynamic dependence program (RDDP) where @oale is created if it introduces a new dependence edge
with other existing nodes in RDDP. However, different oceaces of the same node cannot be distinguished in RDDP. None
of the above mentioned slicing methods provide a way to caghe runtime values of variables in a program slice without
at least re-executing the slice. On the contrary, our agpreatracts a dynamic trace slice from an execution histdhg
computed slice preserves the semantics of the originarpnogxecution trace.

Zhang et al. [23, 24] present a dynamic slicing techniqué depends on a recorded execution history. Their limited
preprocessing (LP) algorithm performs some preprocessifigst augment the record with summary information and then
it uses demand driven analysis to extract dynamic depereddnem the augmented record. In this sense, our approach is
similar to the approach of Zhang et al. In our approach, tha dependence information is computed on-the-fly during the
program execution and is not used to augment the execuéioa,tbut it is mainly used to construct the DDDG.

In terms of slicing binary executables, it is hard to find picat slicing solutions for binary executable programs in
the literature. The existing techniques proposed in tleedttire perform static slicing only. Cifuentes and Frabbuke
intraprocedural slicing for handling indirect jumps anchdtion calls in their binary translation framework [6]. Deab
et al. [11] and Kiss et al. [12] presented methods for therpredural static slicing of binary executables. Howgver
these approaches requires extracting static data depsmddarmation from a CFG. On the contrary, our algorithmsloe
not rely on a CFG but it computes these information from a @ogexecution trace. Bergeron et al. [5] propose a static
slicing technique for analyzing assembly code to detecioioals behavior. Their approach compares program slicamsiy
behavioral specifications (e.g. a set of API signatures)teat potentially malicious code. However, since theirhodt
is purely based on signatures of function calls and sequeihcemmands, it lacks the ability to handle certain obfuscat
techniques such as code reordering and equivalent fuaditipn

7 Mapping Semantic Traces

The objective of the mapping process is to automaticallytifie a correspondence betweerecuted program states
(nodes) from the two semantic traces. The two semanticdr@aeeproduced by collecting the execution traces of twornairag
variants. We assume that one variant of the program creftiexdagplying semantics preserving program transformatio
[7, 8]. In establishing a map between a pair of semantic di@ttraces it is our objective to provide an algorithm which
producessompleteandcorrectresults. That is our algorithm finds as many true mapping®asiple completenedsand it

13

finds only true mappings.

Our method needs a pair of execution traces for two variahts mrogram, it establishes a correspondence between the
executed states by examining gemantidetails of individual states in both execution traces. Tla@ping process consists

of three main steps:

e State matching For each given program state in the trace, the semantie \&lproduced i.e. thexecution context
The semantic values are used to compare two program statee afentify potential mappings or exclude mappings
and states throughout the next two steps.

e Redundant abstraction Our matching method begins by examining each executiae tod two program variants
for anyredundantprogram states. This process abstracts away program gtateontain similar semantic details of
already executed states in the trace. The outcome of thidstn ordered sequencesgmanticallyunique program
states of a given execution trace. Algorithm 2 outlines #ttundant abstraction procedure.

e Trace mapping. Given a pair of ordered sequences of unique executiorsstataterative algorithm is used to establish
mappings between the states (nodes). For each state inghsefijuence, the algorithm identifies a correspondence
candidate state in the other sequence.

Next we discuss the details of how teemanticvalues of execution states are used in the state matchipg $teen we
discuss the details of redundant abstraction and traceinmplgorithms.

Label Category Obfuscation
gi Garbage insertion {} = {C}
eo | Equivalent operatior {op} — {op}
op Opaque predicate {}y = {PT/F}
rr Register renaming {Rz} — {Ry}
cs Command split {C} = {C:,Cy}
cm | Command merging {C:,Cy} — {Cuy}
cr Command reorder | {(C,,Cy)} — {(Cy,Cy)}

Table 1. Obfuscating transformations.

7.1 State Matching

Before we present our algorithm of mapping a pair of executiaces of two program variants, we introduce the matching
step between a pair of execution states. The mapping dlgoestablishes mappings between two execution traces based
on the successful matches of execution states. Whestdlte matchingtep matches a pair of execution states, it essentially
compares thesemanticvalues produced by both states. Témmanticvalues produced by an execution state can either
represent a set afnvironmentvalues or a set omemoryvalues. Since our mapping step deals with execution trates o
obfuscated program variants, program syntax, cemmandsmay be altered and also some program variables may be
replaced with different ones. Thus, establishing an exattimbetween execution states is unlikely to succeed. Tdrere
our state matchingtep uses the results computed from individual instrustimd ignores commands syntax such that the
derivedsemantiaesults can be easily matched even if program obfuscatians affected the corresponding instructions.
For execution traces with long execution state sequendsmlikely to map traces based on semantic results of execu
states that do not correspond to each other. However, tharetiance of false (i.eoincidenta) mappings between a pair of
execution traces with very short execution state sequerdess, to avoid such false mappings, our state matchingadeth
consists of the followingemanticcomponents:

e Environment values (EV). To match environments of execution states, the envirohwednes are extracted from
execution states and represented in single values. Eaa@loement of an execution state returns a single valug)
which represents thevaluated datavalue of a data manipulator at that particular executiotesté&/hen matching a
pair of execution states, we look for a match in the evaludtgd values of both states. Given two execution states
ands, with their data value#'V; and EV5;, respectively. We consider matchess, if the value of EV is similar to
the value ofE'V5.

14

Algorithm 2 Redundant Abstraction

1 Input: a semantic trac8T'
2 Output: A non-redundant nodes listorklist
3 redundantlist: a redundant list ob’I" nodes

4 redundancyabstraction§T"){
5 worklist < ST

6 i < first_index(worklist)
7 while worklist # ¢ do

8 Jj—i+1

9 whilen; # 1 do
10 if statematching;,n;) then
11 redundantlist — redundantlist U {n;}
12 worklist «— worklist — {n;}
13 end if
14 j « next_jt" _index(worklist)

15 end while

16 i« next_i" _index(worklist)
17 end while

18 return(worklist)

¢ Memory values When we match memories of execution states, it is unlilefind true matches of memory addresses
between execution states of both variants. That is becaeseony locations of two program variants may vary at
runtime. Also, matching the offsets of memory address ohhatriants may not be effective in finding matches
because assume that programs might incorporate dynamecgeateration and code reordering techniques to execute
new code with different memory layout (i.e. offset). Theref, memory values are used to establish matches between
corresponded execution states instead. Memory addresseslg used to obtain the memory valukgl” of data
manipulators in execution states where memory updateshese performed. The memory match step is performed
between a pair of execution states that have updated meralugss The comparison @f Vs can be performed in the
same fashion as that f@rVs.

7.2 Trace Mapping

This section describes the trace mapping algorithm and hevalgorithm establishes mappings between a pair of exe-
cution traces of two program variants. As stated in the ghimtion section, that the goal is to map two trace variant of
program where another program variant may has been prodiecedme program transformatiorsbfuscatiof). Semantic
preserving program obfuscations can have significant &ff@c program syntax, i.e. program commands. In particalar,
fuscating transformations magnameprogram registergddirrelevant commands to the original program, e.g. garbade a
opaque predicate commands, or some transformationsspiayreorder or mergecommands. Table 1 contains some code
transformation techniques deployed in creating new prograriants.

An example in Figure 7, illustrates the above obfuscatiéecé$ on program syntax. In this figure each program command
is labeled by a letter. New commands that have been intratindbe program variant are labeled by the obfuscationddabe
that have been used to create these commands. Correspondingands in the original and obfuscated variants are ldbele
with a andd’, respectively. We use subscripts to show the correspoedeteeen one command in one variant and multiple
instructions in the other variant.

Fig.3 presents our trace mapping algorithm which has beeelalged to identify mappings between a pair of execution
traces of two variants of a program under the presence oftbreeamentioned obfuscating transformations.

8 Test Data Generation via Dynamic Domain Reduction (DDR)

The objective of the test data generation analysis is to coenihe set of constraints in the initial domains of program
inputs which is consistent with state update and leads ta ifipait domains. The Dynamic Domain Reduction (DDR)

15

a RO: =n

cr1 JMP 7y

P gin R22:=R22+1

a RO: =n T

b Rl =m opr P JNP cm

. R =RI rri R11:=m

d R3: =R2+R0 gia R22: =R22+1

e R4 =Rl+k cra INP o

r RS =1 cm R3: =R11+R0O
el R4: =k

(@) es R4 =R4+R11

rro R15: =1

(b)

Figure 7. A sample program (a) and its variant (b) after applying program obfuscation techniques in

table 1.

; <

K ; \

’ ! \

/ ! \
i

7 N '\
7 1 . \ N
y ! . \ \ A *
7 N \ \ N \
/ N \ N \
/ i NN i \, \

Figure 8. Mapping execution states of execution trace variants.

analysis consists of two steps:
e Forward dynamic domain reduction analysis
e Backward domain substitution analysis

The objective of the Dynamic Domain Reduction process [48)iautomatically identify and generate the reduced value
domains of program inputs which represent the program asttpu

Example 4. Let’s consider the path: 123 of the code below:

1. z=x+100

2.if(z < 20) {

3. y=1,;
else

4.y =2;

}

Let assume the initial value domains of program inputsaare- y := z := [—127,+128]. The dynamic domain reduction

16

Algorithm 3 Mapping Semantic Traces

1 Input: a pair of execution tracesT, andST}
2 Output: a list of pairs of mapped execution stateappedlist

3 begin

4 worklistA: an ordered list of unique execution states
5 worklist B: an ordered list of unique execution states
6 perform Redundancy Abstraction process on both tra@ésand.ST;,
7 worklistA — redundancyabstraction§T,);

8 worklist B «— redundancyabstraction§7;);

9 set all elements iworklist A as unvisited
10 i « first_-index(worklistA)
11 j « first_.index(worklistB)
12 while n; # L do
13 if n; # L then

14 if state_matching(n,,n;) then

15 mappedlist «— mappedlist U {(n;, n;)};
16 worklistA — worklistA — {n;};

17 worklistB «— worklistB — {n;};

18 i « next_index(worklistA)

19 J < firstiindex(worklistB)

20 else

21 J < next_index(worklistB)

22 end if

23 else

24 setn,; from unvisited to unmapped nodedirorklist A
25 1« nextindex(worklistA)

26 j « firstiindex(worklistB)

27 endif

28 end while

29 end

analysis would produce the set of domain constraints asvoll

—127T <2z <128 A —127 < y <128 A —127 < 2z < 128 (FC1)
—127T <2z <128 A —127T < y <128 A =27 < z < 228 (FC2)
12T <x <128 N —127T< y <128 N —27< z <20 (FC3)
—127T<ax <128 A y =1AN 2T<z <20 (FC4)

In Example 4, after each program command evaluation, the BtBRupdates the domains of program inputs. In particular,
the analysis has performed three domain updates till thedoraain of program inputs is produced. The final output of DDR
analysis is represented in the form of a set of constraimis 4).

8.1 Backward domain substitution analysis (BDS)

We propose ouBackward domain substituticapproach which uses the set of reduced domains generatéab\award
analysis and computes the subset of values of program inph&sBDS analysis starts backward from the set of final con-
straints of program inputs and computes the next constralre inverse function of each program assignment command is
computed and used to evaluate the set of constraints ofgroigwputs. The BDS analysis is a bottom-up approach where the
last command of the program is evaluated first using the dogmstraint of DDR analysis. Then the analysis propagaités w
new computedbackwardconstraints of input domains till the start of the programeached. The output of BDS analysis is
a subset of input domains whose values can exercise thesadgtyogram path.

17

Two types of program commands are considered during the Blafsis: assignment updatendcondition check The
first type of commands defines and updates values of prograabies. While the second type of commands evaluates
a predicate and based on the evaluation outcome the comwoldldetermined. Thus, a névackwardconstraint can be
computed as follows:

e Assignment update: the evaluation of the inverse functidh@assignment update with the last backward constraint
forms the new backward constraint.

e Condition check: the new backward constraint is computethking the intersection of the last backward constraint
before the predicate statement and the forward constriadémtthe predicate. .

Example 5. Let's compute a possible input domain values which exesdise path: s123456e for the following program
using both the forward and backward techniques:

Ss. input(x,y)
1.if (x <=90){
2. ifly<=15){
3. x4+
}

}
4. if(x ==91){
5. y=20;
6. = =100;

}

e. output(x,y);

Forward Analysis (Domain Reduction):

s.
) {(x,[-127,128)), (y, [-127,128])}
, {(x,[-127,90)), (y, [-127,128])}
, {(z,[-127,90]), (v, [-127,15])}
. {(x,[-126,90]), (y, [-127,15])}
; {(x,[91,91]), (y, [-127,15])}
. {(x,[91,91]), (y, [20,20])}

{(x, [100,100]), (y, [20,20])}

18

Backward Analysis (Domain substitution):

Recall that the BDS analysis starts from the last statenretiite path (i.e. linet) and finishes in the first statement (i.e. line
s), the input of theBackwardanalysis is the computed domain in the forward analysis:

e {(x,[100, 100]), (3, [20,20])}

6. ((z, [~127,128]), (3, [20, 20])}

5 {(z, [—127, 128]), (y, [—127, 128])}

4. (FC3N BC5) {(z,[91,91]), (y, [~127, 15])}
> {2, [90,90]), (y, 127, 15])}

& {2 [90,90]), (y, 127, 15])}

1.

8.2 Abstract Interpretation

Abstract Interpretation [9, 10] defines the approximatiorrespondence between the concrete sema@fiefof a syn-
tactically correct prograr® € P, whereP is a given programming language, and an abstract semakjidswhich is a
safe/sound approximation of the concrete semafjes.

The abstract analysis of a progr&ms asymbolicinterpretation of this program, using abstract values&adof concrete
values (i.e. semantics). An abstract value representsa sencrete values or properties of such a set. Z.ebe thecon-
cretesemantic domain which is a posef(Z.,C.), i.e. partially ordered by the approximation ordering. The abstract
semantic¥,, is also a poseRS(Z,, C,) which is partially ordered by the abstract ordering

8.2.1 Backward Abstract Domain Interpretor

The backward abstract domain interpretor starts in a rewsay, by proceeding from the last command in a path, with the
outputstore listY s, of the forward abstract domain interpretor on all possitdéhp. For each of the different types of
commands, we have described a transformation which spetifenew store(s}f/for the next command’ in the selected
path. The algorithm essentially performs applicationshefse transformations until all stores are stabilised arditita
values of program variables are generated.

Semantics rules:
fot: Cmd— 3(Cmd)
iz =] =% where,
Y ={ovar — {v}]|oc €X Aoz — val] ANvar € Var(e) Uz A
v € evaluate_assignment(e,valy,z)} UX

ftle;eod® = fot e o fot[e] B

1 1 . _
fc_l[[if b 62]12 — 3 wherey — { fb Ofcl ¥ if b =true

oo forY if b=false
fivien doo = o [while b]2 =Wo £, [-b]2 whereW = IfpAx. U £, [0](fD)]elx)

Figure 9. Backward Rules for the Semantics in Fig. ??

19

8.3 Backward Rules

This section presents rules applied within the backwaimlfstecomputing domains of values for program variablesstFir
the semantickackwardrule for Boolean expressions is introduced then the sewwndickwardrules for commands are
presented. Later in this section the sebatkwardrules for the arithmetic expressions are presented in teelskAlgrithm
??The functionevaluateInverse Exp in Algorithm will be presente.

8.3.1 Backward Rule for Boolean Expressions.

When computing the backward values of domains,libekwardrule for a Boolean expression propagates the values of
variables for which the Boolean expressipholds to the next store list’. Let denote the store list after evaluating the
Boolean expressioh in the Forward Analysiswith o, € ¥4 Whereo, contains the domains of variables for which the
Booleanb holds. Also, let denote the current store list in Backward Analysisvith 6 € X. In order to compute the right
domains of variables for the Boolean expresdidn the backward analysis, the domains of variables in theectiistore,
3], are updated via intersecting the domains;jrwith the storej. Thus, thebackwardrule for Boolean expressions ensures
that the variables associated with the Boolean expressawa updated with values that satisfy the BooléafT his rule is
formally defined as:

7l =% whereX = {0, € XpaNd. € T}UYD

8.3.2 Backward Rules for Commands

e Assignment: Algorithm ?? presents the set of rules which handleshihekwardcomputation of an assignment com-
mandz := e where the domain value of an expressiareeds to be updated/modified with respect to the domain value
of the variabler. The procedure computes the backward domain values &ord for any variablesar referenced in
expressiore.

[z i=e]2 =% where,
Y ={ovar — {v}] | o € B A o[z — valy] Avar € Var(e) Uz A
v € evaluate_assignment (e, val,, x)} UX

e Sequential: The backward rule of sequential commands, egg. processes the later command(s) first (as opposed
to the order taken in Forward Analysis). The rule is defined as

[t es e = fot el o fot[e]®

e Conditional: The backward rule for the conditional commands processe®bthe branches (true or false branch) in
the reverse order. The command(s) of the conditional cordnisalready determined during the Forward Analysis,
thus, the rule treats the branch as a sequential command whicposed of a Boolean expression and a command i.e.

febs o]

. fe[bsea] = fi o f21Y if b=true
Lif b S =3 wherey = { felbia b e1
Jolitb e co] { Frl-bica] = 5} 0 f21S if b= false

e While Loop: The backward rule for a while loop command evaluatedtiekwarddomains of program variables that
are referenced in the loop Boolean expressiand all variables that are re-defined and referenced ins&lbddy of
the loop i.e. the sequence of commands within the laophe rule simply starts the evaluation backwards from the
Boolean expressionb which exists the body of the loop and processes the sequénoenmandsd;; ¢; for each loop
iterationi generated via the Forward Analysis.

Example 6. Consider the following program which only consists of a @ldlop command:

20

whereb is a Boolean expression ands a program command. Let assume that the body of the loopxgetitedk
times during the Forward Analysis, thus the generated secgief commands would look like the following:

bi:c 1%t iteration of the while loop

ba; c2

bie: ¢ k" iteration of the while loopi(= k)
—bi1; skip k + 1 iteration exists the loopi(= k + 1)

In the Backward Analysis, the rule of the while loop commaadsfrom the last command executed k&4, and
finishes after evaluating the commarbdsc, . Thus, for this particular example, the backward rule is niedi as:

f¥[whileb do] = fF[b:](f[e]) © fi [-brsr]E, wherei =k, k — 1,k —2,...,1

21

Algorithm 4 Backward Assignment Evaluation Rules

procedure: eval uat e_assi gnrent (e, vale, x)

input
output

L

switch e do

end

casen

x := ¢’’: An expressiore to be evluated, its value i.ef,* [e] = val. , and the variable:
: Evaluates the set of input valu&&! of =

x — {Id,}; llwhereld, is the set of initial values in the initial store list, . return;

end
casevar

if var == x then
x +— {Id};/l whereld is the values of in the current store, i.e. no updates requirecifor

return;
end

else ifvar # x then
T — {Id};
var — {valy| olz — val] No € B} ;
/lwhereval,. is the set of values of in the current store.;

return;
end
end
casee; Op ez

switch e; op ez do
casen op n
z— {Ido};
return;

end

case(n op var) || (var op n)
valyqr — evaluateInverseExzp(valy, val,,0op);
if var # x then

end
end

val, — {Id,};

caseLvar op Rvar
if Lvar == Rwvar then

end
else

end
end

compute the domain afar: = := var op var;
valpyar — compute-var-dom(val,, Lvar, op);
if x # Lwvar then

set domain ofc: val, — {Id,};
end

propagateal, to var; andvar,. for: z := var; op var,:
if value domains of botlhvar and Rvar in FA step before current command are set to some constartternsthen
no need to propagatex!l,, into the variablesLvar op Rvar. val, — {Id.};
end
else ifvalr vqr in FA step before current command is a constant nunfhen] A valguar IS NOt a constant numbehen
propagateval,, into Rvar only: val gyar +— evaluateInverseExp(valy,valpyar,0p);
if z # Rvar then
valy, — {Id,};
end
end
else ifval ryaqr in FA step before current command is a constant nunfhen] A valr.qr IS NOt a constant numbehen
propagateval, into Lvar only; valpyar — evaluateInverseExzp(valy, val ryar, Op);
if © # Lvar then
valy — {Id,};
end
end
else ifvalue domains of botfRvar A Lwvar in FA step before current command are NOT set to some constambershen
splitdomainCvar op Rvar,valy,valpyar val Ryar);
if © # Lvar A x # Rvar then
valy — {Id,};
end
end

See Algorithm 5 for details of the cases below:
case(e op var) || (var op e)

end

case(eopn) || (nope)

end

casee; Op e,

end
end
end

22

Algorithm 5 Continuation of evaluatassignment procedure in Algorithm 4

continue-procedure eval uat e_assi gnnment (e, vale, x)

case(e op var) || (var op e)
if valyq, is constantin FA step before current commahen
vale — evaluateInverseExp(valy,valyar,0p);
eval uat e_assi gnnent (e, vale, x) ;
end
else
if Vv € ref(e), val,is constant in FA before current commaitien
vale — [e]Zra;
valyqr — evaluateInverseExzp(val, , vale,0p);
end
else
splitdomaing op var,valy,vale,valyar);
eval uat e_assi gnnent (e, vale, x) ;
end
end
end
case(eopn) || (nope)
vale — evaluateInverseExp(val,,valy,,0p);
eval uat e_assi gnnent (e, vale, x) ;
end
casee; op e,
splitdomaing; op el,'ualz,'ualel wale,.);
eval uat e_assi gnnent (e, vale, , z) ;
eval uat e_assi gnnent (e,, vale,.,) ;
end

9 Conclusion

In this report, we have introduced our new algorithm to séigecution traces with a sketch of the correctness proof. The
algorithm supports the process of capturing semantic Idetéitrace slices for detecting obfuscated malicious cotlee
slicing in this context has two roles: to reverse enginegtfie effect of obfuscations and to produce smaller semtaates
of suspicious program executions for matching. We havedhtced a simple programming language (AAPL) which provides
a high level imperative representation of the assembly cédo, the semantic trace mapping approach and the backward
domain reducation technique in finding test data inputs tweaen presented and their components discussed briefly. The
describtion of the semantic trace mapping algorithm anddstiedata generation technique using backward domaintieduc
have been presented. The trace matching algorithm usesl gliaces to finding possible mappings between execuation
states. The proposed test data generation technique loegpptoximate the set of possible input values at each pmogra
point. These can be used to find exact test inputs with aidastkebased techniques.

Our preliminary experience has shown that the trace sliaiggrithm can be of a great help for malware detectors during
the process of matching obfuscated malicious programmatidiowever, more research and experimentation is needed t
better understand the advantages and limitations of otingliand mapping algorithms in handling more advanced code
transformation techniques. So far we have performed exgeris with programs that have been transformed vigsths-
handledobfuscations (see Section 5). We are planning to perforreraxgnts on obfuscated programs w&hS-unhandled
obfuscations to determine the usability and scalabilifyrioducing correct sub trace matches. In particular, werdesdsted
in dealing with variable renaming obfuscation via applyihg trace slice to all possible data manipulators exist iivarg
execution trace. In this case, we may decrease the compfaxiblem of comparing semantic traces of malware variants
without relying on variable names.

We are currently investigating how to develop a frameworkdetermining the set of approximate semantic traces with
respect to possible program execution paths in a program @B first step in this direction, we observe that for each
(unique) execution path in a program CFG, there may existt afsexecution traces that might have similar semantics.
Hence, an interesting research task consists in charsiogthe set of semantic abstractions which describe tlatiosl
between the abstract environment (i.e., approximate seeniaaces) and the concrete environment (i.e., the coffitval
graph). This characterisation may be described as a Galoisection between two domains and may help us in reasoning
about the minimisation of false negatives in matching tslioes.

23

References

(1]
(2]
(3]
(4]

(5]

(6]
(7]

(8]
(9]

(10]

(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]
(20]
(21]
[22]
(23]

(24]

Flatassembletht t p: // f | at assenbl er. net /.

The netwide assemblehnt t p: / / www. nasm us/ .

H. Agrawal and J. R. Horgan. Dynamic program slicing. RhDI '90: Proceedings of the ACM SIGPLAN 1990 conference on
Programming language design and implementatjzeges 246—-256. ACM, 1990.

T. Akgul, V. J. M. lll, and S. Pande. A fast assembly levelerse execution method via dynamic slicingl@SE '04: Proceedings
of the 26th International Conference on Software Engimegipages 522-531. IEEE Computer Society, 2004.

J. Bergeron, M. Debbabi, M. M. Erhioui, and B. Ktari. Stanalysis of binary code to isolate malicious behaviondVETICE '99:
Proceedings of the 8th Workshop on Enabling Technologigsfoastructure for Collaborative Enterprisepages 184-189. IEEE
Computer Society, 1999.

C. Cifuentes and A. Fraboulet. Intraprocedural stdimrgy of binary executables. ICSM '97: Proceedings of the International
Conference on Software Maintenanpage 188. IEEE Computer Society, 1997.

C. Collberg, C. Thomborson, and D. Low. A taxonomy of adifating transformations. Technical Report 148, jul 199RLWt t p:

/I ww. cs. auckl and. ac. nz/ $\ si nscol | ber g/ Resear ch/ Publ i cati ons/ Col | ber gThonbor sonLowd7a/

i ndex. htm .

C. Collberg, C. Thomborson, and D. Low. Manufacturingah, resilient, and stealthy opaque construct®rinciples of Program-
ming Languages 1998, POPL'98an Diego, CA, Jan. 1998.

P. Cousot and R. Cousot. Abstract interpretation: a edifattice model for static analysis of programs by consimamr approxi-
mation of fixpoints. InConference Record of the Fourth Annual ACM SIGPLAN-SIGA@p8sium on Principles of Programming
Languagespages 238-252, Los Angeles, California, 1977. ACM Presg Mork, NY.

P. Cousot and R. Cousot. Systematic design of prograaysis frameworks. IrConference Record of the Sixth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programmingjuages pages 269-282, San Antonio, Texas, 1979. ACM Press,
New York, NY.

S. K. Debray, W. Evans, R. Muth, and B. De Sutter. Comgéehniques for code compactioACM Trans. Program. Lang. Syst.
22(2):378-415, 2000.

A. Kiss, J. Jasz, G. Lehotai, and T. Gyimothy. Interpragedl static slicing of binary executables. 8CAM 2003: 3rd IEEE
International Workshop on Source Code Analysis and Maain, pages 118—-. IEEE Computer Society, 2003.

B. Korel and J. Laski. Dynamic program slicinipf. Process. Lett29(3):155-163, 1988.

B. Korel and J. Laski. Dynamic slicing of computer pragrs.J. Syst. Softw13(3):187-195, 1990.

B. Korel and S. Yalamanchili. Forward computation ofndynic program slices. [ISSTA '94: Proceedings of the 1994 ACM
SIGSOFT international symposium on Software testing alatlais pages 66—79. ACM, 1994.

A. Majumdar, S. J. Drape, and C. D. Thomborson. Slicibfuecations: design, correctness, and evaluatio®RM '07: Proceed-
ings of the 2007 ACM workshop on Digital Rights Managemeages 70-81. ACM, 2007.

D. P. Mohapatra, R. Kumar, R. Mall, D. S. Kumar, and M. Bima Distributed dynamic slicing of java program3. Syst. Softw.
79(12):1661-1678, 2006.

A. J. Offutt, Z. Jin, and J. Pan. The dynamic domain reéidacprocedure for test data generati@oftw. Pract. Exper29(2):167-193,
1999.

M. D. Preda, M. Christodorescu, S. Jha, and S. Debragnastics-based approach to malware detectioRARL '07: Proceedings
of the 34th annual ACM SIGPLAN-SIGACT symposium on Priesipf programming languagesages 377—-388. ACM Press, 2007.
J. Rilling, H. F. Li, and D. Goswami. Predicate-basedalyic slicing of message passing programsSGAM '02: Proceedings of
the Second IEEE International Workshop on Source Code Aisadynd Manipulationpage 133. IEEE Computer Society, 2002.

F. Tip. A survey of program slicing techniques. Teclahieport, Amsterdam, The Netherlands, 1994.

B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief sungfyprogram slicing. SIGSOFT Softw. Eng. Note30(2):1-36, 2005.

X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic giic@tgorithms. InICSE '03: Proceedings of the 25th International
Conference on Software Engineerimgges 319-329. IEEE Computer Society, 2003.

X. Zhang, R. Gupta, and Y. Zhang. Cost and precisionetnéfd of dynamic data slicing algorithm&CM Trans. Program. Lang.
Syst, 27(4):631-661, 2005.

24

