
1

Amorphous Slicing of Extended Finite State
Machines

Kelly Androutsopoulos1, David Clark1, Mark Harman1, Robert M. Hierons2, Zheng Li3, Laurence Tratt4

Abstract—Slicing is useful for many Software Engineering applications and has been widely studied for three decades, but
there has been comparatively little work on slicing Extended Finite State Machines (EFSMs). This paper introduces a set of
dependency based EFSM slicing algorithms and an accompanying tool. We demonstrate that our algorithms are suitable for
dependence based slicing. We use our tool to conduct experiments on ten EFSMs, including benchmarks and industrial EFSMs.
Ours is the first empirical study of dependence based program slicing for EFSMs. Compared to the only previously published
dependence based algorithm, our average slice is smaller 40% of the time and larger only 10% of the time, with an average slice
size of 35% for termination insensitive slicing.

Index Terms—Slicing, Extended Finite State Machines.

F

1 INTRODUCTION

The idea of slicing is simple yet fundamental: software
contains many intricately interleaved computations
and it is often helpful to extract one of these, leaving
the others behind. Furthermore, the process of slic-
ing out a sub-computation can be fully automated,
thereby allowing a developer to isolate the portion of
software that is of specific interest.

Since Weiser introduced program slicing [59], [60], it
has been widely studied, adapted, and applied. There
are several surveys on program slicing [10], [13], [56],
illustrating the way in which slicing can be applied to
many areas within software engineering (e.g. mainte-
nance [22], testing [9], [11], [47], and refactoring [41]).

In recent years, modelling has come to play an im-
portant part in the software developer’s toolbox, with
applications ranging from testing [8], [24], intrusion
detection [49], feature interaction [6] and quality of
service improvement [17].

Extended Finite State Machines (EFSMs) and their
variants (e.g. Harel’s [26] and UML state machines)
are now widely used to model dynamic behaviour,
most often in embedded systems (40 billion of which
are expected to be in operation by 2020 [20]). EFSMs
are often used to model a system at a higher-level
of abstraction than a program; nevertheless, like a
program, an EFSM may contain many interleaved
computations and so it makes sense to consider ways

• 1University College London, CREST, Department of Computer Sci-
ence, Gower Street London, WC1E 6BT, United Kingdom.
E-mail: {k.androutsopoulos, d.clark, m.harman}@cs.ucl.ac.uk

• 2Brunel University, Uxbridge, Middlesex, UB8 3PH, United King-
dom. Email: rob.hierons@brunel.ac.uk

• 3Beijing University of Chemical Technology, 15 BeiSanhuan East
Road, ChaoYang District, Beijing, 100029, China. Email: z.li@ieee.org

• 4King’s College London, Strand, London, WC2R 2LS, United King-
dom. Email: laurie@tratt.net

of slicing out sub-EFSMs. However, EFSM slicing
presents new challenges and issues: algorithms and
analyses that apply to program slicing are not fully
applicable to EFSM slicing.

1.1 EFSMs

Many readers may have an intuitive notion of Ex-
tended Finite State Machines (EFSMs) or one of their
variants. In this section we provide a brief intro-
duction and refresher; Section 2 contains a complete,
formal definition.

EFSMs are diagrammatic representations of systems
that have distinct states and transitions between those
states; at any given time the system is in exactly
one state. The external world can generate an event
which is received by the system and which triggers a
transition to another state.

Figure 1 shows an example representing the door
control of a lift system [54], waiting for passengers to
enter or leave the lift and shutting the door. Initially
a timer is set for five time units then run down then
the door begins closing. During this period, while it is
closing, it can be interrupted. This sets the timer to 3
units and the door begins opening. Once it is opened
the timer runs down and the door begins closing
again until it is fully closed. Once it receives the open
signal it sets the timer to ten units and and begins
opening. When fully open the timer is run down
and then the door begins closing again. States are
represented by circles, with the start state highlighted
with a thicker outline (in this case it is also called
‘start’, though it need not be in general). Transitions
are directed arrows between source and target states
(where the source and target may be the same) and
specify under what conditions the system will move
from one state to another. Transitions can have a la-
bel of the form identifier:event[guard]/action,

2

Fig. 1. An EFSM specification for the door controller of the lift system.

Fig. 2. The slice generated for Figure 1 using UNTICD
and the slicing criterion (T11, {timer}).

each part of which is optional. A transition from a
given source state is only triggered if an event event
is received and the conditional guard evaluates to
true; once triggered, the statements of action will
be executed. EFSMs have a global store which guards
can read and actions can update. In the lift example,
a global timer variable is used.

EFSMs are useful because they give a clear visual
representation of many types of behaviour, and be-
cause they are not necessarily expected to represent
every detail of execution—in other words, they are
frequently used to represent systems at a level of
abstraction above a program. The lift example of Fig-
ure 1 does not specify any exit states since it is chiefly
intended to represent its core behaviour and this in
turn is intended to execute indefinitely. However,
EFSMs can be used to model completely executable
systems, and some embedded systems’ behaviour is
fully specified using EFSMs.

1.2 Slicing EFSMs

Slicing comes in several different flavours: in this
paper we consider amorphous slicing [28], that is
slicing which in some way rewrites an input program
(i.e. changes its appearance). As in program slicing,
EFSM slicing takes as input an EFSM and a slicing

criterion and produces as output a sliced EFSM. The
slicing criterion is the point of interest in the EFSM
to be used as the basis for slicing: in this paper
we use a criterion consisting of a transition and a
set of variables. A control dependence formulation
then determines which transitions are relevant to the
slicing criterion, and a slicing algorithm then rewrites
the EFSM to produce a slice. As a first example,
Figure 2 shows a slice of the model from Figure 1
using the UNTICD control dependence algorithm [4],
the slicing algorithm defined in Section 6.3, and the
slicing criterion (T11, {timer}). It represents the part
of the model in figure 1 that influences the value of
the timer after transition T11 in that figure is executed.

While EFSM slicing has some relation to program
slicing1, there are substantial differences. At a high-
level, these can be categorised as follows (see Section 3
for more details):

Syntactic issues: Unlike program dependence
graphs, computation within EFSMs occurs on tran-
sitions, not within nodes. Calculating dependence is
therefore subtly different. More significantly, deleting
transitions is a more involved process than deleting
statements in a program. Where program slicing can
simply remove whole lines, EFSM slicing must rewire
the EFSM (i.e. change the source and target of tran-
sitions). As we show in this paper, a naive rewiring
can lead to slices which are larger than the original
model.

This then raises the question of what the goal of
EFSM slicing is. With program slicing this is un-
controversial: slicing seeks to remove as many state-
ments as it can while respecting the slicing criterion.
For EFSMs, there are several possible measures that
could be used separately or combined to measure
a reduction in size such as: the number of states,
number of transitions, or number of uniquely labelled
transitions.

1. If EFSM slicing can be thought of as similar to program slicing
at all, then it might be thought of as akin to slicing pointer-free,
non-textual, non-deterministic, non-terminating, goto programs.

3

Semantic issues: Traditional program slicing makes
a fundamental assumption that programs normally
terminate: non-termination is considered aberrant,
and non-terminating fragments not affecting the slic-
ing criterion are fully removed. While this is rarely
an issue for program slicing, it can not be directly
translated easily to EFSMs which, because they are
often used to abstract away details, are frequently
non-terminating (as shown by Figure 1) and some-
times non-deterministic. We previously adapted a
definition of control dependence for non-terminating
programs [51] to EFSMs [4]. However, the only pre-
viously published EFSM slicing algorithm of Korel et
al. [43] does not deal with non-terminating EFSMs.

1.3 Contributions
This paper makes two primary contributions:

1) We introduce a new ‘core’ slicing algorithm, the
first that can slice non-deterministic and / or
non-terminating EFSMs. The slicing algorithm is
based in part on an adaption of Ilie and Yu’s
NFA minimisation algorithm [38] which uses
a conservative approximation to equivalence to
minimise NFAs by merging equivalent states.
We use this to minimise the likelihood of slices
being larger than their inputs. We prove that
our adaption of this algorithm meets the require-
ments of slicing. We also introduce a new tool
based on the algorithm.
Though there has been work on non-amorphous
slicing of EFSMs [21], [31], [43], [45], [46], [58],
the only previously published amorphous slic-
ing algorithm is that of Korel et al.. Their al-
gorithm is limited to terminating, deterministic
EFSMs with a single exit state and uses standard
control and data dependence adapted from pro-
gram slicing. Our algorithm is thus capable of
slicing a much larger class of EFSMs.

2) We present the first empirical study of EFSM
slicing, involving ten EFSMs, including widely
studied benchmarks and real world models.
Since our slicing algorithm can be instantiated
for different control dependence formulations
(leading, effectively, to a set of related slicing
algorithms), we are able to test it against a
variety of slicing algorithms; we also include the
amorphous EFSM slicing approach of Korel et al.
plus the additional two state merging heuristics
they present, to ensure a proper comparison. As
well as dealing with a much larger possible class
of EFSMs than Korel et al., our algorithm per-
forms at least as well overall, and often better,
in comparisons using various slicing metrics.

This paper is structured as follows. We first present
a formal definition of EFSMs (Section 2) and an in-
depth discussion of the problems facing EFSM slicing
(Section 3). We follow this with a sketch giving the

flavour of our approach together with an example to
provide some intuition (Section 4). The section follow-
ing this defines the dependence analyses used in the
paper (Section 5) while Section 6 is the heart of the
paper. It presents and explains the slicing algorithm,
offers a running example of its important steps, and
provides a case study, illustrating how the algorithm
can be used. Section 7 discusses theoretical aspects of
the algorithm. There follows a discussion of Korel’s
algorithm (Section 8) and a case study (Section 9).
Section 10 presents our experimental results.

2 EXTENDED FINITE STATE MACHINES

In this section we present a formal definition of EF-
SMs, which we use throughout this paper.

Definition 1. An Extended Finite State Machine (EFSM)
M is a tuple (S, s0, T, E,Var, v0) where: S is a set of states;
s0 ∈ S is the initial state; T is a set of transitions; E is a
set of events, where each event is an atomic action or signal,
possibly parameterised; Var is a store represented by a set
of variables; and v0 is a mapping from the variable names
to the initial values of these variables. Transitions have a
source state source(t) ∈ S, a target state target(t) ∈ S
and a label label(t). Transition labels are of the form e[g]/a
where: e ∈ E; g is a guard (we assume a standard condition
language); and a is a sequence of actions (we assume a
standard expression language including assignments). All
parts of a label are optional.

States in S are atomic (i.e. we do not consider
hierarchical EFSMs). Events can be parameterised—
part of their value is set by the environment. The
environment, which we do not formally define, pro-
duces a stream of input events taken from E and
a source of values which can be bound to the pa-
rameters of parameterised input events. Actions can
involve store updates. A self-looping transition is a
transition t where source(t) = target(t). Transitions
that share the same source state are said to be siblings.
A transition t′ is said to be a successor of a transition
t if source(t′) = target(t). An exit state is a state that
has no outgoing transitions. A final transition is one
whose target is an exit state. An ε-transition is one
with no trigger event, guard or action, i.e. one with
no label. EFSMs may be non-deterministic, i.e. they
can contain sibling transitions with the same trigger
events and non-disjoint guards.

An EFSM is said to be complete or completely speci-
fied if, for every state s, event e and valuation v for the
variables there is a transition with source s and event
e whose guard is satisfied. To maintain consistency
with Harel’s Statecharts [27], we assume that an event
e leads to no change in state and no change in the
value of the variables in Var if e is received when the
EFSM cannot process e (i.e. there is no transition with
event e, or the guard in a transition with that event is
not satisfied). For example, if the EFSM of Figure 1 is

4

in the state closing and receives the event fullyOpened ,
it can’t respond to this event as there is no transition
whose source state is closing and has fullyOpened as
a trigger event. Although we don’t present a formal
semantics of EFSMs in this paper, this behaviour for
an incomplete state machine would need to be made
explicit at the semantic level. This is equivalent to the
notion of implicit transitions; that is, if, in a state s an
event e is received but does not enable any outgoing
transition, an implicit transition from s to s consumes
the event e.

In this paper, we make extensive reference to, and
use of, Ilie and Yu’s Non-deterministic Finite Au-
tomaton (NFA) minimisation algorithm. This requires
viewing an EFSM as an NFA (or, more generally,
Finite State Automaton, or FSA). However EFSMs
differ from FSAs in important ways: EFSMs have
stores and EFSM transition labels are more complex
(they may contain a condition in addition to an event).
FSAs are used to define languages and the concept
of a final state plays an important role: a sequence
(word) is in the language defined by an FSA if and
only if it can take the FSA to a final state. If a sequence
takes the FSA to a non-final state, but no further,
then it is not in the language defined by the FSA.
EFSMs have no equivalent notion: any sequence of
inputs drawn from its input event alphabet is legal.
To reflect this, we nominate every state of an EFSM
as “final” in the sense in which the word is used in
the FSA context. This is a distinct concept to that of
an exit state2 in an EFSM, i.e. a state at which the
computation terminates.

3 BACKGROUND

Program slicing is a well established area of research
and practise and there are clearly many similarities
between program slicing and EFSM slicing, partic-
ularly when viewed at a high-level. However, the
low-level differences between the two introduce many
challenges. In this section we look at these differences
in more detail, providing motivation for considering
EFSM slicing as a distinct discipline from program
slicing, as well as looking at some of the challenges
already identified for EFSM slicing, directly or indi-
rectly, in the literature.

3.1 Syntactic issues
Program slicing traditionally relies on the notion of a
lexical successor [1] (i.e. that removing one line means
that control naturally flows from its predecessor to
its successor), where EFSMs have no such notion. In
some ways this is a similar, if more extreme, version of
the problem that presents itself when slicing unstruc-
tured programs (i.e. programs with gotos) [1], [7],

2. Parts of the literature call these final states, though we will
consistently refer to them as exit states.

[29]. In structured programs (i.e. programs without
gotos), the statements marked by dependence anal-
ysis form a closure slice [57] which is closely related
to the resulting executable slice [34] that can be sepa-
rately compiled and executed. The arbitrary control
flow present in unstructured programs can break the
relationship between the closure and executable slices.
For example, it is impossible to produce an executable
slice of an unstructured program that preserves termi-
nating behaviour, introduces no new statements other
than those in the closure slice, and no additional goto
statement not in the original program [30].

Choi and Ferrante [18] introduced two algorithms
to balance the compromise that these restrictions ne-
cessitate. In the first algorithm, the slice is potentially
very large, because it includes as many statements
from the original as are needed in order to preserve
statement reachability in the slice; however this can
lead to slices close in size to the original. To avoid
this issue, the second algorithm adds statements to the
program that are in neither the closure slice nor in the
original program, ‘rewiring’ the program. Technically
this results in an amorphous slice [28] i.e. a slice which
is not a subset of the input program. Amorphous
slices can introduce new, and merge existing, state-
ments, whereas this algorithm introduces new, but
does not merge existing, statements. We therefore
refer to this as a ‘slightly amorphous’ slice.

Similar to program slicing, we use the notions of:
EFSM closure slice (or simply ‘closure slice’ when the
context is unambiguous) to refer to the original EFSM
with some of its transitions marked to reflect the
dependence analysis; and EFSM executable slice (or ‘ex-
ecutable slice’ when unambiguous) for the sub-EFSM
extracted from the original using the slicing process.
The unrestricted graph connectivity of EFSMs, where
transitions can be thought of as akin to gotos, means
that EFSMs are similar to unstructured programs: slic-
ing an EFSM means removing states and reconnecting
dangling, or creating new, transitions.

When slicing an EFSM we must first perform a
dependence analysis that computes an EFSM closure
slice. For some authors [45] this is the end point of the
slicing process; for others [21], [31], [43], [46], [58] it is
a step towards the construction of an EFSM executable
slice. Several authors [21], [31] use a reachability ap-
proach to take this next step. Like Choi and Ferrante’s
first algorithm for slicing goto programs, this can yield
a very large EFSM executable slice, because otherwise
unwanted transitions have to be kept to ensure reach-
ability of the desired transitions. Noting this problem,
Korel et al. [43] introduced two heuristic rules for
state merging that produce ‘fully’ amorphous slices
of EFSMs. The use of these heuristics was illustrated
by slicing an ATM EFSM, but there has been no other
result in the literature on amorphous slicing of EFSMs.
As we will later show, Korel et al.’s rules, while often
effective, do not work as well as we may wish in some

5

situations.
The best measure of the effectiveness of slicing

algorithms is less obvious than in program slicing,
where ‘length of text’ is the undisputed metric. We
may count the number of states, if only for compatibil-
ity with conventionally accepted notions of program
slicing. However, since computation in EFSMs takes
place on transitions, it makes equal sense to count
the number of transitions. Furthermore, since an al-
gorithm may duplicate transitions (i.e. changing their
source and / or target, but maintaining the label) to
‘rewire’ the states of an EFSM, the number of unique
transitions is also an interesting metric (since non-
unique transitions require less effort to comprehend).
In this paper we use each of these metrics.

3.2 Semantic issues
Dependence is the means by which a closure slice
is computed and, by extension, upon which the ex-
ecutable slice also rests. Traditionally, two forms of
dependence are considered in slicing: data and control
dependence. EFSMs’ use of a global store and variable
reads and assignments in transitions means that data
dependence is much the same in EFSM slicing as in
program slicing [43].

Control dependence for EFSMS, on the other hand,
is rather more complicated. For example, traditional
program control dependence assumes that programs
terminate; while this assumption is reasonable for
programs, it is not for EFSMs, where non-termination
is culturally common. Recently, Ranganath et al. [51]
defined two notions of control dependence defini-
tions for non-terminating programs: Non-Termination
Sensitive Control Dependence (NTSCD) (i.e. slic-
ing retains non-terminating subprograms) and Non-
Termination Insensitive Control Dependence (NTICD)
definitions (i.e. slicing removes non-terminating sub-
programs). We have previously adapted Ranganath
et al.’s work to EFSMs as well as defining a third
notion of control dependence for EFSMs called Un-
fair Non-Termination Insensitive Control Dependence
(UNTICD) [4]. UNTICD overcomes NTICD’s limita-
tion that control dependence in control sinks is not
identified. Section 5 defines all these terms in more
detail. From the point of view of this paper, we
consider all 3 forms of control dependence.

4 APPROACH OVERVIEW

We introduce a novel slicing tool for EFSMs, the
CREST EFSM slicing tool, that can slice EFSMs us-
ing a number of different algorithms: Korel et al.’s
algorithm, and the set of slicing algorithms we define
in Section 6.3. With an appropriate choice of algo-
rithm, our tool can slice non-deterministic and / or
non-terminating EFSMs—the first tool to do so. The
common parts of the tool are as follows. It takes as
input: an EFSM model M (a text file that describes the

states and transitions of the EFSM); a slicing criterion
C = (t, V), where t ∈ T is a transition and V ⊆ Var
is a subset of the variables; and one of three control
dependence definitions (NTSCD, NTICD, UNTICD).
It outputs a slice M ′ of the EFSM M . It has two core
phases: dependence analysis and slicing.

During dependence analysis, a dependence graph is
computed, using the given definition of control de-
pendence and data dependence. See Figure 14 for
an example of a dependence graph. Nodes in a
dependence graph represent EFSM transitions and
edges represent control and data dependence, and
all transitions backwardly reachable from the slicing
criterion C are ‘marked’. These marked transitions
correspond to the transitive closure of data depen-
dence and control dependence with respect to C.

After dependence analysis, the tool then amor-
phously slices the EFSM, using the dependency graph
as a guide. As an example of how this works, our set
of slicing algorithms (i.e. not including Korel et al.’s al-
gorithm) aim to remove all unmarked transitions and
reconnect the EFSM as needed. To do this, unmarked
transitions are anonymised by replacing their label with
ε. We then apply our adaption of Ilie and Yu’s NFA
minimisation algorithm to remove the ε−transitions
and re-wire the graph appropriately.

For example, consider Figure 1 and slicing it using
NTICD control dependence with a slicing criterion of
(T11, {timer}). The first step in slicing is the marking
of the state machine and the removal of the labels
on unmarked transitions (Figure 3). To do this we
construct a model dependence graph (MDG) and we
mark the transition in the slicing criterion and any
other transitions on which that transition depends
according to the MDG. Unmarked transitions are
actually marked with ε, i.e. the ”empty” marking.
ε-transitions are then removed, as per Ilie and Yu’s
algorithm (Figure 8). Unmarked transitions are then
deleted (Figure 9) and garbage collection performed
(Figure 10). Not all the steps in the algorithm may be
used, depending on the EFSM to be sliced. Illustration
of the possible minimisation steps can be found in
Figures 4 and 5 and in Ilie and Yu’s paper [38].

5 DEPENDENCE ANALYSIS

In this section, we present the definitions of NTSCD,
NTICD, and UNTICD which differ in the type of
paths used: maximal paths, sink-bounded paths, or
unfair sink-bounded paths. A path is defined as a
sequence of successive transitions. A transition is in
the path if it is in the sequence, while a node is in the
path if it is either the source or target of one of these
transitions. Every path has an initial node but not
necessarily a final node. Three types of paths can be
used to define different kinds of control dependence:
maximal paths, sink-bounded paths that are given in
terms of control sinks, and unfair sink-bounded paths.

6

Definition 2. (Maximal Path) A maximal path is any path
that terminates in a final transition, or is infinite.

Definition 3. (Control Sink) A control sink in an EFSM
is a set of transitions K that forms a strongly connected
component (SCC) such that, for each transition t in K each
successor of t is also in K.

Definition 4. (Sink-bounded Path) A path π is a sink-
bounded path if either π contains a final transition or
there exists a control sink K such that π contains every
transition from K infinitely often.

The second clause of Definition 4 defines a form
of fairness, which prevents control dependence from
being calculated in control sinks for non-terminating
EFSMs (see e.g. [4], [51]). The following definition
removes that clause, allowing such dependence to be
calculated. We use the word “unfair” to denote the
relaxation of fairness, i.e. not necessarily fair [50].

Definition 5. (Unfair Sink-bounded Path [4]) A path π
is an unfair sink-bounded path if either π contains a
final transition or there exists a control sink K such that
π contains transitions from K infinitely often.

We define control dependence using the abstract
function PATH which maps a node to the set of paths
(of a given type) that have that node as the source of
the first transition on each path. The type of control
dependence is parameterised by providing an instan-
tiation of PATH: maximal paths define NTSCD; sink-
bounded paths define NTICD; unfair sink-bounded
paths define UNTICD.

Definition 6. (Control Dependence (CD)) Ti
CD−→ Tj

means that a transition Tj is control dependent on a
transition Ti iff :

1) for all paths π ∈ PATH(target(Ti)), the source(Tj)
belongs to π;

2) there exists a path π ∈ PATH(source(Ti)) such that
the source(Tj) does not belong to π.

We adopt the data dependence definition of [43]
for EFSMs: dependence occurs between a variable’s
definition and use, providing there are no further
definitions of that variable in the intervening path.

Definition 7. (Definition/Use) A variable v is defined at
transition Ti if:

1) v occurs on the the LHS of assignments in the actions
of Ti, or

2) v is a parameter of the event of Ti and v is not
redefined in any action of Ti.

A variable v is used at transition Ti if:
1) v occurs in the guard of Ti, or
2) v occurs in the RHS of assignments in the actions of

Ti.

We assume that there are two ways in which a
variable can be defined, i.e. given a fresh value: the
variable occurs as the parameter in a parameterised

NTSCD T3→ T4, T5, T6 T5→ T9, T10
T6→ T7, T8 T8→ T9, T10
T10→ T11, T12 T12→ T4, T5, T6

NTICD No dependences

UNTICD T6→ T7, T8 T5→ T9, T10
T10→ T11, T12 T8→ T9, T10

T12→ T4, T5, T6

DD T1→ T2, T3 T2→ T2, T3
T5→ T11, T12 T8→ T11, T12
T11→ T11, T12

TABLE 1
Dependence for Figure 1.

input event as in transition T1 of Figure 12, or the
variable’s value is updated as the result of an action.
We assume that input event, condition evaluation
and action occur in that order, hence occurring as
a parameter of an input event does not define a
variable if it is immediately followed by an action
which updates it.

Definition 8. (Data Dependence (DD)) Ti
DD−−→v Tk

means that transition Tk is data dependent on transition
Ti with respect to variable v if:

1) v ∈ D(Ti), where D(Ti) is the set of variables defined
by transition Ti;

2) v ∈ U(Tk), where U(Tk) is the set of variables used
by transition Tk;

3) there exists a path in the EFSM from target(Ti) to
source(Tk) on which v is not defined.

To help make our control and data dependency
definitions concrete, dependencies for the door con-
troller EFSM in Figure 1 are given in Table 1. The
door controller EFSM has a non-terminating control
sink consisting of the transitions T4, T5, T6, T7,
T8, T9, T10, T11, and T12. NTSCD has termination
sensitive dependences outside of the control sink,
namely T3→ T4, T5, T6, and more within the control
sink. NTICD has no dependences, since there are no
non-termination insensitive dependences outside the
control sink. UNTICD has dependences only within
the control sink (which are the same as NTSCD).

6 AMORPHOUS SLICING

Graph-based slicing that eliminates unnecessary tran-
sitions and nodes produces an output that will not
be a sub graph of the original. Although we term
this amorphous slicing it is amorphous in a lighter
sense than amorphous program slicing. This form
of slicing arises naturally when slices for an EFSM
are constructed based on dependence analysis with
respect to a slicing criterion.

Definition 9. (Slicing Criterion) A slicing criterion for an
EFSM is a pair (t, V) where transition t ∈ T and variable

7

Fig. 3. Figure 1 marked using NTICD and data dependence with the slicing criterion (T11, {timer}).

set V ⊆ Var . It refers to the store value immediately after
the execution of the action contained in transition t.

EFSM slicing is comparable to slicing interactive
programs. For any possible input event sequence we
cannot guarantee that the original and the sliced
EFSM model behave similarly with respect to the
values of the variables of interest. The following
definition of a slice is loosely based on Korel et
al. and uses non-stuttering event sequences. We view
the triggering of an implicit transition as a ‘stutter’
because nothing happens as a result. No action is
taken and the machine remains in the same atomic
state. So, by a non-stuttering event sequence we mean
an event sequence which never triggers an implicit
transition.

Definition 10. (Slice) An EFSM slice M ′ is a reduced
state machine of the original EFSM M , if whenever the
environment produces a non-stuttering input event se-
quences e1 for M , there exists a non-stuttering input event
sequence e2 for M ′ such that:

1) e2 is a sub-sequence of e1. A sub-sequence x of a
sequence y is a sequence that can be produced from
y by removing some elements without changing the
order of the remaining elements.

2) When executing e1 on M the values of the variables
V at t are equal to the values of V at t during the
execution of e2 on M ′.

Given an EFSM M and a slicing criterion (t,V), the
basic idea of the slicing algorithm, after computing
dependence and marking transitions, is to anonymise
unmarked transitions and then apply an adaption
of Ilie and Yu’s NFA reduction algorithm. In the
following subsections we expand upon the Ilie and
Yu algorithm and discuss how we use it.

6.1 ε-elimination

Ilie and Yu [37], [38] describe an algorithm for con-
structing εNFAs (an εNFA is an NFA with silent or ε-
transitions) from regular expressions. The algorithm

is iterative, and at each step applies three rules to
improve the εNFA further. The εNFA that is produced
is called a follow NFA. It then applies the ε-elimination
algorithm to the follow NFA and obtains an NFA.

We construct EFSMs with ε-transitions after de-
pendence analysis, by anonymising unmarked tran-
sitions, as the example shown in Figure 3. Before we
apply the ε-elimination algorithm, we apply the rules,
given by Ilie and Yu (part of Algorithm 7 in [38]), for
merging states and/or removing ε-transitions. This
helps to reduce the risk of increasing the number of
transitions of slice, though it cannot eliminate this risk
completely. We apply these rules iteratively, until a
fixed point is reached. The rules are as follows:

1) for all states p and q, if there is a single ε-
transition between p and q and no other tran-
sition from p, then p and q can be merged.

2) any cycle consisting only of ε-transitions be-
tween states can be collapsed, by merging states
and deleting ε-transitions.

3) copies of transitions with the same source, target
and label (and name) are deleted.

Then we apply the ε-elimination algorithm given
in [37] (see Algorithm 20), in order to remove ε-
transitions. The definition is as follows:

Definition 11. (ε-elimination) For every path containing
only ε-transitions between two states p and q in an EFSM
M and any transition with label a from q to r, add a
transition with label a from p to r if no such transition
already exists. Furthermore, if q is a final state, then p
should become a final state. (Note: in EFSMs all states are
final states and therefore this step is not required.) Then
remove all ε-transitions and unreachable states in M .

For removing unreachable states from the EFSM we
use a standard garbage collection process using the
start state(s) as the root nodes of the garbage collection
(as described in e.g. [40]).

The process of eliminating ε-transitions can make
an NFA larger, which is also true of our EFSM slice
construction adaption of it. For example, Figure 4

8

illustrates an EFSM with a single ε-transition and a
total of five transitions and four states. After apply-
ing the ε-elimination algorithm, the number of states
remains the same, while the number of transitions
increases by one, as shown in Figure 5. It is known
that for an NFA with n states and alphabet size p,
the process of eliminating ε-transitions can lead to an
NFA with O(n2p) transitions [35]. It is also known that
this process cannot do much better: there is a class of
regular languages Ln that requires almost quadrati-
cally more transitions to describe if ε-transitions are
not allowed [35]. There may thus be merit in re-
taining some of the ε-transitions. One approach aims
to minimise the number of non-ε-transitions of an
NFA and is guaranteed to be optimal if the NFA is
unambiguous [39]: the NFA has at most one accepting
computation for each sequence. Unfortunately, in our
case all states are final states and so our automata are
unambiguous if and only if they are deterministic. As
a result, the property of being unambiguous is of no
interest. In Section 10 we empirically investigate how
often this problem happens in practice.

Fig. 4. Example of an EFSM with an ε-transition.

Fig. 5. After applying ε-elimination to Figure 4.

6.2 Minimisation
The steps defined previously produce an EFSM M
that has no ε-transitions or unreachable states. How-
ever, there may be smaller EFSMs that are equivalent
to M and so the next step is to try to produce such a
smaller EFSM. Unfortunately, while minimisation of
DFA can be achieved in low-order polynomial time
[32], minimisation of NFAs is known to be PSPACE-
complete3 [23], [33]. In fact, even the problem of
deciding whether two states of an NFA are equiva-
lent is PSPACE-complete [23], [33]. Thus, we cannot
reasonably expect to minimise M .

Since the problem of minimising an NFA is compu-
tationally hard, there has been interest in reducing an
NFA to a smaller but not necessarily minimal NFA
and here we describe such an approach [38]. The
essential idea is to merge states that are known to be
equivalent but, since deciding equivalence is PSPACE-
complete, we use a conservative approximation to

3. All PSPACE-complete problems are NP-hard [23].

Fig. 6. Finite automata where p and q are not right
invariant equivalent.

equivalence. This notion of equivalence is the largest
right invariant equivalence:

Definition 12. An equivalence relation ≡ over the states of
NFA M is right invariant with respect to M if it satisfies
the following properties:

1) No final state of M is equivalent to a non-final state
of M under ≡; and

2) For all pairs of states p, q and label a, if p ≡ q and
there is a transition from p to p′ with a then there
is a transition from q to some q′ with a such that
p′ ≡ q′.

As we consider EFSMs in this paper, where all states
are final, the first property immediately holds. Clearly,
if ≡ is a right invariant equivalence with respect to M
and p ≡ q then p and q are equivalent4. However, the
converse is not the case. To see this, consider states p
and q defined in Figure 6 in which all states are final
states.

It is straightforward to see that p and q are equiv-
alent. However, if ≡ is a right invariant equivalence
with respect to M then for us to have that p ≡ q we
would require that there is a transition from p with
label a to a state p0 such that p0 ≡ q′ but this cannot
be the case: if we choose p0 = p′ then we do not have
p0 ≡ q′ since there is no transition from p0 with label c
and if we choose p0 = p′′ then we do not have p0 ≡ q′
since there is no transition from p0 with label b.

There can be many alternative right invariant equiv-
alences with respect to M and some may be better
than others when considering NFA reduction. A right
invariant equivalence is said to be a largest right
invariant equivalence if it defines the most pairs of
equivalent states. It transpires that the largest right
invariant equivalence ≡R with respect to M can be
found in polynomial time [38]. In addition, if we
merge states that are found to be equivalent, ≡R leads
to a smallest NFA that can be produced from M
by merging states that are equivalent under a right
invariant equivalence with respect to M 5. Thus, ≡R
is the best right invariant equivalence to use.

4. This is Lemma 12 in [38].
5. Theorem 17 and Corollary 18 of [38]

9

It is sometimes possible to further reduce an NFA
by merging pairs of states p, q that are reached by the
same sets of sequences in M . It has been observed
that we can define the notion of a left-equivalence
[38] and that the results and algorithms for right-
equivalence can be reused by simply reversing the
transitions of M : there is a transition from p to q with
label a in the reverse M ′ of M if and only if there is a
transition from q to p with label a in M . Thus, we can
compute the largest left-equivalence ≡L with respect
to M , which is also the largest right-equivalence with
respect to M ′, as well as the largest right-equivalence
≡R with respect to M . We merge two states p and q
if either p ≡L q or p ≡R q.

6.3 Formalisation of the slicing algorithm

High-level pseudo code describing our slicing algo-
rithm is given in Figure 7. Lines 2–3 are concerned
with dependence analysis. Lines 4–12 are concerned
with slicing and adapt the Ilie and Yu algorithm [36].

Input: EFSM Mpre to be sliced.
Input: Slicing criterion tsc and its variables Vsc .
Input: Control Dependence definition CDdef .
Output: EFSM slice Mpost .
1. Mpost ← Mpre

2. DG ← compute dependence graph(CDdef ,Mpre)
3. Mpost ← traverse backwards marking(tsc ,Vsc ,DG)
4. Mpost ← anonymise unmarked transitions(Mpost)
5. while apply rule1(Mpost) or apply rule2(Mpost) or

apply rule3(Mpost) do
6. end while
7. apply epsilon elimination(Mpost)
8. garbage collect(Mpost)
9. Seq ← right invariant equivalence(Mpost)
10. merge states(Seq ,Mpost)
11. Mpost ← left invariant equivalence(Mpost)
12. return Mpost

Fig. 7. High-level slicing algorithm.

We now define the functions used in the algorithm
of Figure 7.

compute dependence graph(CDdef ,Mpre) computes
the dependence graph for the EFSM Mpre by using
the control dependence definition CDdef , and data
dependence. For data dependence, the algorithm
computes, as for program dependence analysis,
definition-clear definition-use paths for all variables
in each transition and returns all transition pairs
in which there exists a definition-clear definition-
use path. For control dependence, the algorithm
computes control successors (i.e. the transitions that
are control dependent on the transition) for each
transition m ∈ Tpre using CDdef .

traverse backwards marking(tsc ,Vsc ,DG) traverses
the dependence graph backwards from the transition

of interest tsc and marks all visited nodes. It is as
defined in [43].

anonymise unmarked transitions(Mpost) replaces the
label of unmarked transitions with an ε.

apply rule1(Mpost), apply rule2(Mpost) and
apply rule3(Mpost) apply the rules as in Algorithm
4 [37] (page 144). Section 6.1 describes these rules
for merging states and deleting ε-transitions. The
functions return True if the rule has been applied,
otherwise False. Lines 5–6 show that these rules are
iteratively applied until they have no effect.

apply epsilon elimination(Mpost) is as defined in Al-
gorithm 20 in [37] (page 153).

garbage collect(Mpost) performs a standard mark
and sweep garbage collection [40]. Any nodes and
edges not reachable from Mpost are thus deleted.

right invariant equivalence(Mpost) is as defined in
Algorithm 14 [36] (page 383). Since all states are
final states in EFSMs, we can simplify the algorithm
removing the code that checks that final and non-final
state must not be equivalent (line 7-8 in Algorithm 14
in [36]). It returns the set of equivalent states.

merge states(Seq ,Mpost) is a function that takes a set
of right invariant equivalent states and merges them
in Mpost .

left invariant equivalence(Mpost) reverses the direc-
tion of transitions of the current EFSM Mpost ,
resulting in the EFSM Mrev . Then it applies
right invariant equivalence(Mrev) . If there are any
right-equivalent states, these are merged using the
function merge states with Mrev . Then it reverses the
direction of the transitions of the EFSM Mrev and
returns the result as Mpost .

6.4 Slicing the door controller EFSM

Suppose that the slicing criterion for the door con-
troller EFSM in Figure 1 is (T11, {timer}). If the
NTSCD definition is chosen, then the marked tran-
sitions are {T1, T2, T3, T5, T6, T8, T10, T11, T12}.
The slice that is generated contains all transitions in
Figure 1 except for the self-looping transitions T4, T7
and T9.

If the NTICD definition is chosen, then the marked
transitions are {T5, T8, T11}, which are all data depen-
dences owing to the structure of the graph, i.e. there
are no NTICD dependences within control sinks and,
in this case, there are no control dependences outside
of the control sink.

Figure 3 illustrates Figure 1 after marking. Un-
marked transitions are indicated by dashed lines and
have had their labels replaced with ε, the empty
label. Figure 8 shows the resulting state machine
after the rules in steps 5–6 have been applied. These
remove some ε transitions and merge some states.
In particular, rule 2 is applied that removes the self-
transitions and rule 1 merges the states start, wait and
closing as well as opened and opening. Figure 9 shows

10

Fig. 8. Figure 3 after applying rules 5-6 of the algo-
rithm.

Fig. 9. Figure 8 after epsilon-elimination.

Fig. 10. The slice on (T11,{timer}) for Figure 1 using
NTICD.

the state machine after ε-elimination has been applied
and before garbage collection. Finally, Figure 10 il-
lustrates the state machine after garbage collection,
i.e. illustrates the slice generated after applying the
slicing algorithm. The state closed and its transitions
are deleted during garbage collection. This slice is
no longer a sub-model of the original and thus is
not syntax preserving. It is, however, straightforward
to demonstrate that it is semantics preserving with
respect to the slicing criterion.

If the UNTICD definition is chosen for control de-
pendence, then the marked transitions are {T5, T6, T8,
T10, T11, T12}. Figure 2 illustrates the slice generated
after applying the slicing algorithm.

7 THEORETICAL ASPECTS

In this section we discuss some basic properties of
the algorithm, choosing between control dependen-
cies, intuitions with regard to correctness issues and
present a proof that its complexity is cubic.

7.1 Properties of the slicing algorithm

We have identified two properties of the slicing algo-
rithm: first, that the number of states in the slice is
never more than that in the original EFSM; second,
that the number of unique transitions (transitions
with unique labels i.e. that have syntactically different
labels) in the slice is never more than the number

of unique transitions in the original EFSM. The latter
property is chiefly used as a sanity check.

Proposition 7.1. For an EFSM M and its slice M ′, where
SM is the set of all states in M and SM ′ is the set of all
states in M ′, then |SM ′ | ≤ |SM |.

Proof: The algorithm can change the number of
states of an EFSM in two places: when applying the
rules before ε-elimination (lines 5-6), and during the
minimisation phase (lines 7-12).

In the first case, there are three rules that are
applied. The first rule, if true for two states will
merge them, thereby reducing the number of states.
The second rule, also merges states where cycles of ε-
transitions exist, thus reducing the number of states.
The third rule deletes copies of transitions, which does
not affect the number of states. If these rules cannot
be applied, then the number of states remains the
same. The ε-elimination phase deals exclusively with
transitions and thus has no effect on the number of
states.

In the second case, minimisation merges equivalent
states, which reduces the number of states. If there
are no equivalent states, then no merging occurs, and
the number of states remains the same. Thus, the
algorithm cannot increase the number of states.

Proposition 7.2. For an EFSM M and its slice M ′, where
UM is the set of all unique transitions in M and UM ′ is
the set of all unique transitions in M ′, then |UM ′ | ≤ |UM |.

Proof: The ε-elimination algorithm preceded by
the rules defined by Ilie and Yu are applied to
remove ε-transitions and reconnect the EFSM. The
rules merge states and remove ε-transitions. The ε-
elimination algorithm copies marked transitions to
reconnect the graph, and deletes ε-transitions and
any unreachable states and transitions. Therefore, no
new unique transitions are introduced, i.e. transitions
not in the set of marked transitions. Since, the total
number of unique marked transitions is never more
than the total number of unique transitions in M ,
|UM ′ | ≤ |UM |.

7.2 Control dependence definitions and the cor-
rectness of the algorithm

The effects of using each of the three control depen-
dence definitions in the slicing algorithm are illus-
trated in section 6.4 and by examining figures 1, 2 and
10. The algorithm performs static, backward slicing
so the applications are confined to debugging, code
maintenance, comprehension and other static back-
ward slicing applications. The most suitable of the
three control algorithms for these slicing applications
is NTICD. However, NTICD has a drawback in that
it does not find any control dependence information
inside control sinks. Since many EFSMs are descrip-
tions of reactive systems and their specification is

11

either wholly or largely a single control sink, and
use of this definition in the slicing algorithm tends to
introduce non-determinism in the parts of the SCCs
retained in the resulting slice, it is desirable to have
a control dependence definition that reduces the non-
determinism.

As a result, some research into state machine slicing
adopts a definition based on NTSCD as the notion
of control dependence [45]. NTSCD is termination
sensitive so it includes transitions which make choices
between termination and non-termination. This form
of control dependence can then distinguish between
different possible infinite paths in a control sink,
providing an indication as to the most direct path
to a slicing criterion but generally producing larger
slices. Its most apposite application is as part of an
information flow analysis via a dependence graph in
order to establish security properties such as non-
interference.

UNTICD was created as a halfway house. It be-
haves like NTICD outside of control sinks and like
NTSCD inside control sinks. In this way, like NTICD,
it is analogous to the traditional control dependence
(which ignores non-termination possibilities) in pro-
gram slicing, but it has the benefit of reducing non-
determinism within control sinks. For detail see An-
droutsopoulos et al. and Ranganath et al. where rela-
tionships between the three are formally discussed [4],
[51]. One result from those papers is that the transitive
closure of the dependencies for NTICD is contained
within that of UNTICD which is in turn contained
within that for NTSCD.

A consequence of the latter is that if a slicing algo-
rithm using NTICD is correct, so are those which re-
place it with the other two. Note that this replacement
assumes that the definition of correctness remains
the same, i.e. that the semantics is invariant in some
sense with respect to the slicing criterion. NTSCD was
conceived as a program language control dependence
useful for security analyses in which non-termination
is a leakage channel. However it is also commonly
used in state based model slicing purely for software
engineering applications with a correctness criterion
of the type above [3].

Formal consideration of correctness is outside the
scope of this paper but we comment that, as indicated
in section 6, the interactive nature of EFSMs means
that slicing cannot ignore the environment which is
interacting with them. In particular, once some tran-
sitions have been removed from the slice, the slice is
only complete via implicit transitions and may react
quite differently from the original machine to some
sequences of input events and it may be possible that
the slice will not even take a path through the slicing
criterion when the original does. This effect can be
replicated in interactive programs as well [52]. As a
result, the definition of a slice must be weakened so
that it applies only to non-stuttering input sequences

for the original and projections of these which are
non-stuttering in relation to the slice. The definition
is further weakened to an existential condition to take
account of possible non-determinism. This is the key
intuition as to why an algorithm using NTICD, which
finds no dependency information inside control sinks,
is correct with respect to the definition for EFSMs.

7.3 The complexity of the algorithm
This section shows that Algorithm in Figure 7 has
polynomial worst case time complexity. Throughout
this section we assume that the EFSM M being con-
sidered is represented by directed graph G in which
state si is represented by vertex ni and there is an
edge from vertex ni to vertex nj if and only if M has
a transition from si to sj . We use n, m and k to denote
the numbers of states, transitions and variables of M
respectively and assume that every state is either a
source or target of at least one transition6. We consider
the case where NTSCD is used; the proofs for NTICD
and UNTICD are almost identical.

Lemma 1. Data dependence can be computed in O(m3k)
time.

Proof: First consider the problem of determining
whether transition Tj is data dependent on transition
Ti with respect to variable v. In order to decide this
we can form a directed graph Gv from G by removing
all edges corresponding to transitions in which v is
defined and this can be produced in O(m) time. Then
Tj is data dependent on Ti with respect to v if and
only if Ti defines v, Tj uses v and the source state of
Tj can be reached from the target state of Ti in Gv .
Reachability can be decided using a depth-first search
in O(m) time [55] and so the result follows from there
being O(m2) pairs of transitions and k variables.

We now consider control dependence.

Lemma 2. NTSCD control dependence can be computed
in O(m3) time.

Proof: Consider the problem of deciding whether
transition Tj is NTSCD control dependent on transi-
tion Ti. Let us suppose that Ti has source state si1
and target state si2 and Tj has source state sj1 . We
need to determine whether: all maximal paths from
si2 include sj1 ; and there exists a maximal path from
si1 that does not include sj1 .

Let G1 denote the directed graph produced from
G by removing vertex nj1 and assume that we know
the vertices that are in cycles in G1; these vertices can
be found in O(m) time [55]. Then all maximal paths
from si2 include sj1 if and only if either si2 = sj1 or,
in G1, from ni2 it is not possible to reach a cycle or a
vertex that corresponds to an exit state. The first part
can be decided in constant time and the second can
be decided in O(m) time using a depth-first search

6. This allows us to know that n is of O(m).

12

starting at ni2 . Thus, the first condition for Tj being
NTSCD control dependent on Ti can be decided in
O(m) time. Similarly, there exists a maximal path from
si1 that does not include sj1 if and only if si1 6= sj1
and, in G1, from ni1 it is possible to reach a cycle or a
vertex that corresponds to an exit state. Again, this can
be decided in O(m) time. To summarise, it is possible
to decide in O(m) time whether Tj is NTSCD control
dependent on Ti and so the result follows from there
being O(m2) pairs of transitions.

We now consider step 5 of the algorithm, which
applies rules 1-3.

Lemma 3. Step 5 of the Algorithm in Figure 7 takes
O(m2 logm) time.

Proof: We will consider the separate rules, as-
suming that a list of the transitions is initially sorted
on source state, then target state and then label (in
O(m logm) time).

Rule 1 merges states s and s′ where there is a single
ε-transition from s to s′ and no other transition from
s. Since the list of transitions has been sorted, it takes
O(m) time to determine whether this rule can be
applied and O(m) time to apply the transformation
(we replace s by s′ in the target states of transitions).

In rule 2, a cycle consisting only of ε-transitions is
collapsed by merging states and deleting ε-transitions.
We can determine whether there is such a cycle by
considering the directed graph Gε produced from G
by removing all transitions that are not ε-transitions.
We can produce Gε in O(m) time and determine
whether it has any cycles in O(m) time through ap-
plying Tarjan’s algorithm, for finding the components
of a directed graph [55]. If there is such a cycle then
an O(m) depth-first search can be used to find one
such cycle. The transformation takes O(m) time (we
add a new state s and in the transitions we replace
each state of the cycle by s). A final O(m logm) step
sorts the list of transitions.

Rule 3 deletes copies of transitions with the same
source, target and label (and name). Since the list
of transitions has been sorted, it takes O(m) time
to determine whether this rule can be applied and
constant time to apply the transformation.

The result now follows from the fact that each ap-
plication of a rule reduces the number of transitions.

The other steps of the Algorithm are performed us-
ing standard algorithms. Garbage collection is simply
a depth-first search and so can be computed in O(m)
time. The transitive closure of the union of control
and data dependence can be computed in O(n3). For
example, one could apply a depth-first search from
each vertex in the directed graph GD in which the
vertices represent states of the EFSM and the edges
represent control and data dependence: GD has O(n2)
edges and so one such search can be completed in
O(n2) time and there are at most n such searches.

The equivalences used by Ilie and Yu [36] can be
computed in O(nm) time [2]. Since Ilie and Yu’s ε
elimination algorithm takes O(m2) time [37] we obtain
the following result.

Theorem 7.3. Algorithm in Figure 7 has worst case time
complexity of O(m3k).

8 KOREL et al.’S SLICING ALGORITHM

Korel et al. [43] present a slicing algorithm, based
on dependence analysis, for slicing EFSMs. They as-
sume that the EFSMs are deterministic and executable,
i.e. that they contain enough information in order to
be executed. Their slicing algorithm is syntax preserv-
ing, i.e. the slices are executable sub-models of the
original EFSMs (referred to in [43] as the executability
property). Slices are computed with respect to the
slicing criterion, a transition t and its variables V ,
by using a dependence graph. The dependence graph
represents the control and data dependences in the
EFSM. Data dependence is defined as in Definition 8.
The control dependence definition is given in terms of
post dominance that requires execution paths to lead
to an exit state. The algorithm deletes all paths that
do not reach t and marks all backwardly reachable
transitions from t in the dependence graph. Then,
in order to preserve the graph structure, it marks
any unmarked and non-self-looping transitions. Any
unmarked self-looping transitions that are not data
dependent on any marked transition are deleted. This
is safe because self looping transitions cannot control
the taking of subsequent transitions. For more details
please see the discussion in an earlier paper [5].
Note that unmarked transitions are not anonymised.
Unfortunately, because it is conservative in nature, the
algorithm is generally not able to reduce EFSMs in
size a great deal. For example, the slice generated for
the ATM model (which is used as a running example
in [43]) reduces the original (23 transitions and 9
states) only by 3 transitions.

In order to reduce the size of the slices further,
Korel et al. describe two reduction rules for merging
states which are applied after marking transitions. By
merging states, slices may become non-deterministic,
i.e. there may be numerous possible executions with
the same event sequence. The slices produced after
applying these rules are no longer syntax preserving,
and so are amorphous slices [28]. Moreover, they relax
the executability property by requiring that at least
one of the executions of the non-deterministic slice,
rather than all of the executions, preserves the value
of the variables of t for a given input.

We have chosen to compare our slicing algorithm to
Korel et al.’s slicing algorithm and to an adaptation of
Korel et al.’s reduction rules with our algorithms be-
cause they are the only algorithms in the literature to
produce slices that are not sub-models of the original.
Thus, similarly to our algorithm, they suffer from the

13

Fig. 11. The slice of the door controller EFSM on
(T11,{timer}), using NTICD and Korel et al.’s reduc-
tion rules.

problem of re-connecting the graph. However, we take
a more general approach to addressing this problem
by adapting the Ilie and Yu algorithm [38].

We have implemented Korel et al.’s slicing algo-
rithm as described in [43], using their definitions of
control dependence and data dependence. Further-
more, we have implemented Korel et al.’s reduction
rules, which are applied after dependence analysis
where transitions are marked. Since Korel et al.’s
control dependence definition only applies to models
with a unique exit state, we also use NTSCD, NITCD
and UNTICD during dependence analysis as they
apply to a larger set of models, i.e. non-deterministic,
non-terminating EFSMs. Then we directly compare
the size of the slices. For example, the slice gener-
ated for the door controller EFSM using NTICD and
Korel et al.’s reduction rules is shown in Figure 11. It
contains transitions that are not in the set of marked
transitions identified during dependence, i.e. T6 and
T12. This is because the source state of T6 and T12
have outgoing transitions and thus their reduction
rules for state merging cannot be applied. Unlike our
slicing algorithm, the set of uniquely labelled marked
transitions in the original EFSM M is not equal to
uniquely labelled transitions in the slice M ′.

9 CASE STUDY
In this section, a case study is presented to show how
slicing can help to debug in EFSMs.

An EFSM model of an ATM system presented by
Korel [43] is shown in Figure 12. Two types of ac-
counts (checking account and savings account) and
three types of transactions (withdrawal, deposit and
check balance) are described in the model. Suppose
there is a bug on the Transition T20, where the vari-
able ‘cb’ should be ‘sb’.

To test the ATM system, a test case, a se-
quence of events with input values associated with
these events, is executed. Assume the test case is
Card(1234,100,200), PIN(1234), Spanish(), Savings(),
Balance(), Receipt(), Done(), Exit(). When the EFSM of
the ATM is executed on this input, the screen shows
“Balanza=200” but the receipt prints “Balanza=100”.
Obviously this is not the expected output as the two
balances are not equal.

To locate the bug, we first check the sequence of
transitions traversed by the test case, which is T1, T2,

T4, T6, T8, T20, T22, T10 and T23. As backward slicing
is considered, we choose the slicing criterion by taking
the transition from the traversed sequence of transi-
tions in reverse order. T23 and T10 do not contain
any variables, then T22 is taken as the slicing criterion.
Figure 13 gives the slice in terms of marked transitions
in the model. It can be observed that transitions T7,
T13 and T14, which are related the checking account,
are included in the slice. This is obviously wrong, as
the slicing criterion T22 is printing receipt for saving
account.

To investigate how these three transitions are
included in the slicing, Figure 14 shows a sub-
dependence graph of the ATM EFSM model with re-
spect to transition T22. It can be seen from the figure,
T22 is dependent upon T20, and T20 is dependent
on T13 and T14. Therefore, the bug could be on T20.
Further inspection on T20 shows that the variable ‘cb’
should be ‘sb’.

Start S1

S4 S5

Exit

T2

T3

T4

T14

T13
T12

T15

S2 S3
T1

S6 S7

T17

T18

T19
T23

T5

T6

T7

T8

T16

T20
T21

T11

T10

T9

T22

Fig. 13. Marked ATM model with slice criterion of
the Transition T22(NTICD+DD), where solid directed
edges represent the transitions in the slice.

Fig. 14. Sub-dependence graph for ATM model with
slice criterion of the Transition T22. The figure was
produced by the tool where nodes represent EFSM
transitions, solid directed edges represent the data
dependence and dotted directed edges are control
dependence between transitions.

10 EXPERIMENTS

For EFSM slicing to be useful in practice, it is im-
portant to be able to reduce the EFSM by removing

14

Start S1

Card(pin, sb, cb)/

write(“Enter PIN”);

attempts = 0

S4

PIN(p)

[p == pin]/

write(“Select a

Language
English/Spanish”)

Deposit(d)/

cb = cb + d

Withdrawal(w)/

cb =cb ­ w

Balance[l='e']/

write(“Balance=”,cb);
S5

PIN(p)

[(p != pin) and (attempts == 3)]/

write(“Wrong Pin, Ejecting Card”);

PIN(p)

[(p != pin) and (attempts < 3)]/

write(“Wrong Pin, ReEnter”);

attempts = attempts+1;
Prompt for PIN;

Exit

T2

T3

T4

T14

T13

Receipt[l='e']/Print(“Balance=”,cb); write(“Savings/Checking”);

T12

T15

S2 S3

English/

l='e';

write(“
Savings/

Checking”);

Spanish/

l='s';

write(“

Ahorros/

Corriente”);

Checking

Savings

Exit/write(“Ejecting card”);

T1

Balance[l='s']/

write(“Balanza=”,cb);

Receipt[l='s']/Print(“Balanza=”,cb); write(“Ahorros/Corriente”);

S6
Deposit(d)/

sb = sb + d

Withdrawal(w)/

sb =sb ­ w

Balance[l='e']/

write(“Balance=”,sb);

S7

T17

T18

Receipt[l='e']/Print(“Balance=”,sb); write(“Savings/Checking”);

T19

Balance[l='s']/
write(“Balanza=”,cb);

Receipt[l='s']/Print(“Balanza=”,sb); write(“Ahorros/Corriente”);

T23

T5

T6

T7

T8

T16

T20
T21

T11

Done

Done

T10

T9

T22

cb

Fig. 12. The EFSM model of ATM presented in [43] with a bug highlighted on Transition T20.

unmarked transitions, merging equivalent states and
reconnecting the graph. In this section, we report on
the results of experiments designed to answer the
following questions.

1) How much does our algorithm reduce the graph
size after slicing?

2) According to each proposed measure of EFSM
reduction, does our algorithm ever create slices
whose size is greater than the original? If yes,
how often do these occur ?

3) Is the run-time cost of slicing reasonable ?
4) How does our algorithm compare to Korel et

al.’s slicing algorithm and reduction rules ?

10.1 Experimental setup

We have selected ten EFSM models from a variety
of sources. The first six models were used by Korel
et al. [42], [43] in their research of state-based slic-
ing with traditional dependence analysis. They all
contain a start state and every path must end in
an exit state. The last four models do not contain
exit states. INRES [15] and DoorControl [54] come
from previous model-based studies, while TCP [62]
and TCSbin are extracted from Specification and De-
scription Language (SDL) specifications [14]. TCSbin
is an industry model provided to us by Motorola.
Since SDL specifications are richer than EFSMs, these
models were transformed to remove ‘history’ and ‘all’
state types.

Table 2 provides the model’s size in terms of the
number of transitions (#T), number of states (#S) and
number of transitions with unique labels (i.e. unique
transitions (#UT)). Also, it provides the number of
variables that appear on the transition labels.

We divide the EFSM models into groups, shown
in Table 2, based on common characteristics of their
structure. The G1 models are all free of control sinks

EFSM Models #S #T #UT #Var

G1

ATM [43] 9 23 21 8
Cashier 12 21 20 10
CruiseControl [42] 5 17 15 18
FuelPump [42] 13 25 23 12
PrintToken 11 89 42 5
VendingMachine 7 28 22 7

G2
INRES protocol [15] 8 18 16 8
TCP [62] 12 57 46 31
TCSbin(Motorola) 24 65 56 61

G3 DoorController [54] 6 12 12 1

Total 107 355 273 161

TABLE 2
Experimental Models.

and contain exit states; G2 models are large control
sinks except for a transition from the start state; the
single G3 model consists of a large control sink, with
three transitions from the start state.

We use three algorithms for the experiments: 1)
our slicing algorithm, which is applied to all ten
models, using either NTSCD, NTICD or UNTICD, 2)
Korel et al.’s slicing algorithm (Koreletal1), which can
only be applied to the models in G1 because of their
definition of control dependence, which is limited
to EFSMs with an exit state, and 3) Korel et al.’s
reduction rules (Koreletal2) combined with NTSCD,
NTICD, or UNTICD for dependence analysis, which
can be applied to all ten models. An algorithm, with
its choice of control dependence, is applied to a model
by considering each of its transitions and the set of
variables referenced by the transition as the slicing
criterion. Therefore, the number of slices generated
when an algorithm is applied is equal to the number
of transitions in the model.

15

10.2 Experimental results and discussion

To answer the first two questions, we examine the size
of the slices generated using our algorithm parame-
terised by each of NTSCD, NTICD or UNTICD. Ta-
ble 3 presents the results for each of these three forms
of control dependence with data dependence. Slice
size is measured in terms of number of states, number
of transitions and number of unique transitions. In
the table, each value is normalised by dividing by
the corresponding size measure of the model. For
example, AvgS is the average number of states of all
slices in a model over the total number of states of
the model.

The average slice size reported in Table 3 shows that
the slice size using NTICD is about one third of the
model in terms of number of transitions and unique
transitions, which is similar to a typical program slice
size [12]. The slices using NTSCD are the largest in
all measures, as NTSCD captures dependencies within
control sinks while NTICD does not.

The average slice size using UNTICD is between
that using NTSCD and NTICD. However, if we con-
sider each model, it can be seen that the average slice
size of slices using UNTICD is the same as that of
slices using NTICD for the models in G1 and that of
slices using NTSCD for models in G2. This confirms
that UNTICD is the same as NTICD outside of control
sinks, as all models in G1 do not contain control sinks
and UNTICD is the same as NTSCD in control sinks,
as each model in G2 is a large control sink [4].

It can be seen from Table 3 that the slice size
using NTICD is smaller than that using NTSCD when
averaged over all models. However, inspection of the
average slice size for each model reveals an exception,
where the AVGT of Cashier using NTICD is a little
larger than that using NTSCD. Note that the AVGUT

using NTICD is still smaller, so the size increase is
caused by ε-elimination that might add transitions.
However, this is only one such case (over ten subjects),
and the average slice size for Table 3, calculated over
all models and control dependency definitions and
incorporating the average reductions for transitions,
unique transitions and nodes, is 55% of the original
model.

The run-time cost of slicing consists of two com-
ponents: the time to build the dependence graph
(which is a one-off cost), and the time to compute the
slice for a specific criterion. Table 4 reports TimeDep
for computing dependence graph and the average
AvgTimeSlicing for computing a slice for each model
using a laptop with Intel(R)Core Duo CPU at 2.4GHz
and 4GB memory. AvgTimeSlicing only considers the
time taken for the traversal of the dependence graph,
ε-elimination and minimisation.

TimeDep reported in Table 4 reveals that NTSCD
and UNTICD are more expensive than NTICD, since
both NTSCD and UNTICD capture more dependen-

cies than NTICD [4].
The average execution time AvgTimeSlicing reported

in Table 4 shows that for most models, the slice is
computed in very reasonable time. The slices gener-
ated for TCSbin, using our algorithm with NTSCD,
takes the longest time to compute. This is because it is
an industry model and it contains the largest number
of states and each transition contains many variables
and actions.

To answer the final question, we compare the slices
generated by our algorithm, Koreletal1 and Korele-
tal2. Figure 15 shows the size difference between slices
using our algorithm and Koreletal1 algorithm over all
slices of the models in G1, plotted in monotonically
increasing order on the x-axis. NTICD, NTSCD and
UNTICD are used in the dependence analysis of
our algorithm respectively. The x-axis measures the
number of slices as a percentage of the total number of
slices. The y-axis measures the size difference in num-
ber of states, transitions and u. Zero means that the
two slices generated using the two algorithms with
respect to the same criterion are equal in size. A posi-
tive value means our algorithm produces the smaller
slice. The three lines represent the three measures in
terms of the number of states, number of transitions
and number of unique transitions as labelled. The slice
size using NTICD and UNTICD is the same for the
models in G1 so we have produced the graphs for
NTICD only..

As discussed in Section 8, the Koreletal1 algorithm
may produce relatively large slices. Figure 15 shows
that when using NTICD, in more than 40% slices, we
produced smaller slices, ranging from 1 to 23 in term
of the number of transitions, 1 to 11 in terms of the
number of states and 1 to 21 in terms of the number
of unique transitions (indicated by the part of three
lines which is above 0 on the y-axis in the top graph
of Figure 15). In only 10% of the slices did Koreletal1
perform a little better when measuring the size using
the number of transitions where the maximum is 4
transitions (indicated by the part of grey lines which
is below 0 on y-axis in the top graph of Figure 15).
When using NTSCD, our algorithm never performs
worse than Koreletal1.

Koreletal2 uses reduction rules that produce rel-
atively small slices. However Figure 16 shows that
more than 30% of slices using our algorithm are
smaller than those using Koreletal2 in all measures. A
further inspection of the data reveals that most of the
slices with the greatest reduction occur in TCP and
TCSbin, which are large models without exit states.
In PrintToken which is also a large model but with
fewer states and an exit state, the slice sizes are the
same for most transitions. This result suggests that
our algorithm can produce significantly smaller slices
for larger, non-terminating models.

In the slices generated by the three algorithms when
using NTICD, we observe the best and worst case

16

NTICD+DD NTSCD+DD UNTICD+DD

Model AvgS AvgT AvgUT AvgS AvgT AvgUT AvgS AvgT AvgUT

ATM 46% 29% 24% 53% 36% 31% 46% 29% 24%
Cashier 77% 76% 70% 77% 68% 75% 77% 77% 71%
CruiseControl 78% 70% 80% 78% 70% 80% 78% 70% 80%
FuelPump 20% 10% 10% 38% 27% 29% 20% 9% 10%
PrintToken 91% 60% 78% 91% 60% 78% 91% 60% 78%
VendingMachine 56% 54% 42% 84% 80% 87% 56% 54% 42%

INRES 26% 25% 18% 73% 60% 67% 73% 60% 67%
TCP 16% 14% 9% 45% 48% 52% 45% 48% 52%
TCSbin 6% 9% 6% 70% 81% 79% 70% 81% 79%

DoorController 24% 13% 12% 85% 57% 57% 60% 38% 38%

Average 46% 35% 37% 71% 61% 67% 66% 57% 61%

TABLE 3
Slice size for our slicing algorithm.

NTICD+DD NTSCD+DD UNTICD+DD

Model TimeDep AvgTimeSlicing TimeDep AvgTimeSlicing TimeDep AvgTimeSlicing

ATM 0.039s 0.023s 0.048s 0.044s 0.038s 0.024s
Cashier 0.023s 0.439s 0.023s 0.480s 0.022s 0.433s
CruiseControl 0.049s 0.049s 0.070s 0.049s 0.048s 0.049s
FuelPump 0.054s 0.012s 0.049s 0.064s 0.049s 0.012s
PrintToken 10.164s 1.764s 18.408s 1.732s 10.261s 0.559s
VendingMachine 0.067s 0.041s 0.117s 0.179s 0.069s 0.042s

INRES 0.020s 0.007s 0.023s 0.070s 0.023s 0.071s
TCP 5.222s 0.024s 7.560s 0.558s 10.911s 0.559s
TCSbin 45.350s 0.184s 48.005s 15.234s 58.999s 14.758s

DoorController 0.007s 0.002s 0.007s 0.035s 0.006s 0.009s

Average 6.100s 0.255s 7.431s 1.844s 8.043s 1.767s

TABLE 4
Execution time for our slicing algorithm.

25

20

15

10

5

0

-5

100%90%80%70%60%50%40%30%20%10%0

Unique Transition
Transition
State

NTICD+DD

14

12

10

8

6

4

2

0

100%90%80%70%60%50%40%30%20%10%0

Unique Transition
Transition
State

NTSCD+DD

Fig. 15. Comparison between slice sizes for models in G1 using our slicing algorithm and Koreletal1.

17

50

40

30

20

10

0

-10

100%90%80%70%60%50%40%30%20%10%0

Unique Transition
Transition
State

NTICD+DD

100%90%80%70%60%50%40%30%20%10%0

15

10

5

0

-5

Unique Transition
Transition
State

NTSCD+DD

100%90%80%70%60%50%40%30%20%10%0

15

10

5

0

-5

Unique Transition
Transition
State

UNTICD+DD

Fig. 16. Comparison between slice sizes for all ten models using our slicing algorithm and Koreletal2.

Our Algorithm Koreletal2

Model Criterion #S #T #UT #S #T #UT

ATM T21 6 16 10 6 12 12
TCSbin T23 1 1 1 15 49 40

TABLE 5
The first row shows the case where Koreletal2 most

outperforms ours; the second row where our algorithm
most outperforms Koreletal2.

relative to our algorithm using as a measure the
number of transitions (i.e. the peak point and bottom
point of the dark grey line in Figure 15 and Figure 16).
We define the best case to be the slice that has the
smallest number of transitions; and the worst case to
be the slice that has the greatest number of transitions.

Table 5 shows details for the best case and worst
case with respect to slice sizes. The worst case occurs
in the ATM when slicing with respect to T21 and
its variables. The slice using our algorithm returns 6
states, 16 transitions and 10 unique transitions, while
the slice using Koreletal2 returns the same number of
states, more unique transitions but fewer transitions
overall. This is owing to the ε-elimination phase of
our algorithm. Removing unmarked transitions with
the algorithm sometimes leads to copying marked
transitions in order to guarantee invariant behaviour

by the model slice. If these are not minimised later on
the number of transitions may increase, but not the
number of states or the number of unique transitions.
The best case occurs in TCSbin. The slice generated
using our slicing algorithm with respect to transition
T23 and its variables consists of only one state and
one transition. This is because no other transitions
in TCSbin are control or data dependent on T23.
However, Koreletal2 reduction rules cannot remove
these unmarked transitions.

11 RELATED WORK
Besides Korel et al. [43], there have been other ap-
proaches to slicing of state-based models. Heimdahl
et al. [31] present a slicing approach for Requirements
State Machine Language (RSML) specifications, that
describes hierarchical and concurrent state machines.
Two slicing algorithms are defined based on a mark-
ing of the abstract syntax tree, similar to Sloane’s and
Holdworth’s approach [53]. First, the specification is
reduced based on a specific scenario of interest by
removing all behaviours that are not possible when
the conditions defining the scenario are satisfied.
Then, slicing based on data flow and control flow is
subsequently applied, with respect to a transition or
variable, to the remaining specification.

Wang et al. [58] describe a slicing approach for
Extended Hierarchical Automata (EHA) [19]. They de-
fine the following dependence relations for handling

18

hierarchy, concurrency, and communication: sequen-
tial, parallel and refinement data dependence, as well
as synchronisation, transition and refinement control
dependence. The slicing algorithm, given with respect
to states or transitions (as slicing criteria), traverses
the EHA finding elements to keep that are dependent
on the slicing criterion. The slicing algorithm de-
scribed in [46] extends Wang et al.’s slicing approach
by describing how to remove false dependencies (el-
ements identified as being dependent on each other
when they should not be) and also how to slice a
collection of state chart models (expressed as EHA).

Luangsodsai and Fox [21], [48] describe an ap-
proach that uses augmented And-Or dependence
graphs [44] for slicing concurrent state charts. An
And-Or dependence graph is used to represent data,
control dependencies as well as interference data de-
pendence, parallel, and interference control depen-
dence. The slicing algorithm is defined as a graph
reachability problem on the And-Or dependence
graph with respect to the slicing criterion, which is
a state, a condition, an event, or an action.

Except for Korel et al.’s reduction rules [43], the
slicing algorithms described above [21], [31], [46], [48],
[58] are not amorphous. They all produce slices that
are syntactic sub-models of the original i.e. they do
not remove elements that break the connectivity of
the model. Thus, they do not suffer from the problem
of re-connecting the graph. However, slices produced
can be large and may contain model elements in addi-
tion to those marked when considering the transitive
dependencies for all dependence relations defined.
Our algorithm aims to improve on these by focusing
on producing smaller and more precise slices.

Labbé et al. [45] have developed a tool for slicing
communicating automata, in particular Input/Output
Symbolic Transition Systems (IOSTSs) [25]. The slicing
criterion is a set of transitions. The slicing algorithm
first constructs a dependence graph based on their
definitions of data, control, and interference depen-
dence (that identifies dependences between concur-
rent parts of the model). All nodes backwardly reach-
able from the slicing criterion are marked. This ap-
proach does not take a state machine and produce
a reduced state machine. Rather, it marks states and
transitions that can influence the slicing criterion. As
this paper has demonstrated, the process of turning
a dependence analysis into a sliced EFSM is far from
trivial; it is related to the problem of minimisation in
automata theory.

In general the transition minimisation problem is
PSPACE-complete [39]. Another approach concen-
trates on Thompson NFA, which are NFA that can
result from one of the standard approaches to con-
verting a regular expression into an NFA (with ε tran-
sitions) [61]. An NFA is a Thompson NFA if for every
state s and label a there are at most two transitions
starting at s that have label a. A linear time algorithm

is given that minimises a Thompson NFA, where the
notion of minimisation used is that as many states
are eliminated as possible while retaining the Thomp-
son property [61]. However, while our NFA may be
Thompson NFAs, we are not interested in retaining
this property as the approach limits our freedom in
minimisation and potentially may lead to an overly
large slice. In summary, it appears that currently there
are relatively few approaches that minimise an NFA
while potentially retaining ε-transitions and they have
been defined for forms of state machines that are
not well suited for slicing. As a result it is hard to
determine how well they will perform using EFSMs
produced in practice and the implementation and
evaluation of such approaches is a topic for future
work.

Calude et al. [16] take an entirely different approach
to defining minimality, considering the effort required
to simulate an NFA. This corresponds to the effort
required to determine the set of possible states of
an NFA after a sequence. Interestingly, under this
notion of minimality, for any NFA there is a minimal
NFA that is unique up to isomorphism [16]. Currently,
however, there appear to be no reported algorithms or
complexity results for this notion of minimality.

12 CONCLUSIONS
This paper introduced a set of related slicing al-
gorithms based on a set of different EFSM control
dependence definitions and a tool for EFSM slicing.
All of our algorithms are capable of slicing non-
deterministic, non-terminating EFSMs and each is
adapted from the Ilie and Yu NFA minimisation
algorithm parameterised by one of three different
notions of control dependence. The paper proved the
suitability of properties of the algorithm for slicing
and presented a detailed empirical study on ten EFSM
models, using standard benchmarks and an industrial
EFSM from production systems. The study compared
our three algorithms to Korel et al.’s slicing algorithm.
It also compared our adapted NFA minimisation al-
gorithm with an adaptation of Korel et al.’s reduction
rules.

The results of the empirical study indicate that our
algorithm can significantly reduce the size of EFSM
slices. The slices that use control dependence defi-
nitions that are non-termination insensitive produce
the smallest average slices size of 35%. Compared to
Korel et al.’s slicing algorithm, our average slice is
smaller 40% of the time and larger only 10% of the
time. Compared to Korel et al.’s reduction rules, our
algorithm produced smaller slices in more than 30%
of slices. Because our algorithm is an adaptation of
the Ilie and Yu NFA minimisation algorithm, in the
worst cases the number of transitions may increase
to be larger than in the original model. However, the
empirical study showed that this did not occur for the
ten EFSM models used in the study.

19

ACKNOWLEDGEMENTS

This research work is supported in part by EPSRC
Grant EP/F059442/1 and National Natural Science
Foundation of China under Grant No.60903002 and
No.61170082. Author order is alphabetical.

REFERENCES

[1] H. Agrawal. On slicing programs with jump statements. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 302–312, Orlando, Florida, June 20–24
1994. Proceedings in SIGPLAN Notices, 29(6), June 1994.

[2] M. H. Albert and S. Linton. A practical algorithm for reducing
non-deterministic finite state automata. Technical Report
OUCS-2004-11, University of Otago, 2004.

[3] K. Androutsopoulos, D. Clark, M. Harman, J. Krinke, Z. Li,
and L. Tratt. State-based model slicing: A survey. ACM
Computing Surveys, to appear.

[4] K. Androutsopoulos, D. Clark, M. Harman, Z. Li, and L. Tratt.
Control dependence for extended finite state machines (best
theory paper award winner). In Fundamental Approaches to
Software Engineering (FASE ’09), volume 5503, pages 216–230,
York, UK, Mar. 2009. Springer LNCS.

[5] K. Androutsopoulos, N. Gold, M. Harman, Z. Li, and L. Tratt.
A theoretical and empirical study of EFSM dependence. In
25th IEEE International Conference on Software Maintenance
(ICSM 2009), Edmonton, Alberta, Canada, 23rd–26th Septem-
ber 2009.

[6] P. K. Au and J. M. Atlee. Evaluation of a state-based model
of feature interactions. In Feature Interactions in Telecommunica-
tions Networks IV (FIW 97), pages 153–167, Montréal, Canada,
1997. IOS Press.

[7] T. Ball and S. Horwitz. Slicing programs with arbitrary
control–flow. In P. Fritzson, editor, 1st Conference on Automated
Algorithmic Debugging, pages 206–222, Linköping, Sweden,
1993. Springer. Also available as University of Wisconsin–
Madison, technical report (in extended form), TR-1128, De-
cember, 1992.

[8] A. Bertolino, G. D. Angelis, L. Frantzen, and A. Polini. Model-
based generation of testbeds for web services. In 8th Interna-
tional Workshop on Formal Approaches to Testing Software (FATES
’08), volume 5047 of Lecture Notes in Computer Science, pages
266–282. Springer, 2008.

[9] D. Binkley. The application of program slicing to regression
testing. Information and Software Technology, 40(11):583–594,
1998.

[10] D. Binkley and K. B. Gallagher. Program slicing. In
M. Zelkowitz, editor, Advances in Computing, Volume 43, pages
1–50. Academic Press, 1996.

[11] D. Binkley and M. Harman. An empirical study of predicate
dependence levels and trends. In 25th IEEE International
Conference and Software Engineering (ICSE 2003), pages 330–
339, Los Alamitos, California, USA, May 2003. IEEE Computer
Society Press.

[12] D. Binkley and M. Harman. A large-scale empirical study of
forward and backward static slice size and context sensitivity.
In IEEE International Conference on Software Maintenance, pages
44–53, California, USA, Sept. 2003. IEEE Computer Society
Press.

[13] D. Binkley and M. Harman. A survey of empirical results on
program slicing. Advances in Computers, 62:105–178, 2004.

[14] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico. Specifica-
tion and description language (SDL),WebPro Forum Tutorial,
Int. Eng. Consortium.

[15] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico. Auto-
matic executable test case generation for extended finite state
machine protocols. In IWTCS’97, pages 75–90, 1997.

[16] C. Calude, E. Calude, and B. Khoussainov. Finite nondetermin-
istic automata: Simulation and minimality. Theoretical Computer
Science, 242(1–2):219–235, 2000.

[17] M. Caporuscio, A. D. Marco, and P. Inverardi. Model-based
system reconfiguration for dynamic performance manage-
ment. Journal of Systems and Software, 80(4):455–473, 2007.

[18] J. Choi and J. Ferrante. Static slicing in the presence of goto
statements. ACM Transactions on Programming Languages and
Systems, 16(4):1097–1113, July 1994.

[19] W. Dong, J. Wang, X. Qi, and Z.-C. Qi. Model checking UML
statecharts. In APSEC ’01: Proceedings of the Eighth Asia-Pacific
on Software Engineering Conference, page 363, Washington, DC,
USA, 2001. IEEE Computer Society.

[20] European Union. ARTEMIS programme embedded comput-
ing systems call for proposals, 2009. Available online at
https://www.artemis-ju.eu/.

[21] C. Fox and A. Luangsodsai. And-or dependence graphs
for slicing statecharts. In Beyond Program Slicing, Dagstuhl,
Germany, 2005.

[22] K. B. Gallagher and J. R. Lyle. Using program slicing in soft-
ware maintenance. IEEE Transactions on Software Engineering,
17(8):751–761, Aug. 1991.

[23] M. R. Garey and D. S. Johnson. Computers and Intractability.
W. H. Freeman and Company, 1979.

[24] V. Garousi, L. C. Briand, and Y. Labiche. Traffic-aware stress
testing of distributed systems based on UML models. In
International Conference on Software Engineering (ICSE), pages
391–400, 2006.

[25] C. Gaston, P. L. Gall, N. Rapin, and A. Touil. Symbolic
execution techniques for test purpose definition. In Proceedings
of Testing of Communicating Systems: 18th IFIP TC 6/WG 6.1
International Conference, TestCom, pages 1–18, New York, NY,
USA, May 16-18 2006. Springer.

[26] D. Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231–274, June 1987.

[27] D. Harel and A. Naamad. The statemate semantics of state-
charts. ACM Transactions on Software Engineering Methodology,
5(4):293–333, 1996.

[28] M. Harman, D. Binkley, and S. Danicic. Amorphous program
slicing. Journal of Systems and Software, 68(1):45–64, Oct. 2003.

[29] M. Harman and S. Danicic. A new algorithm for slicing
unstructured programs. Journal of Software Maintenance and
Evolution, 10(6):415–441, 1998.

[30] M. Harman, A. Lakhotia, and D. Binkley. A framework
for static slicers of unstructured programs. Information and
Software Technology. To appear.

[31] M. P. E. Heimdahl and M. W. Whalen. Reduction and slicing
of hierarchical state machines. In Proc. Fifth ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Switzer-
land, 1997.

[32] J. E. Hopcroft. An n log n algorithm for minimizing the
states in a finite automaton. In Z. Kohavi, editor, The theory
of Machines and Computation, pages 189–196. Academic Press,
1971.

[33] J. E. Hopcroft and J. D. Ullman. Formal Languages and their
Relation to Automata. Addison-Wesley, Reading, MA, 1969.

[34] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming
Languages and Systems, 12(1):26–61, 1990.

[35] J. Hromkovic and G. Schnitger. Comparing the size of NFAs
with and without epsilon-transitions. Theoretical Computer
Science, 380(1–2):100–114, 2007.

[36] L. Ilie, G. Navarro, and S. Yu. On NFA reductions. In Theory
Is Forever, pages 112–124, 2004.

[37] L. Ilie and S. Yu. Follow automata. Information and Computa-
tion, 186(1):140–162, 2003.

[38] L. Ilie and S. Yu. Reducing NFAs by invariant equivalences.
Theoretical Computer Science, 306(1-3):373–390, 2003.

[39] S. John. Minimal unambiguous eNFA. In Implementation and
Application of Automata, 9th International Conference, CIAA 2004,
Canada, 2004, Revised Selected Papers, volume 3317 of Lecture
Notes in Computer Science, pages 190–201. Springer, 2004.

[40] R. Jones and R. Lins. Garbage Collection: Algorithms for Auto-
matic Dynamic Memory Management. Wiley, 1999.

[41] R. Komondoor and S. Horwitz. Semantics-preserving proce-
dure extraction. In Proceedings of the 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL-00), pages 155–169, N.Y., Jan. 19–21 2000. ACM Press.

[42] B. Korel, G. Koutsogiannakis, and L. H. Tahat. Model-based
test prioritization heuristic methods and their evaluation. In
A-MOST ’07: Proceedings of the 3rd international workshop on
Advances in model-based testing, pages 34–43, USA, 2007. ACM.

20

[43] B. Korel, I. Singh, L. Tahat, and B. Vaysburg. Slicing of state
based models. In IEEE International Conference on Software
Maintenance (ICSM’03), pages 34–43, Los Alamitos, California,
USA, Sept. 2003. IEEE Computer Society Press.

[44] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe.
Dependence graphs and compiler optimizations. In POPL ’81:
Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 207–218, New York,
NY, USA, 1981. ACM.

[45] S. Labbé and J.-P. Gallois. Slicing communicating automata
specifications: polynomial algorithms for model reduction.
Formal Aspects of Computing, 20(6):563–595, 2008.

[46] S. V. Langenhove and A. Hoogewijs. SVtL: System verification
through logic tool support for verifying sliced hierarchical
statecharts. In Lecture Notes in Computer Science, Recent Trends
in Algebraic Development Techniques, pages 142–155, Berlin /
Heidelberg, 2007. Springer.

[47] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer. Efficient
unit test case minimization. In 22nd IEEE/ACM international
conference on Automated Software Engineering (ASE 07), pages
417–420, New York, NY, USA, 2007. ACM.

[48] A. Luangsodsai and C. Fox. Concurrent Statechart Slicing. In
Computer Science and Eelectronic Eengineering Cinference (CEEC),
pages 1–7, September 2010.

[49] F. Massicotte, M. Couture, L. C. Briand, and Y. Labiche. Model-
driven, network-context sensitive intrusion detection. In Model
Driven Engineering Languages and Systems, volume 4735 of
Lecture Notes in Computer Science, pages 61–75. Springer, 2007.

[50] V. P. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer, and
J. Hatcliff. A new foundation for control-dependence and
slicing for modern program structures. In European Symposium
on Programming, pages 77–93, 2005.

[51] V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, and M. B.
Dwyer. A new foundation for control dependence and slicing
for modern program structures. ACM Transactions on Program-
ming Languages and Systems, 29(5):27, 2007.

[52] Y. Sivagurunathan, M. Harman, and S. Danicic. Slicing, I/O
and the implicit state. In M. Kamkar, editor, 3rd International
Workshop on Automated Debugging (AADEBUG’97), volume 2
of Linköping Electronic Articles in Computer and Information
Science, pages 59–65, Linköping, Sweden, May 1997.

[53] A. M. Sloane and J. Holdsworth. Beyond traditional program
slicing. In S. J. Zeil, editor, Proceedings of the 1996 International
Symposium on Software Testing and analysis, pages 180–186, New
York, Jan. 8–10 1996. ACM Press.

[54] F. Strobl and A. Wisspeintner. Specification of an elevator
control system – an autofocus case study. Technical Report
TUM-I9906, Technische Univerität München, 1999.

[55] R. E. Tarjan. Depth-first search and linear graph algorithms.
SIAM J. Computing, 1:146–160, 1972.

[56] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, Sept. 1995.

[57] G. A. Venkatesh. The semantic approach to program slicing.
In PLDI ’91: Proceedings of the ACM SIGPLAN 1991 conference
on Programming language design and implementation, pages 107–
119, New York, NY, USA, 1991. ACM.

[58] J. Wang, W. Dong, and Z.-C. Qi. Slicing hierarchical automata
for model checking UML statecharts. In Proceedings of the 4th
International Conference on Formal Engineering Methods (ICFEM),
pages 435–446, UK, 2002. Springer-Verlag.

[59] M. Weiser. Program slices: Formal, psychological, and practical
investigations of an automatic program abstraction method. PhD
thesis, University of Michigan, Ann Arbor, MI, 1979.

[60] M. Weiser. Program slicing. In 5th International Conference on
Software Engineering, pages 439–449, San Diego, CA, Mar. 1981.

[61] G. Xing. Minimized thompson NFA. Int. J. Comput. Math.,
81(9):1097–1106, 2004.

[62] R. Y. Zaghal and J. I. Khan. EFSM/SDL modeling of the
original TCP standard (RFC793) and the congestion control
mechanism of TCP Reno. Technical Report TR2005-07-22, In-
ternetworking and Media Communications Research Labora-
tories, Department of Computer Science, Kent State University,
2005.

Kelly Androutsopoulos received a MEng in
computer Science at Imperial College and a
PhD in computer Science from King’s Col-
lege London. She is currently a research
associate on the SLIM (SLIcing state based
Models) project funded by EPSRC at the Uni-
versity College London. Her research inter-
ests include modelling with state-based lan-
guages, static and dynamic analysis, specifi-
cation and verification of reactive systems.

David Clark David Clark is a Senior Lecturer
in the Department of Computer Science at
University College London. He researches
semantics based program analysis and is
well known for his work on quantifying in-
formation flow using information theory. He
also has a track record of research into state
based models and their semantics.

Mark Harman is professor of Software En-
gineering in the Department of Computer
Science at University College London where
he directs the CREST centre. He is widely
known for work on source code analysis
and testing and as a founder of the field
of Search Based Software Engineering, an
area of Software Engineering research on
which he has given 16 keynote talks in the
past five years.

Robert Hierons received a BA in Mathemat-
ics (Trinity College, Cambridge), and a PhD
in Computer Science (Brunel University). He
then joined the Department of Mathematical
and Computing Sciences at Goldsmiths Col-
lege, University of London, before returning
to Brunel University in 2000. He was pro-
moted to full Professor in 2003.

Zheng Li is a professor at Beijing Univer-
sity of Chemical Technology. He obtained his
PhD from King’s College London, CREST
centre in 2009. He has worked as a research
associate at King’s College London and
University College London. He has worked
on program regression testing, dependence
analysis and source code analysis and ma-
nipulation. More recently he is interested in
search-based software engineering and slic-
ing state-based models.

21

Laurence Tratt is a Lecturer in the Depart-
ment of Informatics at Kings College London
in the UK. He is an Associate Editor in Chief
of IEEE Software and sits on the Editorial
Board of The Journal of Object Technology.

