
The Impact of Meta-Tracing on VM Design and

Implementation

Carl Friedrich Bolza, Laurence Trattb

aHeinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
bKing’s College London, Strand, London, WC2R 2LS, United Kingdom.

Abstract

Most modern languages are implemented using Virtual Machines (VMs).
While the best VMs use Just-In-Time (JIT) compilers to achieve good perfor-
mance, JITs are costly to implement, and few VMs therefore come with one.
The RPython language allows tracing JIT VMs to be automatically created
from an interpreter, changing the economics of VM implementation. In this
paper, we explain, through two concrete VMs, how meta-tracing RPython
VMs can be designed and optimised, and, experimentally, the performance
levels one might reasonably expect from them.

Keywords:
Virtual machines, meta-tracing, programming languages.

1. Introduction

Every programming language that makes it beyond a paper design needs
a corresponding implementation. Traditionally, most languages were com-
piled to machine code (via assembler or, less commonly, C). For languages
with high static content (i.e. those with minimal runtimes) it can lead to
highly efficient implementations, though it requires significant manpower to
do so. However, languages with high dynamic content (i.e. those with com-
plex runtimes, which includes most dynamically typed languages [1]) lack the
static information needed to produce efficient code. In short, the traditional

Email addresses: cfbolz@gmx.de (Carl Friedrich Bolz), laurie@tratt.net
(Laurence Tratt)

Preprint submitted to Science of Computer Programming January 14, 2013



approach is generally either too costly, or leads to slow execution. For many
modern languages, it is both.

It is now common for such languages to split apart the concept of compiler
and ‘execution engine’, with the latter implemented as a Virtual Machine
(VM). A simple compiler is all that is needed in such an approach, as the
VM specifies most of the language’s behaviour. Implemented as a naive
interpreter, a VM will tend to have poor performance. Instead, a VM can
use information about the way the program executes to optimise it in ways
that are statically impossible. Self first showed how a carefully crafted VM
could substantially improve performance for a highly dynamic language [2]
and its influence has led to most new languages being implemented using
VMs. For example, programs running on Java’s HotSpot VM [3] (one of
several Java VMs, henceforth referred to generically as ‘JVMs’), which is
derived in part from the Self VM, can often match C’s performance.

However, a VM reflects the language, or group of languages, it was de-
signed for. If a language fits within an existing VM’s mould, that VM will
probably be an excellent target; if not, the semantic mismatch between the
two leads to poor performance for user programs. For example, despite
HotSpot’s excellent performance, Jython (Python for JVMs) almost never
exceeds CPython (Python running with a custom VM written in C) in per-
formance, and is generally slower, because features that make use of Python’s
run-time customisability have no efficient implementation on a JVM. Simi-
lar problems have been observed when trying to implement Scheme on the
JVM [4].1 One attempt to alleviate this is the JVM’s invokedynamic byte-
code [6], but special-casing never ends: if a runtime needs continuations or
tail-calls, for example, the JVM has no natural way of expressing them.

Thus, languages which do not fit an existing VM mould must look to a
custom VM to achieve good performance levels. However, this is not easily
achieved: implementing a performant VM is justifiably seen as requiring
highly specialized skills and significant manpower. In particular, the highest
performing VMs rely on Just-In-Time compilers (henceforth referred to as
JITs), which, at run-time, take part of a program and convert it to optimised

1An early attempt at making a generic environment for implementing dynamic lan-
guages was done in the context of the Self project [5] where Java and Smalltalk bytecode
was compiled to Self bytecode. Due to the Self VM’s excellent performance, the resulting
translations performed similarly to the Smalltalk and Java VMs of the time. However,
similar concerns about the wider applicability of the approach remain.

2



machine code. Few VM teams have the resources to create a JIT, particularly
for complex languages. Unfortunately, therefore, most VMs’ performance is
substantially below that of HotSpot or .NETs CLR.

In this paper, we consider the RPython language, which allows auto-
matic creation of JITing VMs from implementations of traditional inter-
preters through meta-tracing. This allows high-performance custom VMs
to be created with reasonable resources. Many of the low-level details of
RPython have been described elsewhere (see e.g. [7]). In this paper, we look
at how a high-level VM is implemented in RPython, and the trade-offs in-
volved, using two different VMs: PyPy [8] and Converge [9]. The two VMs
have very different aims: PyPy is a drop-in replacement for the standard
Python VM; Converge is a VM for a research language. Consequently, the
two have had different levels of effort put into them (PyPy about 60 man
months, not including the time spend to develop RPython; Converge about
3). Our aim in this paper is to explain, using Converge and PyPy as concrete
examples, how RPython VMs can be designed and optimised, and what per-
formance levels one might reasonably expect from them. This paper is the
first to consider: specific RPython VM designs; the general lessons one can
learn from them; and the effects of different man-power levels on such VMs.

Though the VMs we look at in this paper are for two relatively similar
languages, it should be noted that RPython VMs have wider applicability.
Pyrolog [10], an RPython VM for Prolog, is one example of RPython being
used to implement a language that is not Python-like. Most of the techniques
we discuss in this paper can be applied to a wide variety of languages; a few
are specific to a given language or family of languages.

We start looking at the languages that each VM implements (Section 2),
before introducing the RPython language itself (Section 3). RPython pro-
duces meta-tracing JIT, so we give an introduction to this area for the many
readers who are likely to be unfamiliar with it (Section 4). We then detail
the high-level design of the VMs themselves (Section 5), explaining them as
if they were traditional interpreters. From that follows the technical heart
of the paper, explaining the optimisation techniques the VMs use to gen-
erate performant RPython JITs (Section 6), as well as the general lessons
embodied in the specific techniques. To show where RPython VMs with
the optimisation techniques fit into the performance landscape, we present a
performance comparison of various open-source VMs alongside the RPython
VMs (Section 7). Finally, we look at the issues and limitations of tracing
and meta-tracing JITs (Section 8).

3



The experimental suite for this paper is almost fully automated to enable
repeatability: it automatically downloads and builds VMs, and then runs the
experiments. We encourage interested readers to download and run it from
http://tratt.net/laurie/research/publications/files/metatracing_vms/

2. Python and Converge

Python and Converge are two seemingly similar languages. Both are dy-
namically typed, object orientated, have an indentation-based syntax, and a
rich collection of built-in datatypes. Indeed, much of Converge was explicitly
influenced by Python. In this paper, we assume a passing familiarity with
Python (pointing out differences with Converge on an as-needs basis).

Two technical features in particular distinguish Converge from Python.
First, Converge allows compile-time meta-programming whereby code can be
executed and generated at compile-time [9] (for the purposes of this paper,
this can be thought of as approximately equivalent to Lisp macros). Second,
Converge’s expression evaluation system is based on Icon’s and can perform
limited backtracking. This second feature is interesting from the implemen-
tation point of view because it imposes a noticeable performance penalty
even on programs which make little or no use of it [11].

Perhaps more importantly, at a ‘social’ level, the two VMs have different
motivations. Python is a real-world language, used by hundreds of thousands
of developers worldwide for a huge number of tasks, and for which many
external libraries are available. PyPy’s goal is first to be fully compatible
(warts and all) with CPython, and then to be faster. Converge on the other
hand is a research language, intended to explore research on Domain Specific
Languages (DSLs) and compile-time meta-programming. The needs of each
language’s VMs reflect this: PyPy strives to be as fast as possible; Converge
strives to be ‘fast enough’.

3. RPython

The basic facts about RPython are that it is a strict subset of Python
whose programs are translated to C. Every RPython program is a valid
Python program and can also be run using a normal Python interpreter.
However, RPython is suitably restricted to allow meaningful static analy-
sis. Most obviously, static types (with a type system roughly comparable to

4

http://tratt.net/laurie/research/publications/files/metatracing_vms/


Java’s) are inferred and enforced. In addition, extra analysis is performed
e.g. to assure that list indices are not negative. Users can influence the anal-
ysis with assert statements, but otherwise it is fully automatic. Unlike
seemingly similar languages (e.g. Slang [12] or PreScheme [13]), RPython is
more than just a thin layer over C: it is, for example, fully garbage collected
and has several high-level datatypes.

In addition to outputting optimised C code, RPython automatically cre-
ates a second representation of the user’s program. Assuming RPython has
been used to write an interpreter for language L, one gets not only an op-
timised version of that interpreter, but also an optimising tracing JIT com-
piler for under 10 additional lines of code [14]. In other words, when a
program written in L executes on an appropriately written RPython VM,
hot loops (i.e. those which are executed frequently) are automatically turned
into machine code and executed directly. As we shall see later, language
implementers can influence the particular JIT that is created, using their
knowledge of language semantics to allow further optimisations to occur.

RPython is able to automatically create JITs because of the particular
nature of interpreters. An interpreter, whether it be operating on bytecode
or ASTs, is a large loop: ‘load the next instruction, perform the associated
actions, go back to the beginning of the loop.’ In order to switch from
interpretation to JITing, RPython needs to know when a hot loop has been
encountered, in order to generate machine code for that loop and to use it
for subsequent executions. In essence, one need only add two annotations in
the form of function calls to an RPython program to add a JIT. The first
annotation informs RPython that a loop in the user program at position
pc has been encountered, so it may wish to start generating machine code if
that loop has been encountered often enough. The second annotation informs
RPython that execution of the program at position pc is about to begin: it
provides a safe-point for switching from the execution of machine code back
to the interpreter.

4. Tracing JITs

Traditional JITs are method JITs : when a particular method is identified
as being ‘hot’, it is translated into machine code (leaving most of its control
structures intact).

In contrast, the JITs that RPython creates are tracing JITs. Tracing JITs
came to prominence in the Dynamo project [15] as well as Franz and Gal’s

5



User program Trace when x is set to 6 Optimised trace

if x < 0:

x = x + 1

else:

x = x + 2

x = x + 3

guard_type(x, int)

guard_not_less_than(x, 0)

guard_type(x, int)

x = int_add(x, 2)

guard_type(x, int)

x = int_add(x, 3)

guard_type(x, int)

guard_not_less_than(x, 0)

x = int_add(x, 5)

Figure 1: An example of a user program and resulting traces.

work [16]. The basic idea behind tracing JITs is to identify hot loops, record
the bytecodes taken during a specific execution of it (‘the trace’), optimise the
trace, and then convert that into machine code. Traces intentionally linearise
control structures, naturally inlining functions. Wherever a specific branch
was taken, a guard (roughly speaking, a ‘check’) is inserted into the trace; if,
during execution of the machine code version, a guard fails, execution returns
to the interpreter. Traces are hoped to be records of commonly taken paths
through a program; when that assumption holds true, the result is extremely
fast execution.

Figure 1 shows a high-level example of a program and its trace. The
left-hand column shows a user program written in a Python-like language.
When it is detected to be in a hot loop, the next time the code is executed,
a trace is recorded. The middle column shows the trace recorded when x

is set to 6. Note that the specific value of x is not recorded in the trace;
indeed the trace would have been identical for any value of x greater than
or equal to 0 (since the ‘else’ branch of the if would be taken for all such
values); but the trace would be different if x was less than 0 (as the ‘then’
branch would be taken) or if x was not an integer. Once the trace has been
recorded, the trace optimiser then attempts to reduce it in size, so that the
resulting machine code executes as fast as possible. In this case, two type
checks which are trivially true can be removed, and the two constant integer
additions can be constant-folded. The resulting optimised trace is shown in
the right-hand column.

4.1. Meta-tracing

Whereas tracing JITs are normally separate components from interpreters,
RPython is a meta-tracing system [14]. The RPython translator in fact out-
puts two interpreters: the language interpreter is the (conceptually) simple

6



translation of the RPython interpreter into C; the tracing interpreter is a
second representation of the interpreter which can be run to create traces.
When a hot loop in a user program is detected, a marker is left such that the
next time the loop is about to run, the VM will use the tracing interpreter
instead of the language interpreter. When the loop is next encountered, a
complete execution of the loop is performed and each low-level action taken
by the tracing interpreter is recorded. After the loop has finished, the trace is
then analysed, optimised, and converted into machine code. All subsequent
executions of the loop will then call the machine code version. RPython au-
tomatically inserts guards into the machine code to detect divergence from
the machine code version’s capabilities. If a guard fails at any point, execu-
tion falls back to the tracing interpreter for the rest of that bytecode, and
then back to the language interpreter. 2

The fundamental difference between meta-tracing and non-meta-tracing
JITs is that the latter JIT must be manually written. By tracing the actions
the interpreter itself takes, a meta-tracing JIT can automatically create a
JIT from the interpreter. As we shall see, the way an RPython interpreter
is written affects the performance of the resulting JIT. To obtain the highest
possible performance, the interpreter often needs to be subtly rewritten in
specific places to aid the resulting JIT. When this is done intelligently, the
raw traces created by an RPython JIT will often be reduced by 90% by
RPython’s trace optimiser [17].

The only other meta-tracing system we are aware of is SPUR [18], a trac-
ing JIT for CIL bytecode, which can be used as a meta-tracer for languages
implemented in C#. The sole paper on SPUR uses meta-tracing to imple-
ment a JavaScript VM (we are not aware of it being applied to other lan-
guages). The JavaScript interpreter is carefully structured so that the traces
that SPUR produces for common object operations are efficient, yielding ex-
cellent performance results. This is similar in intent to RPython, though
SPUR works at the C# bytecode level, and has fewer ways to annotate the
interpreter to produce efficient traces.

5. PyPy and Converge VM overview

In this section we give an overview of the structure of both VMs.

2The reason that the tracing interpreter is only run sparingly is that it is extremely
slow in comparison to the language interpreter.

7



5.1. Bytecode structure

Both PyPy and Converge use a bytecode based interpreter together with
a compiler that translates programs into the respective bytecode set. The
bytecode sets are similar in intent, being stack-based and deferring type spe-
cialization until run-time. Python’s bytecode set contains more instructions
to optimise specific common operations (e.g. list accesses) than Converge,
while the latter has several additional instructions related to backtracking.

5.2. Compilation

Both VMs store programs as bytecode for execution by the eventual in-
terpreter. Although both PyPy and Converge use traditional compilation,
the implementations differ. PyPy’s compiler is written in RPython and is
integrated into the VM for fast startup times; most users will never be aware
that separate compilation is performed on their behalf. Converge’s compiler
is written in Converge, and is a separate program; while it can be invoked
manually, if passed a source file, the VM transparently calls the compiler.
Both systems attempt to transparently cache bytecode output on disk to
lower compiler costs, automatically recompiling any source files which are
detected to be newer than their cached equivalents (this means that the
first run of a Python or Converge program can be significantly slower than
subsequent runs).

Because the Converge VM is used to compile new versions of the Converge
compiler, the latter has to obey an important restriction: neither the compiler
nor any libraries it uses can perform compile-time meta-programming. If the
compiler were to do so, it would be impossible to migrate Converge’s bytecode
format, as the running compiler would then emit bytecode in the new VM
format and attempt to execute it, all while still running on the old VM. In
practice, this restriction is not particularly onerous, although it requires a
freshly unpacked Converge system to be compiled in a specific order: first
a minimal version of the standard library (enough for the compiler); then
the compiler itself; then the full library (which, at this point, may include
compile-time meta-programming).

5.3. Interpreter structure

Both PyPy and Converge split their interpreters into three major parts:
the bytecode interpreter; the built-in datatypes; and the built-in libraries.
The bytecode interpreters are responsible for dispatching and implementing
the bytecode set and are constructed in a direct, simple fashion. The built-in

8



datatypes realise basic concepts such as objects, classes, lists, and dictionar-
ies. As well as being used extensively throughout the VM, several of these
datatypes require careful bootstrapping during VM initialization. Built-in
libraries are provided either for performance reasons or to allow integration
with low-level C libraries.

In Converge, the split between the bytecode interpreter and built-in
datatypes is relatively informal, as befits a simple VM. In PyPy, in con-
trast, the split is very clearly defined to ensure that, despite the large size
of the Python language specification, the components are manageable. The
bytecode interpreter treats all Python objects that it handles as black boxes;
operations on them are handled by a separate component called the ob-
ject space. The only way for the bytecode interpreter to gain actual knowl-
edge about an object is to ask the object space for the object’s truth-value
(i.e. whether the object is equivalent to True or False, information necessary
for if statements). The object space, on the other hand, only knows about
datatypes, not about executing Python code, for which it refers back to the
interpreter.

High-level languages such as Python typically have a Foreign Function
Interface (FFI) to interface to external C libraries. Because of the mis-
match between the high-level language and C, FFIs are often clumsy to use.
RPython’s more static nature and lower-level types make it a better fit: con-
sequently, PyPy and Converge mostly interface to C libraries in RPython.

Libraries which do not need to interface to external C libraries are more
interesting in an RPython VM. Traditional VMs such as CPython implement
as much functionality in C as is practical, often migrating libraries from the
native language to C over time. The speed advantages of doing so are often
huge, and such language communities develop careful conventions about what
calculations should be done via library calls to take advantage of this. An
important goal of RPython VMs is to significantly reduce the need to write
and use C modules for performance reasons.

6. Optimising an RPython VM

Optimising an RPython VM means concentrating on the two execution
modes: optimising the interpreter for faster interpretation speed; and rewrit-
ing the interpreter to produce traces which can be better optimised by the
JIT. The former is largely similar to the challenges faced by other inter-
preters, so we dwell little on it; the latter is more unique to RPython VMs

9



and what we concentrate on in this section.
From the perspective of an RPython VM author, many standard opti-

misations ‘fall out of the hat’. Built-in datatypes such as integers, floats,
and (to an extent) strings are naturally optimised by RPython’s allocation
removal techniques [17].

What an RPython VM author needs to concentrate on are the commonly
used building blocks that are specific to the language being implemented. In
the case of Converge and PyPy, the three common pinch points are instances
(objects), classes, and modules.3 As highly dynamic languages, Converge
and Python programs can change and inspect run-time behaviour in arbi-
trary ways. However, most programs restrict such changes to small portions.
Both RPython VMs therefore aim to make the common case of non-reflective
access as fast as possible. Conversely, when a program uses the language’s
more dynamic features (introspection, self-modification, intercession [19]),
execution falls back to slower, more general code.

In this section we give an overview of how language-specific building
blocks can be optimised; many of the techniques described will be appli-
cable to the different building blocks found in other languages.4 In general,
the Converge VM implements the ‘easy win’ optimisations, while PyPy opti-
mises a much wider class of programs. Both experiences are useful: Converge
shows how significant optimisations are possible with little effort, while PyPy
shows how RPython VMs can optimise seemingly resistant programs.

6.1. General RPython JIT optimisation techniques

The techniques described in this section are more finely-tuned variants
of the techniques described in [21]. The general aim is to produce small
traces which can then be further shrunk by RPython’s trace optimiser. The
overall strategy is to expose, by rewriting the interpreter, the parts which
can be made constant in traces based on that code; these parts can then be
optimised away, leaving only simple guards in their place. The tactics used to
achieve this involve either using RPython-level annotations (i.e. promoting
values and eliding functions) or rewriting the interpreter to use more trace-
friendly code (e.g. moving from arbitrarily sized arrays to fixed-size lists).
We now give a brief explanation of each.

3Informally, in both Converge and Python, a ‘library’ is a collection of modules.
4For PyPy container types (e.g. lists and hash maps) optimisations, see [20].

10



6.1.1. Promoting values

In the context of a specific trace, it is often reasonable to assume that cer-
tain pieces of information are constant. The trace optimiser can be informed
of this likelihood by promoting a value. For the small cost of inserting a guard
at the first point of use, all subsequent calculations based on that constant
can be constant-folded or removed from the trace. Note that constants are
not known at compile-time: they are run-time values that are only constant
for one particular trace. An important example of this is the concrete type
of an object. Even in dynamically typed languages, most variables are only
ever assigned values from a small set of types. Promoting the type of an
object allows calculations to be specialized on that type. Because there is a
very high likelihood that only a single type will be used at a given program
point, the corresponding guard will fail only rarely.

6.1.2. Elidable functions

Similarly to promoting a value, functions can be annotated as being elid-
able. This is similar, though not identical, to the concept of pure functions.
In short, an elidable function must guarantee that, given the same inputs,
it always returns the same outputs. In contrast to pure functions, elidable
functions may also have side effects (e.g. caching), provided that the same
inputs always result in the same outputs being returned. When a call to
such a function is encountered in a trace, its body thus need not be executed
when the input values match those previously encountered.

6.1.3. Using trace optimiser friendly code

Often seemingly similar techniques can yield surprisingly different results
in the context of the trace optimiser: one might frustrate the optimiser;
another may allow it do its job well. As a concrete example, we look at the
most common collections datatype: lists.

Arbitrarily resizable lists cause the trace optimiser something of a head-
ache. Every append (or similar) operation requires a check to see if the list
has enough space left; if not, it must be resized, and possibly moved elsewhere
in memory. Because of this, the trace optimiser can not definitively prove
useful properties of the list over the lifetime of a trace, and therefore can not
optimise much. Whenever possible, therefore, arbitrarily resized lists should
be avoided. We now give two indicative solutions to avoiding the use of such
lists.

11



Fixed sized arrays are the most obvious solution. These are much more
amenable to trace optimisation as they expose constant information – in this
case, the size of a list – to the trace optimiser. Indeed, the single biggest
improvement in performance in the Converge VM was moving from a global
stack (as a resizable list) to a per-function frame stack (as a fixed size array).
This necessitated modifying the compiler to statically calculate the maximum
stack space a function requires at run-time (roughly one day’s work), and
creating a fixed-size list of that size in each function frame.

Arbitrarily sized lists which are not randomly accessed need not be stored
contiguously at all, instead being accessed as a linked list. A simple example
of this is function frames. Since one needs to be able to access all of these
to print out backtraces, an old version of the Converge VM, stored these
contiguously in an arbitrarily resizable list. Clearly we can not replace such
a list with a fixed size array: we have no idea in advance how deep functions
will recurse. However, we do know that we rarely need to access anything
other than the current frame’s parent (to know where to return at the end of
a function call). Therefore, having each frame store a pointer to its parent
frame is a simple solution. It gives quick access to the parent frame, and,
via pointer traversal, all the grandparent frames when a backtrace is needed.
However, in essence the explicit list has disappeared entirely, and the trace
optimisers life becomes much easier.

6.2. Optimising Instances

Both Converge and Python allow users to define classes and create in-
stances (i.e. new objects) from them. Most programs create many such in-
stances. Optimising the common cases is thus extremely important. We
also use instances as an example of how rarer, but more complex, language
semantics can be handled without affecting the common case.

The basic semantics are similar in Converge and Python. Every in-
stance records the class it instantiates; both languages allow this to be
changed at run-time (in Python by writing to the class slot, in Con-
verge to instance of). Instances can also store an arbitrary number of slots
(key/value pairs), which can vary on a per-instance basis (i.e. unlike many
other OO languages, a class does not precisely define the ‘shape’ of its in-
stances). In essence, instances behave like dictionaries mapping slot names
(as strings) to values, while classes define the shared behaviour between in-
stances. In this sense, both languages behave more like prototype-based
languages such as Self than class-based languages such as Smalltalk.

12



instance map 1 7 4

map for class A "x": 0 "y": 1 "z": 2

instance map 4 6 -1

Figure 2: Two instances of class A sharing the same map

instance map 12 "hello" 4.3 1.2

map for class B "a": 0 "b": 1 "c": 2 "x": 3 "y": 4 "z": 5

array -2 4

Figure 3: An instance of class B with six slots

Both Converge and PyPy optimise the common case of directly accessing
slots in instances using maps (a concept originally from Self [22]; the technical
details of PyPy’s approach to maps are explained in [21]). Although instances
of the same type can vary substantially, in practice the ‘shape’ of an instance
is highly correlated with its class. Since the two rarely vary independently,
PyPy stores the references to the class of an instance in its map, not directly
in the object, saving a promotion in the process. Since promotions turn into
guards in a trace, this produces smaller traces.5 It also has the benefit of
making objects one word smaller.

Although performance is PyPy’s most obvious goal, it also attempts to
save memory when that is not in direct conflict with performance. One
example of this is PyPy’s compact representation of instances. An informal
study of real systems showed that most objects have 5 or fewer slots. PyPy
therefore preallocates space for 5 slots, freeing it from the need to allocate an
arbitrarily sized list to store slots in most cases (which, when all of its parts

5Of course, many trace operations might be later optimised away; in this case, the
guard resulting from the second promote would be unlikely to be so optimised.

13



are taken into account, needs around 40% more memory to store 5 slots).
Only when more than 5 slots are assigned to an instance is an arbitrarily
sized list created and referenced from the object.

Figure 2 shows PyPy’s layout scheme for two instances of class A, each
instance using the same additional slot names. Since the instances have only
three slots, the content of the slots can be stored in the free slots. Figure 3
shows an instance with six slots. Two of the fields have to be stored in an
extra array allocated for that use. Note how the last field of the instance is
used for the indirection.

6.2.1. Python’s additional instance semantics

Python’s instance model has a number of complexities over Converge’s,
which PyPy fully supports. These complexities are interesting because they
show how interpreters can gradually allow performance to tail off as rarer,
more dynamic, features are used.

The complexities relate to an implementation decision from CPython:
every instance has a reference, via the dict slot, to a dictionary that
stores all the instance’s slots. This dictionary can be replaced by writing
to the dict slot, changing all the instance’s slots. This implementation
decision is costly in terms of memory, as dictionaries are not small data
structures, and seems to defeat many reasonable optimisations.

One solution would be to use maps for normal accesses, but switch to
a plain dictionary as soon as the dict slot is accessed. Doing so would
mean that any reflective access of the dictionary would slow down all subse-
quent uses of that instance. Since the dictionary is mostly used for reading
and writing slots, this would slow down many real programs. Therefore, in
PyPy, requesting an instance’s dictionary returns a fake dictionary. This is
indistinguishable from a real dictionary, and transparently redirects all reads
and write to keys and values to the underlying instance.6 In other words,
performance for normal accesses remains as fast as the standard case.

Figure 4 shows an instance, its map, and the fake dictionary that redirects
all accesses back to the instance. Note that the instance needs to keep a

6A more complete solution for this sort of reflective access would be to use mirrors [19].
However, this would require changing the semantics of the Python language. In some
senses, the dict attribute can already be seen as a mirror on the attributes of an in-
stances. Indeed, it gives additional guarantees over mirrors, guaranteeing that the identity
of dict is the same on all accesses.

14



instance map 1 2 3

map for class A "x": 0 "y": 1 "z": 2 "__dict__": 3 fake dict object None

Figure 4: An instance implemented with a map, and its dictionary

instance map

degenerate map for class A "__dict__": 0

dict {"x": 1, "y": 2, "z": 3, -1: 4}

dict object

Figure 5: An instance that has its slots stored in a dictionary

reference to the dictionary once it has been requested in order to ensure that
the expected object identity invariants are maintained.

However, when the programmer uses more of Python’s dynamic features
– in particular, writing a new dictionary to the dict slot – even this tactic
is no longer viable. In such cases, PyPy stops using maps for the instance and
stores its instances in a real dictionary (as shown in Figure 5). Fortunately
such uses are rare, so few programs suffer the consequent slowdowns.

6.3. Optimising Classes

Both Python and Converge instances store only the information which
varies from the class they instantiated. Typically this means that instances
store dynamic information (ints, strings, user classes etc.) while classes store
static information (typically functions). Accessing fields in classes is thus
as common an operation as accessing slots in instances. Both PyPy and
Converge aim to make non-reflective method lookup as fast as possible.

Looking up a method in a class necessitates, conceptually, traversing its
inheritance hierarchy (note that both Converge and Python support multiple
inheritance; Python uses the C3 algorithm [23], which means potentially
looking at all its base classes during every method lookup). Since both
languages allow classes to change dynamically, method lookup is a seemingly
expensive operation.

15



The technique both languages use is to version classes. Every change
to a class (e.g. adding or editing a field) changes its version. For any given
version of a class, all of its fields are thus constant, and accesses to that class
can be promoted (based on both the class and the version) and elided away.
Because of inheritance, classes can not be versioned in isolation: for example,
if a field is added to a class, then instances of its subclasses should gain that
field too. Thus, as well as changing the version of a class when it is edited,
we must change the versions of each of its subclasses. Since storing a normal
reference to subclasses would prevent the latter ever being garbage collected,
both Converge and PyPy classes store weak references (i.e. references that
do not keep their target object ‘alive’) to their subclasses.

This technique makes looking up a field in a class extremely quick (com-
parable in speed to C++ method calls) for the common case. The JIT
optimises field lookups to a single guard which need only check that one
class’s version; if the check succeeds, the correct result is already known and
inserted. Since versions can change an unbounded number of times, the seem-
ingly obvious technique of using a monotonically incrementing integer for the
version is dangerous: the integer could then overflow and two versions that
were intended to be different could appear to be the same version, leading
to unexpected behaviour. However, we only need compare whether one ver-
sion is different than another, not whether one version is newer or older than
another. Both PyPy and Converge therefore instantiate blank objects of an
arbitrary class to stand in for versions: the RPython memory system implic-
itly guarantees that two different objects will compare differently, providing
exactly the guarantees needed, without any possibility of integer overflow.

However, as presented above, performance would suffer for the rarer case
where a class’s fields change frequently such as when a class stores a mono-
tonically increasing counter which it assigns to every instance. Every instan-
tiation would change the class and its subclass’s versions; worse, trace guards
would be invalidated and traces begun anew.

PyPy therefore adds one technique to the above (which Converge does
not currently do). When a class field is given a different value for the first
time, an extra level of indirection is introduced: the class no longer stores
the field’s value directly, but stores a reference to a small intermediate object
(a class cell) that contains the value. When that particular field is changed
subsequently, only the content of that object is changed, not the class as a
whole: the class’s version therefore need not be changed. After the first time,
writing to such a field causes relatively little slowdown, while reading from it

16



class C version dict ...

version dict "f": <function f> "g": <function g> "counter":

ClassCell 134

Figure 6: Class C with two methods and a counter

needs an extra memory read (including when accessed via subclasses). While
slightly less efficient, this balances fast general performance with reasonable
performance in the rarer case.

Figure 6 shows a class with two methods f and g and a counter field.
The counter is stored via an indirection to a ClassCell, so that changing it
does not update the version of the class. Reading the counter slot requires
an extra pointer dereference.

This approach is similar to Smalltalk’s mechanism for handling global
variables [24, p. 599]. A global variable7 is a reference to an association
object, which corresponds to PyPy’s class cells. To read it, the value of
the association is read. To write to the global variable, the value of the
association object is set. In Smalltalk, this indirection is always used, not
just for commonly changed variables. More generally, class versions can be
related to the invalidation of method caches when a new method is compiled
in some Smalltalk systems [25].

6.4. Optimising Modules

Modules are conceptually similar to classes, with both providing names-
paces for storing functions/methods and values. However, modules are sim-
pler in that there can be no inheritance between them. Modules in PyPy
therefore use a similar versioning technique to classes. Converge uses a more
naive scheme, to maintain simplicity in the compiler and VM. Top-level Con-
verge module scopes are simply closures and, within a module, they can be
assigned to as normal; synchronising their mutation within and without the
module would be somewhat difficult. Furthermore, tracking the number of

7The same is true for class variables and pool variables.

17



assignments and adding indirection would be another complication. Con-
verge modules thus use maps (which are promotable, and calculations on
them easily elided) to map module lookups and assignments to an offset in
a closure (which is a fixed size array). In practice, all reads and writes to
Converge modules act like indirected accesses in PyPy. This gives reasonable
(though not stellar) performance with little effort.

6.5. Discussion

With the optimisations described in this sections so far, instances, classes,
and modules perform well in both the Python and the Converge VM. In-
stances are stored almost as compactly in memory as HotSpot, with equally
efficient attribute access times, despite retaining sufficient information to
implement highly dynamic languages. Classes are highly optimised for the
common case (an inheritance hierarchy where methods in classes are not
changed). In PyPy, module globals have most of their lookup overhead re-
moved; in Converge, they are less efficient, but still adequately fast.

These optimisations exemplify how RPython VM authors need to con-
sider which usage patterns are the most important (i.e. frequent) and there-
fore should be made as efficient as possible. They must then (re)arrange
the interpreter and data structures so that, in conjunction with the trace
optimiser, small traces with little code and few guards are produced. There
is, of course, a tension between making common cases fast while not mak-
ing less common cases unusably slow. VM authors need to understand their
languages and intended use cases well. However, as often the case with per-
formance issues, it is not realistic to do so purely intellectually: real programs
must be analysed to determine which cases need to be focused on. Differ-
ent benchmarks (synthetic or not) can change the perception of the most
important areas substantially, and must be carefully chosen.

As this suggests, it is impossible to design a perfectly optimal interpreter
up-front. Analysing traces from real programs often shows new opportuni-
ties for optimisation. Each pinch-point identified in the interpreter can be
addressed either by adding hints for the JIT, or by rewriting the interpreter.
This is often not a trivial task, particularly for more complex interpreters. It
requires careful thought about the goals of the optimisation, the trade-offs
involved (including to code readability), and how to reach these goals.

Thus, while a basic meta-tracing JIT comes ‘for free’, a fully optimised
one is no small task. That said, nearly all optimisations are understandable
at the level of the interpreter itself: one need never look within the JIT

18



compiler itself. The interpreter thus still expresses the language semantics
correctly – albeit somewhat strangely when optimisations require changing its
structure – and many optimisations improve the performance of the language
interpreter as well as the resulting JIT. For example, maps are a memory
optimisation even if only an interpreter is used, and version tags can be used
for a method cache within a purely interpreted system. Such rewritings are
akin to an extreme version of rewriting a C program knowing the sorts of
idioms that are best optimised by the C compiler.

While promoting and eliding are direct features of the JIT, version tags
are an idiom of use. This can understate their importance: they are a pow-
erful way to constant-fold arbitrary functions on large data structures. The
versions need to be updated carefully every time the result of a function on
a structure can change. Therefore this technique is only applicable on data
structures which change slowly or which (as PyPy’s approach to optimising
classes in Section 6.3 showed) can be made to change slowly.

We believe that the manual rewriting of parts of the interpreter is a key
part of the meta-tracing approach. Many optimisations rely on in-depth
knowledge of the language the interpreter implements. The rewrites expose
not only properties of the language semantics (which are already present
in the interpreter) but also expectations about patterns of use (which are
not). While an ‘optimally smart’ meta-tracing compiler might deduce some
optimisations, many require a human’s understanding of the wider context.

7. Performance

In this section we aim to show where RPython VMs fit in the general VM
performance landscape. We therefore compare the PyPy and Converge VMs
to: C (to show how hand-written programs compare to VMs in general);
hand-crafted high-performance VMs (HotSpot and LuaJIT); hand-crafted
low-performance VMs (CPython, Lua, Ruby, and Converge1); and trans-
lations to another VM (JRuby and Jython). In order to do this, we need
programs which are available in each language. Synthetic benchmarks are the
only plausible candidates for cross-language comparison. With a reminder
to readers of the inevitable limitations of synthetic benchmarks – they can
easily be ‘gamed’ by language implementers and are often not representative
of real workloads – we explain the systems under test, the methodology we
use to measure performance, and the experimental results.

19



Language implementation KLoC VM Impl. Lang Language version

C (GCC 4.6.3)
HotSpot (1.7.0 09) 250 C++ Java (1.7)
Converge1 (git #68c795d2be) 11 C Converge (1.2)
Converge2 (2.0) 4 RPython Converge (1.2)
Lua (5.2.1) 14 C Lua (5.2)
LuaJIT2 (2.0.0) 57 C Lua (5.1)
CPython (2.7.3) 111 C Python (2.7.3)
Jython (2.5.3) 63 Java Python (2.5)
PyPy–nonopt (1.9∗) 31 RPython Python (2.7.2)
PyPy (1.9) 33 RPython Python (2.7.2)
Ruby (1.9.3-p327) 102 C Ruby (1.9.3)
JRuby (1.7.1) 115 Java Ruby (1.9.3)

Table 1: The language implementations we compare.

7.1. Systems Under Test

The benchmarks we use are: Dhrystone [26], a venerable integer bench-
mark, and almost certainly the most widely ported cross-language bench-
mark; Fannkuch-redux, which counts permutations [27], from the Computer
Language Benchmarks Game8; and Richards9, which models task dispatch
in an operating system. Dhrystone is included for its ubiquity; Fannkuch-
redux for its exercising of built-in datatypes; and Richards for its relative
real-worldism. In the Appendix we present 8 other benchmarks.

Table 1 shows the language implementations we compare, with detailed
version information to ensure repeatability. Converge1 (the old C VM) is the
Converge 1.2 VM with the minimal number of functions (related to integers
and strings) added to allow the benchmarks to run (we give the git hash to
allow precise recreation of this version). Converge2 is the new RPython VM.
PyPy–nonopt is a variant of PyPy with the major optimisations of Section 6
turned off (the flags used to obtain this can be found in our repeatable build
system; we call this version 1.9∗ to differentiate it from standard PyPy),
allowing us to explain the effect of those optimisations.

We give Lines of Code (LoC) rounded to the nearest 1000 LoC – excluding
blank and / or comment lines – for the ‘core’ of each VM10 to give an indica-

8http://shootout.alioth.debian.org/
9http://www.cl.cam.ac.uk/~mr10/Bench.html

10HotSpot numbers from http://openjdk.java.net/groups/hotspot/.

20

http://shootout.alioth.debian.org/
http://www.cl.cam.ac.uk/~mr10/Bench.html
http://openjdk.java.net/groups/hotspot/


tion of relative size. As is commonly the case with LoC, the precise number
should be treated with caution: different languages and coding styles make
precise comparisons impossible; and VMs vary considerably in the extent to
library functionality is included in the VM or as a normal user library. With
some VMs, determining which files should be counted as part of the VM or
not is a matter of considerable debate. Nevertheless the LoC count allows
one to get a rough handle on the effort levels that have gone into each VM.
Both of the RPython implementations are about one third the size of their
C counterparts. The optimisations described in Sections 6.2, 6.3, and 6.4
add about 2K LoC to PyPy. Neither the PyPy nor the Converge2 numbers
include the RPython infrastructure or the meta-tracing JIT compiler.

Our experimental system is almost fully automated to enable repeatabil-
ity: it automatically downloads and builds the correct versions of the VMs
(except for HotSpot), calculates the LoC for each VM, and then runs the
experiments. The download link can be found on page 4.

7.2. Methodology

A fundamental problem when measuring JIT-based systems is whether
to include warm-up time or not. JIT implementers often argue that warm-
up times are irrelevant for long-running processes, and should be discounted.
Others argue that many processes run for short time periods, and that warm-
up times must be taken into account. We see merit in both arguments and
therefore report two figures for each benchmark: short, where the benchmark
has a low input size (e.g. 10 for Richards), and where warm-up times can play
a significant part; and long, where a higher input size (e.g. 100 for Richards)
tends to dominate warm-up times.

We ran all systems using the default options, with 3 exceptions. First, we
used the -O3 optimisation level for GCC. Second, we increased the memory
available to the HotSpot-based VMs, as otherwise several of the benchmarks
run out of memory. Third, we used the -Xcompile.invokedynamic=true

option for JRuby to force the use of HotSpot’s invokedynamic instruction,
which is otherwise disabled on current versions of HotSpot.

We ran each version of the benchmark 30 times using multitime11 to
randomise the order of executions on an otherwise idle Intel Core i7-2600S
2.8GHz CPU with 16GB RAM, running i386 Linux 3.5.0 and GCC 4.6 as the

11http://tratt.net/laurie/src/multitime/

21

http://tratt.net/laurie/src/multitime/


Dhrystone Fannkuch Redux Richards
50000 5000000 10 11 10 100

C 0.004 ± 0.002 0.179 ± 0.010 0.163 ± 0.006 1.992 ± 0.010 0.012 ± 0.006 0.079 ± 0.006

HotSpot 0.107 ± 0.006 0.240 ± 0.010 0.350 ± 0.008 3.448 ± 0.029 0.109 ± 0.010 0.169 ± 0.014

Converge1 2.053 ± 0.029 207.274 ± 3.048 - - 9.931 ± 0.102 100.216 ± 1.356

Converge2 0.118 ± 0.004 1.914 ± 0.022 2.658 ± 0.041 33.484 ± 0.517 0.637 ± 0.006 2.850 ± 0.014

Lua 0.201 ± 0.008 19.417 ± 0.474 7.683 ± 0.321 100.536 ± 2.475 0.665 ± 0.024 6.574 ± 0.139

LuaJIT 0.014 ± 0.006 0.879 ± 0.016 0.339 ± 0.008 4.180 ± 0.010 0.085 ± 0.006 0.763 ± 0.010

CPython 0.368 ± 0.010 35.072 ± 0.537 9.167 ± 0.237 114.001 ± 2.189 1.585 ± 0.022 15.698 ± 0.227

Jython 1.820 ± 0.029 28.432 ± 0.466 7.776 ± 0.419 76.069 ± 4.753 2.820 ± 0.069 13.870 ± 0.345

PyPy–nonopt 0.127 ± 0.006 5.898 ± 0.071 1.402 ± 0.022 16.989 ± 0.220 0.515 ± 0.010 2.839 ± 0.016

PyPy 0.069 ± 0.008 1.085 ± 0.014 1.256 ± 0.024 15.239 ± 0.223 0.267 ± 0.006 0.544 ± 0.008

Ruby 0.312 ± 0.008 29.819 ± 0.257 13.152 ± 0.200 172.098 ± 2.168 0.793 ± 0.018 7.159 ± 0.061

JRuby 2.050 ± 0.039 10.576 ± 0.304 6.313 ± 0.127 61.934 ± 1.513 2.130 ± 0.025 3.640 ± 0.053

Table 2: Benchmark Results.

compiler (full details can be found on the experiment website). We report
the average wall time and confidence intervals with 95% confidence levels.

7.3. Experimental results

Table 2 shows our experimental results. Several things are worthy of note.
The interpreter-only VMs (Converge1, CPython, Lua, and Ruby) show

similar, typically linear, slowdowns as the benchmarks lengthen. Lua is faster
than CPython and Ruby, which are both faster than Converge1.

Jython and JRuby are both compilers which create JVM bytecode which
runs on HotSpot. JRuby is generally faster than the Ruby interpreter while
Jython is generally slower than CPython. JRuby is faster than CPython,
probably due to its extensive use of the invokedynamic bytecode (see page 2).
Given that both run atop HotSpot – which, on its own, is nearly always
the fastest VM by a considerable margin – it may seem surprising that both
Jython and JRuby are outperformed by the much simpler Converge2. We be-
lieve this underlines the ‘semantic mismatch’ problem we outlined on page 2.

Of the other JITted VMs, LuaJIT clearly outperforms PyPy and Con-
verge2. This is most noticeable on the fast benchmark runs, which show
that RPython JITs warm-up rather slowly (see Section 8). Since Lua is
a small language, LuaJIT has been carefully hand-crafted for performance.
Python is a significantly larger language, with many more complex corner-
cases. We suggest this explains why similar hand-crafted Python JITs in the
past (e.g. Psyco) have not been able to speed up all of Python’s features.

22



RPython has allowed PyPy to reach feature parity with relative ease—the
performance trade-off therefore seems a reasonable compromise.

Converge2 is dramatically faster than its non-JITted predecessor Con-
verge1 (and, indeed, the interpreter-only VMs Lua and CPython), but can
not compete with the more carefully tuned PyPy. Converge1 has a memory
corruption bug which shows up in the Fannkuch-redux benchmark, but which
had never been noticed before. Converge2 has no such problems, relying on
RPython’s automatic memory management.

Comparing PyPy–nonopt with PyPy shows that the optimisations of Sec-
tion 6 benefit many programs, often substantially. Dhrystone benefits from
the optimisations because it uses many global variables; Richards because it’s
written in a strongly object-orientated style. However, not all programs ben-
efit. Since Fannkuch Redux mostly manipulates list and performs arithmetic,
it has few code-paths which benefit from Section 6’s optimisations.

8. Issues

As Section 7 shows, RPython VMs typically exceed hand-written inter-
preters in performance, even when less effort has been put into them. How-
ever, it would be foolish to pretend that RPython VMs are without issues. In
this section, we enumerate the issues specific to RPython, and those common
to all tracing approaches, as well as giving suggestions for possible solutions.

The most obvious problem with RPython VMs is the time it takes to
warm-up the JIT (i.e. for all the ‘hot spots’ in the code to have been traced
and converted to machine code). Though all JITs suffer from this problem,
the warm-up penalty in RPython VMs is larger because the JIT is language
independent. Rather than having a custom tracer, the tracing interpreter (see
Page 6) is used to generate tracers. The tracing interpreter is, in effect, itself
interpreted to produce traces, causing a double interpretation overhead. This
is then compounded by the fact that meta-tracing inevitably creates large
traces, which are expensive to produce, analyse, and optimise.

Since tracing is an expensive activity, loops in an RPython VM must be
executed many more times than a traditional JIT before tracing is started.
Long-running processes take longer to ‘warm-up’ than might be expected,
and short-running processes often derive little or no benefit from the JIT.

Solving this problem would involve replacing the automatically created
tracing interpreter with an equivalent component that is able to produce

23



traces more efficiently. A plausible approach would be to specialize the trac-
ing component to the language being implemented, removing the double
interpretation overhead. The RPython project has previously experimented
with this approach, but no part of the implementation remains.

The RPython language itself is not without issues. Some – such as a rel-
ative lack of documentation – are likely to be solved with time, and are not
important enough to mention in detail here. A more fundamental problem is
the ‘Python’ part of RPython. First, RPython is statically typed, but types
can not be directly expressed in the language: they are instead inferred,
with corresponding problems when inference goes awry. Second, RPython
uses Python as its compile-time meta-programming language (roughly speak-
ing, the language it uses to generate code at compile-time). The RPython
translator loads in a normal Python file and executes it for as long as it
chooses. Once that has finished, the translator expects to be given a refer-
ence to the VM’s entry point, whence translation occurs. Everything refer-
enceable from the entry point must be ‘RPython enough’ to be translatable;
things not reachable are ignored (and may use arbitrary Python features).
Compile-time meta-programming is vital for software that needs to be cus-
tomisable and portable. However, it means that most VM files are in fact
mixed Python and RPython programs. This mixing and matching of two
similar, but distinct languages, is often confusing. Furthermore, it makes it
difficult to translate RPython VMs in a modular fashion. Currently trans-
lation is ‘whole program’, and must be done for every single change. Large
systems such as PyPy can take 45-60 minutes when a JIT is generated.

We suspect that future RPython-esque systems will choose a language
with explicit static typing, and a clearly delineated compile-time meta-pro-
gramming phase. For the former, a Java-esque language is likely to be suffi-
cient; for the latter, a Converge-esque approach may yield good results.

A problem common to all tracing JITs (including those of RPython VMs)
is that they give uneven performance improvements. Some programs run
faster than method-based JITs while some run substantially slower. Pro-
grams in the latter category are invariably those which change the control
flow paths they follow frequently. This causes guards to fail more often, and
extra traces to be triggered. Compilers are a classic example of such pro-
grams (AST walkers appear, to a tracing JIT, to take different paths almost
at random). The tracing JIT’s overhead can outweigh its benefits unless such
programs run for a long time and all the common paths are traced.

From the point of view of RPython VMs, this problem could only be

24



solved by moving beyond the tracing paradigm. However, it is not clear how
this might be done. First, tracing is a pragmatic way of getting reasonably
good results for a wide variety of languages: other approaches are much
harder to control and ‘tune’. Second, as RPython shows, tracing is partic-
ularly amenable to ‘meta’ approaches: it would be harder to automatically
create a method-based JIT in this way, for example.

9. Conclusions

By looking at two different RPython VMs, we hope the reader has gained
an understanding of the power of meta-tracing and its performance charac-
teristics. We also detailed general optimisation techniques for meta-tracing
VMs (as embodied in the PyPy and Converge VMs) that are likely, directly
or indirectly, to aid future authors of meta-tracing VMs. We believe that fur-
ther research into this area is likely to continue to narrow the performance
gap with hand-crafted JITs. For those prepared to pay the high manpower
costs, hand-crafted JITs will always retain a performance edge; however, as
this paper has demonstrated, language implementations can now perform at
reasonable performance levels with surprisingly little effort.

Acknowledgements: We thank Lukas Diekmann, Samuele Pedroni,
David Schneider, Naveneetha Vasudevan, and the anonymous reviewers for
insightful comments on drafts of the paper. Fabio Mascarenhas, Takafumi
Nose, and Martin Richards kindly placed the Lua Richards, Ruby Dhrys-
tone, and Richards benchmarks respectively into the public domain. We
thank the PyPy and RPython community for their continuous support and
work: Armin Rigo, Maciej Fija lkowski, Alex Gaynor, and countless others.
Any remaining errors and infelicities are our own.

References

[1] L. Tratt, Dynamically typed languages, Advances in Computers 77
(2009) 149–184.

[2] C. Chambers, D. Ungar, Customization: optimizing compiler technology
for SELF, a dynamically-typed object-oriented programming language,
in: Proc. PLDI, ACM, 1989.

[3] M. Paleczny, C. Vick, C. Click, The Java HotSpot server compiler, in:
Proc. JVM Research and Technology Symposium, USENIX, 2001.

25



[4] B. P. Serpette, M. Serrano, Compiling Scheme to JVM bytecode: a
performance study, SIGPLAN Not. 37 (2002) 259–270.

[5] M. Wolczko, O. Agesen, D. Ungar, Towards a universal implementation
substrate for Object-Oriented languages, Proc. Workshop on Simplicity,
Performance, and Portability in Virtual Machine Design, 1999.

[6] J. R. Rose, Bytecodes meet combinators: invokedynamic on the JVM,
in: Proc. VMIL, ACM, 2009.

[7] D. Ancona, M. Ancona, A. Cuni, N. D. Matsakis, RPython: a step
towards reconciling dynamically and statically typed OO languages, in:
DLS, ACM, 2007.

[8] A. Rigo, S. Pedroni, PyPy’s approach to virtual machine construction,
in: DLS, ACM, Portland, Oregon, USA, 2006.

[9] L. Tratt, Compile-time meta-programming in a dynamically typed OO
language, in: Proc. DLS, ACM, 2005, pp. 49–64.

[10] C. F. Bolz, M. Leuschel, D. Schneider, Towards a jitting VM for Prolog
execution, in: PPDP, ACM, Hagenberg, Austria, 2010.

[11] L. Tratt, Experiences with an Icon-like expression evaluation system,
in: Proc. DLS, ACM, 2010, pp. 73–80.

[12] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay, Back to the
future: the story of Squeak, a practical Smalltalk written in itself, in:
Proc. OOPSLA, ACM, 1997, p. 318–326.

[13] R. A. Kelsey, J. A. Rees, A tractable Scheme implementation, Lisp
Symb. Comput. 7 (1994) 315–335.

[14] C. F. Bolz, A. Cuni, M. Fija lkowski, A. Rigo, Tracing the meta-level:
PyPy’s tracing JIT compiler, in: ICOOOLPS, ACM, 2009, pp. 18–25.

[15] V. Bala, E. Duesterwald, S. Banerjia, Dynamo: a transparent dynamic
optimization system, ACM SIGPLAN Notices 35 (2000) 1–12.

[16] A. Gal, C. W. Probst, M. Franz, HotpathVM: an effective JIT compiler
for resource-constrained devices, in: VEE, ACM, 2006.

26



[17] C. F. Bolz, A. Cuni, M. Fija lkowski, M. Leuschel, S. Pedroni,
A. Rigo, Allocation removal by partial evaluation in a tracing JIT,
in: Proc. PEPM, ACM, Austin, Texas, USA, 2011, pp. 43–52.

[18] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte,
N. Tillmann, H. Venter, SPUR: a trace-based JIT compiler for CIL,
in: Proc. OOPSLA, ACM, 2010, pp. 708–725.

[19] G. Bracha, D. Ungar, Mirrors: design principles for meta-level facilities
of object-oriented programming languages, in: Proc. OOPSLA, ACM,
2004, pp. 331–344.

[20] L. Diekmann, Memory Optimizations for Data Types in Dynamic Lan-
guages, Masters thesis, Heinrich-Heine-Universität Düsseldorf, 2012.

[21] C. F. Bolz, A. Cuni, M. Fija lkowski, M. Leuschel, S. Pedroni, A. Rigo,
Runtime feedback in a meta-tracing JIT for efficient dynamic languages,
in: Proc. ICOOOLPS, ACM, 2011, p. 9:1–9:8.

[22] C. Chambers, D. Ungar, E. Lee, An efficient implementation of SELF
a dynamically-typed object-oriented language based on prototypes, in:
OOPSLA, volume 24, ACM, 1989.

[23] K. Barrett, B. Cassels, P. Haahr, D. A. Moon, K. Playford, P. T. With-
ington, A monotonic superclass linearization for Dylan, SIGPLAN Not.
31 (1996) 69–82.

[24] A. Goldberg, Smalltalk-80: The Language and its Implementation,
Addison-Wesley Series in Computer Science, Addison-Wesley, 1983.

[25] L. P. Deutsch, A. M. Schiffman, Efficient implementation of the
Smalltalk-80 system, in: POPL, ACM, Salt Lake City, Utah, 1984.

[26] R. P. Weicker, Dhrystone benchmark (Ada version 2): rationale and
measurements rules, Ada Lett. IX (1989) 60–62.

[27] K. R. Anderson, D. Rettig, Performing Lisp analysis of the FANNKUCH
benchmark, SIGPLAN Lisp Pointers VII (1994) 2–12.

27



Appendix A. Full experimental results

In this appendix, we present the results of running the VMs from the
main paper over 11 benchmarks. The Dhrystone and Richards benchmarks
are as described in the main paper; the other benchmarks are derived from
the Computer Language. Because of its relative paucity of libraries, few
of the benchmarks have been ported to Converge 2; we therefore exclude it
from this appendix. The main aim of this appendix, therefore, is to use PyPy
to understand where RPython VMs fit in the performance landscape. We
believe these results are the most extensive to-date in comparing such VMs.

The Benchmarks Game often has multiple versions of the same bench-
mark for each language. Since none of the benchmarks has threaded versions
for all languages, we have used the fastest non-threaded program for each
language when possible, to avoid muddying the comparison (though the C
and Java knucleotide benchmarks remain threaded, as we could find no suit-
able replacement). We have had to slightly modify several benchmarks for
portability. We have also modified some benchmarks to run more efficiently
on the VMs we are using since the Benchmarks Game sometimes targets
different VMs (often older versions) that have different performance charac-
teristics. This is fully in the spirit of the Benchmarks Game, and our changes
are easily compared to the originals.

The methodology for this appendix is identical to Section 7.2. As in the
main paper we measure short and long runs for each benchmark. Both exper-
iments are fully automated and can be downloaded, for reproducibility, from
http://tratt.net/laurie/research/publications/files/metatracing_vms/.

Table A.1 (split over 2 pages) shows the results from our full benchmark
suite. We leave the precise interpretation of the results to readers, since
one thing these 200+ data points show is that, while general trends are ev-
ident, exceptions can always be found. For example: HotSpot is always the
fastest VM on long benchmarks except for RegexDNA, where interpreters
beat it by some margin; and Lua is generally the fastest interpreter, except
for RegexDNA. We suspect that ‘performance anomalies’ such as these will
always happen. Even the best VMs have occasional weak points, sometimes
by design (deliberate performance trade-offs are inevitable), sometimes be-
cause certain use cases have not yet been considered or tackled. This larger
set of benchmarks gives some insight into this.

28

http://tratt.net/laurie/research/publications/files/metatracing_vms/


B
in

ar
y

T
re

es
D

h
ry

st
on

e
F

an
n
k
u
ch

R
ed

u
x

14
19

50
00

0
50

00
00

0
10

11

C
0.

18
9

±
0
.0
0
8

7.
98

6
±

0
.0
5
3

0.
00

4
±

0
.0
0
2

0.
17

9
±

0
.0
1
0

0.
16

3
±

0
.0
0
6

1.
99

2
±

0
.0
1
0

H
ot

S
p

ot
0.

15
5

±
0
.0
1
4

2.
42

3
±

0
.0
4
3

0.
10

7
±

0
.0
0
6

0.
24

0
±

0
.0
1
0

0.
35

0
±

0
.0
0
8

3.
44

8
±

0
.0
2
9

L
u
a

2.
24

0
±

0
.0
7
1

11
6.

81
0

±
3
.6
6
1

0.
20

1
±

0
.0
0
8

19
.4

17
±

0
.4
7
4

7.
68

3
±

0
.3
2
1

10
0.

53
6

±
2
.4
7
5

L
u
aJ

IT
0.

42
8

±
0
.0
1
0

23
.1

85
±

0
.0
5
3

0.
01

4
±

0
.0
0
6

0.
87

9
±

0
.0
1
6

0.
33

9
±

0
.0
0
8

4.
18

0
±

0
.0
1
0

C
P

y
th

on
4.

29
9

±
0
.0
2
9

21
1.

45
3

±
1
.1
1
7

0.
36

8
±

0
.0
1
0

35
.0

72
±

0
.5
3
7

9.
16

7
±

0
.2
3
7

11
4.

00
1

±
2
.1
8
9

J
y
th

on
4.

17
3

±
0
.0
6
3

10
2.

30
3

±
1
.2
4
1

1.
82

0
±

0
.0
2
9

28
.4

32
±

0
.4
6
6

7.
77

6
±

0
.4
1
9

76
.0

69
±

4
.7
5
3

P
y
P

y
–n

on
op

t
0.

96
2

±
0
.0
1
0

33
.8

58
±

0
.1
3
5

0.
12

7
±

0
.0
0
6

5.
89

8
±

0
.0
7
1

1.
40

2
±

0
.0
2
2

16
.9

89
±

0
.2
2
0

P
y
P

y
0.

63
1

±
0
.0
0
8

17
.8

51
±

0
.0
8
8

0.
06

9
±

0
.0
0
8

1.
08

5
±

0
.0
1
4

1.
25

6
±

0
.0
2
4

15
.2

39
±

0
.2
2
3

R
u
b
y

1.
24

4
±

0
.0
2
0

59
.8

34
±

0
.9
9
0

0.
31

2
±

0
.0
0
8

29
.8

19
±

0
.2
5
7

13
.1

52
±

0
.2
0
0

17
2.

09
8

±
2
.1
6
8

J
R

u
b
y

1.
71

4
±

0
.0
5
3

27
.9

71
±

1
.2
2
3

2.
05

0
±

0
.0
3
9

10
.5

76
±

0
.3
0
4

6.
31

3
±

0
.1
2
7

61
.9

34
±

1
.5
1
3

F
as

ta
K

N
u
cl

eo
ti

d
e

M
an

d
el

b
ro

t
50

00
00

0
50

00
00

00
10

00
00

0
10

00
00

00
50

0
50

00

C
0.

28
5

±
0
.0
0
8

2.
80

9
±

0
.0
3
9

0.
41

3
±

0
.0
1
2

3.
68

1
±

0
.0
3
7

0.
02

8
±

0
.0
0
6

2.
33

6
±

0
.0
0
8

H
ot

S
p

ot
0.

64
7

±
0
.0
1
2

5.
77

1
±

0
.0
7
1

0.
54

1
±

0
.0
4
3

3.
30

3
±

0
.1
9
0

0.
10

6
±

0
.0
1
0

2.
22

5
±

0
.0
1
2

L
u
a

6.
03

1
±

0
.1
6
9

60
.2

02
±

1
.0
8
0

5.
46

9
±

0
.0
6
9

53
.6

34
±

1
.4
3
9

0.
53

6
±

0
.0
0
6

53
.1

45
±

0
.0
8
4

L
u
aJ

IT
1.

37
3

±
0
.0
1
6

13
.6

31
±

0
.0
1
8

1.
03

1
±

0
.0
2
4

8.
97

7
±

0
.0
9
4

0.
03

1
±

0
.0
0
8

2.
40

4
±

0
.0
1
6

C
P

y
th

on
7.

28
7

±
0
.2
0
6

71
.7

37
±

0
.8
0
4

6.
33

4
±

0
.0
6
3

63
.4

05
±

0
.5
3
5

1.
32

1
±

0
.2
6
1

13
4.

41
9

±
3
2
.3
4
7

J
y
th

on
18

.7
71

±
0
.3
9
2

17
0.

83
1

±
8
.9
6
7

9.
44

3
±

0
.2
2
1

81
.9

55
±

1
.5
4
8

4.
73

4
±

0
.0
3
1

35
4.

06
9

±
2
.8
8
5

P
y
P

y
–n

on
op

t
1.

77
6

±
0
.0
5
5

16
.7

44
±

0
.5
0
6

4.
18

0
±

0
.0
4
1

40
.8

79
±

0
.2
6
3

0.
24

3
±

0
.0
0
6

19
.7

67
±

0
.2
4
5

P
y
P

y
1.

52
4

±
0
.0
7
3

14
.1

49
±

0
.2
7
0

4.
17

3
±

0
.0
3
7

40
.8

63
±

0
.3
2
5

0.
17

6
±

0
.0
0
6

13
.2

95
±

0
.0
2
9

R
u
b
y

14
.7

79
±

0
.1
5
3

14
7.

71
9

±
2
.2
7
4

14
.7

59
±

0
.3
7
8

14
5.

70
3

±
2
.0
3
8

2.
56

4
±

0
.0
3
7

25
5.

33
0

±
2
.9
2
6

J
R

u
b
y

40
.1

69
±

1
.9
1
1

38
8.

96
1

±
2
7
.2
4
3

10
.1

58
±

0
.2
1
2

83
.8

95
±

2
.2
7
9

1.
81

2
±

0
.0
2
9

45
.7

41
±

1
.3
9
4

29



N
B

o
d
y

R
eg

ex
D

N
A

R
ev

C
om

p
25

00
00

0
25

00
00

00
10

00
00

0
10

00
00

00
10

00
00

0
10

00
00

00

C
0.

40
2

±
0
.0
0
8

3.
98

3
±

0
.0
3
7

2.
59

3
±

0
.0
3
1

25
.8

99
±

0
.3
9
8

0.
03

0
±

0
.0
0
4

0.
25

2
±

0
.0
1
0

H
ot

S
p

ot
0.

47
2

±
0
.0
1
2

3.
94

9
±

0
.0
2
2

2.
88

1
±

0
.4
1
0

24
.9

22
±

0
.1
5
5

0.
14

1
±

0
.0
0
8

0.
67

4
±

0
.0
1
2

L
u
a

14
.3

98
±

0
.4
3
9

14
3.

89
0

±
3
.6
5
3

4.
95

9
±

0
.0
2
7

49
.0

34
±

0
.2
6
7

0.
54

0
±

0
.0
1
0

5.
27

3
±

0
.1
0
4

L
u
aJ

IT
0.

65
2

±
0
.0
1
8

6.
46

1
±

0
.1
3
7

4.
86

7
±

0
.0
1
2

53
.8

49
±

0
.1
1
0

0.
18

8
±

0
.0
0
6

1.
76

6
±

0
.0
2
0

C
P

y
th

on
36

.0
03

±
0
.9
1
7

35
9.

64
1

±
7
.5
5
6

2.
67

2
±

0
.0
4
3

26
.4

84
±

0
.1
1
6

0.
12

4
±

0
.0
0
6

1.
06

1
±

0
.0
1
4

J
y
th

on
42

.5
30

±
2
.5
2
2

41
3.

51
9

±
3
.8
4
7

13
.0

22
±

0
.3
1
4

11
8.

54
4

±
2
.8
6
7

1.
80

8
±

0
.0
8
8

7.
02

9
±

0
.2
9
0

P
y
P

y
–n

on
op

t
3.

67
5

±
0
.0
5
1

36
.2

96
±

0
.4
0
0

1.
26

2
±

0
.0
1
4

11
.3

48
±

0
.0
9
8

0.
25

4
±

0
.0
1
4

2.
33

8
±

0
.0
6
9

P
y
P

y
3.

66
2

±
0
.0
9
2

36
.2

85
±

1
.0
1
5

1.
26

9
±

0
.0
2
2

11
.4

82
±

0
.1
8
8

0.
25

0
±

0
.0
1
0

2.
30

5
±

0
.0
6
5

R
u
b
y

43
.0

46
±

0
.4
9
8

43
1.

49
1

±
5
.5
2
3

7.
64

4
±

0
.0
7
6

76
.4

01
±

0
.9
8
0

0.
19

2
±

0
.0
1
0

1.
77

0
±

0
.0
5
5

J
R

u
b
y

13
.0

56
±

1
.2
5
4

11
4.

92
2

±
1
.3
3
3

10
.0

72
±

0
.6
8
8

87
.6

96
±

7
.7
7
9

1.
94

4
±

0
.0
3
3

4.
97

4
±

0
.1
9
4

R
ic

h
ar

d
s

S
p

ec
tr

al
N

or
m

10
10

0
50

0
50

00

C
0.

01
2

±
0
.0
0
6

0.
07

9
±

0
.0
0
6

0.
01

1
±

0
.0
0
6

1.
90

8
±

0
.0
2
4

H
ot

S
p

ot
0.

10
9

±
0
.0
1
0

0.
16

9
±

0
.0
1
4

0.
17

1
±

0
.0
3
7

7.
21

0
±

0
.0
1
0

L
u
a

0.
66

5
±

0
.0
2
4

6.
57

4
±

0
.1
3
9

1.
48

8
±

0
.0
2
0

14
7.

84
0

±
2
.2
9
7

L
u
aJ

IT
0.

08
5

±
0
.0
0
6

0.
76

3
±

0
.0
1
0

0.
06

7
±

0
.0
0
8

6.
09

6
±

0
.0
1
0

C
P

y
th

on
1.

58
5

±
0
.0
2
2

15
.6

98
±

0
.2
2
7

4.
76

6
±

0
.0
7
3

49
0.

08
1

±
2
.6
9
3

J
y
th

on
2.

82
0

±
0
.0
6
9

13
.8

70
±

0
.3
4
5

4.
33

3
±

0
.1
0
0

29
1.

22
1

±
3
9
.4
0
9

P
y
P

y
–n

on
op

t
0.

51
5

±
0
.0
1
0

2.
83

9
±

0
.0
1
6

0.
10

0
±

0
.0
0
6

6.
13

7
±

0
.0
2
0

P
y
P

y
0.

26
7

±
0
.0
0
6

0.
54

4
±

0
.0
0
8

0.
09

9
±

0
.0
0
6

6.
13

4
±

0
.0
1
0

R
u
b
y

0.
79

3
±

0
.0
1
8

7.
15

9
±

0
.0
6
1

2.
89

7
±

0
.0
2
9

28
5.

63
7

±
2
.2
3
4

J
R

u
b
y

2.
13

0
±

0
.0
2
5

3.
64

0
±

0
.0
5
3

3.
27

5
±

0
.0
4
1

15
8.

89
9

±
2
.9
1
4

T
ab

le
A

.1
:

F
u

ll
b

en
ch

m
a
rk

re
su

lt
s.

30


	Introduction
	Python and Converge
	RPython
	Tracing JITs
	Meta-tracing

	PyPy and Converge VM overview
	Bytecode structure
	Compilation
	Interpreter structure

	Optimising an RPython VM
	General RPython JIT optimisation techniques
	Promoting values
	Elidable functions
	Using trace optimiser friendly code

	Optimising Instances
	Python's additional instance semantics

	Optimising Classes
	Optimising Modules
	Discussion

	Performance
	Systems Under Test
	Methodology
	Experimental results

	Issues
	Conclusions
	Full experimental results

