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Abstract

The cost of implementing syntactically distinct Domain 8fie Languages (DSLs) can
be reduced by homogeneously embedding them in a host laaguagoperation with its
compiler. Current homogeneous embedding approaches edsteict the embedding of
multiple DSLs in order to provide safety guarantees, omahaultiple DSLs to be embed-
ded but force the user to deal with the interoperability bardn this paper we present the
u-calculus which allows parameterisable language embgddim be specified and anal-
ysed. By reducing the problem to its core essentials we deetalshow how multiple,
expressive language embeddings can be defined in a homagesmbedding context. We
further show how variant calculi with safety guarantees lmadefined.

1 Introduction

Domain Specific Languages (DSLs) are mini languages used tb@implemen-
tation of recurring problems. What identifies a particuéarjuage as being a ‘DSL’
is partly subjective; intuitively, it is a language with @g/n syntax and semantics,
but which is smaller and less generic than a typical GPL sschama. The DSL
premise is simple: a one off, up front, cost allows classesysfems to be created
at low cost and in a reliable and maintainable fashii).[

DSLs have a long history, although they have often gone ligreit names].
Traditional, widely used DSLs such as the UNiXke program and thgacc pars-
ing system have been implemented as stand-alone systenat$, arle effectively
cut-down programming language compilers and virtual maehrolled into one;
the associated implementation costs and lack of pracgcalability have hampered
the creation of DSLs1(]. An alternative approach to stand-alone implementation
is embeddingwhere a DSL is ‘hosted’ within a host programming language;
other words, the host languages’ syntax is extended witb8les syntax. A sim-
ple example of such embedding is an SQL DSL; by using a DSleatsbf an
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external database library one gains several advantaghsasube static detection
of SQL syntax errors and the safe insertion of external &ilti® SQL statements.
Language extension has been a goal of language researoheevéral decades
(see e.g. 12]) but most early efforts were unable to prevent unintendwdi @n-
wanted interactions between languages and their extenfiipriater approaches,
though largely theoretical, did show that certain formsaniuage extension could
avoid such problems3[4]. More recently, DSL embedding approaches such as
Stratego 2], XMF [6,7], Converge 17], Metalua P], and others (e.g.14,8,13])
have shown that this is a viable approach.

DSL embedding techniques can be classified as ditbiErogeneousr homo-
geneoud17]. Put simply, heterogeneous embedding (e.g. Strategohenwvthe
system used to compile the host language, and the systenmtaisaglement the
embedding are different (note that this does not imply thatitost language must
be different than the language used to implement the embgjidn contrast, ho-
mogeneous embedding (e.g. Converge, Metalua, XMF) usdarigeage’s com-
piler to compile the host language and to facilitate DSL eddrey. Heterogeneous
embedding has the advantage that it can be applied to anyamggtage and any
embedded language. However this means that heterogenabesliéing systems
generally have little or no idea of the semantics of the laggs they are embed-
ding into, meaning that such techniques are hard to scaldp Furthermore
heterogeneous techniques typically assume that a singlei©&mbedded into a
single host language: multiple distinct DSLs must be mdpweatlded together in
order to create a single heterogeneous embedding whichndbssiffer from syn-
tax errors. Homogeneous embedding, however, is inherémtiied to a specific
host language, but is typically able to offer greater gues about the safety of
the resulting embedding, allowing larger and more compl&L®to be embed-
ded. Homogeneous embedding also places no conceptuattiess on embed-
ding multiple DSLs in one host language, or having DSLs Iatared within each
other.

In practice, current homogeneous embedding technologyesthe extent to
which multiple DSLs can be embedded without resorting to iefdy hacks §].
For example, Metalua allows multiple DSLs to be embeddediwit, but requires
manipulation of the global parser; no guarantees are madelifferent extensions
will co-exist peacefully, or even that individual extenssoare well-formed. Con-
verge, on the other hand, allows multiple DSLs to co-exist@mforces reasonable
safety guarantees but does so by making DSLs unpleasantigcsizally distinct,
and making embedding DSLs within each other extremely diffic

We believe that the distance between the conceptual praneurrent prac-
tical realities of homogeneous embedding are in large pecalbse of a lack of
understanding of the underlying theory of language emlyedith a homogeneous
setting. In this paper we present thecalculus for specifying and analysing homo-
geneous language embedding. The calculus extends-tiaéculus with facilities
for defining and using language embeddings, allowing patamsable language
definitions to be scoped to portions of a source file, and todsted arbitrarily
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within each other.

This paper is structured as follows: SectiPmefines the syntax and seman-
tics of the u-calculus and shows how to precisely define an embedded dgegu
Section3 describes different categories of language embedding ewdley are
encoded in the calculus; Sectidrshows how a language with more than one em-
bedding can be defined using the calculus and how safetyiaréee represented;
finally, Section5 concludes the paper with an analysis and discussion ofdurth
work.

2 M: A Language Embedding Calculus

Theu-calculus is an extension of thecalculus that supports embedded languages.
New languages can be addeduitdy defining their syntax, dynamic semantics, and
their relationship to the execution context of the host leaye.

The definition and subsequent use of an embedded languaggettekform of
a standard structure within the-calculus. This section defines the calculus and
defines how languages are embedded within it. It is strudtasgfollows: Section
2.1defines the syntax of the calculus and provides an examplg w$e; languages
are embedded in terms of their abstract syntax, Se&i@ddefines a data type that
representg-calculus abstract syntax; Secti@rB defines the semantics of the
calculus by embedding it within itself.

2.1 Overview

The syntax of theu-calculus is:

E:= expressions
Vv variables
| fun(V)E functions
| EE applications
| if E thenE elseE conditionals
| (E,E,E) language definition
| langE: T[C] language embedding
T = syntax types
C:u=... raw text

U contains the conventionalcalculus, plus language definition and language em-
bedding components. A language definition defines a lan¢giagmantics as an
interpreter and how to embed it in the context of a host.

A language embedding allows the use of a language within d¢isé ¢alculus.
In essence, language definitions define interpreters armhalation from a host
interpreter to the embedded language’s interpreter. Alagg embedding is a use
of the definition in a context provided by the host language.

More specifically, the language definition trigkeval, load, unload) defines: an
evaluatoreval, which evaluates the language in terms of its state; a lo&akzd,
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that maps from the host language state to the embedded agtate; and an
unloader,unload that translates the embedded state back into a host state. T
following is an overview of how the calculus might be used:

// Define an embedded SQL-like language...

type SQL = ... // type definition for SQL.
let sql = (evalSQL,loadSQL,unloadSQL)
where
evalSQL =
loadSQL = ...
unloadSQL = ...
// Define an embedded HTML-like language...
type HTML = ... // type definition for HTML.
let html = (evalHTML,loadHTML,unloadHTML)
where ...

// Use the two embedded language definitions.
// Perform database queries to produce all the
// (name,age) pairs for adults...
let results =
lang sql:SQL[SELECT name,age from Customer WHERE age > 18]
in // Produce the HTML table showing the results...
lang html:HTML[
<TABLE>
for name,age in results do
<TR>
<TD> name </TD>
<TD> age </TD>
</TR>
</TABLE>
]

2.2 Abstract Syntax Types

The type definition for thet-calculus is as follows:

type Exp(T) =
Var (String)

| Lambda(String,Exp(T))

| Apply (Exp(T),Exp(T))

| If(Exp(T),Exp(T),Exp(T))

| Lang(T)
The type definition is parameterized with respect to the typpembedded lan-
guages:T. If a single language L is embedded then the resulting tyepsL) .
If more than one language is embedded, then we use a digjpmtombinator to
express the type of the resulting languagep (L. + M). Finally, a fix-point opera-
tor Y can be used to construct a type. For exanipl@xp) is the type of languages
constructed by embedding tipecalculus in itself.

2.3 Semantics

The semantics of thg-calculus is defined as a language embedding as follows.
The evaluator for the calculus can be any suitable definitido maximise the
potential for future extension we implement the evaluasoa atate machine. This
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ensures that any embedded language has access to ahdatantrol structures of
the language. The canonical state machine fdralculus is the SECD machine
[11]. The type definition is as follows:

type State = ([Valuel,Env, [Instr],State) | Empty

type Env = String->Value

type Instr = Exp(T) | App | If(Exp(T),Exp(T))

type Value = Basic | Closure | State

type Closure = (String,Env,Exp(T))

The evaluator is a state transition function. It is supplisth a current machine
state, performs a single transition, producing a new stats.also supplied with
another state transition functi@val to which it supplies the new state. By sup-
plying eval, the basiqu-calculus evaluator can be extended:

evalExp(eval) (s) =

case s of
([vl,_, [] ,Empty) -> s
(s,e,Var(n):s,d) -> eval(e(n):s,e,c,d)
(s,e,Lambda(n,b):c,d) -> eval((n,e,b):s,e,c,d)
(s,e,Apply(o,a):c,s) -> eval(s,e,a:o0:App:c,d)
(s,e,If(f,g,h):c,s) -> eval(s,f:If(g,h):c,d)

(true:s,e,If(g,h):c,d) -> eval(s,e,g:c,d)
(false:s,e,If(g,h):c,d) -> eval(s,e,h:c,d)
((n,e’,b):v:s,e,App:c,d) -> eval([],e’[n->v],[b],(s,e,c,d))

(R: ) :s,e,App:c,d) -> eval((s,e,c,d):s,e,c,d)
(I:v:s,e,App:c,d) -> eval(v)
(Ivl,_,0,(s,e,c,d)) -> eval(v:s,e,c,d)

end

The case statement above defines a state transition machare states have the
form (S,E,C,D) wheres is a stack of intermediate results implemented as adlist,
is an environment of variable bindingsis a sequence of machine instructions, and
D is a machine resumption state. The syntax of the above |gegsdargely self
explanatory. Lists are represented as either standardeshracketed sequences of
elements, or cons paiks t. A namen is looked up in an environmeatwith e (n),
and a valuer is added to the environment with[n->v]. The builtin operators
R andI are used taeify andintern machine states. Assuming the existence of a
parsing mechanism that indexes on the type of a languagetaefjithe expression
lang(e,1,u) :t[c] is equivalent to the following expression:
I(newState)
where newState = u(termState,initialState)
where termState = e(startState)

where startState = 1(initialState,parse(t)(c))
where initialState = R()

The expression above uses a parser that is indexed on the tftbe embedded
language. It is outside the scope of this paper to analysepgaoging mechanisms
can be supported by the-calculus; however, the parser produces values of the
appropriate abstract syntax type.

The initial state is created by reifying the currentontext. The initial state is
supplied to the loader together with the abstract syntax to produce a starting stat
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for the embedded language evaluator. The starting staipgisd to the evaluator
e to produce a terminal state. The terminal state along wetotiginal initial state
is supplied to the unloader to produce a new host languatge Sthe new state is
then interned by supplying it to the host language integpret

If we embedu in itself then the load and unload operations are identibyere-
fore the definition ofu is:

let Mu = Y(Exp)

let evalMu = Y(evalExp)

let loadMu((s,e,c,d),x) = (s,e,x:s,d)

let unloadMu(s,_) = s

let mul. = (evalMu,loadMu,unloadMu)

Now we can write programs that arbitrarily nest the calculutself (given suitable
sugarings for infix operators):

fun(x) lang mul:Mul[fun(y) lang muL:Mul[x + y]]

In conclusion a language definition consists of: a parsethi®tanguage (which is

not considered further by this paper); a data type for thguage abstract syntax; a
context data type for the language evaluator; an evalusbprocesses the context;
a loader that maps from host contexts to embedded contextsil@ader that maps

from embedded contexts to host contexts.

3 Categoriesand Styles of L anguage Embedding

The u-calculus can be used to embed any languagi¢hin a hosth. The intended
usage is thah is defined as a language withinand then is defined withirh. The
approach supported hyy forces a precise definition dfow | is embedded within

h including any safety criteriaju allows the embedding to be analysed prior to
implementation.

There are a number of different types of language embeddiogme embed-
dings arefunctionalbecause uses of the language denote values; some are non-
functional because they modify the host language conteatyynranguage embed-
dings require that the bindings from the host language aresterred to the em-
bedded language; some embedded languages require ptatatarsd some require
that the state can be communicated to other embedded laegyuag

The p-calculus can be used to define what we temiform and ad-hoclan-
guages. Uniform languages are those that extendutbalculus interpreter, and
thus allow languages to be embedded inside them using thdasthu-calculus
techniques. Ad-hoc languages are those that define aneayliriterpreter; while it
is still possible to embed other languages within them, rthist be done manually
on a case-by-case basis. This section provides exampleesedt categories of
language embedding using tpecalculus.
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3.1 A Simple Extension

One of the simple programming language-like features nohdoin u is alet-
binding In this section we show how this can be added as a languagedelimig
to u. The type for expressions in the language is defined by extending the basic
expression language:

type LetExp(T) = Let(String,Let(T),Let(T)) | Exp(T)
type Let = Y(LetExp)

An evaluator forLet is defined by extending the evaluator for the basic calculus:

let evallLetExp(eval) (s) =
case s of
(s,e,Let(n,x,b):c,d) -> eval(s,e,x:Let(n,b):c,d)
(v:s,e,Let(n,b):c,d) -> eval([],eln->v],[b],(s,e,c,d))
else evalExp(eval) (s)
end

TheLet language definition follows the same structure asMinéanguage defini-
tion: the load and unload operations are essentially idemappings:

type Let = Y(LetExp)

let evallet = Y(evalLetExp)

let loadlet((s,e,c,d),x) = (s,e,x:c,d)

let unoadlet(s,_) = s

let letl = (evallet,loadlLet,unloadLet)

Now, the let language can be used when it is embedded in tihedzdsulus which
is now of typeExp (Let):

fun(x) lang letL:Let[let y = x + 1 in y ]

Note also that because thet language is uniform, it can be used as the basis for
further language embeddings. This is shown in the follovaeaction.

3.2 Localized Data

A language extension is often useful when creating datatstres. If the applica-
tion domain is specialized then the language extensionaide abstractions that
make the construction of the dadaclarativein the sense that low-level language
features that are necessary to create the structure arenhadehy.

The definition of a new feature for data is an example fifrectionallanguage
embedding. Such a language is not necessarily uniform,veniteloes not modify
the state of the host language and is used exclusively foaite.

This section provides an example of a functional embeddngiiplementing
arrays. An array can be encoded in flvealculus using functions:

null
fun(j) if i = j then v else a(j)

let mkArray(j)
let set(i,v,a)

There may be many initial values when an array is createdhddita declarative
language feature to achieve this, the creation will invohany nested calls teet.
The languageérray is used to create arrays:
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lang letL:Let[
let mkArray = fun(limit) lang arrayL:Array [ O .. limit ]
in mkArray(100)]

The abstract syntax of the array language is not an extesiup:

type ArrayExp
type ArrayVal

(ArrayVal,ArrayVal)
Var(String) | Int

The evaluator for the array language only requires infolonaabout the binding
context from the host language. The evaluator creates & @éltype [Value]:
let evalArray((lower,upper),env) =
letrec mkList(l,u) = if 1 = u then [1] else lower:mkList(1+1,u)
deref (Var(n)) = env(n)
deref(i) = i
in mkList(deref (lower) ,deref (upper))
The host language cannot manipulate values of fyfadue] (and in general for
an embedded language there may be a wide variety of ‘fore@oes). Therefore
the array unloader must translate between the array reypet®a and the calculus
representation:
let transArray : [Value] -> Closure
let transArray([],i) = (j,[1,[| null [])
let transArray(v:a,i) =
(j,a->transArray(a,i+1),[| if j = <i> then <v> else a(j) [])
The operatiortransArray defined above uses quasi-quotes to construct and ma-
nipulate abstract syntax in terms of concrete syntax. Weasgume that this lan-
guage feature is available in thecalculus since it is simply sugar for the equiv-
alent expression in terms of AST constructors. Quasi-qubtve been imple-
mented in a number of languages to support syntax manipalaicluding Tem-
plate Haskell 15], Converge and XMF.
Given the translation from arrays (lists of values) to a etesbased represen-
tation, it is possible to define the array loader and unlaader

let loadArray((s,e,c,d),(1,u)) = ((1,u),e)
let unloadArray(a,(s,e,c,d)) = (transArray(a,0):s,e,c,d)

We can now define a language that embeds botlutbalculus and arrays infcet

type Lang(T) = Exp(Let(Exp(T) + ArrayExp)
type Array = Y(Lang)
let arrayL (evalArray,loadArray,unloadArray)

The language used in the example above is defingtkpyArray) .

3.3 State Modification

Not all languages are functional. A non-functional langaagn affect the state of
the host language in some way. The impact of the languageecan the data, on
the control flow or both. This section provides a simple addaaguage embedding
that affects the state of data in the host language.

Consider the case where we want to print out a message eaehfiroalculus
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function is called. The calculus does not provide any festuthat allow us to
toggle function tracing on and off. A new language featureguired that allows
the following:

lang traceL:Trace[ traceOn ]

... // Tracing is now on...

lang tracel:Trace[ traceQff ]
... // No more tracing

We will assume that there are builtin functions calleder andexit in the u-
calculus that allow functions to be traced. So a functian(x) b can be traced
by changing the function body to:

fun(x) exit(b,enter(x))

The language for tracing is very simple:

type Trace = traceOn | traceOff

When tracing is switched on, the embedded language makebal ghange to the
host state. Each closure and function expression must bdiatbtd insert calls to
the tracing functions:

let trace(s,e,c,d) = (trace(s),trace(e),trace(c),trace(d))

let trace(Empty) = Empty

let trace([]) = []

let trace(x:s) = trace(x):trace(s)

let trace(n->v) = n->trace(v)

let trace(n,e,b) = (n,trace(e),[| exit(<trace(b)>,enter(<n>)) |])
let trace(Var(n)) = Var(n)

let trace(Lambda(n,b) = Lambda(n,[| exit(<trace(b)>,enter(<n>)) [])
let trace(Apply(m,n)) = Apply(trace(m),trace(n))

let trace(App) = App

Theuntrace operator performs the changes in reverse. Now the tracigukge
can be defined in terms of the global modifier to the host laggstate:

let evalTrace(s,traceOn) = trace(s)

let evalTrace(s,trace0ff) = untrace(s)

let loadTrace(s,t) = (s,t)

let unloadTrace(s,s’) = s

let tracel = (evalTrace,loadTrace,unloadTrace)

The calculus with tracing in is defined By(Lang) where:
type Lang(T) = Exp(Exp(T) + Trace)

3.4 Control Flow

The previous section defines a non-functional embeddirtgrifiaences the struc-
ture of data in the host language. Another form of non-fumal embedding af-
fects the control flow of the host language. This is only passif the embedded
language has access to the complete state of the host langtiagn be achieved
by passing continuations to the embedded language, howesenakes it difficult

to define transformations on the state. Instead, if evalsatie defined in terms of
transition machines then embedded languages have actasséguired informa-
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tion in an appropriate format.
Suppose that we want a new language construct that abonsdgeam under
a given condition:
lang letL:Let[
let x = £(100)
in lang abortL:Abort[ stop if(x > 100) 1]
The condition under which the program aborts is written mthcalculus, there-
fore the language is defined as:
type Abort(T) = Exp(T)
type Lang(T) = Exp(Let(Exp(T) + Abort(Exp(T))))
Note that in the example above the tyfirt is a synonym foExp, however the
parser will use a different constructor to tag the result afsphng the embedded
language.
The evaluator for the embedded language must extend thia¢ pftalculus:

let evalAbort(eval) (expState,trueState,falseState) =
trueState when eval (expState) = ([truel,_,_,_)
falseState otherwise

The loader and unloader for theort language are defined as follows:

let loadAbort((s,e,c,d),x) =
(([1,e, [x] ,Empty), (s,e,c,d), ([error], [1, [],Empty)
let unloadAbort(s,_) = s

The language fokbort is defined:
let abortL = (evalAbort(Y(evalExp)),loadAbort,unloadAbort)

3.5 Private State

Previous examples have shown how the identifiers that ar@jpeswithin the host
language can be passed down to an embedded language. lalgtmgis achieved
by the loader for the language passing the current envirahtoghe evaluator for
the embedded language.

Multiple occurrences of the same embedded language mayeeagcess to
shared data. This can be achieved through binding in thddmgtiage and making
the variables in scope available to the embedded languageiever, this is not
always desirable since the embedded language must knovathesnof the vari-
ables that hold the values of its state. In general, it is fenarely on the use of
particular variable names to pass information from oneuagg to another.

Another option is to encode the state required by the emlidlddguage as part
of the evaluation state of the host language. This requaeblost language state to
be extended. This section shows how the state is extended.

Consider a languaggecret that has a single boolean flag. Each occurrence of
the embedded language may choose to toggle the flag or pount it

type Secret = Toggle | Print
There are two new elements of state required by the secrghidge: the flag; the
10
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stream of outputs. Therefore, the state of the host calb@osmes(s,e,c,d,f,o0)
wheref is a boolean flag andlis a sequence of boolean representing the output of
the program.

type SecretState = ([Value],Env, [Instr],SecretState,Bool, [Bool])

We have already definesalExp and do not want to change it to reflect the ex-
tended state. The solution is to wrap the definitioawf1Exp with a new definition
thatlifts the signature frorState -> State toSecretState -> SecretState.
This is defined as follows:

let evalExp’(eval)(s,e,c,d,f,o) = evalExp(eval’)(s,e,c,d)
where eval’(s,e,c,d) = eval(s,e,c,d,f,o0)

The evaluator foBecret is simple:

let evalSecret((f,o0),Toggle)
let evalSecret((f,o,Print) =

= (1f,0)
(f,f:0)

The language definition f®ecret is:

let loadSecret((s,e,c,d,f,o0),x) = ((f,0),x)
let unloadSecret((f,o0),(s,e,c,d,_,_)) = (s,e,c,d,f,0)
let secretl = (evalSecret,loadSecret,unloadSecret)

The calculus witlBecret embedded withilet can be defined as(Lang):
type Lang(T) = Exp(Let(Exp(T) + Secret))

3.6 New Binding Schemes

The u-calculus is statically scoped. Dynamic scoping allowsaldes to be bound
to values such that they are available anywhere in the pnodraing the evaluation
of a given expression. Dynamic scoping is useful to captueesttuation where a
variable would need to be passed to many operations as amangu Common
Lisp is an example of a language that provides both staticdgndmic scoping.
The following example shows how a dynamic binding schemeksior
lang letL:Let[

let add = fun(x) x + y

in lang dynL:Dyn[dyn y = 100 in add(20)]]
The functionadd takes a formal parameterand adds it tg which is currently not
in scope. The embedded language bindsy and then calladd supplying it with
20. The result of the program 0.

The dynamic binding language requires a new type of envierifor dynamic
variables. Just aket extends and contracts the static environmept, extends
and contracts the dynamic environment. However, the et@dar the basiExp
language cannot reference a new type of environment siecgtdlte is fixed.

The solution is to introduce a new state element for a dynanwronment
and to merge the static and dynamic environments whebythénterpreter passes
control to theExp interpreter. When the state is returned byikg interpreter, the
dynamic environment is extracted and replaced int@thestate. The typ@yn is
defined:
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type Dyn(T) = DLet(String,Dyn(T),Dyn(T)) | Exp(T)

The evaluator fobyn is:

let evalDyn(eval)(s) =
case s of
(s,e,y,DLet(n,x,b):c,d) -> eval(s,e,y,x:DLet(n,b):c,d)
(v:s,e,y,DLet(n,b):c,d) -> eval([],e,y[n->v],[b],(s,e,y,c,d))

([V] == [] ,(S,e,y,C,d)) -> eVal(V:S,e,y,C,d)
else evalExp’ (eval) (s)
end

When the evaluatasvalDyn is called it checks for dynamic binding expressions at
the head of the control. The dynamic binding expressionuatat the value-part
and extends the dynamic environment in the machine stateeVduatoevalExp
must belifted to take account of the extra state component:
let evalExp’(eval)(s,e,,y,c,d) = evalExp(eval’)(s,y + e,c,d)
where eval’(s,e,c,d) eval(s’,e’,y,c,d’)
where (s’,e’,c,d’) (s,e,c,d)/y
The definition ofevalExp’ given above merges the dynamic and lexical environ-
ments when it callevalExp. When the environments are merged. the lexical en-
vironment always takes precedence allowing lexically lsbuariables to shadow
the dynamic variables. Since the lexical environment asxshadows the dynamic
environment, it is possible to remove the dynamic envirominfi®m the resulting
state. The/ operator removes the 'base’ environment wherever it octutbe
supplied state.

3.7 Summary

This section has described categories of language emlzedsiimg theu-calculus.

The calculus can be used to design embedded languages mdéthe semantics
both of the language and its embedding within the host ant Eaguage defi-
nition takes the form of a triple: evaluator, loader and adker. The design of
an embedding must answer questions relative to the hostihalwigslanguages:
syntax; semantics; load and unload; safety criteria.

4 Example Application

This section provides an example of multiple embedded laggs that can work
together. When designing multiple embeddings we must denshe interaction

of the languages and any safety criteria that prevent thgulages interacting in
undesirable ways. Thg-calculus approach explicitly represents components of
the embeddings that make it easy to ensure safety criteriacieved.

Consider writing web-applications that use relationabtase tables to store
data and HTML to provide the user-interface. We will use thsibu-calculus as
the host language; it is representative of a general puilpaste Two languages are
embedded within the host: SQL is used to process the datédaies; HTML is
used to produce the user-interface. See Se&ibfor the language definitions.

12



CLARK, TRATT

4.1 Database Queries

The first step is to define an SQL-like language. We limit thiselecting fields
from a named database table where the field values satisfyea gredicate ex-
pression:

type SQLExp(T) = ([String],String,Exp(T))

The evaluator foBQL requires an extra state component that maps table names to
tables. We represent tables as sequences of table rows:

type SQLState = ([Value],Env, [Instr],SQLState,Tables) | Empty
type Tables = String->DBTable

type DBTable = [DBRow]

type DBRow = String->Value

The evaluator must handle the ex$zL constructs:

let evalSQL(eval)(s) =

case s of
(s,e,(ns,n,b):c,d,t) -> eval(t(n)/ns:[]:s,e,sel(b):c,d,t)
((vs:vss):s,e,sel(b):c,d,t) ->

eval([],el[ns->vs], [b], (vss:s,e,cif(vs):sel(b):c,d,t),t)
(true:rs:vss:s,e,cif(vs):c,d,t) -> eval(vss:(vs:rs):s,e,c,d,t)
(false:rs:vss:s,e,cif(vs):c,d,t) -> eval(vss:rs:s,e,c,d,t)
else evalExp(eval’)(s,e,c,d)
where (s,e,c,d,t) =8
eval’(s,e,c,d) = eval(s,e,c,d,t)
end

The SQL evaluator defined above dete®BLECT expressions at the head of the
control, looks up the table in the environmer(tn) and selects the named fields
t(n)/ns. The machine then uses the new instructieas and cif to process
each value-tuple in turn and build up a sequence of valu¢s#hiafy the predicate
expressior.

4.2 Web Page Generation

TheHTML language is defined as follows:

type HTML(T) = [Row(T)]
type Row(T) = Row[Col(T)] | ForRow([String],String,Row(T))
type Col(T) = Col(Exp(T)) | ForCol([String],String,Exp(T))

The state for th&TML language uses a new state component that models the output:
type HTMLState = ([Valuel,Env, [Instr],HTMLState, [String]) | Empty

The evaluator is defined as follows:

let evalHTML(eval)(s) =
case s of

(s,e,[rs]:c,d,o0) -> eval(s,e,:rs:tend:c,d,"<TABLE>":0)
(s,e,tend:c,d,o0) -> eval(s,e,c,d,"</TABLE>":0)
(s,e,Row(cs):c,d,0) -> eval(s,e,cs:rend:c,d,"<TR>":0)
(s,e,rend:c,d,o0) -> eval(s,e,c,d,"</TR>":0)
(s,e,Col(b):c,d,0) -> eval(s,e,b:cend:c,d,"<TD>":0)
(v:s,e,cend:c,d,o0) -> eval(s,e,c,d,"</TD>":v:0)
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(s,e,for(ns,n,r):c,d,o0) -> eval(e(n):s,e,next(ns,r):c,d,o0)
(vs:vss:s,e,next(ns,r):c,d,o0) -> eval(vss:s,e[ns->vs],r:c,d,o0)
([1:s,e,next(ns,r):c,d,o0) -> eval(s,e,c,d,o0)
else evalExp(eval’) (s,e,c,d)
where (s,e,c,d,o0)
eval’(s,e,c,d)

s
eval(s,e,c,d,o0)

end

TheHTML evaluator defined above detects table declarations at Huedfehe con-
trol. HTML output is built up as each element of the table deatiion is processed.
The evaluator uses the new instructiarad, rend andcend to produce the ter-
minating tags. The for-loops within rows and columns arepssed using the new
instructionsfor andnext.

4.3 Language Collaboration and Safety Criteria

The state of the host language must merge the requiremetite ofvo embedded
languages. Therefore:

let evalExp’(eval)(s,e,c,d,t,0) = evalExp(eval’)(s,e,c,d)
where eval’(s,e,c,d) = eval(s,e,c,d,t,0)

The load and unload mappings for the language definitiongtwam perform the
appropriate state projections:
let loadSQL((s,e,c,d,t,0),sql) = (s,e,sql:c,d,t)

let unloadSQL((s,e,c,d,t),(_,_,_,_,_,0)) = (s,e,c,d,t,0)
let loadHTML((s,e,c,d,t,o0),html) = (s,e,html:c,d,o)
let unloadHTML((s,e,c,d,0),(_,_,_,_,t,_)) = (s,e,c,d,t,0)

The definition above specifies two languages and how thesaictteEach language
requires state-t-for database tables andfor the HTML output. The specifica-
tion requires that these states are maintained separaiinteract in well-defined
ways (in the calculus this is specified by scoping rules). Anglementation that
is consistent withu, SQL andHTML is required to respect this safety criteria.

5 Conclusions

In this paper we defined the-calculus which allows languages and homogeneous
language embeddings to be specified. We showed that it isisufly expressive
that it can be used to add new language features to itself wharent fashion.
We identified and defined functional, non-functional, ad-aod uniform language
embedding categories. We finally showed how iealculus can be used to spec-
ify how DSLs such as an HTML generation language and SQL caentizedded
within each other.
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