
Model transformations in Converge

Laurence Tratt, Tony Clark
King’s College London

September 8, 2003

Abstract

Model transformations are currently the focus of much interest and research
due to the OMG’s QVT initiative. Current proposals for model transformation lan-
guages can be divided into two main camps: those taking a ‘declarative’ approach,
and those opting for an ‘imperative’ approach. In this paper we detail an imper-
ative, meta-circular, object orientated, pattern matching programming language
Converge which is enriched with features pioneered by the Icon programming lan-
guage, amongst them: success/failure, generators and goal-directed evaluation. By
presenting these features in a language suitable for representing models, we show
that we are able to gain some of the advantages of declarative approaches in an
imperative setting.

1 Introduction

Model transformations are currently the object of much interest and research. The Ob-
ject Management Group (OMG), the standards body behind UML, recently published a
Request for Proposals (RFP) named Queries Views Transformations (QVT) [OMG02]
for model transformations which has bought to light an area of modelling technology
that had hitherto been largely ignored. Model transformations are a vital constituent of
the realization of the MDA vision [BG02]. Although there has been some discussion
of the problem at hand [Béz01, dMES02] and some early attempts at tackling the prob-
lem [LB98b, LB98a, HJGP99, Gog00, LKM+02], surprisingly little progress has been
made in tackling real-world transformations. The authors of this paper are members of
the QVT-Partners, have contributed to the QVT-Partners submission to the QVT RFP
[QVT03], and have also been co-authors on a follow up paper [ACR+03].

Current QVT submissions, and indeed existing approaches to model transforma-
tions in general, can be broadly categorized into two camps: those taking a ‘declara-
tive’ approach, and those opting for an ‘imperative’ approach. The terms declarative
and imperative can sometimes be rather contentious, and we use them with no small
hesitation – they can also be rather crude mechanisms for classifying approaches. With
that warning in mind, it is important to realize that in the wider context of programming
languages there is a generally accepted consensus as to which of the two approaches
most languages adhere to. Crudely put, a language is considered to be imperative if
it has side effects and if it forces the programmer to be explicit about the sequence of
steps to be taken when it is executed; languages that are side effect free and do not
force the programmer to be explicit about the execution sequence are considered to be
declarative. Declarative languages aim, to varying degrees, to allow the programmer

1



to express the desired result of an operation without having to express the complete
low-level machinery necessary to achieve that result. Although this is a noble goal,
declarative solutions can suffer from several problems in practice, including that: pro-
grams written in them may not always be executable; some real world problems are
very difficult to express satisfactorily (many people are aware of the problems that
input/output creates for most functional languages). Partially due to these problems,
imperative languages continue to dominate the computing world.

The Icon programming language [GG96a] is a SNOBOL derivative, which contains
several unique constructs which make it particularly well suited to the job of analyzing
and transforming strings. Icon is notable in that whilst a cursory glance would suggest
that it is a fairly standard imperative programming language, a closer examination re-
veals that the fundamental building blocks it is based on on are significantly different
than those found in most other programming languages. The most important features
for our purposes are the concepts of success and failure, generators and goal directed
evaluation. Although Icon is an imperative language, and can be used in a way that
is largely similar to other imperative languages, these features allow a programmer
to express some very complex tasks in a manner that can be viewed as being more
reminiscent of declarative approaches than traditional imperative approaches.

The fundamental idea behind our work has been to take the parts of Icon that make
it well suited to string transformation and integrate that into an object orientated view of
the world, particularly one that is amenable to manipulating models. The initial results
of our work have resulted in a prototype of a language named Converge. The high
level design goals of Converge are to merge the following elements into one whole:
object pattern matching as found in the QVT-Partners QVT submission [QVT03];
the syntactic elegance and dynamic nature of Python [vR01]; the meta-circularity of
ObjVLisp [BC87, Coi87]; and the features of Icon outlined above. Although the design
and implementation of Converge are still in their relatively early stages, most of the
fundamental concepts are in place and demonstrate that the approach is one that has
much potential.

2 Model transformations

Put simply, the process of model transformation involves two models, one of which is
a changed version of the other. In the context of Converge we are chiefly interested
in transformation implementations – transformations which actually alter a model – as
opposed to transformation specifications which check the result of a transformation for
correctness. Transformations are increasingly recognized as a specialized, but highly
important, task for which specialist tools, techniques and methodologies need to be
developed.

The QVT RFP has given momentum to the until now rather hesitant work on model
transformations, and thus any current model transformation work needs to be related
to the QVT process. As the authors of this paper are members of the QVT-Partners,
it is hardly surprising that Converge shares a number of features in common with that
submission.

2



3 Converge

The high level design goals of Converge are to merge the following elements into one
whole:

• Object pattern matching as found in the QVT-Partners QVT submission.

• The syntactic elegance and dynamic nature of Python.

Whilst keeping this goal in mind, we have no desire to include wholesale some
of Python’s more obvious warts including: we replace Python’s clunky scop-
ing rules1 with full statically determined lexical closures; we do not emulate
Python’s notion of bound and unbound class methods, which require unpleasant
user-visible trickery to maintain in a meta-circular context.

• The meta-circularity of ObjVLisp.

ObjVLisp has an elegant system whereby everything in a system is an object, and
every object is an instance of a class (see section ??) meaning that not only can
metaclasses be created, but metaclasses are an equal part of the entire system.
This allows powerful new abstractions to be built up by users.

• The salient features of Icon outlined above.

In this section, we first address some relevant background information required to
understand the rest of the paper; then we describe features of Converge that are inher-
ited from Icon; we then briefly cover the meta-circular nature of Converge influenced
by ObjVLisp; and finally outline object pattern matching.

3.1 Icon

The Icon programming language, whose chief designer was Ralph Griswold, is a de-
scendant of the SNOBOL series of programming languages – whose design team Gris-
wold had been a part of – and SNOBOL’s short-lived successor SL5. SNOBOL4 in
particular was specifically designed for the task of string manipulation, but an unfortu-
nate dichotomy between pattern matching and the rest of the language, and the more
general problems encountered when trying to use it for more general programming is-
sues ensured that, whilst successful, it never achieved mass acceptance; SL5 suffered
from almost the opposite problem by having an over-generalized and unwieldy proce-
dure mechanism. See Griswold and Griswold [GG93] for an insight into the process
leading to Icon’s conception. Since programs rarely manipulate strings in isolation,
post-SL5 Griswold had as his aim to build a language which whilst being aimed at
non-numeric manipulation also was usable as a general programming language. The
eventual result of this aim was Icon [GG96a, GG96b]

As Converge imports the salient features of Icon almost wholesale, we do not go
into specific details of Icon as these are effectively already covered by our description
of Converge. We explain many of these features through the use of examples. Given
Icon’s decidedly left-of-centre approach to the task at hand, a complete explanation of
these features is an ambitious task in the space available. Indeed in [GG93], Griswold
states that when designing Icon ‘there was a deliberate attempt not to copy from other

1The scoping rules in Python 2.3 and later are a substantial improvement on previous versions, but are
still slightly hobbled by backwards compatibility.

3



languages or to develop refined versions of their features’, a philosophy that led to the
creation of unique language features, and that even subverts expectations such as ‘array
indexes start at 0’ – in Icon they start at 12. Interested readers should most definitely
refer to [GG96a] for more details, as much of the description of Icon applies equally to
Converge.

3.2 Syntax & semantics

3.2.1 Syntax

Converge’s syntax is similar in style to that of Python and is thus indentation based. A
standard if expression, for example, is written thus:

if a < b:
sys.write("then clause")

else:
sys.write("else clause")

Expressions are normally separated by newlines but can be concatenated with a semi-
colon ‘;’ on a single line with exactly the same meaning. Compound statements such
as if can be written without newlines and indentation provided the meaning is still
unambiguous e.g.:

if a < b: sys.write("then clause")
else: sys.write("else clause")

Converge is lexically scoped. The Converge compiler statically calculates variables
scopes. Assignment introduces a new variable into a scope unless a nonlocal x
compiler statement exists at any point in the block, in which case x refers to an outer
scope (which are searched, in order, ‘from inner to outer’). These rules are a significant
deviation from those found in Python.

3.2.2 Datatypes

Converge has a number of simple, but powerful, datatypes as standards. Apart from the
obvious strings and integers, lists, sets, associative arrays (a.k.a dictionaries, or hash
tables) are represented as follows:

[1, "s", Dog] // List of 3 items
{1, "s", Dog, 1} // Set of 3 items
{"d" : 4, "k" : 11} // Associative array with 2 items

3.2.3 References

Icon exposes references (or ‘pointers’) to the user in several places, which creates some
unexpected and unpleasant results, particularly with Icon’s powerful but dangerous
variable referencing. Failure to appreciate Icon’s referencing rules, or the omission of
the dereferencing operator ‘.’ can lead to bizarre and difficult to trace bugs in Icon.

2Icon’s indexing is also unusual as it refers to the position to the left of an item for positive indexes in
order to make sense of list sections (perhaps more commonly known as list slices outside of Icon). Working
from the other end of the list, negative indexes refer to the position to the right of an item with the addition
that 0 refers to the position beyond the final list item.

4



In common with many modern programming languages, Python banishes references
except to point to objects.

Converge follows the Python philosophy, and does some extra work internally to
ensure that the language does what a human might reasonably expect, and not what is
easiest for the compiler writer. This leads to a far safer and more uniform environment
in which to program. For example, the following code fragment would print 2 2 in
Icon, but prints 0 2 in Converge:

a := 0
Sys.write(a, " ", a := 2)

3.3 Implementation

Converge is a compiled language whose target is the Converge Virtual Machine (CVM).
The compiler is largely standard. Many simple language constructs have direct equiv-
alents in the CVM. Control structures however are largely created from a small set of
primitives which are combined in various permutations to give the desired effect.

The CVM instruction set is, apart from object orientated related instructions, largely
a subset of Icon’s, with two notable differences that lessen the number if instructions
in Converge. Firstly, most Converge operators are polymorphic (e.g. the Converge +
operator is overloaded for integers, strings etc) as opposed to Icon which largely uses
operators to operate on single types. Secondly, some things that in Icon are operators
(e.g. list slicing) become method calls in Converge.

The CVM is slightly unusual in comparison to most virtual machines as function
calls and so on are not implemented by recursion in the virtual machine. Internally the
CVM deals exclusively in continuations, although these are not yet directly exposed to
the user. This approach was taken in order to provide a simple mechanism for dealing
with the concepts inherited from Icon. The approach taken in the CVM is similar to,
but slightly more general than, that found in Icon. The internal use of continuations
has some side benefits: it frees the Converge machine from being overly dependent on
the stack size of its underlying implementation language (which is currently Python);
it makes the possibility of optimizations such as tail-recursion easier.

3.4 Expressions, success and failure

Converge is an untyped expression based language. In identical fashion to Icon, Con-
verge differs from most expression based languages whose expressions simply pro-
duces a value – Converge expressions either succeed or fail. If an expression succeeds
it also produces a value. This simple concept is probably the most fundamental feature
within Icon and Converge that makes it what it is, and is worthy of explanation and
analysis.

Consider the following Converge snippet, which reads data in from an open file
file and prints it to standard output:

file := Sys.file(file_name)
while line := file.readline():
Sys.write(line)

At first glance, one could be forgiven for thinking that this snippet could have
come from virtually any programming language influenced by the C/PASCAL schools
of language design, albeit with marginally different syntax. There is in fact more going

5



on than meets the eye. The interesting goings on are in the conditional part of the
while expression. What happens is that upon each iteration of the while loop,
the expression line := file.readline() is evaluated. Evaluating this causes
the expression file.read() to be evaluated. The readline function succeeds if
there is still data left to be read in file, and if this is the case produces a string value.
If readline succeeds, the value it produces is then assigned to the variable line,
and the body of the while expression is evaluated with line set to this value. If the
readline function failed, then it causes the assignment to the line variable to fail,
which causes the while loop to terminate.

This method of execution is markedly different to the more explicit idiom found in
most programming languages, and expressed here in pseudo code:

while (line := file.readline() && line != null) {
stdout.write(line)

}

In this case the readline function equivalent returns a string if there is data left
to be read in the file, and returns null otherwise. The programmer must explicitly
check that the return value of the function is not null before proceeding with the body
of the while loop.

Our Converge snippet is not yet fully idiomatic. By making use of the success and
failure concept, as well as the fact that everything in Icon is an expression, the snippet
can be more succinctly phrased thus:

while write(file.read_line())

This works exactly as before: if read(line) fails, then the write function will
not be called, and will also fail, causing the while loop to terminate.

It is important not to think of the failure of an expression in Converge as being an
exception. As Griswold explains, the failure of an expression is not intended to denote
a catastrophic error, rather an expression should fail when a ‘a relation does not hold
or if an operation cannot be performed but is not actually erroneous.’ [GG96a]

3.5 Generators

Another significant part of Converge is generators. Generators are expressions which
can potentially produce more than one result. A simple example of a generator is
range(1, 10) which generates the sequence of integers from 1 to 10 inclusive.
Generators do not produce their values in one go: perhaps the easiest way to think of
them is as being a way of implementing lazy programming in an imperative setting.
A generator performs a yield expression which suspends the generator and returns a
value to the caller; the generator then be resumed to potentially produce more values.
Generator suspension is the computing equivalent of cryogenic freezing – all of the
generators state (variable values, position in the program etc) is stored and restored
automatically. When a generator has yielded all its values, it fails. Generators are
therefore effectively a restricted form of coroutine [Knu97, Mar80].

As a simple example of generators, the following Converge snippet will print out
all of the integers from 1 to 10 inclusive:

every Sys.write(range(1, 10))

6



This doesn’t look very special at first glance, and a naı̈ve assumption would be that code
along the lines of the following would somehow expand to be internally equivalent to
the following:

every Sys.write([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

In fact, the Converge code executes very differently internally. The every construct
takes a generator and keeps reading values from it until it fails. On each iteration it will
execute the body of the every construct, if any is specified (our example has none). In
our example, the generatorrange(1, 10)3 is thus created; straight away it succeeds
and produces 1, which is then printed out. The every construct then moves onto the
next iteration, resumes the generator which succeeds and produces the value 2. On the
iteration after the generator has been resumed and yielded 10, the generator will be
resumed but will fail, and the every construct will terminate.

It is important to note that although all integers from 1 to 10 are printed as if they
had been created as a single list, at no point in time does such a list exist in memory.
Generators are thus particularly well suited to situations where large quantities of data
need to be returned to a caller bit by bit, or where the data can be created on the fly.

A simple version of the range generator function can be written in Converge as
follows:

func range(n, m):
while n <= m:

yield n
n += 1

To print the integers from 1 to 10 is as simple as follows:

every Sys.write(range(1, 10))

Compare this to a more typical OO version, here written in Python, which has to main-
tain its state in instance variables:

class Range:
def __init__(self, n, m):

self.n = n
self.m = m

def hasnext(self):
if self.n > self.m:

return 0
else:

return 1

def next(self):
self.n += 1
return self.n - 1

Instantiating the class, checking that it can produce another value and then actually
obtaining the next value are as clunky as the definition of the class Range:

r = Range(1, 10)
while r.hasnext():
print r.next()

3For the Python literate reader, the range function is akin to Python’s xrange, not Python’s range.

7



3.6 Goal-directed evaluation

If a generator is a part of an expression, then the failure of parts of an expression do
not necessarily cause the entire expression to fail. Instead, Converge backtracks up
to the most recent generator, resumes it to produce another value and then tries to
evaluate the rest of the expression again; this effect is called goal-directed evaluation.
Note that whilst superficially similar to features found in logic languages such as Pro-
log, goal-directed evaluation in Converge and Icon is unique because the sequence in
which alternatives are tried is explicitly specified. Gudeman [Gud92] has a detailed
explanation of goal-directed evaluation in general, with its main focus is on Icon, and
presents a denotational semantics for Icon’s goal-directed evaluation scheme. Proeb-
sting [Pro97] and Danvy et al. [DGR01] both take subsets of Icon chosen for their
relevance to goal-directed evaluation, compiling the fragments into various program-
ming languages (Danvy et. al also specify their Icon subset with a monadic semantics);
both papers provide good further reading on the topic.

The following example shows an expression which prints all factors of 3 between
1 and 1000:

every Sys.write(i := range(1, 1000) &
pow(3, (range(1,sqrt(i)))) == i)

This example has two generators in it, one of which shows goal-directed evalua-
tion. Working left to right through the expression, a generator successively produces
the integers between 10 and 100, with the value produced assigned to i. pow(3,
(range(1, sqrt(i)))) is then evaluated, and for each value produced in the
preceding generator, a test then takes place to see if it matches a power of 3. To evalu-
ate this, Converge creates the generator range(1, sqrt(i)), reads the first value
from that and thus tests if the expression pow(3, 1) == i succeeds. If the expres-
sion fails, the generator range(1, sqrt(i)) is resumed to produce another value
and so on. If this generator produces a value x which causes the expression pow(3,
x) == i to succeed, then the overall expression succeeds, a number is printed out
and Icon moves onto the next number in the 1 . . . 1000 sequence.

3.6.1 Bound expressions

Whilst backtracking is a useful feature of Converge, backtracking of the scale found
in, say, Prolog is neither desirable nor feasible in an imperative setting. There is thus
the concept of ‘bound expressions’. A bound expression denotes a point at which
backtracking stops. The most obvious point at which bound expressions occur is when
expressions are separated by newlines in a Converge program. For example in the
following code fragment the failure of the second line does not cause the first line to be
re-evaluated:

a := file.read_line()
b := 1 == 2

Bound expressions occur in various other points. For example, each branch of an
if expression is bound, which prevents the failure of a branch causing the entire if
expression to be re-evaluated.

8



4 Metacircularity

Converge is a fully meta-circular and reflective language in the spirit of ObjVLisp. The
essential idea is easy to state, but perhaps not so easy to understand (see [FD98] for fur-
ther explanation): everything in the system is an object, and every object is an instance
of a class. The system is bootstrapped with two classes Class and Object, with
Class being a subclass of Object, and both Object and Class being instances
of Class. Every object has a field of which refers to the class which the object is
an instance of.

This scheme puts metaclasses on a completely equal footing with classes, because
there is no such concept as ‘a’ metaclass – classes which inherit from Class are capa-
ble of playing the rôle of metaclasses, but there is no fundamental distinction between
the two as found in e.g. Smalltalk [Coi87].

Although not relevant for many tasks, having metaclasses as first-class items is
particularly relevant when dealing with modelling languages since metaclasses allow
users to alter the behaviour of classes, thus facilitating a far more natural representation
of various modelling language constructs within Converge.

Presenting a useful, readily understandable, example of a metaclass is something of
a challenge. The following rather contrived example shows a metaclass which imbues
its instances with an attribute num fields which holds the number of fields the class
had when it was initialized.

// As Field_Len is a subclass of Class, it can be used as a
// metaclass.

class Field_Len(Class):
func __init__(name, supers, fields):

super(name, supers, fields)
self.num_fields := fields.len()

// Point is a class is an instance of the metaclass Field_Len
// instead of Class (which is the default metaclass if no
// other is specified). It is a subclass of Object which is
// the default superclass.

class Point of Field_Len:
func __init__(self, x, y):

self.x := x
self.y := y

// The following line will print 2 (__init__, and to_str are
// inherited from Object).

Sys.write(Point.num_fields)

// Create an actual point

a_point := Point(20, 40)

Such an example hardly shows off the power of meta-classes, but does at least
demonstrate that metaclasses in Converge are first-class entities. It also makes refer-

9



ence to the new and init methods: every object has an init method, but
only subclasses of Class have a new method. new is responsible for creating
objects, and filling fields with default values. init is responsible for fleshing a
new object out.

5 Object pattern matching

Object pattern matching as found in the QVT-Partners submission is a powerful mech-
anism for succinctly expressing complex constraints on objects. It is analogous to
textual regular expressions as found in e.g. Perl [WCO00], and to continue the analogy
Perl support for object pattern matching is a built-in part of Converge. Compared to
textual regular expressions, object pattern matching of this sort is relatively immature:
Converge is, to some extent, a test bed for different ideas about object pattern match-
ing in an imperative setting and thus we do not consider the current support for object
pattern matching to be the final word on the subject. Pattern matching is, at the time of
writing, also one of the more immature parts of the implementation.

The following code fragment will print matched if the object referred to by d
matches the object pattern:

if m/(Dog)[name = "fido"]/(d): Sys.write("matched")

Object patterns are contained between forward slashes, and are first-class entities which
can be called with parameters. The pattern can be preceded by various letters to indicate
the particular flavour of object pattern matching to be used. m means ‘match’ which
means that all parts of the object pattern must match successfully and exactly against
the arguments given to the object pattern. The particular object pattern above will
match successfully against an instance of the Dog class which contains a field named
name which has the string value "fido". If a potential object matches against these
criteria than information such as whether the object is an instance of a subclass of Dog,
or whether the object has extra fields are not relevant.

Patterns can contain free variables, which will bind to any value. For example:

if m/(Dog)[name = "fido", age = a]/(d):
Sys.write("Matched against dog of age ", a)

This object pattern will match against a Dog object as before, but now requires the
object to have an age field. Because the object pattern contains a single variable a,
which has not been bound to a value previously, it will match against whatever the age
field of the object contains and assign that value to a.

A searching object pattern can be expressed as follows:

if s/(Dog)[name = "fido", age = a]/({d, d2}):
Sys.write("Matched against dog of age ", a)

This object pattern expects to be given sets as parameters, and it will try all the pos-
sibilities until it finds one which matches at which point it succeeds, which will cause
object expression to succeed.

In general, one will not have a finite number of objects assigned to variables which
can be manually fed to a searching object pattern. In this case generators can be fed as
parameters, and via the Converge semantics the generators passed will be resumed until
the overall expression succeeds. Imagine there is a generator function dogs which

10



successively returns all the dogs in the universe – we could evaluate this function to
exhaustion, construct a set from the results and feed it to a searching object pattern, or
we can use a generator as a parameter and a matching object pattern to print out the
name of every dog whose age is 12:

every m/(Dog)[name = n, age = 12]/(dogs()):
Sys.write("Matched against dog ’", n, "’")

Object patterns themselves can also potentially be generators. For example the follow-
ing searching object pattern will successively generate for every value in the input set
which satisfies the pattern:

every s/(Dog)[name = n, age = 12]/({d, d2, d3, d4}):
Sys.write("Matched against dog ’", n, "’")

Patterns themselves can be considerably more exotic than those presented up until now.
Set patterns are one such exotic form, and take the general form of:

{v1, ... ,v2 | S1, ... , Sm}

Set patterns are similar to set comprehensions in some programming languages. Values
to the left of the vertical bar are matched as is; values to the right hand side of the bar
must be sets, and are (possibly empty) subsets of the overall set. For example the set
pattern {"m" | S} will match against a set which contains a string literal "m", with
any other values being assigned to the variable S. If the set "m", "a", "b" were to
be matched against the preceding pattern, there is only a single outcome possible: the
match would succeed and S would be assigned a new set "a", "b".

With a set pattern such as {v | S}, one gets non-determinism in the matching.
Given the set {"m", "a", "b"} to match against, the possible outcomes are as fol-
lows:

v S
"m" {"a", "b"}
"a" {"m", "b"}
"b" {"m", "a"}

Object patterns optionally have a when clause which must evaluate to true in order that
the object pattern succeeds. For example, the following matching object pattern will
only match against dogs over 5 years old:

every s/(Dog)[name = n, age = a] when a > 5/(d):
Sys.write("Matched against dog ’", n, "’")

Object pattern matching and generators are a powerful combination in a model trans-
formation situation, as generators are a simple way to encapsulate complicated tree
traversals that produce intermediate values. Given the simple model in figure 1 one
can very easily write a function which traverses the model and successively returns all
older generations from a given person:

func traverse_older(p):
every parent := p.parents.generate():

yield parent
yield traverse_older(parent)

11



Person

children

parent

name:String

Figure 1: A simple model of families

Note how the parents attribute of Person, which according to figure 1 is a set,
is turned into a generator which will successively return each of its elements by the
generate method. Given this generic traversal function one can then write a simple
object expression which will cause the name of every person who has two or more
children to be printed4:

every m/(Person)[name = n, children = C]/ when \
C.size() >= 2/(traverse_older(person)):

Sys.write(n)

The astute reader will have noticed that this section is about pattern matching, with no
corresponding constructs for object creation. See section ?? for further details.

6 Related work

The Unicon project5 is in the reasonably advanced stages of extending Icon with ob-
ject orientated features. It differs significantly from Converge in maintaining virtually
100% compatibility with Icon. Unicon’s extensions to Icon, being effectively a bolt-on
to the original, are not as natural a part of the language as one might wish.

One of Unicon’s driving forces, Clinton L. Jeffery, is also partly responsible for Go-
diva6, which aims to be a ‘very high level dialect of Java’ incorporating goal-directed
evaluation. In reality, Godiva’s claim to be a dialect of Java is slightly tenuous: whilst
it shares some syntax, the semantics are substantially different.

Neither Unicon nor Godiva are meta-circular, and both are less dynamic languages
than Converge. Nonetheless they both show that Icon’s features have relevance in
different areas.

7 Future work

Converge is very much in its early phases. There are many directions in which Con-
verge could potentially move in that are yet to be fully explored. In this section we
highlight a few of the more interesting issues we hope to explore further.

7.1 Scanning expressions

Unlike the previous aspects of Icon discussed in this paper, string-scanning expressions
do not introduce a fundamentally different way of approaching programming. They
are instead more of a syntactic convenience, albeit a significant one. A string-scanning
expression looks initially like a truncated form of C’s ?: ternary operator:

4The backslash \ in the example means that the first two physical lines form one logical line in Converge.
5http://unicon.sourceforge.net/
6http://www.cs.nmsu.edu/ jeffery/godiva/

12



string ? expr

Effectively this construct maintains two pseudo-global variables &subject – the
string string being scanned – and &pos – the current position within the string –
within expr. This saves the user from not only having to continuously write func(arg1,
..., string, position) for a large number of standard functions, and also
cuts down on the housekeeping associated with the maintenance of the current scan-
ning position within the string: this allows the important aspects of the expression to
shine through.

We wish to see how best string-scanning can be incorporated into an object orien-
tated context.

7.2 Object creation

Whilst the QVT-Partners submission have object expressions which, whilst syntac-
tically similar to object patterns, are capable of creating objects from scratch. For
example the following object expression creates a new instance of the dog class:

(Dog)[name = "gido"]

The precise approach used in the QVT-Partners submission is not directly suited to
Converge, because this circumvents the carefully constructed object creation and ini-
tialization phases that are a necessary part of Converge’s metacircular nature. We
would like to investigate the possibilities

7.3 Exceptions

As stated in section 3.4, failure and exceptions are two completely unrelated concepts.
Converge currently lacks exceptions, which are a useful and important feature in mod-
ern languages. As the CVM is based on continuations, the introduction of exceptions
should be relatively trivial, but it remains to be seen what the most sensible way to e.g.
handle exceptions in the face of generators is.

7.4 Libraries

As experience with using Converge grows, we hope to start to be able to tease out com-
mon idioms of use, particularly those related to model transformations, into libraries.
This will be vital if the approach is to scale up. Generators and metaclasses are two
features that we feel are likely to make the creation of useful and flexible libraries a
relatively painless process in Converge.

8 Imperative, Declarative?

In section 1 we noted that most current model transformation approaches opt for either
fairly traditional declarative or imperative approaches. Experience would suggest that
declarative approaches often incorporate some imperative-like features (e.g. so-called
‘impure’ functional languages such as ML [MTHM97]); however the converse does
not seem to be as common. One of Converge’s unusual features is that whilst clearly
an imperative language, some of its features appear to have been influenced by, or are
analogous to, those more commonly found in declarative languages. Having outlined
these features we are now in a position to make concrete our original claim:

13



• The concepts of success and failure can be seen as being analogous to an implicit
concept found in logic languages such as Prolog.

• Generators can be seen as a more explicit representation of lazy programming.

• Goal-directed evaluation is similar, but not identical, to Prolog’s evaluation style.

9 Conclusions

We have outlined Converge, a modern compiled expression-based language based partly
on Icon. We have shown how its unusual features make it particularly well suited to
model transformations.

The authors would like to thank all of the QVT-Partners.
This work was partially funded by a grant from Tata Consultancy Services (TCS).

References

[ACR+03] Biju Appukuttan, Tony Clark, Sreedhar Reddy, Laurence Tratt, and
R. Venkatesh. A model driven approach to model transformations. In
MDAFA 2003, Holland, June 2003.

[BC87] Jean-Pierre Briot and Pierre Cointe. A uniform model for object-oriented
languages using the class abstraction. In Tenth International Join Confer-
ence on Artificial Intelligence, pages 40–43, August 1987.

[Béz01] Jean Bézivin. From object composition to model transformation with the
MDA. In TOOLS 2001, 2001.

[BG02] Jean Bézivin and Sébastien Gérard. A preliminary identification of MDA
components. In Generative Techniques in the context of Model Driven
Architecture, Nov 2002.

[Coi87] Pierre Cointe. Metaclasses are first class: the objvlisp model. In Object
Oriented Programming Systems Languages and Applications, pages 156–
162, October 1987.

[DGR01] Olivier Danvy, Bernd Grobauer, and Morten Rhiger. A unifying approach
to goal-directed evaluation. New Generation Computing, 20(1):53–73,
Nov 2001.

[dMES02] Miguel A. de Miguel, Daniel Exertier, and Serge Salicki. Specification
of model transformations based on meta templates. In Jean Bézivin and
Robert France, editors, Workshop in Software Model Engineering, 2002.

[FD98] Ira R. Forman and Scott H. Danforth. Putting Metaclasses to Work:
A New Dimension in Object-Oriented Programming. Addison-Wesley,
1998.

[GG93] Ralph E. Griswold and Madge T. Griswold. History of the Icon program-
ming language. j-SIGPLAN, 28(3):53–68, March 1993.

[GG96a] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Lan-
guage. Peer-to-Peer Communications, third edition, 1996.

14



[GG96b] Ralph E. Griswold and Madge T. Griswold. The Implementation of the
Icon Programming Language. Peer-to-Peer Communications, third edi-
tion, 1996.

[Gog00] Martin Gogolla. Graph transformations on the UML metamodel. In Jose
D. P. Rolim, Andrei Z. Broder, Andrea Corradini, Roberto Gorrieri, Reiko
Heckel, Juraj Hromkovic, Ugo Vaccaro, and Joe B. Wells, editors, ICALP
Workshop on Graph Transformations and Visual Modeling Techniques,
pages 359–371. Carleton Scientific, 2000.

[Gud92] David A. Gudeman. Denotational semantics of a goal-directed language.
ACM Transactions on Programming Languages and System, 14(1):107–
125, January 1992.

[HJGP99] Wai Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, and François Pen-
naneac’h. UMLAUT: An extendible UML transformation framework,
1999.

[Knu97] Donald E. Knuth. The Art of Computer Programming, volume 1.
Addison-Wesley, third edition, 1997.

[LB98a] Kevin Lano and J. Bicarregui. UML refinement and abstraction trans-
formations. In Second Workshop on Rigorous Object Oriented Methods:
ROOM 2, Bradford, May 1998.

[LB98b] Kevin Lano and Juan Bicarregui. Semantics and transformations for UML
models. In Jean Bézivin and Pierre-Alain Muller, editors, The Unified
Modeling Language, UML’98 - Beyond the Notation. First International
Workshop, Mulhouse, France, June 1998, pages 97–106, 1998.

[LKM+02] Tihamer Levendovszky, Gabor Karsai, Miklos Maroti, Akos Ledeczi, and
Hassan Charaf. Model reuse with metamodel-based transformations. In
Cristina Gacek, editor, ICSR, volume 2319 of Lecture Notes in Computer
Science. Springer, 2002.

[Mar80] Christopher D. Marlin. Coroutines: A Programming Methodology, a Lan-
guage Design, and an Implementation. Springer-Verlag, 1980.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
definition of standard ML. MIT Press, 1997.

[OMG02] Object Management Group. Request for Proposal: MOF 2.0 Query /
Views / Transformations RFP, 2002. OMG documentad/2002-04-10.

[Pro97] Todd A. Proebsting. Simple translation of goal-directed evaluation. In
SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 1–6, 1997.

[QVT03] QVT-Partners first revised submission to QVT RFP, August 2003. OMG
document ad/03-08-08.

[vR01] Guido van Rossum. Python 2.2 reference manual, 2001.
http://www.python.org/doc/2.2/ref/ref.html.

[WCO00] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl.
O’Reilly, third edition, 2000.

15


