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Classifier
name : String

PrimitiveDataType Class
name : String

Attribute
is_primary : bool
name : String

attrs

type

*{ordered}

Figure 1: ‘Simple UML’ meta-model.

1. Introduction

This paper presents a unidirectional stateless model transformation language MT, implemented as a DSL

within Converge. MT shares several aspects in common with model transformation languages such as the

QVT-Partners approach [QVT03b]. That is it is a rule-based system, utilising patterns. However there are

a number of advances over, and significant differences from, previous approaches. Some of these are a

side-effect of implementing MT as a DSL within Converge; some are the result of experimentation with a

concrete, but malleable, implementation. For example, MT allows normal Converge imperative expressions

to be embedded within it. In a wider context, MT is used as the basis for a change propagating transformation

language which will be presented in a later paper.

This paper comes in three main parts. Firstly the running example is introduced, followed by an introduc-

tion to the QVT-Partners model transformation approach. The QVT-Partners approach is then used as the

basis for the MT language, which is introduced partly through example. Finally the implementation of the

MT language as a DSL in Converge is discussed in more detail.

2. Running example

This paper makes use of a simple running example of a transformation from a UML like modelling language

to a model of relational databases. The chief reason for using this example is the ability to compare the result

with its implementation in other model transformation approaches (e.g. [DIC03, OQV03, QVT03a]. The

example also has the virtue that it can be easily considered in ‘simple’ and ‘advanced’ variants. Whilst the

advanced variant does exercise a reasonable number of features of any given model transformation approach,

it is still of an appropriate size for this paper.

The original example is defined in [QVT03a]. The simple variant is as follows. A meta-model for a

simple UML modelling language is given in figure 1. A corresponding meta-model for simplified relational

databases is given in figure 2. In essence, the transformation takes in a Class and transforms it to a

Table of the same name. Attribute’s whose type is a PrimitiveDataType (e.g. string, integer)

are transformed to a column of the same name and the same primitive data type. Attribute’s whose

type is a Class (i.e. the type refers to another user class) are transformed to a number of columns: the

transformation recursively ‘drills down’ through a class’s non-primitively typed attributes until it reaches

attributes with primitive datatypes. At each point in the recursion the name of the current class along with

a ‘ ’ character is appended to the column name. The net result of this is that non-primitive data types are

flattened.
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*{ordered}

Table
name : String

columns
Column

name : String
type : String

Figure 2: Simplified relational database meta-model.

Consider the source model of figure 3. Assuming that the Dog class is used as the input class, an imple-

mentation of this transformation should produce the relational database model as in figure 4.

:Class
name = "Person"

:Attribute
name = "name"

:Attribute
name = "age"

:Class
name = "Dog"

:Attribute
name = "name"

:Attribute
name = "owner"

attrs

type

attrs attrsattrs

:PrimitiveDataType
name = "String"

:PrimitiveDataType
name = "int"

typetypetypetype

Figure 3: An example of a source simple UML model.

columns

:Column
name = "name"
type = "String"

name = "owner_name"
type = "String"

:Column
name = "owner_age"
type = "int"

:Column

:Table
name = "Dog"

columnscolumns

Figure 4: An example of a target relational database model

This is the core of the example that will be used throughout this paper. As the paper progresses, I will

progressively add complexity to the example.

3. The QVT-Partners model transformations approach

In this section, I explain some relevant aspects of the QVT-Partners approach, since the MT language shares

several factors in common with the QVT-Partners approach. Whilst the QVT-Partners approach has the

concept of ‘specification’ and ‘implementation’ transformations (known as relations and mappings respec-

tively1), for the purposes of this paper, transformation specifications are largely irrelevant and are conse-

quently ignored. The QVT-Partners approach also defines a diagrammatic syntax for transformations which

is similarly ignored.

3.1. Overview

A transformation in the QVT-Partners approach consists of a number of mappings. A mapping consists of

one or more source domains (analogous to a function parameter) and a target imperative body. Each domain

1The author of this paper takes full responsibility for his decision to use these names — given their multiple overloaded meanings
in the wider field, in retrospect they were not the best possible choices.
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consists of one or more patterns to match against. Patterns are written in a language designed to make

expressing constraints over models succinct; they are analogous to textual regular expressions as found in

e.g. Perl [WCO00]. Imperative bodies consist of a single expression in an extended OCL variant that is

capable of side effects. Using the meta-models presented in the previous section, a simple mapping for

transforming a class to a table would look as follows:

mapping Class_To_Table {
domain {

(Class)[name = n, attrs = A]
}

body {
let
columns = A->collect(attr columns = Set{} |

columns + Attr_To_Column(attr))
in
(Table)[name = n, columns = columns]

end
}

}

The intuitive meaning of this is hopefully fairly straightforward. The Class To Table rule will match

against a Class model element, with the pattern binding whatever name the class has to the variable n

and whatever attributes it has to the variable A. The imperative body then creates a corresponding Table

whose name matches the source class. It should be noted that although the Table expression in the body

appears to be a pattern, this is something of a syntactic illusion: the pattern-esque syntax is simply syntactic

sugar for object creation and slot updating. Attr To Column refers to another mapping, which is used

to transform each attribute in the source class into one or more database columns which are then placed

within the target table.

3.2. Pattern language

In the context of this paper, the most important novel aspect of the QVT-Partners approach is its pattern

language. Its aim is to provide a concise textual notation for expressing constraints over models, thereby

reducing the time needed to write and to comprehend a transformation. In this subsection, I provide a brief

background of patterns before informally explaining the QVT-Partners pattern language.

Many computer users are familiar with textual pattern languages e.g. via operating system commands

such as ls *.txt. One can obtain a crude gauge of the popularity of textual regular expressions by the fact

that suitable libraries are found as standard in many modern programming languages such as Perl, Python

and Ruby. However whilst pattern languages are commonly thought of as being suitable only for matching

against text, they can be used to match against other, much richer, datatypes. For example program transfor-

mation patterns match against complex AST’s [Big98]. Intuitively, designing a pattern language involves a

compromise between providing a concise notation for capturing common constraints, and providing a com-

pletely general mechanism — the more cases a pattern language can express, the less concise it is likely

to be. Many pattern languages are thus tailored for the common case as opposed to the general case. Tex-

tual regular expressions, for example, are typically defined as finite-state automata which can not express a

seemingly simple constraint such as ensuring that a string contains balanced open and close brackets2 . It is

therefore desirable that when a pattern languages’ expressive limit is reached, a suitable escape mechanism

into a more powerful, if verbose, system is available.

2Note that some implementations of regular expressions are no longer ‘regular’ in the formal sense of that word. For example,
modern Perl contains an experimental feature which can express the balanced brackets constraint.
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The QVT-Partners approach provides a specific pattern language for expressing constraints over models.

By providing many of the benefits known to textual regular expressions users, several of the problems

concerned with identifying elements in a model are addressed. The QVT-Partners approach is important

in this respect because most current model transformation approaches do not provide pattern languages.

Although it could be argued that graph transformation approaches utilise pattern languages, I believe that

these lack any significant expressive power, particularly when compared to textual regular expressions; for

the purposes of this paper, I therefore do not consider graph transformation approaches to have pattern

languages.

The QVT-Partners approach provides a small pattern language for expressing constraints over models. A

slightly simplified version of the grammar for the pattern language is as follows:

〈pattern〉 ::= ‘_’

| 〈set pattern〉

| 〈seq pattern〉

| 〈obj pattern〉

| 〈expression〉

〈set pattern〉 ::= ‘{’ [〈pattern〉* (‘|’ 〈pattern〉)*] ‘}’

〈set pattern〉 ::= ‘[’ [〈pattern〉* (‘|’ 〈pattern〉)*] ‘]’

〈obj pattern〉 ::= ‘(’ 〈var〉 [ ‘,’ 〈var〉 ] ‘)’ ‘[’ [〈field pattern〉 (‘,’ 〈field pattern〉)*] ‘]’

〈field pattern〉 ::= 〈var〉 ‘=’ 〈pattern〉

〈var〉 ::= ‘ID’

| ‘_’

The reference to the rule expression is a reference to a rule which contains the extended OCL variants’

grammar.

The QVT-Partners approach identifies three main types of patterns: set, sequence, and object patterns.

Although not explicitly noted as such, variables in patterns are essentially patterns themselves. To ensure

consistency with the rest of this paper, I refer to object patterns as model element patterns. All types of

pattern share in common one thing: given a particular model element, they will either succeed or fail to

match against it.

Set and sequence patterns are similar to those used in function parameters in functional programming

languages such as Haskell. For example a set pattern Set{1, 6 | R} will match successfully against a

set that contains at least two items 1 and 6; a new set containing all of the original sets items other than 1

and 6 will be bound to R. Intuitively, variable names mean ‘match anything and bind’; henceforth these will

be referred to as variable bindings. If the same variable name appears more than once in the same scope,

all instances of that variable name must match against equivalent objects (the definition of object equality

in the QVT-Partners approach is inherited from the MOF [OMG00]). The special variable ‘ ’ matches

against anything and immediately discards the result; multiple instances of ‘ ’ do not need to match against

equivalent objects.

Although relatively simple, model element patterns are the backbone of the pattern language. Model

element patterns specify the type that matching model elements must conform to, and an optional ‘self’

variable which will be bound to the element matched against. The model element then specifies a number
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of a slots and a pattern against which each slot in the model element must match against. The terse power

of model element patterns is best demonstrated by example. Consider first the following model element

pattern:

(Dog, d)[name = n, owner = (Person)[name = "Fred"]]

This pattern will match successfully against a model element which is of type Dog and whose owner is

Fred. After the match the variable dwill point to the particular Dog element matched, and nwill contain the

dog’s name. This pattern is approximately equivalent to the following Converge-esque pseudo-code function

which returns a dictionary of bindings if the source element is matched successfully, failing otherwise:

func match(element):
if not element.conforms_to(Dog):

return fail
d := element
n := element.name
if not element.owner.conforms_to(Person):

return fail
if element.owner.name != "Fred":

return fail

return Dict{"d" : d, "n" : n}

Although it may seem more logical to have used OCL to express this, it should be noted that expressing the

creation and update of bindings in OCL would require complex encodings. Partly due to this difficulty, the

QVT-Partners approach defines a new calculus in order to have a suitable semantic domain. The calculus is

given an operational semantics, and directly implements several pattern matching primitives; it can be seen

to be similar to the imperative object calculus of Abadi and Cardelli [AC96] extended with pattern matching.

Using Converge pseudo-code as the target translation of the example pattern avoids the need to define and

explain the calculus.

As this example translation clearly shows, the model element pattern is not only considerably terser than

its equivalent pseudo-code, but is arguably easier to comprehend. Since the pseudo-code has to explic-

itly embed certain aspects of the model transformation (e.g. the return fail statements) the important

aspects of the pattern are obscured. This is simply a recasting of the problem of expressing model transfor-

mations in GPL’s. Even though the pattern language is simple, it neatly solves many such problems.

3.3. Complete example

The running example expressed in the QVT-Partners approach is as follows:

mapping Class_To_Table {
domain {

(Class)[name = n, attrs = A]
}

body {
let
columns = A->collect(attr columns = Set{} |

columns + or(Primitive_Type_Attr_To_Column("", attr),
User_Type_Attr_To_Column("", attr))

in
(Table)[name = n, columns = columns]

end
}

}

mapping User_Type_Attr_To_Column {
domain {

(String, prefix)[]
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}

domain {
(Attribute)[name = n, type = (Class)[name = ct, attributes = A]]

}

body {
let
new_prefix =

if prefix == "" then
n

else
prefix + "_" + n

end
in
for A->collect(attr attrs = Set{} |

attrs + or(Primitive_Type_Attr_To_Column(new_prefix, attr),
User_Type_Attr_To_Column(new_prefix, attr)))

end
}

}

mapping Primitive_Type_Attr_To_Column {
domain {

(String, prefix)[]
}

domain {
(Attribute)[name = n, type = (PrimitiveDataType)[name = pt]]

}

body {
Set{(Column)[name = if prefix == ""

name = n
else

name = prefix + "_" + n
end,
type = pt]}

}
}

One feature in particular that requires explanation is the or function used in the Class To Table and

User Type Attr To Column mappings. or is not a normal function call, but is a built-in combina-

tor which lazily executes the mappings passed as arguments to it in order until one succeeds and produces a

value. Note that unlike most rule-based systems, the QVT-Partners does not provide a function which takes

an element and attempts to find a rule which will transform it. Although the or combinator can provide the

same functionality, its repeated use becomes tiresome due to the continuous hard-coding of mapping names

required.

The overall structure of this transformation is fairly simple. The Class To Table is the top-level

mapping which takes in a a class and iterates through its attributes, invoking other mappings to produce

columns. Attributes are transformed in one of two ways. Both the User Type Attr To Column and

Primitive Type Attr To Column mappings take two arguments: a string and an attribute. The

string represents the current column name prefix being built up as the transformation drills into user data

types. Attributes which have a primitive data type are transformed by the Primitive Type Attr To Column

mapping into a single column. Attributes which have a user data type are transformed by the User Type Attr To Column

into one or more columns; the User Type Attr To Column mapping is the recursive mapping

which drills into user data types.

Although the example from section 2 has been successfully expressed in the QVT-Partners approach,

the result is perhaps more verbose than one may have expected. Indeed, somewhat surprisingly, a simple

GPL equivalent of this example is smaller. One might thus reasonably expect that expressing such a trans-
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formation in the QVT-Partners approach has other benefits. Since mappings only allow the expression of

unidirectional stateless transformations, the only potential gain over a GPL approach is the possibility of au-

tomatically created tracing information. Unfortunately the QVT-Partners approach does not explain explain

how rules can create such tracing information in practise. Since the GPL equivalent is likely to be more

readily understood by a far wider range of people, the overall benefits of this approach are not clear cut.

In the following subsection I outline three issues which are indicative of the problems of the QVT-Partners

approach.

3.4. Issues with the approach

As the verbose example in section 3.3 may suggest, the QVT-Partners approach has a number of minor flaws

and limitations which hamper practical use. In this subsection I outline, in approximately descending order,

three areas which are indicative of where the QVT-Partners falls short of its intended goals. These points

are instructive in understanding several of the design decisions made in the MT language of section 4.

3.4.1. Inappropriate imperative language

The imperative bodies of mappings are written in a so-called ‘extended OCL’, which is intended to allow

users familiar with OCL the chance to reuse that knowledge in an imperative setting. This has an immediate

negative effect: extending OCL with imperative constructs means that the often desirable properties OCL

had as a purely side-effect free language are lost3. Conversely when it comes to acting as a normal GPL,

the resulting language is decidedly unwieldy since it lacks appropriate constructs for common operations.

For example, there is no explicit sequencing mechanism: the imperative body consists of exactly one OCL

constraint, and sequencing can be achieved clumsily via the let expression.

3.4.2. Underpowered patterns

The pattern language defined in the QVT-Partners approach is novel in the context of model transformations,

and potentially very useful. However as the relatively simple definition in section 3.2 may suggest the pattern

language is lacking in significant expressive power.

The pattern language itself is limited in two main ways:

1. Within model element patterns it is only possible to check for the equality of slots. For example, it is

not possible to use a model element pattern to express that a match against an object should succeed

provided a given slot does not match a particular value.

In order to sidestep this problem, users must add additional OCL in a when clause.

2. Model element patterns can only match against a fixed number of elements. A model element pattern,

for example, can only match successfully against one, and only one, model element. Note that whilst

set and sequence patterns can match against sets and sequences of arbitrary lengths, only a fixed

number of elements can be explicitly identified within any given set or sequence.

There is no general solution to this problem. Typically a new mapping needs to be added so that

iteration in a when clause can control the number of times another mapping is successfully matched.

3OCL 2.0 is not in fact entirely side-effect free; however the situations in which this property is violated are largely irrelevant in
the context of this paper.
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3.4.3. Scoping rules

Since a bare variable name in a slot constitutes a variable binding, the QVT-Partners approach has fragile

scoping rules, since it is difficult to distinguish a variable binding from a variable reference. Consider the

simple example of section 3.2 (Dog, d)[...]. Dog is a reference to the Dog model class, whereas d is

a variable binding which will be set to the self value of the object which matches the model element pattern.

This means that it is impossible to express that a model element pattern should match against a particular

element. For example, in a meta-circular system where a class M is an instance of the Singleton meta-

class, the model element pattern (Singleton, M)[...] will create a local variable M rather than

ensuring that it matches against the element pointed to by M.

The QVT-Partners approach allows a when clause to be scoped over all domains establishing a constraint

across domains since it does not create any new variable bindings. However it is not possible to introduce

a similar clause (often called where in similar approaches) scoped over all domains which introduces new

variable binding without introducing ambiguities. Consider the following example: should the x in the

pattern bind the value of slot to the variable, or should it ensure that slot contains the value introduced

in the where clause?

mapping X {
domain {

(E)[slot = x]
}

where {
x := 5

}
}

In the QVT-Partners approach, scoping ambiguities are avoided by disallowing several potentially useful

features that may introduce new variable bindings. However the end result is that whilst expressions such

as in (Dog, d)[...] are statically resolvable, they are confusing for users. The overall effect of the

scoping rules are to severely limit the possibilities for extending or embedding the language.

3.5. Summary

The QVT-Partners approach provides a number of innovations compared to other model transformation

approaches, most notably the use of patterns. However in practise the simplistic nature of the approach

means that it falls somewhat short in its aim to allow users to express model transformations more easily

than in GPL’s.

In the next section of this paper, I define a new model transformation language MT which takes elements

of the QVT-Partners approach, adding extra features and addressing some of the approaches flaws.

4. The MT Language

The MT language is a new unidirectional stateless model transformation language, implemented as a DSL

within Converge. MT transforms instances of the typed modelling language TM [Tra05] into new instances

of TM. In essence, MT defines a natural embedding of model transformations within Converge, using declar-

ative patterns to match against model elements in a terse but powerful way, whilst allowing normal impera-

tive Converge code to be embedded within rules.
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Because MT is implemented as a DSL within Converge, it has existed as a a concrete implementation

from shortly after its original design was sketched out. This has proved to be significant, since practical

experience with the approach has been rapidly fed back into the implementation. Rapid development has

been facilitated by the flexible environment provided by Converge. The ability to experiment with the

implementation has ultimately led MT to contain a number of insights and distinct differences from other

approaches. Such insights range from a more sophisticated pattern language to suitable ways to visualize

model transformations. In the wider context of this paper, MT is also important as the basis of a change

propagating language, to be described in a later publication.

In this section I first highlight the main features of MT, then present an MT version of the running ex-

ample, before showing how MT transformations are run in practise. This section is intended to present the

basic features of MT, before more advanced features are described in section 6.

4.1. Basic details

An MT transformation has a name and consists of one or more rules, the ordering of which is significant.

Rules are effectively functions which define a fixed number of parameters and which either succeed or fail

depending on whether the rule matches against given arguments. Rules and functions in MT are essentially

synonymous as in approaches such as TXL [Cor04]. If a rule matches successfully, one or more target

elements are produced and it is said to have executed; if it fails to match successfully, nothing is produced.

Rules are comprised of: a source matching clause containing one or more source patterns; an optional when

clause on the source matching clause; a target producing clause consisting of one or more expressions; and

an optional where clause for the target production clause.

An MT transformation takes in one or more source elements, which are referred to as the root set of

source elements. The transformation then attempts to transform each element in the root set of source

elements using one of the transformations rules, which are tried in the order they are defined. If no rule

matches a given element, an exception is raised and the transformation is aborted.

The general form of an MT transformation is as follows:

import MT.MT

$<MT.mt>:
transformation transformation name

rule rule name:
srcp:

pattern1

...
patternn

src when:
expr

tgtp:
expr1

...
exprn

tgt where:
expr1

...
exprn
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The srcp and srcp when clauses are collectively said to form the source model clauses; simi-

larly the tgtp and tgtp when clauses are collectively said to form the target model clauses.

Transformations are translated by MT into a Converge class with the name of the transformation; rules are

translated to functions of the same name within the class. In order to run a transformation, the transformation

class is instantiated; each class can be instantiated multiple times. Transformation classes have additional

functions for e.g. extracting tracing information (see section 4.6).

Transformation rules contain normal Converge code in expressions; such expressions can reference vari-

ables outside of the model transformation DSL fragment. This is an important aspect of MT since it allows

users to use normal Converge functions arbitrarily, and without penalty. In other words, when the model

transformation language itself is inadequate in a particular respect, a normal reusable Converge function can

be defined outside of the model transformation, but which can be called from within any model transforma-

tion.

MT transformations hold a record of tracing information, which is automatically created as transformation

rules are executed. Each rule executed adds a new trace. Each trace is a tuple, encoded as a Converge list, of

the form [[source elements], [target elements]]. The source elements that are stored in

the tracing information do not necessarily constitute the entire universe of elements passed via parameters to

the transformation. By default, only elements matched by non-nested model element patterns are recorded

in the tracing information. Section 5.2 details the default tracing creation mechanism, and explains how it

can be augmented or overridden.

A simple example of a transformation and a rule is as follows:

$<MT.mt>:
transformation Classes_To_Tables

rule Class_To_Table:
srcp:
(Class, <c>)[name == <n>, attrs == <A>]

tgtp:
(Table)[name := n, cols := columns]

tgt_where:
columns := []
for attr := A.iterate():

columns.extend(self.transform([""], [attr]).flatten())

This rule is the MT analogue of the rule in section 3.1. Note how normal Converge code is interspersed

amongst the MT DSL (see section 7.13 for implementation information). Since transformations are trans-

lated to Converge classes, to access functions ‘internal’ to the transformation, one must use the self.

prefix. The transform function, for example, takes source elements and tries each rule in the trans-

formation in succession until it finds one which successfully matches the elements and produces values.

If the transform function does not find a suitable rule then, by default, an exception is raised. The

transform function is also used internally by the transformation as the mechanism used to transform

the root set of source model elements. Section 6.3 shows an example of a rule that can guarantee that the

transform rule can be made to succeed on any given input.

In the following subsections I explain in more detail how rules match and produce elements, including a

detailed examination of the pattern language and pattern multiplicities.
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4.2. Matching source elements with patterns

Each pattern in the srcp clause of a rule corresponds to a domain in the QVT-Partners approach. Arguments

must be passed as lists rather than sets; whilst TM elements can be placed into Converge sets, users may

wish to transform non-hashable elements such as lists. Each list contains the top-level model elements which

each pattern can match against. Elements can exist, directly or indirectly – that is as top-level elements, or

by being reachable via the graph that constitutes a model – in one or more arguments. In order to avoid

the problems noted in section 3.4.3, variable bindings are surrounded by angled brackets ‘<’ and ‘>’ to

distinguish them from normal Converge variable references.

The matching algorithm used by MT is intentionally simple. Each pattern in turn attempts to match

against the top-level source elements passed in the appropriate argument. Each time a pattern matches it

produces variable bindings which are available to all subsequent patterns. If a pattern fails to match, control

backtracks to previous patterns (in the order of most recently called), which attempt to generate another

match given the variable bindings and arguments available to them. The generation of an alternative match

causes new variable bindings to produce, which allows the rule to attempt another match of later patterns.

The src when clause, if it exists, is tried once all patterns have been matched successfully; it is essentially

a guard over patterns. If it fails, patterns are requested to generate new matches exactly as in the failure of a

pattern to match. The implementation details of such behaviour are largely hidden from the user by the use

of patterns.

The order that patterns are defined in the srcp clause is significant, for two separate reasons. Most ob-

viously it is necessary to ensure that users sequence variable bindings and references to the bound variables

correctly. However there is a second reason that, whilst less obvious, is critical to the performance of larger

transformations. Making the order of patterns significant allows users to make use of their domain knowl-

edge to order them in an efficient way. Consider a rule which has two independent patterns x and y where

x tends to match against many source elements, but y against few. Placing x first in the srcp clause means

that when y fails x will try to produce more values; if x can produce multiple matches, y may be executed

many times unnecessarily. If y is placed first in the srcp clause then if it fails to match against its input the

rule fails without ever trying to match x. Sensible ordering of patterns in this way can lead to a significant

boost in performance as unnecessary matches are not evaluated.

Each pattern is translated to a Converge generator, which provides a natural mechanism for lazily generat-

ing all possible matches. Translated patterns are co-joined to make use of Converge’s backtracking abilities.

Note that the src when clause, if it exists, must be a single Converge expression which either succeeds or

fails given variable bindings generated by patterns in the srcp clause.

4.3. Pattern language

MT’s pattern language is essentially a super-set of that found in the QVT-Partners approach. MT defines a

number of pattern expressions: model element patterns, set patterns, variable bindings, and normal Converge

expressions. Patterns written in the latter language can be directly translated into MT with only minor

syntactic changes.

There are two significant differences between the two pattern languages. Firstly – as noted in the section

4.2 – variable bindings in MT must be surrounded by angled brackets to ensure harmony between MT and

Converge’s scoping rules. Secondly, model element patterns in MT can contain comparisons other than

equality between slots; henceforth these are known as slot comparisons. Any of the standard Converge
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comparison operators can be used in slot comparisons. A model element pattern in MT is said to consist of

zero or more slot comparisons.

As a trivial example of slot comparisons, one can take the model element pattern example from section

3.2 (making the necessary minor syntactic modifications), and change it to find dogs whose owner is not

Fred:

(Dog, <d>)[name == <n>, owner == (Person)[name != "Fred"]]

This same example would necessitate an OCL constraint in a when clause in the QVT-Partners approach.

Allowing different types of slot comparison in model element patterns opens up new possibilities. Since

MT allows the same slot name to appear in more than one slot comparison, one can test a slot for multiple

conditions as in the following model element pattern:

(Person)[age >= 18, age <= 25]

There is one other additional feature in the MT pattern language. Since model elements are Converge

objects, slot comparison is not entirely synonymous with attribute comparison, since slots may contain

functions. MT’s model element patterns therefore provides support for functions as shown in the following

example:

(Person)[calc_wage() > 18000]

Functions in slot comparisons can be passed an arbitrary number of arguments passed to them; all arguments

are normal Converge expressions.

Pattern multiplicities are not considered to be a part of the core pattern language, but are a significant

enhancement in MT over the QVT-Partners approach; they are detailed in section 6.2.

4.4. Producing target elements

When an MT rule executes it produces one or more target elements. An exception is raised if a rule executes

but fails to produce any elements. The number of elements produced is determined by the number of

expressions in the tgtp clause. If the tgtp clause has a single expression, then the rule produces a single

element; if it contains more than one expression, then the rule produces a list whose length is the same

as the number of expressions in the tgtp clause. Each expression is a normal Converge expression, but

with an important addition. The MT DSL admits model element expressions by extending the Converge

grammar rule expr (see section 7.14 for implementation details). Model element expressions differ from

model element patterns both conceptually and syntactically. Conceptually a model element expression is

an imperative, creational action. There is therefore no concept of a ‘self’ variable in a model expression.

Furthermore, to reinforce the notion that model expressions are imperative actions, slot assignments use the

normal Converge assignment operator :=.

Expressions in tgtp have an optional for suffix which allows a single expression to generate multiple

values. If one ignores the obvious syntactic difference of the relative location of the keyword, the for suffix

works largely as its normal Converge counterpart, taking a single expression and continuously pumping it

for values until it fails. Variables defined in the for suffix are scoped only over the single expression in the

tgtp clause that it suffixes. Assuming COLS is a list, a typical usage of this feature is as follows:

(Column)[name := col.name] for col := COLS.iterate()
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Note that if the above example was the only expression in a tgtp, the result of the rule would be a list of

length COLS.len(). However, if the expression was the first of two in a tgtp, the rule would produce a

list of length two, with the first element being a list of length COLS.len(). Section 9 suggests a possible

extension to MT which would allow a rule to produce a number of elements not solely determined by the

number of expressions in its tgtp.

The tgt where clause, if it exists, is a sequence of Converge expressions which are executed before

the tgtp clause. Variables in the tgt where clause are automatically scoped over the tgtp clause.

Unlike the src when clause, there is no notion of success or failure with the tgt where clause, which

is simply a helper function for the tgtp clause. Note that expressions in the tgt where clause can

contain model element expressions.

4.5. Example

The following is a complete Converge module which implements the running example:

1 import Sys
2 import Relational, Simple_UML
3 import MT.MT
4

5 func concat_name(prefix, name):
6 if prefix == "":
7 return name
8 else:
9 return prefix + "_" + name

10

11 $<MT.mt>:
12 transformation Classes_To_Tables
13

14 rule Class_To_Table:
15 srcp:
16 (Class, <c>)[name == <n>, attrs == <A>]
17

18 tgtp:
19 (Table)[name := n, cols := columns]
20

21 tgt_where:
22 columns := []
23 for attr := A.iterate():
24 columns.extend(self.transform([""], [attr]).flatten())
25

26 rule User_Type_Attr_To_Column:
27 srcp:
28 (String, <prefix>)[]
29 (Attribute)[name == <n>, type == (Class)[name == <cn>, attrs == <CA>]]
30

31 tgtp:
32 self.transform([concat_name(prefix, n)], [ca]) for ca := CA.iterate()
33

34 rule Primitive_Type_Attr_To_Column:
35 srcp:
36 (String, <prefix>)[]
37 (Attribute)[name == <n>, type == (PrimitiveDataType)[name == <pn>]]
38

39 tgtp:
40 [(Column)[name := concat_name(prefix, n), type := pn]]

The overall structure of this transformation is deliberately similar to the version in the QVT-Partners ap-

proach of section 3.3. One important difference is that the repetitive code which builds up the column prefix

is factored out into a normal top-level function concat name — this contributes towards making the

transformation approximately 10% smaller than the QVT-Partners approach equivalent.
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A slight difference between the MT transformation and the QVT-Partners approach equivalent is that the

User Type Attr To Column rule produces a list which contains list of columns. The outer list will

be of length CA.len(), with each entry in the list being of arbitrary length. Consequently the flatten

function call in line 24 is necessary to remove the nesting that will be present if the User Type Attr To Column

rule is called.

4.6. Running a transformation

Details of how to run a model transformation, including details such as the format of its inputs and outputs

and so on, are surprisingly absent from descriptions of the majority of model transformation approaches.

Since this is one of the most important practical aspects of model transformations, I believe it is important

to be explicit about how transformations are run. In this subsection I detail the process of running a MT

transformation.

Running a transformation in MT involves instantiating a transformation class and passing it model ele-

ments. The transformation then executes, attempting to find a rule to transform each element in the root

set of source elements. If the transformation is successful in transforming the root set of elements, a trans-

formation object will be returned. The transformation object can then be queried to find the target model

elements produced and the corresponding tracing information. The format of MT’s inputs and outputs is

simple. Source elements must be instances of elements defined in a TM.model class block (note that

built-in Converge types such as strings and ints are defined to be valid TM model elements). Similarly target

elements will be TM model elements.

The following example creates a simple input model and then executes the Classes To Tables

transformation:

dog := Simple_UML.Class("Dog")
person := Simple_UML.Class("Person")

dog.attrs.append(Simple_UML.Attribute("name", Simple_UML.String))
dog.attrs.append(Simple_UML.Attribute("owner", person))

person.attrs.append(Simple_UML.Attribute("name", Simple_UML.String))
person.attrs.append(Simple_UML.Attribute("age", Simple_UML.Integer))

transformation := Classes_To_Tables(dog)

The target elements produced by the transformation can be accessed via the get target function. Since

both the source and target elements are TM model elements, one can apply the standard TM visualization to

our example. The source model is shown in figure 5, with the target model in figure 6. Note that the colours

given to the source and target models will be used in the remainder of this paper: source elements are shown

in blue, target elements in green.

If an element passed to the transform function can not be transformed by any of the available rules,

an exception is raised showing the offending element(s) and the transformation is aborted. Users may catch

such an exception if desired, however one may reasonably ask why the transformation does not attempt to

recover gracefully in such instances. Unfortunately this seems to be unrealistic in the general case for the

following reason. Since the transform function is called with the expectation that it will return a result,

when it fails to find a suitable rule to transform a given element it is unable to fulfil the callers expectation

that an element will be returned. In order to maintain this expectation, transform could conceivably

return a ‘dummy’ target element as a placeholder. However such a dummy element would be unlikely to

satisfy the constraints on the target meta-model, and would thus generally cause an exception to be raised.
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:Class

mod_id = "10" 
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attrs
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attrs
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mod_id = "9" 
name = "String"
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mod_id = "11" 
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:Attribute
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name = "name"

attrs
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mod_id = "15" 
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mod_id = "8" 
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Figure 5: Source model.

In the, probably small, number of situations where the dummy element did not cause an error, it is then less

than clear that the resulting target model will be of significant use to the user. Section 6.3 shows an example

of a ‘default’ rule which guarantees that the transform function can not fail.

5. Tracing information

In this section I describe how MT deals with tracing information. First I show how tracing information is

visualized, then describe the standard mechanism for creating it, before showing how the user can augment

or override the default tracing information created.

5.1. Visualizing tracing information

Section 4.6 showed how a MT transformation can be run, and used the default visualization capabilities of

TM to visualize the source and target models of a transformation. However, MT transformation instances

also store tracing information (see section 4.1) relating source and target elements. Visualizing tracing

information is an interesting challenge, and one that has hitherto received scant attention in the setting

of model transformations. MT and TM cooperate together to present a simple visualization of tracing

information that also allows users to build up a detailed picture of how the transformation executed.

In order to visualize tracing information, one needs to understand how this information is stored. Trans-
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:Table

mod_id = "19" 
name = "Dog"

:Column

mod_id = "16" 
type = "String" 
name = "name"

cols

:Column

mod_id = "17" 
type = "String" 
name = "owner_name"

cols

:Column

mod_id = "18" 
type = "Integer" 
name = "owner_age"

cols

Figure 6: Target model.

formation instances contain two separate lists of equal length related to tracing information. The first list

contains tuples (encoded as lists) relating source and target elements. The second list contains the name of

the transformation rule which created the corresponding entry in the first list. The fact that they are stored

separately is a simple implementation detail — conceptually these two lists can be considered to constitute

one single piece of information.

The TM.Visualizermodule defines a function visualize trace(transformation)which

takes a transformation instance and visualizes it complete with tracing information. The result of visualizing

the tracing information for the example model of section 4.6 can be seen in figure 7. The original source

model is on the left in blue, with the target model on the right in green. The black lines between source

and target elements are the traces between source and target elements. Individual traces always run from a

single source element to a single target element. Each trace has a name of the form tn where n is an integer

starting from 1. The integer values reflect the traces position in the execution sequence; trace numbers can

be compared to one another to determine whether a rule execution happened earlier or later in the execution

sequence. Trace names can be looked up in the ‘Tracing’ table at the top right of figure. The tracing table

contains the name of each rule which was executed at least once during the transformation. Against each

rule name are the names of traces; each trace name represents an execution of that rule. Note that a single

rule execution can create more than one trace; however each trace created in a single execution will share

the same name.

Although the visualization of tracing information may seem simple, it allows one to infer a great deal of

useful information about the execution of a transformation. This information is useful both for analysis and

debugging of a transformation. At a simple level, one can use the names of tracing information to determine

which rule consumed which source elements and produced which target elements. For example the ‘t1’ trace

from the source class to the target table is a result of the Class To Table rule. One can also deduce

from this traces name that it was the result of the first rule execution in the system. Similarly since two

traces share the name ‘t4’, one can determine that a rule – in this case User Type Attr To Column

– created more than one target element in a single execution.

Although this subsection has talked about how tracing information is stored and visualized, and what

the visualization can be used for, it has not discussed how the tracing information is created. Section 5.2

explains how tracing information is created, and how users can control its creation.

5.1.1. Alternative visualizations

The tracing information in figure 7 is visualized with the source and target models formatted exactly as they

were when presented individually in figures 5 and 6. Whilst this visualization works well for small trans-
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Class_To_Table: t1

Primitive_Type_Attr_To_Column: t2, t4, t5

User_Type_Attr_To_Column: t3

Figure 7: Visualizing tracing information.

formations, larger transformations with greater volumes of tracing information tend to become unreadable

as the strict formatting of the source and target models forces traces to overlap with each other. There is

thus an alternative form of visualization available via the visualizers visualize trace clustered4

function where the source and target elements can be formatted directly alongside one another. Figure 8

shows this alternative visualization. Note that the diagram colouring now becomes critical to distinguish

source and target model elements from one another. Due to its general lack of cluttering, this is generally

the preferred visualization when tracing information is involved, and is used in the remainder of this paper.

5.2. Standard tracing information creation mechanism

Section 5.1 showed how MT and TM can visualize the tracing information automatically created by MT

transformations. In this subsection I outline how the default tracing information is created by MT. Most, if

not all, model transformation approaches are currently somewhat vague on this subject. There is therefore

little prior art to use as a basis, or point of comparison, for any such mechanism. MT takes a simple approach

to the problem to ensure that its behaviour is predictable from a users perspective – this is vital to ensure that

4The ‘clustered’ part of this function name reflects the mechanism used in GraphViz to enable this layout.
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Figure 8: Visualizing tracing information with the free layout of source and target model elements.

users can make informed choices about when and where to add or override tracing information (see section

5.3).

As standard, tracing information in a rule is created between all source elements matched by non-nested

model element patterns, and all target elements produced by model element expressions, nested or otherwise.

Non-nested model element patterns are defined to be those which are not nested within another model

element pattern. For example in the following model element pattern, tracing information will be created

only from instances of the Dog model class:

(Dog, <d>)[name == <n>, owner == (Person)[name != "Fred"]]

It may initially seem somewhat arbitrary to try to minimise the source elements used in tracing information

whilst maximising the target elements used. The reason for minimising the source elements used is due to

a simple observation: individual source elements are often matched in more than one rule execution. This

then causes some source elements to be the source for large numbers of traces which can obscure the result

of the transformation. Empirical observations of MT transformations suggest that when model elements are

matched via nested model element patterns, they are also matched as a non-nested model element pattern

during a separate rule execution. In the case of target elements, a different challenge emerges. Rather

than trying to create an ‘optimum’ amount of traces one wishes to ensure that, as far as is practical, every

target element has at least one trace associated with it. Since target element expressions are inherently

localised to individual rule executions it is highly unusual for an element created by such an expression to

21



be the target of more than one trace. Thus it is important to ensure that nested target element expressions

have traces associated with them. Section 7.16 shows how nested model element patterns can be made to

contribute towards tracing information if desired (that section also shows the large number of extra, largely

uninteresting, traces created).

The standard tracing information mechanism can be seen in practice by comparing the visualized trace

information of figure 8 with the transformation that created it in section 4.5.

5.3. Augmenting or overriding the standard mechanism

Whilst the standard tracing creation mechanism performs well in many cases, users may wish to augment,

or override, the default tracing information created. Users may wish to add extra tracing information to

emphasise certain relationships within a transformation, or to remove certain tracing information that un-

necessarily clutters the transformation visualization. MT provides a simple capability for augmenting, or

overriding, the default tracing information created by the standard mechanism.

For example, using the MT example presented in section 4.5 as a base, imagine that one wishes to add

extra traces between the source class and all target columns. In order to achieve this one makes use of

the optional tracing add clause on MT rules. This clause must contain a single Converge expression

which evaluates to a tuple relating source and target model elements. The tuple is then added to the tracing

information created automatically by the rule. The new Class To Table rule looks as follows:

rule Class_To_Table:
srcp:

(Class, <c>)[name == <n>, attrs == <A>]

tgtp:
(Table)[name := n, cols := columns]

tgt_where:
columns := []
for attr := A.iterate():
columns.extend(self.transform([""], [attr]).flatten())

tracing_add:
[[c], columns]

Note that since c is a single element it needs to be placed within a list to create a valid trace tuple. The

tuple in the tracing add clause is then added to the tracing information automatically created by the

rule – hence the new traces have the same tracing number (in this case ‘t1’) as the default traces for the rule

execution. Figure 9 shows the resulting visualization of the transformation with the extra tracing information

added in.

In some circumstances, users may wish to entirely override the default tracing information, rather than

simply augmenting it. The tracing override clause in a rule turns off the rules default tracing gener-

ation, replacing it with the tuple returned by the single Converge expression in the clause. tracing add

and tracing override are thus mutually exclusive clauses within a rule. Whilst maintaining the ad-

ditional tracing information created by our modified Class To Table rule, assume one now wishes

the other two rules in the transformation to be prevented from generating any tracing information at all. In

order to achieve this, tracing override clauses which contain tuples relating the empty set of source

elements to the empty list of target elements are defined. The modified rules are as follows:

rule User_Type_Attr_To_Column:
srcp:
(String, <prefix>)[]
(Attribute)[name == <n>, type == (Class)[name == <cn>, attrs == <CA>]]
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Figure 9: Augmenting the default tracing information.

tgtp:
self.transform([concat_name(prefix, n)], [ca]) for ca := CA.iterate()

tracing_override:
[[], []]

rule Primitive_Type_Attr_To_Column:
srcp:
(String, <prefix>)[]
(Attribute)[name == <n>, type == (PrimitiveDataType)[name == <pn>]]

tgtp:
[(Column)[name := concat_name(prefix, n), type := pn]]

tracing_override:
[[], []]

The result of running the transformation with its three rules altered can be seen in figure 10. As this example

shows, users can completely customise the tracing information created by MT to their own needs.

6. Towards more sophisticated transformations

The previous section introduced the basics of the MT language, via a simple version of the running example.

In this section, I delve into some of the more advanced aspects of the MT language which allow more
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:Class

mod_id = "10" 
name = "Dog"

:Attribute

mod_id = "12" 
name = "name"

attrs

:Attribute

mod_id = "13" 
name = "owner"

attrs

:Table

mod_id = "19" 
name = "Dog"

t1

:Column

mod_id = "16" 
type = "String" 
name = "name"

t1

:Column

mod_id = "17" 
type = "String" 
name = "owner_name"

t1

:Column

mod_id = "18" 
type = "Integer" 
name = "owner_age"

t1

:PrimitiveDataType

mod_id = "9" 
name = "String"

type

:Class

mod_id = "11" 
name = "Person"

type

:Attribute

mod_id = "14" 
name = "name"

attrs

:Attribute

mod_id = "15" 
name = "age"

attrs

type

:PrimitiveDataType

mod_id = "8" 
name = "Integer"

type

cols colscols

Tracing
Class_To_Table: t1

Figure 10: Augmenting and overriding the default tracing information.

complex and sophisticated transformations to be expressed. In order to explore these aspects fully, I first

present a more complex version of the running example.

6.1. Extending the running example

In this subsection I define the ‘advanced’ variant of the running example. The overall idea is, as before,

to translate UML-esque class models into relational database models. In order to make the example more

challenging, the ‘Simple UML’ meta-model is extended in several ways as can be seen in figure 11. These

extensions extend the required transformation as follows:

• Associations are added to the meta-model. Associations add a significant degree of complexity to the

meta-model because a classes ‘real’ attributes are determined by the union of the attributes it directly

links to, and the associations for which it is a source.

• Attributes can be marked as being part of a classes primary key by having the is primary attribute

set to true. Note that associations play no part in determining a classes primary key.

• Classes which have the is persistent attribute set to true will be converted to tables; references

to such classes (via attribute types or associations) will result in the classes primary key attributes be-

ing to converted to columns used as a foreign key. Classes which do not have the is persistent
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MObject

mod_id : String

to_string()
initialize()

of

Classifier

name : String

initialize()

Attribute

is_primary : bool
name : String

initialize()

PrimitiveDataType

 

initialize()

Class

is_persistent : bool

initialize()

Association

 

initialize()

attrs
* ordered

typedest src

Figure 11: Extended ‘Simple UML’ meta-model.

attribute set to true will not be transformed into tables, and will have their attributes drilled into, as in

the simple transformation.

The relational database meta-model is also extended, as shown in figure 12. The extended meta-model

allows tables to define primary keys and foreign keys. Note that, since the TM data model allows nested

data types to be expressed, foreign keys are defined as a sequence of sequences of columns.

6.2. Pattern multiplicities

One of the problems noted in section 3.4.2 with the QVT-Partners approach is that model element patterns

can only match against a fixed number of elements. Some very simple transformations naturally consist

only of rules which match against a fixed number of elements in the source model. However, many, if

not most, non-trivial transformations contain rules which need to match against an arbitrary number of

source elements. Expressing such transformations in the QVT-Partners approach requires cumbersome

work arounds.

To solve this problem, MT adapts the concept of multiplicities found in many textual regular expression

languages. Each source pattern in MT can optionally be given a multiplicity. Multiplicities specify how

often a given source pattern can, or must, match against its source elements. Multiplicities are therefore a

constraint on the universe of model elements passed in the parameter corresponding to the patterns position

in the srcp clause. Each pattern in a srcp clause can optionally be suffixed with a multiplicity and
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MObject

mod_id : String

to_string()
initialize()

of

Table

fkeys : Seq(Seq(Column))
name : String

initialize()

Column

type : String
name : String

initialize()

pkey
* ordered

cols
* ordered

Figure 12: Extended relational database meta-model.

an associated variable binding. The following example of a pattern multiplicity will match zero or more

associations, assigning the result of the match to the assocs variable:

(Association, <assoc>)[name == n] : * <assocs>

The syntax for multiplicities is inspired by Perl-esque regular expression languages. The following mul-

tiplicities, and possible qualifiers, are defined in MT:

m Must match exactly m source elements.

* Will match against zero or more source elements.

* ! Must match against every source element.

* ? Will match against the minimum possible number of source elements.

m .. n Must match no less than m, and no more than n source elements.

m .. n ? Will match against the minimum number of source elements once m elements have been

matched, but will not exceed n matches.

m .. * Must match no less than m elements.

m .. * ? Will match against the minimum number of source elements once m elements have been

matched.

As with Perl-esque textual regular expressions, multiplicities default to ‘greedy’ matching — that is, they

will match their pattern against the maximum number of elements that causes the multiplicity to be satisfied.

When backtracking in a srcp clause calls upon a multiplicity to provide alternative matches, it then returns

matches of lesser lengths. The concept of greedy and non-greedy matching is however much simpler in the

case of textual regular expressions since text is an inherently ordered data type. Thus the length of matches

is calculated by determining how many characters past a fixed starting point a match extends. In contrast

to this, model elements have no order with respect to one another, and thus MT has to take a very different

approach to the concepts of greedy and non-greedy matches. MT defines the length of a multiplicities match

as the number of times the multiplicity matched; however since model elements are not ordered, this does

not present an obvious way of returning successively smaller matches. In order to resolve this problem in

the case of greedy matching, MT creates the powerset of matches, and iterates over it, successively returning
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sets with smaller number of elements when called upon to do so. Note that whilst MT guarantees that with

greedy matching |matchn| ≥ |matchn+1|, it makes no guarantees about the order that sets of equal size in

the powerset will be returned.

The ? qualifier reverses the default greedy matching behaviour, attempting to match the minimum number

of elements that causes the multiplicity to be satisfied, successively returning sets of greater size from the

powerset when called upon to do so. The ! qualifier is the ‘complete’ qualifier which ensures that the pattern

matches successfully against every model element passed in the patterns appropriate argument. Whilst the ?

qualifier, in a slightly different form, is standard in most textual regular expression languages, the ! qualifier

is specific to MT.

6.2.1. Variable bindings in the presence of multiplicities

Variable bindings in patterns suffixed by multiplicities need to be treated differently from variables in bare

patterns. When a multiplicity is satisfied, its associated variable binding is assigned a list of dictionaries.

Each dictionary contains the variable bindings from a particular match of the pattern. The need for different

treatment of variable bindings inside and outside multiplicities is most easily shown by examining what

would happen if they were treated identically. Consider the following incorrect MT code:

(Association)[src == (Class)[name = n]] : * <assocs>
(Class, <c>)[name == n]

A first glance may suggest that when the rule these patterns are a part of runs, c will be set to the class

which has the same name as the associations source class. However, the example is nonsensical since n has

no single value. Indeed n may have no value at all, since it will be bound to zero or more class names as the

multiplicity attempts to match the model pattern as many times as possible. As this example shows, n has

no meaning outside of the multiplicity it is bound in; however it clearly has a meaning in the context of the

multiplicity.

In order to resolve this quandary, MT takes a two stage approach. Within multiplicities, local variable

bindings are accessed as normal. At the end of each successful match, MT creates a dictionary relating

variable binding names to their bound values. The list of these values is then assigned to the variable binding

associated with the multiplicity. Thus the variable bindings for each individual match can be accessed. To

illustrate this, I reuse the original multiplicities example:

(Association)[src == (Class)[name = <n>]] : * <assocs>

Printing the assocs variable would lead to output along the following lines:

[Dict{"n" : "orders"}, Dict{"n" : "parts"}]

The MT module provides a convenience function mult extract(bindings, name) which iterates

over a list of dictionaries, as generated by a multiplicity, and extracts the particular binding name from each

dictionary, returning a list. A standard idiom in MT is to use this function with a self variable binding in

a model element pattern, which allows a user to determine all the model elements matched by a particular

pattern multiplicity.

6.3. Extended example

In this subsection I show the MT version of the extended example. The added complexity in this version of

the transformation over the original simpler version is due to three considerations:
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1. Classes can not be transformed in isolation – all associations for which a class is the source must be

considered in order that the table that results from a class contains all necessary columns.

2. Classes which are marked as persistent must be transformed substantially different from those not

marked as persistent.

3. Foreign keys and primary keys reference columns. It is important that the column model elements

pointed to by a table are the appropriate model elements, and not duplicates. Th

The MT example is as follows:

$<MT.mt>:
transformation Classes_To_Tables

rule Persistent_Class_To_Table:
srcp:
(Class, <c>)[name == <n>, attrs == <attrs>, is_persistent == 1]
(Association, <assoc>)[src == c] : * <assocs>

tgtp:
(Table)[name := n, cols := cols, pkey := pkeys, fkeys := fkeys]

tgt_where:
cols := []
pkeys := []
fkeys := []
for aa := (attrs + MT.mult_extract(assocs, "assoc")).iterate():

a_cols, a_pkeys, a_fkeys := self.transform([""], [aa])
cols.extend(a_cols)
pkeys.extend(a_pkeys)
fkeys.extend(a_fkeys)

rule Primary_Primitive_Type_Attribute_To_Columns:
srcp:
(String, <prefix>)[]
(Attribute)[name == <attr_name>, type == (PrimitiveDataType)[name == \

<type_name>], is_primary == 1]

tgtp:
[col]
[col]
[]

tgt_where:
col := (Column)[name := concat_name(prefix, attr_name), type := type_name]

rule Non_Primary_Primitive_Type_Attribute_To_Columns:
srcp:
(String, <prefix>)[]
(Attribute)[name == <attr_name>, type == (PrimitiveDataType)[name == \

<type_name>], is_primary == 0]

tgtp:
[(Column)[name := concat_name(prefix, attr_name), type := type_name]]
[]
[]

rule Persistent_User_Type_Attribute_To_Columns:
srcp:
(String, <prefix>)[]
(Attribute, <attr>)[name == <attr_name>, type == (Class, <class_>) \

[name == <class_name>, attrs == <attrs>, is_persistent == 1]]

tgtp:
cols
[]
[cols]
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tgt_where:
cols := []
for attr := attrs.iterate():

a_cols, a_pkeys, a_fkeys := self.transform([concat_name(prefix, \
attr_name)], [attr])

cols.extend(a_pkeys)

rule Non_Persistent_User_Type_Attribute_To_Columns:
srcp:
(String, <prefix>)[]
(Attribute, <attr>)[name == <attr_name>, type == (Class, <class_>) \

[name == <class_name>, attrs == <attrs>, is_persistent == 0]]

tgtp:
cols
[]
[]

tgt_where:
cols := []
for attr := attrs.iterate():

a_cols, a_pkeys, a_fkeys := self.transform([concat_name(prefix, \
attr_name)], [attr])

cols.extend(a_cols)

rule Persistent_Association_To_Columns:
srcp:
(String, <prefix>)[]
(Association)[name == <attr_name>, dest == (Class, <class_>)[name == \

<class_name>, attrs == <attrs>, is_persistent == 1]]

tgtp:
cols
[]
[cols]

tgt_where:
cols := []
for attr := attrs.iterate():

a_cols, a_pkeys, a_fkeys := self.transform([concat_name(prefix, \
attr_name)], [attr])

cols.extend(a_pkeys)

rule Association_Non_Persistent_Class_To_Columns:
srcp:
(String, <prefix>)[]
(Association)[name == <attr_name>, dest == (Class, <class_>)[name == \

<class_name>, attrs == <attrs>, is_persistent == 0]]
(Association, <assoc>)[src == class_] : * <assocs>

tgtp:
cols
[]
fkeys

tgt_where:
cols := []
fkeys := []
for aa := (attrs + MT.mult_extract(assocs, "assoc")).iterate():

a_cols, a_pkeys, a_fkeys := self.transform([concat_name(prefix, \
attr_name)], [aa])

cols.extend(a_cols)

rule Default:
srcp:
(MObject)[]

tgtp:
null
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In order to run this transformation, a list of top-level elements (classes and associations) should be passed

to it. Unlike the simple version of the example, there is no need to designate one particular class as being

the ‘start’ class for the transformation. The output of the transformation will consist of a number of tables.

One feature in particular requires explanation to make sense of this transformation. Many of the rules have

more patterns than there are arguments passed to the transform function. For example, the Association Non Persistent Class To Columns

rule defines three patterns but the transform function is never called with more than two arguments – it

would thus seem impossible for this rule to ever execute. However, MT defines that when a rule is passed

fewer arguments than it has parameters, the root set of source elements is substituted for each missing argu-

ment. This is effectively an escape mechanism allowing rules access to the complete source graph, which .

Without such a mechanism, transformations such as this would be complicated by the need to continually

pass around the root set of source elements.

The overall structure of this transformation is hopefully relatively straight forward. The Persistent Class To Table

rule ensures that each class marked as being persistent in the source model is transformed into a table in

the target model. It takes a persistent class, and finds all of the associations for which the class is a source;

it then iterates over the union of the classes’ attributes and associations for which it is a source, transform-

ing them into columns. All of the other rules take in a string prefix (representing the column prefix being

constructed as the transformation drills into user types), and an attribute or association (and, in the case

of the Association Non Persistent Class To Columns rule, an additional set of associa-

tions) and produces three things: a list of normal table columns; a list of primary key columns; a list of

foreign key columns. The final rule in the transformation Default is a ‘catch all’ rule that takes in model

elements from the root set which not matched by other rules – non-persistent classes and associations – and

transforms them into the null object; this causes MT to discard the result of the transformation rule, and

not create any tracing information. The Default rule is necessary to ensure that such elements in the root

set of source elements do not cause the transformation to raise a Can not transform exception.

Figure 13 shows a visualization of a particular execution of the transformation. The size of the source

model has been increased to the maximum that can be sensibly visualized on paper, to provide some reas-

surance that MT can cope with transformations beyond a small handful of elements. Note that when freed

of paper-based space constraints, and the visualization technique can easily cope with much larger source

models.

6.4. Pruning the target model

One thing not immediately obvious from viewing figure 13 is that the final target model is not a union of the

model elements produced in every rule execution. In fact, if one were to take the union of model elements

produced by every rule execution, the target model would contain many superfluous model elements. The

reason for this can be seen by examining a rule such as Persistent Association To Columns.

This rule calls the transform function but then effectively discards some of the model elements pro-

duced by this call (the rule in question cares only about primary key columns, and ignores non-primary key

columns). Knowing that, as an implementation detail, TM assigns each new model element a unique and

monotonically increasing identifier, one can see from figure 13, that some elements have been discarded,

due to the non-contiguous model identifiers in target model elements. For example, the lowest identifier for

a target model element is 29 and the highest 47, but identifiers such as 42 are missing in the figure – these

are elements that were produced by a rule execution, but discarded by other rules.

MT’s approach to achieving the final target model involves firstly taking the model elements produced
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:Class

mod_id = "11" 
name = "Customer" 

is_persistent = 1

:Attribute

mod_id = "12" 
is_primary = 1
name = "name"

attrs

:Table

mod_id = "37" 
name = "Customer"

t1

:PrimitiveDataType

mod_id = "10" 
name = "String"

type

:Column

mod_id = "29" 
type = "String" 
name = "name"

t2

:Class

mod_id = "13" 
name = "Order" 
is_persistent = 1

:Attribute

mod_id = "14" 
is_primary = 1
name = "date"

attrs

:Attribute

mod_id = "15" 
is_primary = 1
name = "order_num"

attrs

:Table

mod_id = "43" 
name = "Order"

t12

:PrimitiveDataType

mod_id = "9" 
name = "Integer"

type

:Column

mod_id = "30" 
type = "Integer" 
name = "orders__date"

t4

:Column

mod_id = "38" 
type = "Integer" 
name = "date"

t13type

:Column

mod_id = "31" 
type = "Integer" 
name = "orders__order_num"

t5

:Column

mod_id = "39" 
type = "Integer" 
name = "order_num"

t14

:Class

mod_id = "16" 
name = "Part" 
is_persistent = 1

:Attribute

mod_id = "17" 
is_primary = 1

name = "id"

attrs

:Attribute

mod_id = "18" 
is_primary = 0
name = "name"

attrs

:Attribute

mod_id = "19" 
is_primary = 0
name = "price"

attrs

:Table

mod_id = "47" 
fkeys = []
name = "Part"

t19

type

:Column

mod_id = "40" 
type = "Integer" 
name = "parts__id"

t16

:Column

mod_id = "44" 
type = "Integer" 

name = "id"

t20type

:Column

mod_id = "45" 
type = "String" 
name = "name"

t21 type

:Column

mod_id = "46" 
type = "Integer" 
name = "price"

t22

:Association

mod_id = "26" 
name = "orders"

src dest

t1

t3 t3

:Association

mod_id = "27" 
name = "parts"

srcdest

t12

t15

:Association

mod_id = "28" 
name = "address"

src

:Class

mod_id = "20" 
name = "Address" 
is_persistent = 0

dest

t1

:Column

mod_id = "32" 
type = "String" 
name = "address__house"

t6

:Column

mod_id = "33" 
type = "String" 
name = "address__addr2"

t6

:Column

mod_id = "34" 
type = "String" 
name = "address__addr3"

t6

:Column

mod_id = "35" 
type = "String" 
name = "address__county"

t6

:Column

mod_id = "36" 
type = "String" 
name = "address__postcode"

t6

:Attribute

mod_id = "21" 
is_primary = 0
name = "house"

attrs

:Attribute

mod_id = "22" 
is_primary = 0
name = "addr2"

attrs

:Attribute

mod_id = "23" 
is_primary = 0
name = "addr3"

attrs

:Attribute

mod_id = "24" 
is_primary = 0
name = "county"

attrs

:Attribute

mod_id = "25" 
is_primary = 0
name = "postcode"

attrs

typet7 type t8type t9type t10type t11 fkeys

cols cols

pkeycolscols cols cols cols cols fkeys

cols

pkeycols pkey colspkeycolscols cols

Tracing
Persistent_Class_To_Table: t1, t12, t19

Primary_Primitive_Type_Attribute_To_Columns: t2, t4, t5, t13, t14, t16, t20

Persistent_Association_To_Columns: t3, t15

Association_Non_Persistent_Class_To_Columns: t6

Non_Primary_Primitive_Type_Attribute_To_Columns: t7, t8, t9, t10, t11, t17, t18, t21, t22

Figure 13: An example execution of the extended transformation.
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by transforming each element in the root source set. It then then uses these elements as the root nodes in

a simple graph walking scheme. Only target model elements which are reachable from these elements are

considered to be in the eventual target model. Note that scheme does allow the eventual target model to

consist of unconnected subgraphs.

6.5. Combinators

One of the most interesting features in the QVT-Partners approach are combinators. Section 3.3 showed the

or combinator; the QVT-Partners approach also defines and and not combinators. The combinators work

largely as one might expect given their names. For example the and combinator takes two or more rule

invocations, and succeeds only if each invocation succeeds.

Since MT rules are able to utilise the standard Converge notions of success and failure, the base com-

binators from the QVT-Partners approach can be encoded directly in MT using the not, disjunction and

conjunction operators for not, or, and and respectively. The following contrived transformation rule will

match against a class iff one of its attributes can be transformed by one or the other of the R1 or R2 rules:

rule X:
srcp:

(Class)[attributes = {a | O}]

src_when:
self.R1(a) | self.R2(a)

The QVT-Partners approach defines extra semantics for the and combinator which automatically merges to-

gether the outputs of different rules. In the general case, I believe that such functionality is undesirable since

the merging of outputs can only sensible be determined at the fine-grained level by transformation writ-

ers themselves. However building a ‘merging’ combinator on top of the existing functionality is relatively

simple, since it merely involves storing and then merging the result of each expression in a conjunction.

Although the treatment of combinators in MT is currently simplistic, the direct encoding of these features

in terms of primitive Converge features is interesting. Whereas the QVT-Partners combinators are new

primitives in the language, MT is able to directly utilise Converge features. I believe a fruitful area of future

research will be to investigate more powerful combinators, with a view to including the most useful in a

standard library.

7. Implementation

In this section I discuss some of the most interesting aspects of the MT implementation. Since the imple-

mentation follows the typical structure of DSL implementation functions – as seen concretely in TM [Tra05]

– many aspects of the implementation have already been presented elsewhere. In this section I outline the

novel aspects of the implementation, relative to what has already been presented.

7.1. MT Grammar

Since any discussion of MT’s implementation necessarily references MT’s grammar, I first present the CPK

grammar:

mt_rules ::= "TRANSFORMATION" "ID" "NEWLINE" mt_rule { "NEWLINE" mt_rule }*

mt_rule ::= "RULE" "ID" ":" "INDENT" mt_in "NEWLINE" mt_out "DEDENT"
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mt_in ::= mt_inp mt_inc
mt_inp ::= "SRCP" ":" "INDENT" pt_ipattern { "NEWLINE" pt_ipattern }* "DEDENT"
mt_inc ::= "NEWLINE" "SRC_WHEN" ":" "INDENT" pt_ipattern "DEDENT"

::=

mt_tgt ::= mt_tgtp mt_tgtw mt_tracing
mt_tgtp ::= "TGTP" ":" "INDENT" mt_tgt_expr { "NEWLINE" expr }* "DEDENT"
mt_tgtw ::= "NEWLINE" "TGT_WHERE" ":" "INDENT" expr { "NEWLINE" expr }* "DEDENT"

::=
mt_tracing ::= "NEWLINE" "TRACING_ADD" ":" "INDENT" expr "DEDENT"

::= "NEWLINE" "TRACING_OVERRIDE" ":" "INDENT" expr "DEDENT"
::=

pt_ipattern ::= pt_ipattern_expr pt_ipattern_qualifier

pt_ipattern_expr ::= pt_iobj_pattern %precedence 10
::= pt_iset_pattern %precedence 10
::= pt_ivar %precedence 10
::= expr

pt_ipattern_qualifier ::= ":" pt_multiplicity "<" "ID" ">"
::=

pt_multiplicity ::= pt_multiplicity_upper_bound
::= expr "!"
::= "*" "!"
::= expr "." "." pt_multiplicity_upper_bound

pt_multiplicity_upper_bound ::= expr
::= expr "?"
::= "*"
::= "*" "?"

pt_iobj_pattern ::= "(" pt_iobj_pattern_self ")" "[" pt_iobj_slot
pt_iobj_pattern_comparison pt_ipattern_expr { ","
pt_iobj_slot pt_iobj_pattern_comparison
pt_ipattern_expr }* "]"

::= "(" pt_iobj_pattern_self ")" "[" "]"
pt_iobj_pattern_self ::= "ID" "," "<" "ID" ">"

::= "ID"
::=

pt_iobj_slot ::= "ID"
::= "ID" "(" expr { "," expr }* ")"
::= "ID" "(" ")"

pt_iobj_pattern_comparison ::= "=="
::= "!="
::= "<"
::= ">"
::= "<="
::= ">="

::= "IS"

pt_iset_pattern ::= "Set{" pt_iset_pattern_elems "|" pt_iset_pattern_elems "}"
::= "Set{" pt_iset_pattern_elems "}"

pt_iset_pattern_elems ::= pt_ipattern { "," pt_ipattern }*
::=

pt_ivar ::= "<" "ID" ">"

mt_tgt_expr ::= expr mt_tgt_expr_qualifier
mt_tgt_expr_qualifier ::= "FOR" expr

::=

expr ::= pt_mep_pattern

pt_mep_pattern ::= "(" "ID" ")" "[" "ID" ":=" expr { "," "ID" ":=" expr }* "]"
::= "(" "ID" ")" "[" "]"

33



7.2. Outline of the implementation

The translation of an MT.MT block into Converge is relatively straight forward at a high-level. An MT

transformation is translated to a single class with a number of standard functions (e.g. transform and

get target, as seen earlier), fields for holding tracing information and so on, and a function for each

rule in the transformation. The translation records the names of all transformation rules as a list in the

rule names field within the transformation class; the list retains the rules’ order in the source file.

The following subsections show how rules are translated and the definitions of the standard functions.

7.3. Translating rules

The translation of a rule into a function conceptually follows the path outlined by example in section 4.1.

The translated function takes a variable number of arguments, each of which must be a list containing the

‘universe’ of elements which each pattern in the rule can match against. If the translated source model

clauses fail to match against the arguments passed to the translated function, the rule fails. If these clauses

succeed, they return the set of model elements matched by model element patterns, and a dictionary of

bindings. The dictionary of bindings is passed to the translated tgtp and tgtp where clauses which

produce and return a list of target elements. The matched model element patterns and target elements are

then used to create a suitable tuple for the transformations tracing execution, before the rule returns the

target elements produced.

A simplified version of the outer translation of a rule is as follows:

1 func _t_mt_rule(node):
2 // mt_rule ::= "RULE" "ID" ":" "INDENT" mt_src "NEWLINE" mt_out "DEDENT"
3 return [|
4 bound_func $<<CEI.name(node[2].value)>>(*objs):
5 if not mep_objects, bindings := $<<self.preorder(node[5])>>.apply(objs):
6 return fail
7

8 if not target_elements := $<<self.preorder(node[7])>>(bindings):
9 raise Exceptions.Exception(Strings.format(\${}<<CEI.lift( \

10 "Failed to generate anything for ’%s’.")>>, objs.to_str()))
11

12 self._tracing.append([mep_objects, target_elements])
13

14 return target_elements
15 |]

Line 5 translates the rules source model clauses; note that if the source model clauses fail, the entire rule

fails. If the source model clauses succeed, then the translation of the target model clauses in line 8 is

executed. Failure of the target model clauses is deemed a fatal error, and an exception is raised. Note that

there is no concept of backtracking between the target and source model clauses – once the source model

clause has successfully matched, the target model clauses are executed. The final part of the rule in line 12

creates the necessary tracing information.

The translation of a rules source model clauses contains subtleties to ensure that backtracking amongst

patterns works correctly; this is explored in the upcoming subsections. Since the target model clauses

are essentially already fairly standard imperative code (with the addition of model element expressions),

their translation is largely uninteresting and consequently elided. However, the translation of all clauses

is complicated by the need to embed normal Converge code, and to ensure that there are no unintended

interactions between translated and embedded code (see sections 7.13 and 7.15).
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7.4. Translating a rules source model clauses

A rule potentially contains two source model clauses: the srcp and srcp when clauses, the latter of

which is optional. Each pattern in the srcp clause is translated into a generator function which takes in a

list of model elements, and a Converge dictionary of bindings. Each time the pattern matches successfully

it returns a list containing three items: a list of the model elements matched by model element patterns, a

dictionary of new bindings, and the object the pattern evaluated to. The last of these is largely an internal

detail needed to support the nesting of patterns. Section 7.5 contains more detail on the translation of

patterns.

Since each pattern is a generator, it needs to be placed within a for construct to ensure that possible

matches can be generated. When more than one pattern is present in a srcp clause, patterns must be trans-

lated ‘inside out’ into nested for constructs; that is, the first pattern will be the outermost for construct,

and the last pattern the innermost. This slightly complicates the translation, which iterates over the patterns

in the order they are presented in the parse tree. In order to achieve the desired effect, a standard idiom

is used. Patterns are first translated to a temporary list. The translated srcp when clause, if it exists, is

used as the innermost construct. The temporary list is then iterated over in reverse order with each iteration

placing the result of the previous iteration inside a for construct. This idiom is highly useful, and also

shows a simple example of a DSL translation where the translated code does not directly reflect the order

of its source. Noting that a lists riterate function iterates in reverse order over the list, the simplified

version of this translation is as follows:

translated patterns := [ordered translated patterns]
patterns expr := [| $<<self.preorder(src when clause)>> |]
for translated pattern := translated patterns.riterate():

patterns expr := [|
for $<<translated pattern>>:

$<<patterns expr>>
|]

This simple translation only deals with part of the problem caused when the failure of a pattern causes

backtracking to an earlier clause. As each pattern matches, it returns a list containing three items: a list

of the model elements matched by model element patterns, a dictionary of new bindings, and the object

the pattern evaluated to. As each pattern in the srcp clause is matched, the rules records of matched

model element patterns and variable bindings grow. When a pattern fails, the list of elements it matched by

model element patterns and variable bindings it created need to be ‘undone’ from the rules’ records. Since

the failure of one pattern may cause the failure of an arbitrary number of preceding patterns, the ‘undo’

mechanism also needs to work to an arbitrary depth.

MT makes use of Converge’s variable capturing and scoping rules to implement a simple and reasonably

efficient undoing mechanism. Each rule defines two variables matched mp elems and bindings

which store the rules evolving list of matched model pattern elements and variable bindings. These variables

are available to each translated pattern. Each translated pattern then defines two variables private to that pat-

tern (hidden via Converge’s scoping rules), named matched mp elems backup and bindings backup.

As the names of these variables may suggest, they are used to store the values of the matched mp elems

and bindings variables as they were before the pattern is matched; if the pattern did not match success-

fully or is required to generate new matches, they are used to restore their value. A slightly elided version

of the translation function is as follows:

func t mt src(node):
// mt src ::= mt srcp mt srcc
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// mt srcp ::= "SRCP" ":" "INDENT" pt spattern { "NEWLINE" pt spattern }* "DEDENT"

translated patterns := [ordered translated patterns]
if node[2].len() > 1:
// mt srcc ::= "NEWLINE" "SRC WHEN" ":" "INDENT" expr "DEDENT"
patterns expr := [|

if $<<self.preorder(node[2][5])>>:
return [&matched mp elems, &bindings]

|]
else:
// mt srcc ::=
patterns expr := [| return [&matched mp elems, &bindings] |]

for i := (translated patterns.len() - 1).to(-1, -1):
patterns expr := [|

if $<<CEI.lift(i)>> < &args.len():
elements := &args[$<<CEI.lift(i)>>]

else:
elements := &self. root set

matched mp elems backup := &matched mp elems
bindings backup := &bindings
for new matched mp elems, new bindings, matched elem := \

$<<translated patterns[i]>>(&bindings, elements):
&matched mp elems := &matched mp elems + new matched mp elems
&bindings := &bindings + new bindings
$<<patterns expr>>
&matched mp elems := matched mp elems backup
&bindings := bindings backup

|]

return [|
func (*args):

if args.len() > $<<CEI.lift(translated patterns.len())>>:
return fail

matched mp elems := Set{}
bindings := Dict{}

$<<patterns expr>>

return fail
|]

7.5. Translating patterns

In this subsection I show how patterns are translated in MT (the translation of pattern multiplicities is

detailed in section 7.11). Each pattern is translated into a generator function which takes in a list of model

elements, and a Converge dictionary of bindings. Each time the pattern matches successfully it returns a list

containing three items: a list of the model elements matched by model element patterns, a dictionary of new

bindings, and the object the pattern evaluated to.

Patterns can be any one of a number of pattern expressions: model element patterns, set patterns, variable

bindings, and normal Converge expressions. Pattern expressions may arbitrarily nest other pattern expres-

sions. Each pattern expression is translated to a generator which can generate zero or matches against given

model elements. The translation is complicated by the fact that nested pattern expressions are also genera-

tors; therefore when a pattern is asked by backtracking to generate new matches, the backtracking may need
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to resume several levels deep in a nested pattern expression.

All translated pattern expressions contain a wrapper which iterates over the objects passed to the pattern

and passes them one at a time to the pattern expression. Since the pattern expression is a generator, its result

is immediately yielded to the translated patterns caller. Noting that yield in Converge is an expression,

the outer translation is as follows:

func _t_pt_spattern(node):
// pt_spattern ::= pt_spattern_expr
return [|

func (bindings, elements):
for element := elements.iterate() & yield $<<self.preorder(node[1])>> \

(bindings, element)

return fail
|]

In the following subsections I detail how each type of pattern expression is translated by MT.

7.6. Translating variable bindings

As befits the simplest type of pattern expression, MT’s translation of variable bindings is simple:

1 func _t_pt_svar(node):
2 // pt_svar ::= "<" "ID" ">"
3

4 self._pattern_vars.add(node[2].value)
5 var_str := CEI.lift(node[2].value)
6 return [|
7 func (bindings, element):
8 if bindings.contains($<<var_str>>) & not bindings[$<<var_str>>] == element:
9 return fail

10 return [Set{}, Dict{$<<var_str>> : element}, element]
11 |]

Lines 8 and 9 check to see whether the variable in question has already been bound; if it has, the value of the

existing binding is compared against the element being matched to ensure equality. If the original and new

binding values are not equal, the variable binding fails. As such, this behaviour is largely redundant in MT

since exactly the same effect can be achieved by having an initial variable binding followed by references

to that variable. This behaviour is maintained for the sake of ensuring backwards compatibility with the

QVT-Partners approach.

As the MT translation encounters variable bindings, it adds them to the set of known variable bindings in

the translations’ pattern vars field (line 4). This information is used in two different ways. Firstly the

set of variable bindings is used to determine the valid variable references for subsequent patterns and clauses

in a rule; this is necessary since variable bindings in patterns with multiplicities are dealt with differently

(see sections 6.2 and 7.11). Secondly variables in a Converge expression which reference a variable binding

need to be translated into a dictionary lookup on the current set of known bindings (see section 7.13).

7.7. Translating model element patterns

The translation of model patterns is the largest individual part of MT’s translation, but can be split into two

parts: matching the model element type and dealing with the self variable; matching against model element

slots. The former part is relatively simple. The latter part is complicated by the need to deal with nested

pattern expressions. In this subsection I first present a simplified translation of model element patterns which

does not deal with nested pattern expressions, before presenting the complete translation.
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7.7.1. A simplified translation

In order to understand the translation of model element patterns, I first consider a simplified variant. The

model element patterns in this simple variant can not contain any reference to the self variable, and slot

comparisons with nested pattern expressions will only be evaluated once. If a slot comparison fails, the

entire pattern fails immediately. In the interests of brevity, only equality and inequality slot comparisons are

translated. This subset still encompasses a number of interesting and useful model element patterns such as

the following:

(Dog)[name == <n>, owner == (Person)[name != "Fred"]]

The simplified translation is as follows:

1 func t pt smodel pattern(node):
2 // pt smodel pattern ::= "(" pt smodel pattern self ")" "[" pt sobj slot
3 // pt smodel pattern comparison pt spattern expr { ","
4 // pt sobj slot pt smodel pattern comparison
5 // pt spattern expr }* "]"
6 // ::= "(" pt smodel pattern self ")" "[" "]"
7

8 // pt sobj pattern self ::= "ID"
9 type match := [|

10 if not TM.type match($<<CEI.lift(node[2][1].value)>>, &element):
11 return fail
12 |]
13

14 slot comparisons := []
15 while i < node.len() & node[i].conforms to(List) & node[i][0] == "pt sobj slot":
16 slot name := node[i]
17 slot comparison := node[i + 1]
18 slot pattern := node[i + 2]
19

20 if slot comparison[1].type == "==":
21 slot condition := CEI.ieq comparison
22 elif slot comparison[1].type == "!=":
23 slot condition := CEI.ineq comparison
24

25 slot comparisons.append([|
26 slot element := &element.$<<CEI.name(slot name[1].value)>>
27 if not new matched mep elems, new bindings, matched elem := \
28 $<<self.preorder(slot pattern)>>(bindings, &slot element):
29 return fail
30 if not $<<slot condition([| &slot element |], [| matched elem |])>>:
31 return fail
32 &local bindings += new bindings
33 |])
34

35 i += 4
36

37 return [|
38 func (bindings, element):
39

40 local bindings := Dict{}
41

42 $<<type match>>
43

44 $<<slot comparisons>>
45

46 return [Set{element}, local bindings, element]
47 |]
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Lines 9 to 12 deal with ensuring the model element to be matched is of the correct type. Lines 25 to 33

shown the heart of the translation of slot comparisons. Line 26 extracts the value of the model elements slot.

Line 27 evaluates the slots pattern; if the slots pattern fails for any reason, the entire model pattern fails.

The hitherto unused third element, hitherto referred to as ‘the object the pattern evaluated to’, returned by

the pattern expression is then compared to the value of the model elements slot obtained in line 26, using

the slot comparison operator. If the comparison operator fails, then the entire model pattern fails. As can

be seen in line 47, a model element pattern ignores any model elements matched by nested model element

patterns.

The clumsy term ‘the object the pattern evaluated to’ is used because conceptually there are two distinct

ways in which a pattern expression evaluates. Converge expressions used as patterns (e.g. "Fred"; see

section 7.9) simply evaluate to an object which must be checked against the model elements slot. However

other types of pattern expressions, such as the model element pattern (Person)[name != "Fred"],

are passed the value of the model elements slot and asked to match against it; they then return the value of the

model elements slot unchanged. In other words, some types of pattern expressions (Converge expressions)

evaluate to a new object whilst some return the object passed to them (e.g. model element patterns). Note

that even in the latter case it is necessary to check the slot comparison after the evaluation, so that element

patterns such as the following (which is functionally equivalent to the previous example) evaluate correctly:

(Dog)[name == <n>, owner != (Person)[name == "Fred"]]

7.7.2. Ensuring the complete evaluation of nested pattern expressions

The preceding translation of model element patterns contains one major flaw: it does not correctly deal with

nested pattern expressions that may generate more than one match. Consider the following pattern:

(Dog)[name == <n>, allowable_foods == Set{<x> | <Y>}]

The set pattern Set{<x> | <Y>} will potentially generate a match for every element in a set matched

against it. If, for example, the rule this pattern is part of contains a src when clause along the lines of x

== "Biscuit" then it is vital that the set pattern generates all possible matches to ensure that a correct

match can be found (if one exists). In the previous translation of model elements, unless the nested set

pattern happened to stumble across the correct combination during its first iteration, then the entire rule this

is a part of would fail.

In the general case, pattern expressions may be nested to an arbitrary depth within one another. MT

thus needs to ensure that all pattern expressions, no matter how deep they are nested, can generate all

their possible matches. For model element patterns, it is also desirable that the pattern expressions in slot

comparisons generate multiple matches in a predictable fashion. Pattern expressions are thus evaluated in

a deliberately similar fashion to patterns in a srcp clause in the order that they were defined, from left to

right. If a model element pattern is requested to generate more matches, the right most pattern expression

will generate all a further match if possible. When a pattern expression within a model element pattern

generates all its possible matches, the pattern expression to its left generates a new match, which causes the

control flow to return to its right, causing that pattern to generate a new match. When all pattern expressions

within a model element pattern have generated all their matches, then the model element pattern itself

fails. In common with patterns in a srcp clause, MT ensures that each time a pattern expression fails, the

appropriate variable bindings are ‘undone’.

In order to cope with arbitrary levels of nested pattern expressions, one might reasonably expect a signifi-

cant degree of complexity to be needed in the translation – indexes within lists needing to be passed around
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and stored, and so on. However by careful use of Converge generators and the conjunction operator, the

desired effect can be achieved with a relatively small amount of code. Considering the same marginally

simplified variant of model element patterns as previously (references to the self variable not allowed; only

a subset of slot comparison operators dealt with), the translation is as follows:

1 func _t_pt_smodel_pattern(node):
2 type_match := [|
3 if not TM.type_match(\$<<CEI.lift(node[2][1].value)>>, &element):
4 return fail
5 |]
6

7 returns_vars := []
8 current_bindings_var := CEI.ivar(CEI.fresh_name())
9 conjunction := [[| $<<current_bindings_var>> := &bindings |]]

10

11 while i < node.len() & node[i].conforms_to(List) & node[i][0] == "pt_sobj_slot":
12 slot_name := node[i]
13 slot_comparison := node[i + 1]
14 slot_pattern := node[i + 2]
15

16 if slot_comparison[1].type == "==":
17 slot_condition := CEI.ieq_comparison
18 elif slot_comparison[1].type == "!=":
19 slot_condition := CEI.ineq_comparison
20

21 next_bindings_var := CEI.ivar(CEI.fresh_name())
22 return_var := CEI.ivar(CEI.fresh_name())
23 returns_vars.append(return_var)
24 conjunction.append([| $<<return_var>> := $<<func_>>($<<current_bindings_var>>) \
25 |])
26 conjunction.append([| $<<next_bindings_var>> := $<<current_bindings_var>> + \
27 $<<return_var>>[1] |])
28 current_bindings_var := next_bindings_var
29 i += 4
30

31 conjunction.append([| [Set{&element}, Functional.foldl(_adder, \
32 Functional.map(_element1, $<<CEI.ilist(returns_vars)>>)), &element] |])
33

34 return [|
35 func (bindings, element):
36

37 $<<type_match>>
38

39 for yield $<<CEI.iconjunction(conjunction)>>
40

41 return fail
42 |]
43

44 func _adder(x, y):
45 return x + y
46

47 func _element0(x):
48 return x[0]
49

50 func _element1(x):
51 return x[1]

Note that in this code adder, element0 and element1 are module level functions. These func-

tions are used in later translations in this paper.

The underlying theme in this translation is that pattern expressions in slot comparisons may be generators.

Pattern expressions are placed into a single conjunction expression (chiefly built up in lines 24 and 25). The

translation places the conjunction containing translated pattern expressions within a for construct (line

38), which yields a value each time a successful match of all slot comparisons is found. Thus the translation

utilizes Converge’s built-in goal-directed evaluation to ensure that all possible values – including those from

nested pattern expressions – for all translated slot comparisons are evaluated.
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There are two further (somewhat related) aspects of the translation which require explanation. The first of

these relates to MT’s treatment of variable bindings, particularly the need to ‘undo’ variable bindings when

a slot comparison fails and Converge backtracks. Essentially after each slot comparison has been added to

the conjunction, MT creates a new uniquely named variable (line 21) which has assigned to it the union of

the existing variable bindings and those created by the pattern expression (lines 25). The pattern expression

in the next slot comparison then uses this union of variable bindings as its set of currently valid bindings

(line 24). When Converge backtracks, the currently valid bindings are implicitly undone since the union of

existing and new bindings is performed after each translated slot comparisons.

The second aspect relates to the value returned by a model element pattern, which is created in lines

31 to 32. Since model element patterns ignore elements matched by nested model element patterns (sec-

tion 5.2), it is not surprising that the first element of the returned list is a set containing only the element

matched by the current model element pattern. The second element of the returned list which is initially

rather foreboding using as it does the foldl and map functions which operate as their LISP counterparts.

Before tackling it directly, we first need to investigate the return vars variable in the translation, which

is a list containing quasi-quoted variables. Essentially each time a nested pattern expression is evaluated,

a new return var variable is created (line 22) to which the return value of the pattern expression is

assigned (line 24). The return var variable is then added to the return vars list (line 23). Each

return var variable thus holds a standard three element list. The foldl call in line 31 is then passed

a list of lists at run-time; each sub-list will be a list containing three elements, as returned by a pattern

expression. The element1 function then selects the variable bindings generated from each slot com-

parison; the adder function then creates a union of these variable bindings. This union is a non-strict

subset of the final value of, current bindings var which will include all the bindings passed to the

model element pattern in its bindings argument. Note that whilst it may initially appear simpler to make

return vars a run-time variable to which each pattern expressions return list is appended, this would

then lead to complications when back-tracking would require items in the list to be removed. However

since the variables in return vars are known at compile-time, it would be possible to achieve a small

optimization by moving the foldl call to compile-time; this is left as an exercise for the reader.

It is interesting to compare this translation to that used for patterns in a srcp clause, as presented in

section 7.4. While the two transformations are essentially functionally equivalent, the earlier translation

is perhaps more initially appealing since it reuses a familiar concept (nested for constructs). Although

the translation in this section uses the less familiar conjunction operator, it results in a much shorter, more

idiomatic – and marginally more efficient – translation. As this may suggest, making use of some of the less

common features present in Converge can be of significant advantage when translating DSLs.

7.8. Translating set patterns

In this subsection I outline the translation of set patterns, but do not delve into the code of the translation

which uses the same techniques and idioms outlined in the translation of model element patterns.

Essentially set patterns match against single element patterns (those to the left of the ‘|’ character) and

subset patterns (those to the right of the ‘|’ character) simultaneously. For each single element pattern,

MT iterates over the set being matched; no two single element patterns will be matched against the same

element simultaneously. For each subset pattern, MT iterates over the powerset of the set to match against.

The intersection of all subsets (including the set comprised of all single element patterns matched) must be

∅. The union of all subsets (including the set comprised of all single element patterns matched) must equal
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the set being matched. Set patterns then generate an appropriate return value whenever each single element

pattern and each subset pattern match successfully.

7.9. Translating Converge expressions when used as patterns

As outlined in section 7.7.1, when Converge expressions are used as pattern expressions, they act in a dif-

ferent fashion to other pattern expressions. Whereas all other types of pattern expressions are a declarative

match against model elements, Converge expressions are simply expected to evaluate to constants (in this

situation meaning integers, strings, model elements and so on). MT therefore defines that Converge expres-

sions in this situation are only evaluated once – even if the particular Converge expression is a generator,

it will only ever be required to generate a single value. Converge expressions used as pattern expressions

return a list consisting of the empty set to represent the model elements matched by model element patterns,

an empty dictionary of bindings, and the constant object the expression evaluated to.

The translation of Converge expressions in this instance thus requires only a very thin wrapping around

the actual expression itself:

func _t_pt_spattern_expr(node):
// pt_spattern_expr ::= pt_sobj_pattern
// ::= pt_sset_pattern
// ::= pt_svar
// ::= expr

if node[1][0] == "expr":
return [|
func (bindings, elements):

return [Set{}, Dict{}, $<<self.preorder(node[1])>>]
|]

else:
return self.preorder(node[1])

Section 7.13 details how the Converge grammar rule expr is embedded in the MT grammar.

7.10. An example translated pattern

Having now seen the translations of variable bindings, model element patterns, set patterns and Converge

expressions used as pattern expressions, we are now in a position to see the result of translating a particular

pattern. I use the following pattern, which incorporates all three types of pattern expressions:

(Dog)[name == <n>, allowable_foods == Set{"pork" | <Y>}]

The result of translating this pattern is the following ITree:

1 unbound_func (bindings, element){
2 if not Input_Pattern_Creator.TM.type_match("Dog", element):
3 return Input_Pattern_Creator.fail
4 for yield $$76$$ := bindings & $$78$$ := unbound_func (bindings){
5 slot_element := element.name
6 for matched_mp_elems, new_bindings, matched_elem := unbound_func (bindings, \
7 element){
8 if bindings.contains("n") & not bindings["n"] == element:
9 return Input_Pattern_Creator.fail

10 return [Set{}, Dict{"n" : element}, element]
11 }(bindings, slot_element):
12 if slot_element == matched_elem:
13 yield [matched_mp_elems, new_bindings, matched_elem]
14 return Input_Pattern_Creator.fail
15 }($$76$$) & $$77$$ := $$76$$ + $$78$$[1] & $$84$$ := unbound_func (bindings){
16 slot_element := element.allowable_foods
17 for matched_mp_elems, new_bindings, matched_elem := unbound_func (bindings, \
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18 element){
19 if not element.conforms_to(Input_Pattern_Creator.Set):
20 return Input_Pattern_Creator.fail
21 if element.len() < 1:
22 return Input_Pattern_Creator.fail
23 for $$79$$ := element.iterate() & $$80$$ := unbound_func (bindings, elements){
24 return [Set{}, Dict{}, "pork"]
25 }(bindings, $$79$$) & $$81$$ := Input_Pattern_Creator.Functional. \
26 powerset_generator(element) & $$81$$.union(Set{$$79$$}) == element & not \
27 $$81$$.contains($$79$$) & $$82$$ := unbound_func (bindings, element){
28 if bindings.contains("Y") & not bindings["Y"] == element:
29 return Input_Pattern_Creator.fail
30 return [Set{}, Dict{"Y" : element}, element]
31 }(bindings, $$81$$) & $$82$$[2] == $$81$$:
32 yield [$$80$$[0] + $$82$$[0], $$80$$[1] + $$82$$[1], element]
33 return Input_Pattern_Creator.fail
34 }(bindings, slot_element):
35 if slot_element == matched_elem:
36 yield [matched_mp_elems, new_bindings, matched_elem]
37 return Input_Pattern_Creator.fail
38 }($$77$$) & $$83$$ := $$77$$ + $$84$$[1] & [Set{element}, Input_Pattern_Creator. \
39 Functional.foldl(Input_Pattern_Creator._adder, Input_Pattern_Creator.Functional. \
40 map(Input_Pattern_Creator._element1, [$$78$$, $$84$$])), element]
41 return Input_Pattern_Creator.fail
42 }(bindings, element)

Despite its initial appearance as an impenetrable jumble of bizarrely named identifiers, through careful

examination of the input pattern, and the translations presented in this section, it is possible to identify which

parts of this ITree relate to specific parts of the input pattern. The first step in this is to recursively break

the input pattern down into its constituent pattern expressions. One can then determine which line numbers

each pattern expression relates to. A simple table showing this is as follows (note that due to the recursive

breakdown, outer pattern expressions line numbers overlap with those of nested pattern expressions):

Pattern Lines

(Dog)[name == <n>, allowable foods == Set{"pork" | <Y>}] 1 – 42

<n> 6 – 11

Set{"pork" | <Y>} 20 – 34

"pork" 23 – 25

<Y> 27 – 31

7.11. Translating pattern multiplicities

In order to deal with patterns with multiplicities (see section 6.2), some additions need to be made to the

outer translation of patterns from section 7.5. Although each of the several forms of pattern multiplicities

requires a specific translation, they all follow the same general form, which can be split into two distinct

phases. In order to demonstrate this, I present the translation for the * multiplicity in an elided view of the

t pt spattern function:

1 func _t_pt_spattern(node):
2 // pt_spattern ::= pt_spattern_expr pt_spattern_qualifier
3 // pt_spattern_qualifier ::= ":" pt_multiplicity "<" "ID" ">"
4 // pt_multiplicity ::= pt_multiplicity_upper_bound
5 // pt_multiplicity_upper_bound ::= "*"
6

7 self._inside_multiplicity_pattern += 1
8 pattern := [|
9 func (bindings, elements):

10 matches := []
11 for element := elements.iterate() & matches.append($<<self.preorder( \
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12 node[1])>>(bindings, element))
13

14 powerset := Functional.powerset(matches)
15 powerset := Sort.sort(powerset, func (x, y) {
16 return x.len() < y.len()
17 })
18 for matches := powerset.riterate():
19 if matches.len() == 0:
20 continue
21 yield [Functional.foldl(_adder, Functional.map(_element0, matches)), \
22 Dict{$<<CEI.lift(node[2][4].value)>> : Functional.map(_element1, \
23 matches)}, Functional.foldl(adder, Functional.map(func (x) {
24 return [x[2]]
25 }, matches))]
26

27 return [Set{}, Dict{$<<CEI.lift(node[2][4].value)>> : []}, elements]
28 |]
29 self._inside_multiplicity_pattern -= 1
30

31 return pattern

The first phase of a multiplicities execution involves matching elements. In the case of the * multiplicity,

this occurs in lines 10 to 12 which evaluates every successful match of the pattern (note that when the pattern

does not match successfully, backtracking ensures that the append call will not be executed). The second

phase of execution then successively returns permutations of the matches. Note that, although not the case

for the * multiplicity, in some multiplicities these two phases will be partially intertwined. Lines 14 to

17 evaluate the powerset5 of matches, sorting the resulting permutations into ascending order based on the

number of elements in each. The for construct in line 18 then iterates over the the powerset in reverse

order, yielding permutations of lesser size as the multiplicity is called upon to generate new matches. The

list yielded by the multiplicity in lines 21 to 25 is simpler than it may first appear. Line 21 unions the

elements matched by model element patterns from each match in the permutation. Lines 22 and 23 create

a single binding for the multiplicities variable, assigning it a list of variable bindings, with a bindings entry

for each match in the permutation. Lines 23 to 25 union the objects each match in the permutation evaluated

to.

The translation of pattern multiplicities requires a small but important change to the translation of vari-

able bindings, to prevent variable bindings within multiplicities from being added to the pattern vars

field. The inside multiplicity pattern field within the translation tracks whether the transla-

tion is currently processing a pattern multiplicity or not. The updated t pt svar function thus looks

as follows:

func _t_pt_svar(node):
// pt_svar ::= "<" "ID" ">"

if _inside_multiplicity_pattern == 0:
self._pattern_vars.add(node[2].value)

var_str := CEI.lift(node[2].value)
return [|

func (bindings, element):
if bindings.contains($<<var_str>>) & not bindings[$<<var_str>>] == element:

return fail
return [Set{}, Dict{$<<var_str>> : element}, element]

|]

5The Converge powerset function returns a list of lists if, as in this case, it is passed a list rather than a set.
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7.12. Standard functions

Each transformation has two standard functions of particular importance: the transform and transform all

functions. In this subsection I show the definition of these two functions.

The transform function was outlined in section 4.1. It takes a variable number of arguments, each of

which must be a list. Noting that function objects in Converge have a function apply which takes a list

of values and applies them to the function as if they were passed as individual arguments, the transform

function looks as follows:

1 func transform(*elems):
2 for elem := elems.iterate():
3 if not elem.conforms_to(List):
4 raise Exceptions.Type_Exception(List, elem.instance_of, elem.to_str())
5

6 for rule_name := self._rule_names.iterate():
7 if target := self.get_slot(rule_name).apply(elems):
8 return target
9

10 raise Exceptions.Exception(Strings.format("Unable to transform ’%s’.", elems.to_str()))

The first action of the transform function After is to type-check its arguments in lines 2 to 4. It then makes

use of the rule names field within a transformation which records the names of a transformations rule

in the order they were defined. Iterating over the rule names field allows the translated rule function

to be accessed via the get slot function. Using this, the transform function calls rules in the order

in which they were defined, succeeding as soon as it finds a rule which executes on the input. If no rules

execute, an exception is raised.

The transform all function is a simple, but highly useful, convenience function built on top of the

transform function. Given a list of model elements, it transforms each using the transform function.

The definition of transform all is thus simple:

func transform_all(elems):
if not elems.conforms_to(List):

raise Exceptions.Type_Exception(List, elems.instance_of, elems.to_str())

target_elems := []
for elem := elems.iterate():

target_elems.append(self.transform([elem]))

return target_elems

7.13. Embedding Converge code within DSLs

When compared to other model transformation approaches, one of MT’s most novel aspects is its ability

to embed GPL code within it. This is possible due to Converge’s DSL embedding features. The ability

to embed Converge code in DSL’s benefits both the DSL’s users and implementers. Users can reuse their

knowledge of standard Converge, whilst DSL implementers can reuse tried and trusted parts of the Converge

compiler. In this subsection I explain how a DSL’s can embed Converge within itself.

The key to embedding normal Converge code can be seen in such as pt ipattern expr in the MT

grammar (section 7.1) which reference the expr rule from the Converge grammar (appendix A). The first

point to note is that all rules in the MT grammar are prefixed by mt ; this allows the MT grammar to be

merged with the Converge grammar with no conflicts. Since CPK grammars are currently defined in strings,

merging two grammars together is simply a case of adding two strings. There is currently no notion of

grammar namespaces nor are any checks for conflicts between the two grammars. As this may suggest,
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whilst the current implementation of this feature is workable, it is one of the less refined parts of DSL

implementation in Converge.

Once the DSL’s grammar has been merged with the main Converge grammar, the next question is how

to have the Converge grammar handle parse tree fragments related to the Converge grammar? Currently

the translation class in MT subclasses the IModule Generator class from the Converge compiler.

IModule Generator contains the translation for each rule in the Converge grammar and works in

exactly the same way as a DSL translation class. Thus the MT subclass only need add appropriate traversal

functions for rules specific to the MT grammar. Although subclassing of large and complex classes is often

thought of as being dangerous, the IModule Generator module has been specifically designed with

sub-classing of this sort in mind. Normal Converge expressions are thus translated into ITree’s ‘for free’

by the IModule Generator module, and with little interference from MT. The MT subclass in fact

requires only one interaction with its superclass, needing to override the t var function. Essentially ref-

erences to variable bindings are translated into dictionary lookups on the bindings variable (see section

7.6); see also section 7.15. An elided version of the t var translation function is as follows:

func _t_var(node):
// var ::= "ID"

if self._pattern_vars.contains(node[1].value):
return [| &bindings[$<<CEI.lift(node[1].value)>>] |]

else:
return exbi IModule_Generator._IModule_Generator._t_var(node)

In summary – despite the need to add strings representing grammars together, and to subclass a complex

class residing in the depths of the Converge compiler – the process of embedding Converge code in DSLs is

surprisingly simple and relatively free of complications. However it is unclear whether this approach would

scale satisfactorily to larger examples. I believe that in the future two things may need to be changed to

improve the situation. Firstly grammars need to be properly modularised to ensure that naming problems

between grammars do not arise, and that the relationship between grammars is clearly stated. Secondly it

would be useful to loosen the coupling between DSLs and the IModule Generator module, possibly

by removing the requirement to subclass the IModule Generator class.

7.14. Extending the Converge grammar

Although this section has thus far ignored the translation of a rules target clauses, the presence of model

element expressions in such clauses is worthy of examination. As a brief recap, model element expres-

sions such as (Dog)[name := "Fido", owner := (Person)[name = "Fred"]] create new

model elements; they are syntactically similar, although not identical, to model element patterns. Section

4.4 contains more details on model element expressions. Model element expressions can be used anywhere

in a rules target clauses that a normal Converge expression can be used. Although this may suggest that

model element expressions can only be used at the top-level within target clauses, they can in fact be used

within Converge expressions themselves. For example the following expression shows how a model element

expression can be used within a Converge list:

[(Person)[name = "Fred"]]

As this example shows, in the context of target clauses, model element expressions effectively embed them-

selves in the the base Converge language itself.

The embedding of model element expressions is currently implemented by taking advantage of the fact

that that CPK grammars are strings, and that production rules can have alternatives added at any point in the
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grammar. Thus in the MT grammar (section 7.1) the expr rule from the Converge grammar is extended

with a new alternative by MT pointing to the pt mep pattern rule. Since the expr translation function

in the Converge compiler immediately hands computation over to the rule named in its alternatives, the MT

translation class needs only to provide a simple translation function for pt mep pattern.

It should be noted that whilst extremely powerful, this technique is not generally applicable. It currently

requires detailed knowledge of the Converge grammar and the Converge compilers internals in order to

ensure that extending a rule in the Converge grammar has the desired effect. I hope that future versions of

Converge will be able to provide safer support for extension of this sort.

7.15. Preventing unintended interaction between translated and embedded code

One of the challenges not tackled in the TM DSL was preventing unintended variable capture from DSL

input and the translated DSL code. This problem arises when an ITree derived from user input is placed

inside an ITree containing dynamically scoped variables. As seen in the translations in this section, dy-

namically scoped variables occur frequently, chiefly via the &var syntax. Dynamically scoped variables

are highly useful in allowing ITree’s to be built piece meal. However whilst statically scoped variables are

automatically safely renamed by Converge’s scoping rules dynamically scoped variables may cause variable

capture with ITree’s derived from user input. For example, the variable bindings is frequently dynami-

cally scoped in the translations of this section; if an MT were to use the same variable name in, for example,

a tgt where clause, then unexpected results would almost certainly arise.

To prevent this problem occurring, MT performs its own α-renaming of variables in Converge expres-

sions. MT takes advantage of the fact that each ITree can report its free and bound variables (via the

get free vars and get bound vars functions respectively). Essentially for each rule, MT first

calculates the free and bound variables of all Converge expressions contained in that rules clauses. For each

variable, a fresh name is then generated; a dictionary records the mapping between the original and fresh

names. When MT encounters Converge variables during its translation, it translates them to variables with

the corresponding fresh name. By renaming all variables from users input, MT thus ensures that there can

be no unintended variable capture.

Once all variables have been safely renamed, a rules free variables then require extra treatment. For exam-

ple the concat name function in section 4.5 is a free variable in the context of the Classes To Tables

transformation, since it is defined outside of the transformation. All instances of the concat namewithin

a given rule will be renamed to a variable along the lines of $$5$concat name$$. At this point, there is

no link between the value of concat name outside the rule, and the value of $$5$concat name$$.

Thus MT adds to translated rules assignments from the original value of variables to their fresh name equiv-

alent. In the case of the concat name function, the result of the translation would look along the lines of

the following:

$$5$concat_name$$ := concat_name

...
$$5$concat_name$$("", bindings["n"])

...

7.15.1. Assigning to variables in outer blocks

Although the α-renaming mechanism of variables in user input prevents unintended variable capture, it

introduces problems due to the disconnect between the original variable and its fresh-named clone. This
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leads to two related problems.

The first problem relates to assigning to free variables. Since a fresh-named clone is made of each free

variable, assigning to free variables in an MT block does not affect the value of the original variable. MT

thus mirrors the normal Converge expectation that variables assigned to in a block (where a block in MT

is essentially a rule) are local to that block. However a problem arises if one wishes an assignment to a

free variable. First, let us assume that MT allows some free variables to be declared as nonlocal (recall

that in normal Converge nonlocal x is a declaration that assignment to the variable x does not create

a local x, but instead binds to the the first outer block which contains an assignment of x). Assignment

to a free variable then becomes problematic, since the user will be assigning to the variables fresh-named

clone; furthermore there is no way to assign to the original variable without reintroducing the prospect of

variable capture. A partial solution to this problem is for MT to mirror the assignment of free variables to

their fresh-named clone at the beginning of the translated rule, with the assignment of the fresh-named clone

to its free variable equivalent at the end of the transformation. Whilst this is possible, it means that during

the execution of the rule the local and global values of the variable may differ.

This then highlights the more general problem, which is that at any point during the execution of a

rule the values of the original variable and its fresh-named clone may diverge either through assignment

to the original variable or its fresh-named clone. There is no solution for this problem at the moment in

Converge. Although one can devise increasingly sophisticated work arounds which reduce the potential

for the problem to arise, fundamentally, the cloning of variables is flawed since there is no mechanism for

atomically synchronising the cloned and original variables.

This therefore highlights a deficiency in Converge. A possible solution to this deficiency would be for

Converge to acquire a ‘variable alias’ feature which would alias a variable x in an outer block to y in

an inner block. Since the names are merely aliases for the same underlying variable, there can then no

synchronization issues between the two. Such a feature would ideally work in much the same way as the

nonlocal declaration; indeed, it is also implicit that aliased variables are nonlocal to the block in which

they are renamed. Although the Converge VM provides sufficient support for such a feature, the compiler

and language have yet to be sufficiently extended.

7.16. Generating tracing information from nested model patterns

In section 5.2, the standard MT tracing information creation mechanism was outlined. By default, only non-

nested model element patterns contribute to the source part of trace tuples. I asserted that empirically this

appeared to be a sensible compromise that created sufficient tracing information without overwhelming the

user. However it is clear that this technique may not be suitable for all applications; one can easily imagine

further research to determine the most practical tracing information creation techniques for different types of

transformations. To this end, in this subsection I present a simple modification to the MT translation which

changes the default tracing information created by allowing nested model element patterns to contribute to

the source part of trace tuples. This serves two separate purposes. Firstly it provides evidence that the default

tracing information creation mechanism achieves a useful balance in terms of the volume of information it

creates. Second it shows that DSL implementations in Converge tend to be amenable to changes, and also

that the MT implementation itself can serve as a testbed for further model transformation experimentation.

The modification to MT necessary to allow nested model expression patterns to contribute to the source

part of trace tuples is in fact rather simple. Essentially all that is needed is for model element patterns to

return the union of all elements matched by nested model element patterns. By default, model element
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patterns only return the element they matched against, essentially ignoring the elements matched by nested

model element patterns. However the required information is present in the return var associated with

each slot comparison in a model element pattern. Thus all that is needed is to use the same technique used

to union the bindings of each slot comparison. Replacing lines 31 to 32 of the complete translation from

section 7.7 with the following achieves the desired effect:

conjunction.append([| [Set{&element} + Functional.foldl(_adder, \
Functional.map(_element0, $<<CEI.ilist(returns_vars)>>)), \
Functional.foldl(_adder, Functional.map(_element1, $<<CEI.ilist(returns_vars)>>)), \
&element] |])

Taking exactly the same source model and transformation used in figure 13, the result of making this change

to MT can be seen in figure mt:tracing information from nested model pattern expressions. Note that in

this new visualization, one can see that many target elements have tracing information from more than one

source element; the end result is rather harder to read than figure 13, and does not add significantly to the

users understanding of the transformation in this particular case.

7.17. Summary of the implementation

In this section I have presented an analysis of the major parts of the MT implementation. To demonstrate the

result of MT’s translation of a transformation, section B shows the complete result of translating the simple

MT transformation from section 4.5.

8. Related work

As with the majority of existing systems, MT is a unidirectional stateless model transformation system.

MT’s most obvious ancestor is the QVT-Partners approach [QVT03b] which pioneered the use of patterns

in model transformations. MT takes the base QVT-Partners pattern language and enriches it with features

such as pattern multiplicities, and variable slot comparisons. Furthermore, by providing a concrete imple-

mentation – and a detailed explanation of that implementation – much of the vagueness associated with

other model transformations such as the QVT-Partners approach is avoided in MT.

A significant difference from the QVT-Partners approach is in MT’s imperative aspects. Due to its im-

plementation as a Converge DSL, MT can embed normal Converge code within it. This contrasts sharply

with the QVT-Partners approach which is forced to define an OCL variant with imperative features in order

to have a usable language. As explained in section 3.4, this variant language suffers from several concep-

tual and practical problems. I believe that MT is unique in being able to embed a GPL within it. Perhaps

more significant than the actual language embedded within MT transformations is the ability to call out

naturally to normal Converge code, even if it is defined outside of the transformation. MT users are thus

not constrained by any limitations of the particular model transformation approach. Although this may

initially appear to be a mere implementation detail, it differentiates MT from virtually all existing model

transformation approaches, which typically present a highly constrained execution environment.

Perhaps the closest model transformation approach is the commercial XMap language [CESW04], an

approach essentially based on the QVT-Partners approach. This also means that the issues noted in both this

section, and in section 3.4 with respect to the QVT-Partners approach, apply equally to XMap. XMap is

however notable for its sister language XSync which allows changes to be propagated in the style outlined

by Tratt and Clark [TC03]. A later publication will show how MT can be evolved into a powerful change

propagating language.
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:Class

mod_id = "11" 
name = "Customer" 

is_persistent = 1

:Attribute

mod_id = "12" 
is_primary = 1
name = "name"

attrs

:Table

mod_id = "37" 
name = "Customer"

t1

:PrimitiveDataType

mod_id = "10" 
name = "String"

type

:Column

mod_id = "29" 
type = "String" 
name = "name"

t2

:Class

mod_id = "13" 
name = "Order" 
is_persistent = 1

:Attribute

mod_id = "14" 
is_primary = 1
name = "date"

attrs

:Attribute

mod_id = "15" 
is_primary = 1
name = "order_num"

attrs

:Column

mod_id = "30" 
type = "Integer" 
name = "orders__date"

t3

:Column

mod_id = "31" 
type = "Integer" 
name = "orders__order_num"

t3

:Table

mod_id = "43" 
name = "Order"

t12

:PrimitiveDataType

mod_id = "9" 
name = "Integer"

type

t4

:Column

mod_id = "38" 
type = "Integer" 
name = "date"

t13

type

t5

:Column

mod_id = "39" 
type = "Integer" 
name = "order_num"

t14

:Class

mod_id = "16" 
name = "Part" 
is_persistent = 1

:Attribute

mod_id = "17" 
is_primary = 1

name = "id"

attrs

:Attribute

mod_id = "18" 
is_primary = 0
name = "name"

attrs

:Attribute

mod_id = "19" 
is_primary = 0
name = "price"

attrs

:Column

mod_id = "40" 
type = "Integer" 
name = "parts__id"

t15

:Table

mod_id = "47" 
fkeys = []
name = "Part"

t19

type

t16

:Column

mod_id = "44" 
type = "Integer" 

name = "id"

t20

type

:Column

mod_id = "45" 
type = "String" 
name = "name"

t21

type

:Column

mod_id = "46" 
type = "Integer" 
name = "price"

t22

:Association

mod_id = "26" 
name = "orders"

srcdest

t1

t3t3

:Association

mod_id = "27" 
name = "parts"

srcdest

t12

t15

:Association

mod_id = "28" 
name = "address"

src

:Class

mod_id = "20" 
name = "Address" 
is_persistent = 0

dest

t1

:Column

mod_id = "32" 
type = "String" 
name = "address__house"

t6

:Column

mod_id = "33" 
type = "String" 
name = "address__addr2"

t6

:Column

mod_id = "34" 
type = "String" 
name = "address__addr3"

t6

:Column

mod_id = "35" 
type = "String" 
name = "address__county"

t6

:Column

mod_id = "36" 
type = "String" 
name = "address__postcode"

t6

:Attribute

mod_id = "21" 
is_primary = 0
name = "house"

attrs

:Attribute

mod_id = "22" 
is_primary = 0
name = "addr2"

attrs

:Attribute

mod_id = "23" 
is_primary = 0
name = "addr3"

attrs

:Attribute

mod_id = "24" 
is_primary = 0
name = "county"

attrs

:Attribute

mod_id = "25" 
is_primary = 0
name = "postcode"

attrs

t6 t6t6 t6 t6type

t7

type

t8

type

t9

type

t10

type

t11

t2t7 t8t9 t10 t11t21t4t5t16 t13 t14 t20t22

fkeys

colscols pkeycolscols colscols cols cols

fkeys

cols pkeycols pkeycols

pkeycols colscols

Tracing
Persistent_Class_To_Table: t1, t12, t19

Primary_Primitive_Type_Attribute_To_Columns: t2, t4, t5, t13, t14, t16, t20

Persistent_Association_To_Columns: t3, t15

Association_Non_Persistent_Class_To_Columns: t6

Non_Primary_Primitive_Type_Attribute_To_Columns: t7, t8, t9, t10, t11, t17, t18, t21, t22

Figure 14: Tracing information from nested model pattern expressions.
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Perhaps surprisingly, given the seeming simplicity of the task, one of MT’s most distinctive features is

its automatic creation of tracing information. Most approaches neglect this problem; the few that tackle

it, such as the DSTC approach [DIC03], require the user to manually specify the tracing information to be

created. By using patterns defined by the user to automatically derive tracing information has not, to the

best of my knowledge, been used by any other system. MT distinguishes itself further by its simple, but

effective, technique for reducing superfluous tracing information.

It is perhaps telling that although MT contains several enhancements compared to existing approaches, it

also shares many of the limitations of existing approaches, such as a lack of rule structuring mechanisms.

Section 9 outlines the work that may resolve some of these limitations.

9. Future work

Although I believe that MT is currently one of the most advanced model transformation languages available,

the relative immaturity of the area means that no new approach can claim to present a definitive solution.

Perhaps the most pressing question for every model transformation approach, including MT, is with re-

gards to scalability. Although MT has been used to express transformations of the order of magnitude of

the low tens of rules, it is clear that in order to make larger transformations feasible, new techniques for

structuring and combining rules will be required. For example, currently all the rules in a MT transforma-

tion exist in a single namespace; there is no notion of ‘transformation modules’. Similarly at the moment

all rules exist at the same level; that is, given an element to transform, rules are tried in order. Complex

transformations will require more selective mechanisms to determine which rules can be executed, both for

structuring efficiency reasons. At the moment, a transformations execution time has a worst case propor-

tional to n
2 where n is the number of rules in the transformation; authors of larger transformations may

require that their domain knowledge is used to narrow down the number of rules used to transform given

elements. I believe that analysing work on combinators in functional languages may lead to new insights on

how to better structure transformations6 .

The desirable for scalability is a concrete manifestation of a more nebulous problem surrounding model

transformations: their usability. Whilst one can present advanced tools to users, it is vital that the tools be

relatively easy to use. I believe there is significant work to be done in presenting model transformation lan-

guages to different users. MT could serve a useful purpose here in allowing model transformation languages

to be easily tailored for different audiences.

In terms of ‘nitty gritty’ details, there are several aspects of MT that could usefully be improved. For

example, one irritation encountered in this paper relates to the for suffix of expressions in a rules tgtp

clause. Currently rules can generally only produce as many top-level elements as they have expressions in

the tgtp clause. This can occasionally lead to cumbersome or dangerous work arounds being employed. It

would be useful to have a variant for suffix which would ‘fold in’ the elements produced by its expression

as if they had been produced by top-level tgtp. As befits a new, small language similar examples can easily

be found elsewhere in MT.

6This suggestion is partly a result of a conversation with Bernhard Rumpe, made during a visit to the Technische Universität
Braunschweig in February 2005.
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10. Summary

In this paper I presented the MT model transformation language. I started by examining the QVT-Partners

approach, from which MT is partly derived, in depth. Identifying the strengths and weaknesses of this

approach explains some of the underlying design decisions taken with MT. I then explored MT’s basic

features, including its novel visualization abilities of transformations, including automatically generated

tracing information. I then explored some of MT’s more advanced features such as pattern multiplicities,

which allowed a sophisticated model transformation to be concisely expressed. I then finished the paper by

examining in depth the translation of an MT transformation into MT.

I believe that MT is the first model transformation approach to present a detailed analysis of its implemen-

tation. In so doing, I hope that MT demonstrates practical idioms for implementing model transformation

engines. This analysis may serve as a useful reference point for model transformation engine authors. As

the source code for MT is freely available, I also hope that the analysis will allow others to take MT and

alter it for their own purposes. In this way, I hope that MT aids further experimentation into differing model

transformation techniques.

MT’s implementation is also notable for its relative brevity. Through careful use of Converge idioms such

as generators and the use of goal-directed evaluation, I assert that much of the tedious machinery that would

be needed if MT were to be implemented in a standard GPL has been avoided. Although it is outside of the

scope of this paper to present hard numbers to back up this claim, I believe that MT provides compelling

evidence that the seemingly disparate influences on Converge (such as Icon’s goal-directed evaluation, Ob-

jVLisp’s data model, and Template Haskell’s compile-time meta-programming) coalesce to form a natural

and highly powerful development environment.
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A. Converge grammar

This section lists the CPK grammar for Converge. This is extracted directly from the Converge compiler file

Compiler/CV Parser.cv:

top_level ::= definition { "NEWLINE" definition }*
::=

definition ::= class_def
::= func_def
::= import
::= var { "," var }* ":=" expr
::= splice

import ::= "IMPORT" dotted_name import_as { "," dotted_name import_as }*
dotted_name ::= "ID" { "." "ID" }*
import_as ::= "AS" "ID"

::=

class_def ::= "CLASS" class_name class_supers class_metaclass ":" "INDENT"
class_fields "DEDENT"

class_name ::= "ID"
::= splice

class_supers ::= "(" expr { "," expr }* ")"
::=

class_metaclass ::= "METACLASS" expr
::=

class_fields ::= class_field { "NEWLINE" class_field }*
class_field ::= class_def

::= func_def
::= var ":=" expr
::= splice
::= "PASS"

func_def ::= func_type func_name "(" func_params ")" ":" "INDENT"
func_nonlocals expr_body "DEDENT"

::= func_type func_name "(" func_params ")" "{" "INDENT"
func_nonlocals expr_body "DEDENT" "NEWLINE" "}"

func_type ::= "FUNC"
::= "BOUND_FUNC"
::= "UNBOUND_FUNC"

func_name ::= "ID"
::= "+"
::= "-"
::= "/"
::= "*"
::= "<"
::= ">"
::= "=="
::= "!="
::= ">="
::= "<="
::= splice
::=

func_params ::= func_params_elems "," func_varargs
::= func_params_elems
::= func_varargs
::=

func_params_elems ::= var func_param_default { "," var func_param_default }*
::= splice

func_param_default ::= ":=" expr
::=

func_varargs ::= "*" var
::= splice

func_nonlocals ::= "NONLOCAL" "ID" { "," "ID" }* "NEWLINE"
::=

expr_body ::= expr { "NEWLINE" expr }*

expr ::= class_def
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::= func_def
::= while
::= if
::= for
::= try
::= number
::= var
::= dict
::= set
::= list
::= dict
::= string
::= slot_lookup %precedence 50
::= list
::= application %precedence 40
::= lookup %precedence 40
::= slice %precedence 40
::= exbi
::= return
::= yield
::= raise
::= assert
::= break
::= continue
::= conjunction %precedence 10
::= alternation %precedence 10
::= assignment %precedence 15
::= not %precedence 17
::= neg %precedence 35
::= binary %precedence 30
::= comparison %precedence 20
::= pass
::= import
::= splice %precedence 100
::= quasi_quotes
::= brackets

if ::= "IF" expr ":" "INDENT" expr_body "DEDENT" { if_elif }* if_else
::= "IF" expr "{" "INDENT" expr_body "DEDENT" "NEWLINE" "}" { if_elif }*

if_else
if_elif ::= "NEWLINE" "ELIF" expr ":" "INDENT" expr_body "DEDENT"

::= "NEWLINE" "ELIF" expr "{" "INDENT" expr_body "DEDENT" "NEWLINE" "}"
if_else ::= "NEWLINE" "ELSE" ":" "INDENT" expr_body "DEDENT"

::= "NEWLINE" "ELSE" "{" "INDENT" expr_body "DEDENT" "NEWLINE" "}"
::=

while ::= "WHILE" expr ":" "INDENT" expr_body "DEDENT" exhausted broken
::= "WHILE" expr

for ::= "FOR" expr ":" "INDENT" expr_body "DEDENT" exhausted broken
::= "FOR" expr

try ::= "TRY" ":" "INDENT" expr_body "DEDENT" { try_catch }* try_else
try_catch ::= "NEWLINE" "CATCH" expr try_catch_var ":" "INDENT" expr_body

"DEDENT"
try_catch_var ::= "INTO" var

::=
try_else ::= "NEWLINE" "ELSE" ":" "INDENT" expr_body "DEDENT"

::=

exhausted ::= "NEWLINE" "EXHAUSTED" ":" "INDENT" expr_body "DEDENT"
::=

broken ::= "NEWLINE" "BROKEN" ":" "INDENT" expr_body "DEDENT"
::=

number ::= "INT"

var ::= "ID"
::= "&" "ID"
::= splice
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string ::= "STRING"

slot_lookup ::= expr "." "ID"
::= expr "." splice

list ::= "[" expr { "," expr }* "]"
::= "[" "]"

dict ::= "DICT{" expr ":" expr { "," expr ":" expr }* "}"
::= "DICT{" "}"

set ::= "SET{" expr { "," expr }* "}"
::= "SET{" "}"

application ::= expr "(" expr { "," expr }* ")"
::= expr "(" ")"

lookup ::= expr "[" expr "]"

slice ::= expr "[" expr ":" expr "]"
::= expr "[" ":" expr "]"
::= expr "[" expr ":" "]"
::= expr "[" ":" "]"

exbi ::= "EXBI" expr "." "ID"

return ::= "RETURN" expr
::= "RETURN"

yield ::= "YIELD" expr

raise ::= "RAISE" expr

assert ::= "ASSERT" expr

break ::= "BREAK"

continue ::= "CONTINUE"

conjunction ::= expr "&" expr { "&" expr }*

alternation ::= expr "|" expr { "|" expr }*

assignment ::= assignment_target { "," assignment_target }* assignment_type
expr

assignment_target ::= var
::= slot_lookup
::= lookup
::= slice

assignment_type ::= ":="
::= "*="
::= "/="
::= "+="
::= "-="

not ::= "NOT" expr

neg ::= "-" expr

binary ::= expr binary_op expr
binary_op ::= "*" %precedence 40

::= "/" %precedence 30
::= "%" %precedence 30
::= "+" %precedence 20
::= "-" %precedence 20

comparison ::= expr comparison_op expr
comparison_op ::= "IS"

::= "=="
::= "!="
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::= "<="
::= ">="
::= "<"
::= ">"

pass ::= "PASS"

splice ::= expr_splice
::= block_splice

expr_splice ::= "$" "<" "<" expr ">" ">"
block_splice ::= "$" "<" expr ">" ":" "INDENT" "JUMBO" "DEDENT"

quasi_quotes ::= expr_quasi_quotes
::= defn_quasi_quotes

expr_quasi_quotes ::= "[|" "INDENT" expr { "NEWLINE" expr }* "DEDENT"
"NEWLINE" "|]"

::= "[|" expr { "NEWLINE" expr }* "|]"
defn_quasi_quotes ::= "[D|" definition { "NEWLINE" definition }* "|]"

::= "[D|" "INDENT" definition { "NEWLINE" definition }*
"DEDENT" "NEWLINE" "|]"

brackets ::= "(" expr ")"

B. Simple classes to tables transformation
Classes_To_Tables := class Classes_To_Tables:

_rule_names := ["Class_To_Table", "User_Type_Attr_To_Column", \
"Primitive_Type_Attr_To_Column"]

bound_func init(*root_set){
self._root_set := root_set
self._transformed_cache := Dict{}
self._matched_objs := Set{}
self._tracing := []
self._tracing_rule := []
for rule_name := self._rule_names.iterate():
self._transformed_cache[rule_name] := Dict{}

self._output := self.transform_all(root_set)
}
bound_func get_source(){

return self._root_set
}
bound_func get_target(){

return self._output
}
bound_func get_conflict_objects(){

return []
}
bound_func transform(*objs){

for obj := objs.iterate():
if not obj.conforms_to(MT.List):

raise MT.Exceptions.Type_Exception(MT.List, obj.instance_of, \
obj.to_str())

for rule_name := self._rule_names.iterate():
if output := self.get_slot(rule_name).apply(objs):

return output
raise MT.Exceptions.Exception(MT.Strings.format( \
"Unable to transform ’%s’.", objs.to_str()))

}
bound_func transform_all(objs){

if objs.conforms_to(MT.List):
output_objs := []
for obj := objs.iterate():

output_objs.append(self.transform([obj]))
elif objs.conforms_to(MT.Set):
output_objs := Set{}
for obj := objs.iterate():

output_objs.add(self.transform([obj]))
else:
raise MT.Exceptions.Exception(objs.instance_of.name)
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return output_objs
}
bound_func Class_To_Table(*objs){

$$18$$self$$ := self
if matched_objs, bindings := unbound_func (*args){
if args.len() > 1:

return Input_Pattern_Creator.fail
matched_mp_elems := Set{}
bindings := Dict{}
if 0 < args.len():

$$7$$elements$$ := args[0]
else:

$$7$$elements$$ := self._root_set
$$8$$matched_mp_elems_backup$$ := matched_mp_elems
$$9$$bindings_backup$$ := bindings
for $$10$$new_matched_mp_elems$$, $$11$$new_bindings$$, \

$$12$$matched_elem$$ := unbound_func (bindings, elements){
for element := elements.iterate() & yield unbound_func (bindings, \

element){
if not Input_Pattern_Creator.TM.type_match("Class", element):
return Input_Pattern_Creator.fail

for yield $$2$$ := unbound_func (bindings, element){
if bindings.contains("c") & not bindings["c"] == element:

return Input_Pattern_Creator.fail
return [Set{}, Dict{"c" : element}, element]

}(bindings, element) & $$1$$ := bindings + $$2$$[1] & \
$$4$$ := unbound_func (bindings){
slot_element := element.name
for matched_mp_elems, new_bindings, \

matched_elem := unbound_func (bindings, element){
if bindings.contains("n") & not bindings["n"] == element:

return Input_Pattern_Creator.fail
return [Set{}, Dict{"n" : element}, element]

}(bindings, slot_element):
if slot_element == matched_elem:

yield [matched_mp_elems, new_bindings, matched_elem]
return Input_Pattern_Creator.fail

}($$1$$) & $$3$$ := $$1$$ + $$4$$[1] & $$6$$ := \
unbound_func (bindings){
slot_element := element.attrs
for matched_mp_elems, new_bindings, matched_elem := \

unbound_func (bindings, element){
if bindings.contains("A") & not bindings["A"] == element:

return Input_Pattern_Creator.fail
return [Set{}, Dict{"A" : element}, element]

}(bindings, slot_element):
if slot_element == matched_elem:

yield [matched_mp_elems, new_bindings, matched_elem]
return Input_Pattern_Creator.fail

}($$3$$) & $$5$$ := $$3$$ + $$6$$[1] & [Set{element}, \
Input_Pattern_Creator.Functional.foldl( \

Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \

Input_Pattern_Creator._element1, [$$2$$, $$4$$, $$6$$])), \
element]

return Input_Pattern_Creator.fail
}(bindings, element)
return Input_Pattern_Creator.fail

}(bindings, $$7$$elements$$):
matched_mp_elems := matched_mp_elems + $$10$$new_matched_mp_elems$$
bindings := bindings + $$11$$new_bindings$$
return [matched_mp_elems, bindings]
matched_mp_elems := $$8$$matched_mp_elems_backup$$
bindings := $$9$$bindings_backup$$

return Input_Pattern_Creator.fail
}.apply(objs):
self._matched_objs.extend(matched_objs)
if not rtn := unbound_func (matched_objs, bindings){

concatted_id := Output_Pattern_Creator.concat_id(matched_objs)
if self._transformed_cache["Class_To_Table"].contains(concatted_id):

return self._transformed_cache["Class_To_Table"][concatted_id]
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tracing_i := self._tracing.len()
$$13$$c$$ := bindings["c"]
$$14$$n$$ := bindings["n"]
$$15$$A$$ := bindings["A"]
$$16$$columns$$ := []
for $$17$$attr$$ := $$15$$A$$.iterate():

$$16$$columns$$.extend($$18$$self$$.transform([""], \
[$$17$$attr$$]).flatten())

out_elems := []
out_elems.append(unbound_func (){

user_args := Dict{"name" : $$14$$n$$, "cols" : $$16$$columns$$}
all_args := []
args_processed := 0
for attr_name := Output_Pattern_Creator.TM.all_attrs_in_order( \
Output_Pattern_Creator.TM._CLASSES_REPOSITORY["Table"]). \

iterate():
if args_processed == user_args.len():

break
if user_args.contains(attr_name):

all_args.append(user_args[attr_name])
args_processed += 1

else:
all_args.append(Output_Pattern_Creator.null)

return Output_Pattern_Creator.TM._CLASSES_REPOSITORY["Table"]. \
new.apply(all_args)

}())
out_elem := out_elems[0]
self._transformed_cache["Class_To_Table"][concatted_id] := out_elem
if not out_elem is Output_Pattern_Creator.null:

tracing := [Output_Pattern_Creator.List(matched_objs), out_elems]
tracing := Output_Pattern_Creator.trace_reduce(tracing)
self._tracing.insert(tracing_i, tracing)
self._tracing_rule.insert(tracing_i, "Class_To_Table")

return out_elem
}(matched_objs, bindings):

raise MT.Exceptions.Exception(MT.Strings.format("Output pattern of" +
" Class_To_Table failed to generate anything for ’%s’.", \
objs.to_str()))

return rtn
else:
return MT.fail

}
bound_func User_Type_Attr_To_Column(*objs){

$$48$$concat_name$$ := concat_name
$$49$$self$$ := self
if matched_objs, bindings := unbound_func (*args){
if args.len() > 2:

return Input_Pattern_Creator.fail
matched_mp_elems := Set{}
bindings := Dict{}
if 0 < args.len():

$$37$$elements$$ := args[0]
else:

$$37$$elements$$ := self._root_set
$$38$$matched_mp_elems_backup$$ := matched_mp_elems
$$39$$bindings_backup$$ := bindings
for $$40$$new_matched_mp_elems$$, $$41$$new_bindings$$, \

$$42$$matched_elem$$ := unbound_func (bindings, elements){
for element := elements.iterate() & yield \

unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match("String", element):
return Input_Pattern_Creator.fail

for yield $$20$$ := unbound_func (bindings, element){
if bindings.contains("prefix") & \

not bindings["prefix"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"prefix" : element}, element]
}(bindings, element) & $$19$$ := bindings + $$20$$[1] & \
[Set{element}, Input_Pattern_Creator.Functional.foldl( \

Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \
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Input_Pattern_Creator._element1, [$$20$$])), element]
return Input_Pattern_Creator.fail

}(bindings, element)
return Input_Pattern_Creator.fail

}(bindings, $$37$$elements$$):
matched_mp_elems := matched_mp_elems + $$40$$new_matched_mp_elems$$
bindings := bindings + $$41$$new_bindings$$
if 1 < args.len():

$$31$$elements$$ := args[1]
else:

$$31$$elements$$ := self._root_set
$$32$$matched_mp_elems_backup$$ := matched_mp_elems
$$33$$bindings_backup$$ := bindings
for $$34$$new_matched_mp_elems$$, $$35$$new_bindings$$, \

$$36$$matched_elem$$ := unbound_func (bindings, elements){
for element := elements.iterate() & yield \
unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match("Attribute", \

element):
return Input_Pattern_Creator.fail

for yield $$21$$ := bindings & $$23$$ := \
unbound_func (bindings){
slot_element := element.name
for matched_mp_elems, new_bindings, matched_elem := \

unbound_func (bindings, element){
if bindings.contains("n") & \
not bindings["n"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"n" : element}, element]
}(bindings, slot_element):

if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \

matched_elem]
return Input_Pattern_Creator.fail

}($$21$$) & $$22$$ := $$21$$ + $$23$$[1] & $$30$$ := \
unbound_func (bindings){
slot_element := element.type
for matched_mp_elems, new_bindings, matched_elem := \

unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match("Class", \
element):
return Input_Pattern_Creator.fail

for yield $$24$$ := bindings & \
$$26$$ := unbound_func (bindings){
slot_element := element.name
for matched_mp_elems, new_bindings, matched_elem \

:= unbound_func (bindings, element){
if bindings.contains("cn") & \

not bindings["cn"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"cn" : element}, element]
}(bindings, slot_element):

if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \

matched_elem]
return Input_Pattern_Creator.fail

}($$24$$) & $$25$$ := $$24$$ + $$26$$[1] & \
$$28$$ := unbound_func (bindings){
slot_element := element.attrs
for matched_mp_elems, new_bindings, matched_elem \

:= unbound_func (bindings, element){
if bindings.contains("CA") & \

not bindings["CA"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"CA" : element}, element]
}(bindings, slot_element):

if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \

matched_elem]
return Input_Pattern_Creator.fail

}($$25$$) & $$27$$ := $$25$$ + $$28$$[1] & \
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[Set{element}, \
Input_Pattern_Creator.Functional.foldl( \

Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \
Input_Pattern_Creator._element1, \
[$$26$$, $$28$$])), element]

return Input_Pattern_Creator.fail
}(bindings, slot_element):

if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \

matched_elem]
return Input_Pattern_Creator.fail

}($$22$$) & $$29$$ := $$22$$ + $$30$$[1] & \
[Set{element}, \
Input_Pattern_Creator.Functional.foldl( \
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \
Input_Pattern_Creator._element1, [$$23$$, $$30$$])), \
element]

return Input_Pattern_Creator.fail
}(bindings, element)
return Input_Pattern_Creator.fail

}(bindings, $$31$$elements$$):
matched_mp_elems := matched_mp_elems + \
$$34$$new_matched_mp_elems$$

bindings := bindings + $$35$$new_bindings$$
return [matched_mp_elems, bindings]
matched_mp_elems := $$32$$matched_mp_elems_backup$$
bindings := $$33$$bindings_backup$$

matched_mp_elems := $$38$$matched_mp_elems_backup$$
bindings := $$39$$bindings_backup$$

return Input_Pattern_Creator.fail
}.apply(objs):
self._matched_objs.extend(matched_objs)
if not rtn := unbound_func (matched_objs, bindings){

concatted_id := Output_Pattern_Creator.concat_id(matched_objs)
if self._transformed_cache["User_Type_Attr_To_Column"]. \

contains(concatted_id):
return self._transformed_cache["User_Type_Attr_To_Column"] \
[concatted_id]

tracing_i := self._tracing.len()
$$43$$prefix$$ := bindings["prefix"]
$$44$$n$$ := bindings["n"]
$$45$$cn$$ := bindings["cn"]
$$46$$CA$$ := bindings["CA"]
out_elems := []
out_elems.append(unbound_func (){

output_objs := []
for $$47$$ca$$ := $$46$$CA$$.iterate():
output_objs.append($$49$$self$$.transform( \

[$$48$$concat_name$$($$43$$prefix$$, $$44$$n$$)], \
[$$47$$ca$$]))

return output_objs
}())
out_elem := out_elems[0]
self._transformed_cache["User_Type_Attr_To_Column"][concatted_id] \

:= out_elem
if not out_elem is Output_Pattern_Creator.null:

tracing := [Output_Pattern_Creator.List(matched_objs), out_elems]
tracing := Output_Pattern_Creator.trace_reduce(tracing)
self._tracing.insert(tracing_i, tracing)
self._tracing_rule.insert(tracing_i, "User_Type_Attr_To_Column")

return out_elem
}(matched_objs, bindings):

raise MT.Exceptions.Exception(MT.Strings.format("Output pattern" + \
"of User_Type_Attr_To_Column failed to generate anything for" + \
" ’%s’.", objs.to_str()))

return rtn
else:
return MT.fail

}
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bound_func Primitive_Type_Attr_To_Column(*objs){
$$75$$concat_name$$ := concat_name
if matched_objs, bindings := unbound_func (*args){
if args.len() > 2:

return Input_Pattern_Creator.fail
matched_mp_elems := Set{}
bindings := Dict{}
if 0 < args.len():

$$66$$elements$$ := args[0]
else:

$$66$$elements$$ := self._root_set
$$67$$matched_mp_elems_backup$$ := matched_mp_elems
$$68$$bindings_backup$$ := bindings
for $$69$$new_matched_mp_elems$$, $$70$$new_bindings$$, \

$$71$$matched_elem$$ := unbound_func (bindings, elements){
for element := elements.iterate() & yield \

unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match("String", element):
return Input_Pattern_Creator.fail

for yield $$51$$ := unbound_func (bindings, element){
if bindings.contains("prefix") & \

not bindings["prefix"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"prefix" : element}, element]
}(bindings, element) & $$50$$ := bindings + $$51$$[1] & \
[Set{element}, \
Input_Pattern_Creator.Functional.foldl( \
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \
Input_Pattern_Creator._element1, [$$51$$])), element]

return Input_Pattern_Creator.fail
}(bindings, element)
return Input_Pattern_Creator.fail

}(bindings, $$66$$elements$$):
matched_mp_elems := matched_mp_elems + $$69$$new_matched_mp_elems$$
bindings := bindings + $$70$$new_bindings$$
if 1 < args.len():

$$60$$elements$$ := args[1]
else:

$$60$$elements$$ := self._root_set
$$61$$matched_mp_elems_backup$$ := matched_mp_elems
$$62$$bindings_backup$$ := bindings
for $$63$$new_matched_mp_elems$$, $$64$$new_bindings$$, \

$$65$$matched_elem$$ := unbound_func (bindings, elements){
for element := elements.iterate() & yield \
unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match("Attribute", \

element):
return Input_Pattern_Creator.fail

for yield $$52$$ := bindings & $$54$$ := \
unbound_func (bindings){
slot_element := element.name
for matched_mp_elems, new_bindings, matched_elem \

:= unbound_func (bindings, element){
if bindings.contains("n") & \
not bindings["n"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"n" : element}, element]
}(bindings, slot_element):

if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \

matched_elem]
return Input_Pattern_Creator.fail

}($$52$$) & $$53$$ := $$52$$ + $$54$$[1] & $$59$$ := \
unbound_func (bindings){
slot_element := element.type
for matched_mp_elems, new_bindings, matched_elem := \

unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match( \
"PrimitiveDataType", element):
return Input_Pattern_Creator.fail
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for yield $$55$$ := bindings & $$57$$ := \
unbound_func (bindings){
slot_element := element.name
for matched_mp_elems, new_bindings, \

matched_elem := unbound_func (bindings, \
element){

if bindings.contains("pn") & \
not bindings["pn"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"pn" : element}, \
element]

}(bindings, slot_element):
if slot_element == matched_elem:

yield [matched_mp_elems, new_bindings, \
matched_elem]

return Input_Pattern_Creator.fail
}($$55$$) & $$56$$ := $$55$$ + $$57$$[1] & \
[Set{element}, \
Input_Pattern_Creator.Functional.foldl( \
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \
Input_Pattern_Creator._element1, [$$57$$])), \
element]

return Input_Pattern_Creator.fail
}(bindings, slot_element):

if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \

matched_elem]
return Input_Pattern_Creator.fail

}($$53$$) & $$58$$ := $$53$$ + $$59$$[1] & \
[Set{element}, \
Input_Pattern_Creator.Functional.foldl( \
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \
Input_Pattern_Creator._element1, [$$54$$, $$59$$])), \
element]

return Input_Pattern_Creator.fail
}(bindings, element)
return Input_Pattern_Creator.fail

}(bindings, $$60$$elements$$):
matched_mp_elems := matched_mp_elems + \
$$63$$new_matched_mp_elems$$

bindings := bindings + $$64$$new_bindings$$
return [matched_mp_elems, bindings]
matched_mp_elems := $$61$$matched_mp_elems_backup$$
bindings := $$62$$bindings_backup$$

matched_mp_elems := $$67$$matched_mp_elems_backup$$
bindings := $$68$$bindings_backup$$

return Input_Pattern_Creator.fail
}.apply(objs):
self._matched_objs.extend(matched_objs)
if not rtn := unbound_func (matched_objs, bindings){

concatted_id := Output_Pattern_Creator.concat_id(matched_objs)
if self._transformed_cache["Primitive_Type_Attr_To_Column"]. \

contains(concatted_id):
return self._transformed_cache["Primitive_Type_Attr_To_Column"] \
[concatted_id]

tracing_i := self._tracing.len()
$$72$$prefix$$ := bindings["prefix"]
$$73$$n$$ := bindings["n"]
$$74$$pn$$ := bindings["pn"]
out_elems := []
out_elems.append([unbound_func (){

user_args := Dict{"name" : $$75$$concat_name$$($$72$$prefix$$, \
$$73$$n$$), "type" : $$74$$pn$$}

all_args := []
args_processed := 0
for attr_name := Output_Pattern_Creator.TM.all_attrs_in_order( \
Output_Pattern_Creator.TM._CLASSES_REPOSITORY["Column"]). \
iterate():
if args_processed == user_args.len():
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break
if user_args.contains(attr_name):

all_args.append(user_args[attr_name])
args_processed += 1

else:
all_args.append(Output_Pattern_Creator.null)

return Output_Pattern_Creator.TM._CLASSES_REPOSITORY["Column"]. \
new.apply(all_args)

}()])
out_elem := out_elems[0]
self._transformed_cache["Primitive_Type_Attr_To_Column"] \

[concatted_id] := out_elem
if not out_elem is Output_Pattern_Creator.null:

tracing := [Output_Pattern_Creator.List(matched_objs), out_elems]
tracing := Output_Pattern_Creator.trace_reduce(tracing)
self._tracing.insert(tracing_i, tracing)
self._tracing_rule.insert(tracing_i, \
"Primitive_Type_Attr_To_Column")

return out_elem
}(matched_objs, bindings):

raise MT.Exceptions.Exception(MT.Strings.format("Output pattern of" +
" Primitive_Type_Attr_To_Column failed to generate anything for" +
" ’%s’.", objs.to_str()))

return rtn
else:
return MT.fail

}
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