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Model transformations are recognised as a vital aspect of Model Driven Development,
but current approaches cover only a small part of the possible spectrum. In this pa-
per I present the MT model transformation which shows how a QVT-like language can
be extended with novel pattern matching constructs, how tracing information can be
automatically constructed and visualized, and how the transformed model is pruned of
extraneous elements. As MT is implemented as a DSL within the Converge language,
this paper also demonstrates how a general purpose language can be embedded in a
model transformation language, and how DSL development can aid experimentation and
exploration of new parts of the model transformation spectrum.

1. Introduction

As the software development community has increasingly embraced the use of models
in its development, the need for model transformations has increased, particularly in
the context of MDA [4,12]. A simple definition of a model transformation is that it is
a program which mutates one model into another; in other words, something akin to a
programming language compiler. Of course, if this simple description accurately described
model transformations, then General Purpose Languages (GPLs) would suffice to express
model transformations. In practise, model transformations present a number of problems
which imply that dedicated approaches are required [28].

In recent times, many different model transformation approaches have been proposed
(see e.g. [11,8] for overviews of different approaches). However I believe only a relatively
small part of the solution space has hitherto been explored. It is my contention that the
difficulty of implementing model transformation approaches is one of the chief reasons for
the relative simplicity of most current model transformation approaches. Only a small
proportion of proposed approaches appear to have an implementation, with some of those
being too limited to perform any meaningful task.

In this paper I present the MT model transformation language which can be considered
as a ‘post-QVT’ [22] model transformation approach. Compared to other model transfor-
mation approaches, MT has novel pattern matching features inspired by textual regular
expressions, a practical approach to the automatic creation, customisation, and visualiza-
tion of tracing information, and the ability to prune the transformed model of extraneous
model elements. MT is implemented as a Domain Specific Language (DSL) within the
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Converge programming language [27]. Converge is a novel Python-derived programming
language whose syntax can be extended, allowing DSLs to be directly embedded within it.
Some of MT’s differences from other approaches are a side-effect of implementing MT as
a Converge DSL; some are the result of experimentation with a concrete, but malleable,
implementation. A sub-aim of this paper is therefore to demonstrate that model trans-
formation approaches are often good candidates for implementation as low-cost DSLs,
and that this can aid experimentation and exploration of the spectrum of possible model
transformation approaches.

This paper is an extended version of [30]. In this extended paper, I explore in depth the
differences between QVT and MT, explore tracing visualization in greater detail, present
a more thorough case for, and explanation of, model pruning, and show how MT supports
transformation combinators. A separate technical report contains further details of MT’s
complete implementation [29], including line-by-line analysis of much of the underlying
MT implementation.

The structure of this paper is as follows. In section 2 I examine the QVT-Partners ap-
proach [22], identifying issues with the approach. In section 3 I define the MT language in
detail, starting with a basic overview, before defining its novel pattern matching features,
and approach to creating tracing information. In section 4 I then present a substantial
example MT model transformation. In section 5 I show a particular execution of the
example model transformation, demonstrating MT’s visualization of tracing information
and its approach to pruning extraneous elements from the transformed model.

2. Background

MT is in many senses a derivative of the QVT-Partners approach [22]. In this section I
therefore briefly overview the QVT-Partners approach, outlining some of its limitations (a
comparison of MT with other approaches is presented in section 6). As MT is implemented
as a Converge DSL – and since this plays a significant rôle in the rest of this paper – I
also present a brief overview of Converge.

2.1. The QVT-Partners approach

In this section, I explain some relevant aspects of the QVT-Partners approach, since
the MT language shares several factors in common with the QVT-Partners approach.
Whilst the QVT-Partners approach has the concept of ‘specification’ and ‘implementation’
transformations, the former are largely irrelevant in the context of this paper and are
ignored, as is the diagrammatic syntax for transformations which the approach defines.

The QVT-Partners approach to model transformations is particularly interesting for
its use of patterns – the modelling equivalent of textual regular expressions – which allow
the concise expression of constraints over models. The QVT-Partners approach identifies
three main types of patterns: set, sequence, and object patterns. To ensure consistency
with the rest of this paper, I henceforth refer to object patterns as model element pat-
terns. Although not explicitly noted as such, variables in patterns are essentially patterns
themselves. All types of pattern share in common one thing: given a particular model
element, they will either succeed or fail to match against it.

Set and sequence patterns are similar to those used in function parameters in functional
programming languages such as Haskell. For example a set pattern Set{1, 6 | R} will
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match successfully against a set that contains at least two items 1 and 6; a new set
containing all of the original sets items other than 1 and 6 will be bound to R. Intuitively,
variable names mean ‘match anything and bind’; henceforth these will be referred to as
variable bindings. If the same variable name appears more than once in the same scope, all
instances of that variable name must match against equivalent objects (the QVT-Partners
approach does not define its own notion of equality, instead inheriting it from the MOF
[21]).

Although relatively simple, model element patterns are the backbone of the pattern
language. Model element patterns specify the type that matching model elements must
conform to, and an optional ‘self’ variable which will be bound to the element matched
against. The model element pattern then specifies a number of a slots and a pattern
against which each slot in the model element must match against. The terse power of
model element patterns is best demonstrated by example. Consider first the following
model element pattern:

(Dog, d)[name = n, owner = (Person)[name = "Fred"]]

This pattern will match successfully against a model element which is of type Dog and
whose owner is Fred. After the match the variable d will point to the particular Dog

element matched, and n will contain the dog’s name. The equivalent OCL constraint is
significantly longer, and inscrutable [29]; patterns allow complex constraints to be tersely
expressed, allowing the model transformation writer to concentrate on the salient points
of their task unencumbered by unnecessary machinery.

2.1.1. Issues with the approach

In [29] an example encoding of the standard ‘class to relational database’ model trans-
formation in the QVT-Partners approach is presented; despite the seeming power of pat-
terns, the resultant transformation is longer than its equivalent in a GPL. As this may
suggest, the QVT-Partners approach has a number of minor flaws and limitations which
hamper practical use. In this subsection I outline, in approximately descending order of
importance, three areas which are indicative of where the QVT-Partners falls short of its
intended goals:

Inappropriate imperative language The imperative bodies of mappings are written
in a so-called ‘extended OCL’, which is intended to allow users familiar with OCL
the chance to reuse that knowledge in an imperative setting. This has an immedi-
ate negative effect: extending OCL with imperative constructs means that the often
desirable properties OCL had as a purely side-effect free language are lost1. Con-
versely, when it comes to acting as a normal GPL the resulting language is unwieldy
since it lacks appropriate constructs for common operations. For example, there is
no explicit sequencing mechanism: the imperative body consists of exactly one OCL
constraint, and sequencing can only be achieved clumsily via the let expression.

Underpowered patterns The pattern language defined in the QVT-Partners approach
is novel in the context of model transformations, and potentially very useful. How-
ever the pattern language is lacking in significant expressive power. For example

1OCL 2.0 is not in fact entirely side-effect free; however the situations in which this property is violated

are largely irrelevant in the context of this paper.
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within model element patterns it is only possible to check for the equality of slots
e.g. it is not possible to use a model element pattern to express that a match against
an object should succeed provided a given slot does not match a particular value.
Furthermore patterns can only match against a fixed number of elements. A model
element pattern, for example, can only match successfully against one, and only
one, model element. Note that whilst set and sequence patterns can match against
sets and sequences of arbitrary lengths, only a fixed number of elements can be ex-
plicitly identified within any given set or sequence. There is no general solution to
this problem; typically a new mapping needs to be added so that iteration in a when

clause can control the number of times another mapping is successfully matched.

Scoping rules Since a bare variable name in a slot constitutes a variable binding, the
QVT-Partners approach has fragile scoping rules, since it is difficult to distinguish a
variable binding from a variable reference; whilst not a problem in some languages
such as Prolog, this leads to ambiguities in this case. Consider the simple pattern
given earlier in this section; Dog is a reference to the Dog model class, whereas d is a
variable binding which will be set to the self value of the object which matches the
model element pattern. This has several different consequences [29]. As a simple
example, it is impossible to express that a model element pattern should match
against a particular element. So if d was intended to refer to a specific dog element,
that would be ignored and a new local variable binding d introduced (which may or
may not point to the intended dog model element).

The QVT-Partners approach provides a number of innovations compared to other model
transformation approaches, most notably the use of patterns. However in practise the
simplistic nature of the approach means that it falls somewhat short in its aim to allow
users to express model transformations more easily than in GPLs.

2.2. Converge

Converge is a dynamically typed, imperative, object orientated programming lan-
guage with compile-time meta-programming facilities. Converge’s most obvious ances-
tor is Python [31] resulting in an indentation based syntax, a similar range and style
of datatypes, and general sense of aesthetics. Converge’s expression language is heavily
based on the goal-directed evaluation style found in Icon [13], where expressions can either
succeed or fail, and limited backtracking can occur within programs.

For the purposes of this paper, compile-time meta-programming can be largely thought
of as being equivalent to macros in the LISP (rather than C) sense; more formally, it
allows the user of a programming language a mechanism to interact with the compiler to
allow the construction of arbitrary program fragments by user code. Converge’s compile-
time meta-programming facility is inspired by that found in Template Haskell [25], and
is detailed in depth in [26]. A simple layer on top of the compile-time meta-programming
facility allows DSLs with their own arbitrary syntaxes to be embedded in Converge source
code. The advantage of using this approach is that many aspects of DSL development are
handled by Converge itself, significantly simplifying development; furthermore the DSL
itself can interact arbitrarily with normal Converge code.
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3. MT

The MT language is a new unidirectional stateless model transformation language, im-
plemented as a DSL within Converge. MT defines a natural embedding of model transfor-
mations within Converge, using declarative patterns to match against model elements in a
terse but powerful way, whilst allowing normal imperative Converge code to be embedded
within rules. Because MT is implemented as a DSL within Converge, it has existed as a
concrete implementation from shortly after its original design was sketched out. This has
allowed practical experience with the approach to be quickly fed back into the implemen-
tation. Rapid experimentation with the implementation has led MT to contain a number
of insights and distinct differences from other approaches, such as a more sophisticated
pattern language and suitable ways to visualize model transformations.

MT has a sister DSL TM, which allows typed modelling languages to be easily expressed.
This is detailed in more detail in [29]. For the purposes of this paper, it is sufficient to
know that TM allows UML-style modelling languages, and their instances, to be expressed
in a flat namespace. MT uses TM’s modelling languages and instances.

In this section I describe MT, starting first with its basic details; I then explain its
novel features and approaches, such as pattern multiplicities, and model pruning.

3.1. Basic details

An MT transformation has a name and consists of one or more rules, the ordering
of which is significant. Rules are effectively functions which define a fixed number of
parameters and which either succeed or fail depending on whether the rule matches against
given arguments. If a rule matches successfully, one or more target elements are produced
and it is said to have executed ; if it fails to match successfully, the rule fails and no
elements are produced. Rules are comprised of: a source matching clause containing one
or more source patterns; an optional when clause on the source matching clause; a target
producing clause consisting of one or more expressions; and an optional where clause for
the target production clause.

An MT transformation takes in one or more source elements, which are referred to
as the root set of source elements. The transformation then attempts to transform each
element in the root set of source elements using one of the transformations rules, which
are tried in the order they are defined. If a given element does not cause any rule to
execute then an exception is raised and the transformation is aborted.

The general form of an MT transformation is as follows:

import MT

$<MT.mt>:

transformation transformation name

rule rule name :

srcp:

pattern1 ... patternn

src when:

expr

tgtp:
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expr1 ... exprn

tgt where:

expr1 ... exprn

The import statement is a normal expression in the Converge language and imports
the MT module. DSL blocks are introduced by $<...> – in this example an MT model
transformation DSL block. Since Converge is an indentation based language, all code
indented from the $<MT.mt> line is part of the DSL block; note that code preceding
$<MT.mt> is normal Converge code, as is any code following the DSL block. As this
example shows, a Converge DSL can conform to an arbitrary grammar. A DSL block
is translated into a Converge abstract syntax tree using Converge’s compile-time meta-
programming facilities. As will be seen later, arbitrary Converge code can be embedded
inside the DSL block itself. See [27,29] for more details on these mechanisms.

The srcp and srcp when clauses are collectively said to form the source clauses; sim-
ilarly the tgtp and tgtp when clauses are collectively said to form the target clauses.
Transformation rules contain normal Converge code in expressions; such expressions can
reference variables outside of the model transformation DSL fragment. Users can thus call
arbitrary Converge code, allowing them a means to extend the model transformation ap-
proach as necessary; furthermore the expression language used to extend transformations
is the same as that used within transformations.

3.2. Matching source elements with patterns

A pattern in a srcp clause is analogous to a parameter in a function. In fact, pat-
tern matching in MT is rather like an extended version of pattern matching in functional
languages such as Haskell [15]. Patterns match against arguments passed to a rule, bind-
ing successful matches to variables. A variable binding <v> in MT is a variable name
surrounded by angled brackets and causes whatever object is matched by the binding to
be assigned to v . This distinguishes it from a normal Converge variable reference (and
thus solves the scoping problem identified with the QVT-Partners approach in section
2.1.1). Note that while it is legal (if rarely useful) to bind a variable multiple times (each
binding essentially overwrites the previous value), a variable reference x can not precede
a variable binding <x >.

The matching algorithm used by MT is intentionally simple. Each pattern in a srcp

clause in turn attempts to match against the top-level source elements passed in the
appropriate argument. Each time a pattern matches it produces variable bindings which
are available to all subsequent patterns. If a pattern fails to match, control backtracks
to previous patterns (in the order of most recently visited), which will then attempt to
generate new matches given the variable bindings and arguments available to it. The
generation of an alternative match causes new variable bindings to be produced, which
allows the rule to attempt another match of later patterns. The src when clause, if
it exists, must be a single Converge expression and is evaluated once all patterns have
been matched successfully; it is essentially a guard over patterns. If it fails, patterns are
requested to generate new matches exactly as in the failure of a pattern to match. If all
patterns, and the src when, clause match successfully, then the rule executes.

The order that patterns are defined in the srcp clause is significant, for two separate
reasons. Most obviously it is necessary to ensure that users sequence variable bindings
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and references to the bound variables correctly. However there is a second reason that,
whilst less obvious, is critical to the performance of larger transformations. Making the
order of patterns significant allows users to make use of their domain knowledge to order
them in an efficient way. Consider a rule which has two independent patterns x and y
where x tends to match against many source elements, but y against few. Placing x first
in the srcp clause means that when y fails x will try to produce more values; if x can
produce multiple matches, y may be executed many times unnecessarily. If y is placed
first in the srcp clause then if it fails to match against its input the rule fails without
ever trying to match x. Sensible ordering of patterns in this way can lead to a significant
boost in performance as unnecessary matches are not evaluated.

3.3. Pattern language

MT’s pattern language is a super-set of that found in the QVT-Partners approach. MT
defines a number of pattern expressions: model element patterns, set patterns, variable
bindings, and normal Converge expressions. Model element patterns are of the form
(Class, <self var >)[slot name == pattern ]. A model element pattern matches
against a model element of type Class , and then checks each slot comparison slot name

against a pattern pattern . If the type check, or any of the slot comparisons, fails then the
entire model element pattern fails. In general, any of the standard Converge comparison
operators (e.g. ==, >= etc.) can be used in slot comparisons, and the same slot name may
be involved in multiple comparisons in any given model element expression. If the type of
the model element pattern, or any slot comparisons, fail then the model element pattern
itself fails. Set patterns are directly analogous to those found in functional languages
such as Haskell. Variable bindings were discussed in the previous section. Converge
expressions, when used as patterns, match only against a model element which compares
equal to the evaluated Converge expression. If a model element expression successfully
matches against a model element, then the model element is bound to the optional self
variable self var .

As a trivial example of a model element pattern, assuming an appropriate meta-model,
the following example will match successfully against a Dog model element whose owner
is not Fred, binding the matching Dog element to the variable d and its name to n:
(Dog, <d>)[name == <n>, owner == (Person)[name != "Fred"]]

As a point of comparison, this example would necessitate an OCL constraint in a when

clause in the QVT-Partners approach, which does not possess slot comparisons other than
simple equality.

Allowing different types of slot comparison in model element patterns opens up new
possibilities. Since MT allows the same slot name to appear in more than one slot com-
parison, one can test a slot for multiple conditions as in the following model element
pattern:

(Person)[age >= 18, age <= 25]

As patterns are static elements, it is possible to perform various type checks at DSL
compile time on them, although currently only a limited amount of type checking is done.

Pattern multiplicities are not considered to be a part of the core pattern language, but
are a significant enhancement in MT over the QVT-Partners approach; they are detailed
in section 3.5.
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3.4. Producing target elements

When an MT rule executes, it produces one or more target elements. As this implies,
MT’s execution strategy is different from many graph transformation approaches which
take an input and gradually mutate it into the output. MT takes an input and produces
a fresh output; at no point is the input model altered.

If a rule executes but fails to produce any elements, an exception is raised. The number
of elements produced is determined by the number of expressions in the tgtp clause.
Each expression is a normal Converge expression, but with an important addition. The
MT DSL admits model element expressions by extending Converge’s builtin grammar.
Model element expressions differ from model element patterns both conceptually and
syntactically. Conceptually a model element expression is an imperative, creational action;
to reinforce this notion, slot assignments in a model element expression use the normal
Converge assignment operator :=.

Expressions in tgtp have an optional for suffix which allows a single expression to
generate multiple values. If one ignores the obvious syntactic difference of the relative
location of the keyword, the for suffix works largely as a standard for construct, taking
a single expression and continuously producing a model element for each iteration of the
loop. Variables defined in the for suffix are scoped only over the single expression in the
tgtp clause that it suffixes.

The tgt where clause, if it exists, is a sequence of Converge expressions which are
executed before the tgtp clause. Variables in the tgt where clause are automatically
scoped over the tgtp clause. Unlike the src when clause, there is no notion of success or
failure with the tgt where clause, which is simply a helper function for the tgtp clause.
Note that expressions in the tgt where clause can contain model element expressions.

3.5. Pattern multiplicities

One problem with approaches such as the QVT-Partners approach is that model el-
ement patterns can only match against a fixed number of elements. Some very simple
transformations naturally consist only of rules which match against a fixed number of
elements in the source model. However, many, if not most, non-trivial transformations
contain rules which need to match against an arbitrary number of source elements. Ex-
pressing such transformations in the QVT-Partners approach, and indeed many other
model transformation approaches, requires cumbersome work arounds [29].

To solve this problem, MT adapts the concept of multiplicities found in many textual
regular expression languages. Multiplicities in MT are richer than are found in graph
transformation languages such as GReAT [1] which typically allow cardinality multiplic-
ities such as 0..2 and * to be expressed. As shown in this section, MT has additional
concepts such as greedy and non-greedy matching, and complete matching.

Each source pattern in MT can optionally be given a multiplicity and an associated
variable binding. Multiplicities specify how often a given source pattern can, or must,
match against its source elements. Multiplicities are a constraint on the universe of
model elements passed in the parameter corresponding to the patterns position in the
srcp clause. The following example of a pattern multiplicity will match zero or more
dogs whose owner is Fred, assigning the result of the match to the dogs variable:

(Dog, <d>)[owner == (Person)[name == "Fred"]] : * <dogs>
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The syntax for multiplicities is inspired by Perl-esque regular expression languages. Among
the multiplicities, and possible qualifiers, defined in MT are the following:

m Must match exactly m source elements.
* Will match against zero or more source elements.
* ! Must match against every source element.
* ? Will match against the minimum possible number of source elements.
m .. n Must match no less than m, and no more than n source elements.
m .. * ? Will match against the minimum number of source elements once m ele-

ments have been matched.

As with Perl-esque textual regular expressions, multiplicities default to ‘greedy’ matching
— that is, they will match their pattern against the maximum number of elements that
causes the multiplicity to be satisfied. When backtracking in a srcp clause calls upon
a multiplicity to provide alternative matches, it then returns matches of lesser lengths.
The concept of greedy and non-greedy matching is simple in the case of textual regular
expressions since text is an inherently ordered data type; the length of a match is calcu-
lated by determining how many characters past a fixed starting point a match extends.
In contrast to this, model elements have no order with respect to one another, and MT
has to take a very different approach to the concepts of greedy and non-greedy matches.
MT defines the length of a multiplicities’ match as the number of times the multiplicity
matched; however since model elements are not ordered, this does not present an obvious
way of returning successively smaller matches. In order to resolve this problem in the
case of greedy matching, MT creates the powerset of matches, and iterates over it, suc-
cessively returning sets with smaller number of elements when called upon to do so. Note
that whilst MT guarantees that with greedy matching |matchn| ≥ |matchn+1|, it makes
no guarantees about the order that sets of equal size in the powerset will be returned.

The ? qualifier reverses the default greedy matching behaviour, attempting to match
the minimum number of elements that causes the multiplicity to be satisfied, successively
returning sets of greater size from the powerset when called upon to do so. The ! qualifier
is the ‘complete’ qualifier which ensures that the pattern matches successfully against
every model element passed in the pattern’s appropriate argument. Whilst the ? qualifier,
in a slightly different form, is standard in most textual regular expression languages, the
! qualifier is specific to MT.

3.5.1. Variable bindings in the presence of multiplicities

Variable bindings in patterns suffixed by multiplicities need to be treated differently
from variables in bare patterns. When a multiplicity is satisfied, its associated variable
binding is assigned a list of dictionaries2. Each dictionary contains the variable bindings
from a particular match of the pattern. The need for different treatment of variable
bindings inside and outside multiplicities is most easily shown by examining what would
happen if they were treated identically. Consider the following incorrect MT code:

(Dog)[owner == (Person)[name = <n>]] : * <ds>

(Person, <p>)[name == n]

2Dictionary is Converge’s name for the datatype sometimes known as a hash table or associative array.
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A first glance may suggest that when the rule these patterns are a part of executes, p
will be set to the person who owns the dog. However, the example is nonsensical since n

has no single value — indeed, n may have no value at all, since it will be bound to zero
or more owners’ names as the multiplicity attempts to match the model pattern as many
times as possible. As this example shows, n has no meaning outside of the multiplicity it
is bound in; however it clearly has a meaning in the context of the multiplicity.

In order to resolve this quandary, MT takes a two stage approach. Within multiplicities,
local variable bindings are accessed as normal. Thus the following pattern matches every
dog which has a different name than its owner:

(Dog)[owner == (Person)[name = <n>], name != n] : * <ds>

When the pattern matches successfully against a model element, a dictionary is created
storing the variable binding names and their bound values for that pattern. This dictio-
nary is then added to a list which records the variable bindings of all successfully matched
elements. It is this list of dictionaries which is bound to the variable binding associated
with the multiplicity (in the case of our example ds). From this list of dictionaries, vari-
able bindings for each individual match can be accessed. To illustrate this, consider again
the original multiplicities example:

(Dog)[owner == (Person)[name = <n>]] : * <ds>

Assuming that two model elements successfully match against this pattern, the ds variable
would contain the following list of dictionaries:

[Dict{"n" : "Fred"}, Dict{"n" : "Barney"}]

Dealing with lists of dictionaries is often cumbersome. However the most common oper-
ation involves checking a condition against one of the variables bound in each dictionary
of bindings in a list. The MT module therefore provides a generic convenience function
mult extract(bindings, name) (which, unlike the transform of section 4 is not spe-
cific to a particular transformation) which returns a list of each binding n in the list of
dictionaries bindings. For example, using the previous list of dictionaries as an exam-
ple, mult extract(..., "n") would return ["Fred", "Barney"]. A standard idiom
is to use mult extract having defined a self variable in a model element pattern. The
following code uses this idiom:

(Dog, <d>)[owner == (Person)[name = <n>], name != n] : * <ds>

Subsequently calling mult extract(ds, "d") returns a list of all the dogs matched by
the multiplicity; this can be used for further matching, or when creating target model
elements.

3.6. Tracing information

MT transformations hold a record of tracing information, which is automatically created
as transformation rules are executed. Each rule executed adds a new trace. Each trace is
a tuple of the form [[source elements ], [target elements ]]. MT takes a slightly
unusual approach to trace information. Since trace information does not play a part
in the result of the transformation, the main use of tracing information in MT is for
visualizing and debugging transformations. Recording every source model element that
played some part in creating a given target elements often leads to huge quantities of
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tracing information. Visualizing or filtering this information can be prohibitive, and so
one aim of MT is to attempt to record only that trace information which is of most use
to debugging.

To this end, all elements created by model element expressions are automatically stored
in the tuple. However by default, only elements matched by non-nested model element
patterns are recorded in the tracing information; this means that the source elements that
are stored in the tracing information do not necessarily constitute the entire universe of
elements passed via parameters to the transformation. Non-nested model element patterns
are defined to be those which are not nested within another model element pattern. For
example in the following model element pattern, tracing information will be created only
from instances of the Dog model class:

(Dog, <d>)[name == <n>, owner == (Person)[name != "Fred"]]

It may seem somewhat arbitrary to try to minimise the source elements used in tracing
information since MT maximises the target elements used. The reason for minimising the
source elements used is due to a simple observation: individual source elements are often
matched in more than one rule execution. This then causes some source elements to be
the source for large numbers of traces which can obscure the result of the transformation.
Informally, one finds that when model elements are matched via nested model element
patterns, they are also matched by a non-nested model element pattern during a separate
rule execution. In the case of target elements, a different challenge emerges. Rather
than trying to create an ‘optimum’ amount of traces one wishes to ensure that, as far
as is practical, every target element has at least one trace associated with it. Since
target element expressions are inherently localised to individual rule executions it is highly
unusual for an element created by such an expression to be the target of more than one
trace. Thus it is important to ensure that nested target element expressions have traces
associated with them. [29] shows how nested model element patterns in MT can be made
to contribute towards tracing information if desired.

3.6.1. Augmenting or overriding the standard mechanism

While the standard tracing creation mechanism performs well in many cases, users may
wish to augment, or override, the default tracing information created. Users may wish to
add extra tracing information to emphasise certain relationships within a transformation
for debugging purposes, or to remove certain tracing information that unnecessarily clut-
ters the transformation visualization. MT provides a simple capability for augmenting,
or overriding, the default tracing information created by the standard mechanism. Each
rule can optionally specify one of the tracing add or tracing override clauses. These
clauses contain a single Converge expression which evaluates to a tuple relating source
and target model elements, and which augments or overwrites respectively the default
tracing information mechanism for a given rule.

4. Example

The example I use in this paper is a variant of the standard ‘class to relational model’
transformation as found in [22], and which should be consulted for a more complete
description of the transformation. The ‘Simple UML’ meta-model is shown in figure



12 Laurence Tratt

1, and the relational database meta-model in figure 2. In essence, classes which have
the is persistent attribute set to true will be transformed to tables; references to
such classes (via attribute types or associations) will result in the classes primary key
attributes being converted to columns used as a foreign key. Classes which do not have
the is persistent attribute set to true will not be transformed into tables, and will
be ‘flattened’ when a persistent class that references them is transformed into a table;
the attributes of non-persistent classes are prefixed with the name of the class when so
flattened. When transforming a class, all associations for which the class is a src must
be considered. Attributes can be marked as being part of a classes primary key by having
the is primary attribute set to true. Note that associations play no part in determining
a classes primary key.

Figure 1. Extended ‘Simple UML’ meta-model.

Figure 2. Extended relational database meta-model.

This example, whilst relatively simple, is interesting because of considerations such as
the following:

• Classes can not be transformed in isolation – all associations for which a class is the
source must be considered in order that the table that results from a class contains
all necessary columns.

• Classes which are marked as persistent must be transformed substantially different
from those not marked as persistent.
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• Foreign keys and primary keys both reference columns; it is important that the
column model elements pointed to by a table are the appropriate model elements,
and not duplicates.

Noting that booleans in MT are represented by 0 (false) and 1 (true), the MT version
of this example is as follows:

import MT

$<MT.mt>:

transformation Classes_To_Tables

// Transform each persistent class into a table. To do this, we need to find all

// associations for which this class is a source. We merge these associations

// and the classes attributes together to create the columns and primary /

// foreign keys.

rule Persistent_Class_To_Table:

srcp:

(Class, <c>)[name == <n>, attrs == <attrs>, is_persistent == 1]

(Association, <assoc>)[src == c] : * <assocs>

tgtp:

(Table)[name := n, cols := cols, pkey := pkeys, fkeys := fkeys]

tgt_where:

cols := []

pkeys := []

fkeys := []

// We now transform the union of attributes and associations for which this

// class is a source. Since attrs is a list and mult_extract returns a list

// the union operator performs list concatenation.

for aa := (attrs + MT.mult_extract(assocs, "assoc")).iterate():

a_cols, a_pkeys, a_fkeys := self.transform([""], [aa])

cols.extend(a_cols)

pkeys.extend(a_pkeys)

fkeys.extend(a_fkeys)

// Transform attributes of type String, Int etc. and which constitute part of the

// primary key into a single column (that is both a normal column and a primary key).

rule Primary_Primitive_Type_Attribute_To_Columns:

srcp:

(String, <prefix>)[]

(Attribute)[name == <attr_name>, type == (PrimitiveDataType)[ \

name == <type_name>], is_primary == 1]

tgtp:

[col]

[col]

[]

tgt_where:

col := (Column)[name := concat_name(prefix, attr_name), type := type_name]
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// Transform attributes of type String, Int etc. and which do not constitute part of

// the primary key into a single normal column.

rule Non_Primary_Primitive_Type_Attribute_To_Columns:

srcp:

(String, <prefix>)[]

(Attribute)[name == <attr_name>, type == (PrimitiveDataType)[ \

name == <type_name>], is_primary == 0]

tgtp:

[(Column)[name := concat_name(prefix, attr_name), type := type_name]]

[]

[]

// Transform attributes of persistent types defined by users into columns. The

// transformed types primary keys become foreign keys for the table it is part of.

rule Persistent_User_Type_Attribute_To_Columns:

srcp:

(String, <prefix>)[]

(Attribute, <attr>)[name == <attr_name>, type == (Class, <class_>)[ \

name == <class_name>, attrs == <attrs>, is_persistent == 1]]

tgtp:

cols

[]

[cols]

tgt_where:

cols := []

for attr := attrs.iterate():

a_cols, a_pkeys, a_fkeys := self.transform([concat_name(prefix, \

attr_name)], [attr])

cols.extend(a_pkeys)

// Transform attributes of non-persistent types defined by users into columns.

rule Non_Persistent_User_Type_Attribute_To_Columns:

srcp:

(String, <prefix>)[]

(Attribute, <attr>)[name == <attr_name>, type == (Class, <class_>)[ \

name == <class_name>, attrs == <attrs>, is_persistent == 0]]

tgtp:

cols

[]

[]

tgt_where:

cols := []

for attr := attrs.iterate():

a_cols, a_pkeys, a_fkeys := self.transform([concat_name(prefix, \

attr_name)], [attr])

cols.extend(a_cols)
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// Transform associations whose destination is a persistent type into columns.

// This is analogous to Persistent_User_Type_Attribute_To_Columns.

rule Persistent_Association_To_Columns:

srcp:

(String, <prefix>)[]

(Association)[name == <attr_name>, dest == (Class, <class_>)[ \

name == <class_name>, attrs == <attrs>, is_persistent == 1]]

tgtp:

cols

[]

[cols]

tgt_where:

cols := []

for attr := attrs.iterate():

a_cols, a_pkeys, a_fkeys := self.transform([concat_name( \

prefix, attr_name)], [attr])

cols.extend(a_pkeys)

// Transform associations whose destination is a non-persistent type into columns.

// This is analogous to Non_Persistent_User_Type_Attribute_To_Columns.

rule Association_Non_Persistent_Class_To_Columns:

srcp:

(String, <prefix>)[]

(Association)[name == <attr_name>, dest == (Class, <class_>)[ \

name == <class_name>, attrs == <attrs>, is_persistent == 0]]

(Association, <assoc>)[src == class_] : * <assocs>

tgtp:

cols

[]

fkeys

tgt_where:

cols := []

fkeys := []

for aa := (attrs + MT.mult_extract(assocs, "assoc")).iterate():

a_cols, a_pkeys, a_fkeys := self.transform([concat_name(prefix, \

attr_name)], [aa])

cols.extend(a_cols)

// Ensure that non-persistent classes etc. which are not matched by other rules do

// not lead to the creation of target model elements.

rule Default:

srcp:

(MObject)[]

tgtp:

null

In order to run this transformation, a list of top-level elements (classes and associations)
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should be passed to it. There is no requirement to designate one particular class as being
the ‘start’ class for the transformation. The output of the transformation will consist of
a number of tables.

The overall structure of this transformation is hopefully relatively straightforward even
if some of the finer details are not. The Persistent Class To Table rule ensures
that each class marked as being persistent in the source model is transformed into a
table in the target model. It takes a persistent class, and finds all of the associations
for which the class is a source; it then iterates over the union of the classes’ attributes
and associations for which it is a source, transforming them into columns. All of the
other rules take in a string prefix (representing the column prefix being constructed as
the transformation drills into user types), and an attribute or association (and, in the
case of the Association Non Persistent Class To Columns rule, an additional set
of associations) and produce three things: a list of normal table columns; a list of primary
key columns; a list of foreign key columns.

The final rule in the transformation Default is a ‘catch all’ rule that takes in model
elements from the root set which not matched by other rules – non-persistent classes and
associations – and transforms them into the null object; this causes MT to discard the
result of the transformation rule, and not create any tracing information. The Default

rule is necessary to ensure that such elements in the root set of source elements do not
cause the transformation to raise a Can not transform exception.

Three features in this transformation need extra explanation in the context of this
paper. First, the self variable in Converge code is analogous to this in Java — MT
transformations are in fact translated to a Converge class, and one can thus access specific
rules and so on via the self variable. Second, the transform function used throughout
the transformation is also present in every MT transformation. It takes an element(s) in,
and successively tries every transformation rule in the transformation using the arguments
passed to it, attempting to find one which executes given the element(s) as input. If no
rule executes, the transform function raises an error. The transform function is also
used internally by MT to transform each element in the root set but, as in this example,
may be called at will by the user.

The final feature that requires explanation leads on from the second, but is less obvi-
ous to the casual reader. Many of the rules have more patterns than there are arguments
passed to the transform function. The Association Non Persistent Class To Col-

umns rule, for example, defines three patterns but the transform function is never called
with more than two arguments – it would thus seem impossible for this rule to ever
execute. However, MT defines that when a rule is passed fewer arguments than it has pa-
rameters, the root set of source elements is substituted for each missing argument. This is
effectively an escape mechanism allowing rules access to the complete source graph. This
mechanism is vital for ensuring that transformations such as this are not complicated by
the need to pass the root set of source elements to every rule execution.

5. An execution

Figure 3 shows a complete run of the example transformation on a simple input, au-
tomatically visualized as a hybrid object diagram. Source elements are shown in blue;
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output elements in green; tracing links in black. An execution of this transformation with
a significantly larger input model can be found in [29], which also documents MT’s other
visualization techniques and options.

5.1. Visualizing tracing information

Visualizing tracing information is an interesting challenge, and one that has hitherto
received scant attention in the context of model transformations. Work on trace visual-
ization in areas such as object orientated systems (e.g. [5]) is of little use in the context
of model transformations. Egyed motivates the use of tracing information in the context
of modelling, but explains neither how to generate or visualize such information [10]. MT
and TM cooperate together to present a simple visualization of tracing information that
also allows users to build up a detailed picture of how the transformation executed.

In figure 3, the black lines between source and target elements represent the individual
traces between source and target elements. To avoid cluttering, the visualization of a
trace is always from a single source element to a single target element. Each trace has
a name of the form tn where n is an integer starting from 1. The integer values reflect
the traces position in the execution sequence; trace numbers can be compared to one
another to determine whether a rule execution happened earlier or later in the execution
sequence. Trace names can be looked up in the ‘Tracing’ table at the top right of figure.
The tracing table contains the name of each rule which was executed at least once during
the transformation. Against each rule name are the names of traces; each trace name
represents an execution of that rule. Note that a single rule execution can create more
than one trace; however each trace created in a single execution will share the same name.

Although the visualization of tracing information may seem simple, it allows one to
infer a great deal of useful information about the execution of a transformation. This
information is useful both for analysis and debugging of a transformation. At a simple
level, one can use the names of tracing information to determine which rule consumed
which source elements and produced which target elements. For example a trace marked
‘t1’ is a result of an execution of the Persistent Class To Table rule. One can also
deduce from this traces name that it was the result of the first rule execution in the
system. Equally since two traces share the name ‘t1’, one can determine that during a
single execution the Persistent Class To Table rule produced two elements.

5.2. Pruning the target model

One thing not immediately obvious from viewing figure 3 is that, unlike the majority
of model transformation approaches, MT does not force the final target model to be a
union of the model elements produced in every rule execution. In fact, if one were to
take the union of model elements produced by every rule execution for this example, the
target model would contain many superfluous model elements. The process of removing
unwanted model elements from a transformation execution is known as model pruning in
MT.

The need for this in case of this example can be seen by examining a rule such as
Persistent Association To Columns. This rule calls the transform function but
then effectively discards some of the model elements produced by this call (the rule in
question cares only about primary key columns, and ignores any non-primary key columns
that may have been produced). Knowing that, as an implementation detail, TM assigns
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Non_Primary_Primitive_Type_Attribute_To_Columns: t4, t5, t6, t10, t11, t12, t16, t17, t18

Figure 3: An example execution of the extended transformation.
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each new model element a unique and monotonically increasing identifier, one can see
from figure 3, that some elements have been discarded, due to the non-contiguous model
identifiers in target model elements. The lowest mod id for a target model element is
20 and the highest 36, but only 11 elements with identifiers in that range are present in
the output – the missing 5 identifiers are evidence that elements were produced by a rule
execution, but subsequently discarded.

Figure 4 shows the output of a modified version of TM which displays model elements
that would normally be pruned in dashed red. In other words, these are elements created
by a rule execution (which rule can be determined, as before, from the tracing information)
which are not present in the final target model. One can clearly see from this figure the
need to eventually prune these elements, since they would otherwise lead to an incorrect
target model.

To determine the final target model, MT uses a simple variation on the standard mark
and sweep garbage collection algorithm [14]. An advantage of using this approach to
model pruning is its familiarity and its quick execution time. The starting set for reachable
elements in the target model are those model elements that resulted from transforming
each element in the root set of source elements. From there, a simple graph walking
scheme marks each model element which is reachable. Target elements not visited during
this walk are then pruned. Note that this definition is carefully chosen: by examining the
model elements that result from transforming each element in the root set, the eventual
target model may legally consist of unconnected subgraphs.

As shall be seen in the following subsection, model pruning is also vital in the presence
of combinators.

5.3. Combinators

One of the most interesting features in the QVT-Partners approach are combinators.
The QVT-Partners approach defines and, or, and not combinators. The combinators
work largely as one might expect given their names; for example, the and combinator
takes two or more rule invocations, and succeeds only if each invocation succeeds.

Since MT rules are able to utilise the standard Converge notions of success and failure,
the base combinators from the QVT-Partners approach can be encoded directly in MT
using the not, disjunction ‘|’ and conjunction ‘&’ operators for not, or, and and respec-
tively. The following contrived transformation rule will match against a class iff one of
its attributes can be transformed by one or the other of the R1 or R2 rules:

rule X:

srcp:

(Class)[attributes = {<a> | O}]

src_when:

self.R1(a) | self.R2(a)

The QVT-Partners approach defines extra semantics for the and combinator which auto-
matically merges together the outputs of different rules. In the general case, I believe that
such functionality is undesirable since the merging of outputs can only sensibly be deter-
mined at the fine-grained level by transformation writers themselves. However building
a ‘merging’ combinator on top of the existing functionality is relatively simple, since it
merely involves storing and then merging the result of each expression in a conjunction.
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Figure 4: Non-pruned execution of the extended transformation.
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Although the treatment of combinators in MT is currently simplistic, the direct encod-
ing of these features in terms of primitive Converge features is interesting. Whereas the
QVT-Partners combinators are new primitives in the language, MT is able to directly
utilise Converge features.

5.3.1. Combinators and model pruning

An important, if not immediately, obvious consequence of using combinators is that
model elements produced by some successful executions of rules will not be present in the
final target model. This happens most frequently with the use of the & (‘and’) combinator;
if its left hand side rule execution succeeds but the right hand side rule fails then elements
produced by the LHS must not appear in the final target model. In fact, liberal use of the
& combinator can easily lead to transformations which prune several times the number of
the elements that appear in the final target model.

6. Related work

As with the majority of existing model transformation systems, MT is a unidirectional
stateless model transformation system (in the language of [28]). MT’s most obvious
ancestor is the QVT-Partners approach [23]. MT takes the base QVT-Partners pattern
language and enriches it with features such as pattern multiplicities, and variable slot
comparisons; without such features, it is extremely difficult to express transformations
of the complexity found in section 4 as discussed in [29]. Furthermore, by providing a
concrete implementation – and a detailed explanation of that implementation – much of
the vagueness associated with other model transformations such as the QVT-Partners
approach is avoided in MT.

A significant difference from the QVT-Partners approach is in MT’s imperative as-
pects. Due to its implementation as a Converge DSL, MT can embed normal Converge
code within it. This contrasts sharply with the QVT-Partners approach which is forced
to define an OCL variant with imperative features in order to have a usable language.
As explained in section 2.1.1, this variant language suffers from several conceptual and
practical problems. The forthcoming QVT standard also includes separate wholly declar-
ative and wholly imperative model transformations; MT can be thought of as treading
the ground in between these two extremes, gaining many of the advantages of both, whilst
avoiding many of their respective pitfalls. I also believe that MT is unique in being able
to not only embed a GPL within it, but to call out naturally to that same GPL. MT users
are thus not constrained by any limitations of the particular model transformation ap-
proach. Although this may initially appear to be a mere implementation detail, virtually
all existing model transformation approaches present only a highly constrained execution
environment to the user, requiring them to call out to a different language to augment
their transformations.

Perhaps the closest model transformation approach is the commercial XMap language
[6], an approach essentially based on the QVT-Partners approach. This also means that
the issues noted in both this section, and in section 2.1.1 with respect to the QVT-Partners
approach, apply equally to XMap.

The ATL language [3] shares many similarities with MT, including that it has a publicly
available implementation. ATL does not possess patterns, or MT’s advanced features such
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as pattern multiplicities. ATL has an increased emphasis on the declarative nature of ATL
transformations, although ATL, as MT, is a unidirectional stateless model transformation
language. [16] shows the ATL version of the example of section 4. Mainly due to its lack
of patterns and so on, the ATL transformation is approximately a little over a third larger
than the MT equivalent; it is also more complex than the MT equivalent due to it use of
ATL’s three different types of rule (standard, lazy, and unique lazy), where MT only has
one type. However ATL does have some useful additional features such as the notion of
rule inheritance which can be used to provide an analogue to method overloading in an
OO language; MT has no such equivalent.

Graph transformation approaches, such as that presented in [18] take a very different
approach to MT (and, indeed, ATL). Graph transformations are more declarative in
nature than MT, and allow more theoretical reasoning about their transformations than
is practical with MT. While many of the graph transformation approaches mentioned in
this paper are fairly mature, MT has a richer pattern language – particularly with its
treatment of pattern multiplicities – in comparison to languages such as GReAT [1] and
PROGRES [24], and a very different approach to embedding a GPL within the language.
VIATRA2 uses abstract state machines which to express complex control flow [2]; while
powerful, it is rather verbose compared to MT’s use of the embedded Converge language.
One advantage of some graph transformation approaches is that they have accompanying
implementations which are mature and stable (e.g. [18,20]).

The RubyTL language [7] is similar in spirit to MT, in that it is a model transformation
language expressed as a DSL within a GPL. Although Ruby has a more flexible syntax
than most languages, it does not permit arbitrary syntaxes to be embedded within it as
does Converge. Most notably this means that RubyTL does not possess syntactically rich
patterns, relying on ‘filters’ (effectively when-style clauses) written in normal imperative
code.

A number of other approaches have also been published using a similar example to that
of section 4. Diagrammatic approaches such as MOLA are difficult to use on such ‘fiddly’
examples, and can often lead to transformations which are more difficult to comprehend
than textual approaches such as ATL and MT [17]. Other approaches such as BOC appear
to lack an implementation, making it hard to be sure whether pseudo-code examples are
executable or not [19]; and in the case of BOC, the pseudo-code for the transformation
of section 4 is more than twice as long as the MT equivalent, raising questions about the
practicality of the approach.

Perhaps surprisingly, given the seeming simplicity of the task, one of MT’s most dis-
tinctive features is its automatic creation of tracing information. Most approaches neglect
this problem; the few that tackle it, such as the DSTC approach [9], require the user to
manually specify the tracing information to be created. By using patterns defined by the
user to automatically derive tracing information has not, to the best of my knowledge,
been used by any other system. MT distinguishes itself further by its simple, but effective,
technique for reducing superfluous tracing information.

The unnamed language presented in [28] is effectively a persistent model transformation
language in the spirit of the original QVT-Partners proposal. Although it can express
persistent transformations, it is therefore a much cruder and less expressive language
language than MT.
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It is perhaps telling that although MT contains several enhancements compared to
existing approaches, it also shares many of the limitations of existing approaches, such as
a lack of rule structuring mechanisms. Section 7 outlines the work that may resolve some
of these limitations.

7. Future work

Although I believe that MT is currently one of the more powerful model transformation
languages available, the relative immaturity of the area means that no new approach can
claim to present a definitive solution. Perhaps the most pressing question for every model
transformation approach, including MT, regards scalability. Although MT has been used
to express transformations of the order of magnitude of the low tens of rules, it is clear
that in order to make larger transformations feasible, new techniques for structuring and
combining rules will be required. For example, currently all rules in an MT transformation
exist in a single namespace; there is no notion of ‘transformation modules’. The issue of
scalability is perhaps the most crucial in maturing model transformations as an area.

Currently MT performs virtually no optimisations. That is, it is possible for the user to
express inefficient transformations that MT could relatively easily transform into equiva-
lent, efficient transformations. For example it should be possible to analyse patterns in a
srcp clause and determine an equivalent reordering that will allow the transformation to
execute quicker.

A little explored area of MT at current is combinators. I believe that a fruitful area
of research will be to build upon the work of Section and to build and experiment with
increasingly powerful combinators.

In terms of ‘nitty gritty’ details, there are several aspects of MT that could usefully be
improved. For example, one irritation encountered in this paper relates to the for suffix
of expressions in a rules tgtp clause. Currently rules can generally only produce as many
top-level elements as they have expressions in the tgtp clause. This can occasionally lead
to cumbersome or dangerous work arounds being employed. It would be useful to have a
variant for suffix which would ‘fold in’ the elements produced by its expression as if they
had been produced by top-level tgtp. As befits a new, small language similar examples
can easily be found elsewhere in MT.

MT has been used as the basis for a change propagating model transformation approach,
which raises a number of new challenges; this will be documented in a follow up paper.

8. Conclusions

In this paper I presented the MT model transformation language. After detailing MT’s
basic features, I presented features novel in the field of model transformations, such as
its visualization of transformation executions, its strategies for automatically generating
tracing information, its definition of pattern multiplicities, and its approach to pruning
extraneous elements. I then made use of these novel features in a non-trivial example.

Given the relative immaturity of the model transformations area, it would be näıve
to assert that any particular approach is the definitive answer. Rather I hope that the
description of MT and its novel features provides a useful basis for authors of subsequent
approaches, as the model transformation community researches different ways to tackle
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this vital problem. Furthermore I believe that MT shows that the Converge language is
a practical way of implementing such languages quickly and robustly.

An extended version of this paper can be found in the technical report [29]. MT can
be found as part of the Converge programming language, freely available under a MIT /
BSD-style licence from http://convergepl.org/.

I would like to thank the anonymous referees whose comments on this paper were
extremely helpful.

This research was funded by a grant from Tata Consultancy Services.
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