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ABSTRACT
Model transformations are recognised as a vital part of Mo-
del Driven Development, but current approaches are often
simplistic, with few distinguishing features, and frequently
lack an implementation. The practical difficulties of im-
plementing an approach inhibit experimentation within the
paradigm. In this paper, I present the MT model trans-
formation language which was implemented as a low-cost
DSL in the Converge programming language. Although MT
shares several aspects in common with other model trans-
formation languages, an ability to rapidly experiment with
the implementation has led MT to contain a number of new
features, insights and differences from other approaches.

1. INTRODUCTION
As the software development community has increasingly

embraced the use of models in its development, the need
for model transformations has increased, particularly in the
context of MDA [1, 8]. A simple definition of a model trans-
formation is that it is a program which mutates one model
into another; in other words, something akin to a program-
ming language compiler. Of course, if this simple descrip-
tion accurately described model transformations, then Gen-
eral Purpose Languages (GPL’s) would suffice to express
model transformations. In practise, model transformations
present a number of problems which imply that dedicated
approaches are required [13].

In recent times, many different model transformation ap-
proaches have been proposed (see e.g. [7, 4] for overviews
of different approaches). However I believe only a relatively
small part of the solution space has hitherto been explored.
It is my contention that the difficulty of implementing model
transformation approaches is one of the chief reasons for the
relative simplicity of most current model transformation ap-
proaches. Only a small proportion of proposed approaches
appear to have an implementation, with some of those being
too limited to perform any meaningful task.

The purpose of this paper is to present an overview of
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the MT model transformation language, outlining its basic
features, along with some of the additional features it pos-
sesses over existing approaches such as the QVT-Partners
approach [11], and concluding with a non-trivial example
of its use. MT is implemented as a Domain Specific Lan-
guage (DSL) within the Converge programming language
[12]. Converge is a novel Python-derived programming lan-
guage whose syntax can be extended, allowing DSLs to be
directly embedded within it. Some of MT’s differences from
other approaches are a side-effect of implementing MT as a
Converge DSL; some are the result of experimentation with a
concrete, but malleable, implementation. Space constraints
mean that it is left to an extended technical report to de-
tail MT’s complete implementation [14]. Due partly to its
implementation as a Converge DSL, MT is novel due to its
unique interspersing of declarative and imperative aspects
of model transformations, as well as for some of its features
which are novel in a model transformation context.

2. OVERVIEW
MT is in many senses a derivative of the QVT-Partners

approach [11]. The QVT-Partners approach is interesting
for its use of patterns – the modelling equivalent of textual
regular expressions – which allow the concise expression of
constraints over models. However the QVT-Partners pat-
terns are weak in expressive power, can only match against
a fixed number of elements, contain flaws in their scoping
rules, and make use of a convoluted imperative language for
rule bodies. See [14] for more details.

The MT language is a new unidirectional stateless model
transformation language, implemented as a DSL within Con-
verge. MT defines a natural embedding of model trans-
formations within Converge, using declarative patterns to
match against model elements in a terse but powerful way,
whilst allowing normal imperative Converge code to be em-
bedded within rules. Because MT is implemented as a DSL
within Converge, it has existed as a concrete implementa-
tion from shortly after its original design was sketched out.
This has allowed practical experience with the approach to
be quickly fed back into the implementation. Rapid exper-
imentation with the implementation has led MT to contain
a number of insights and distinct differences from other ap-
proaches, such as a more sophisticated pattern language and
suitable ways to visualize model transformations.

MT has a sister DSL TM, which allows typed modelling
languages to be easily expressed. This is detailed in more
detail in [14]. For the purposes of this paper, it is sufficient
to know that TM allows UML style modelling languages,



and their instances, to be expressed.

2.1 Basic details
An MT transformation has a name and consists of one or

more rules, the ordering of which is significant. Rules are
effectively functions which define a fixed number of param-
eters and which either succeed or fail depending on whether
the rule matches against given arguments. If a rule matches
successfully, one or more target elements are produced and it
is said to have executed ; if it fails to match successfully, the
rule fails and no elements are produced. Rules are comprised
of: a source matching clause containing one or more source
patterns; an optional when clause on the source matching
clause; a target producing clause consisting of one or more
expressions; and an optional where clause for the target pro-
duction clause.

An MT transformation takes in one or more source el-
ements, which are referred to as the root set of source ele-
ments. The transformation then attempts to transform each
element in the root set of source elements using one of the
transformations rules, which are tried in the order they are
defined. If a given element does not cause any rule to ex-
ecute then an exception is raised and the transformation is
aborted.

The general form of an MT transformation is as follows:
import MT.MT

$<MT.mt>:
transformation transformation name

rule rule name:
srcp:

pattern1 ... patternn

src when:
expr

tgtp:
expr1 ... exprn

tgt where:
expr1 ... exprn

The import statement is an expression in the base Converge
language and imports a module. DSL blocks are introduced
by $<...> – in this example an MT model transformation
DSL block. Since Converge is an indentation based lan-
guage, all code indented from the $<MT.mt> line is part of
the DSL block; all code outside of the indented block is
normal Converge code. As this example shows, a Converge
DSL can conform to an arbitrary grammar. A DSL block is
translated into a Converge abstract syntax tree using Con-
verge’s compile-time meta-programming facilities. As will
be seen later, arbitrary Converge code can be embedded in-
side the DSL block itself. See [12, 14] for more details on
these mechanisms.

The srcp and srcp when clauses are collectively said to
form the source clauses; similarly the tgtp and tgtp when

clauses are collectively said to form the target clauses. Trans-
formation rules contain normal Converge code in expres-
sions; such expressions can reference variables outside of the
model transformation DSL fragment. Users can thus call
arbitrary Converge code, allowing them a means to extend
the model transformation approach as necessary.

2.2 Matching source elements with patterns
A pattern in a srcp clause is analogous to an parameter

in a function. In fact, pattern matching in MT is rather

like an extended version of pattern matching in functional
languages such as Haskell [9]. Patterns match against argu-
ments passed to a rule, binding successful matches to vari-
ables. A variable binding in MT is a variable name sur-
rounded by angled brackets ‘<’ and ‘>’ to distinguish it from
a normal Converge variable reference.

The matching algorithm used by MT is intentionally sim-
ple. Each pattern in a srcp clause in turn attempts to match
against the top-level source elements passed in the appro-
priate argument. Each time a pattern matches it produces
variable bindings which are available to all subsequent pat-
terns. If a pattern fails to match, control backtracks to pre-
vious patterns (in the order of most recently visited), which
will then attempt to generate new matches given the vari-
able bindings and arguments available to it. The generation
of an alternative match causes new variable bindings to be
produced, which allows the rule to attempt another match
of later patterns. The src when clause, if it exists, must
be a single Converge expression and is evaluated once all
patterns have been matched successfully; it is essentially a
guard over patterns. If it fails, patterns are requested to
generate new matches exactly as in the failure of a pattern
to match. If all patterns, and the src when clause match
successfully, then the rule executes

The order that patterns are defined in the srcp clause
is significant, for two separate reasons. Most obviously it
is necessary to ensure that users sequence variable bindings
and references to the bound variables correctly. However
there is a second reason that, whilst less obvious, is criti-
cal to the performance of larger transformations. Making
the order of patterns significant allows users to make use of
their domain knowledge to order them in an efficient way.
Consider a rule which has two independent patterns x and
y where x tends to match against many source elements,
but y against few. Placing x first in the srcp clause means
that when y fails x will try to produce more values; if x can
produce multiple matches, y may be executed many times
unnecessarily. If y is placed first in the srcp clause then if
it fails to match against its input the rule fails without ever
trying to match x. Sensible ordering of patterns in this way
can lead to a significant boost in performance as unnecessary
matches are not evaluated.

2.3 Pattern language
MT’s pattern language is a super-set of that found in the

QVT-Partners approach. MT defines a number of pattern

expressions: model element patterns, set patterns, variable
bindings, and normal Converge expressions. Model element
patterns are of the form (Class, <self var >)[slot name

== pattern ]. A model element pattern matches against a
model element of type Class , and then checks each slot com-

parison slot name against a pattern pattern . If the type
check, or any of the slot comparisons, fails then the entire
model element pattern fails. In general, any of the standard
Converge comparison operators (e.g. ==, >= etc.) can be
used in slot comparisons, and the same slot name may be
involved in multiple comparisons in any given model element
expression. If the type of the model element pattern, or any
slot comparisons fail, then the model element pattern itself
fails. Set patterns are directly analogous to those found in
functional languages such as Haskell. Variable bindings <v >
match against any model element, binding the element to v ;
patterns subsequent to the binding may use the variable v



in the normal fashion. Converge expressions, when used as
patterns, match only against a model element which com-
pares equal to the evaluated Converge expression. If a model
element expression successfully matches against a model el-
ement, then the model element is bound to the optional self

variable self var .
As a trivial example of a model element pattern, assum-

ing an appropriate meta-model, the following example will
match successfully against a Dog model element whose owner
is not Fred, binding the Dog element to the variable d and
its name to n:

(Dog, <d>)[name == <n>, owner == (Person)[name != "Fred"]]

As a point of comparison, this example would necessitate
an OCL constraint in a when clause in the QVT-Partners
approach since that approach does not possess slot compar-
isons other than simple equality.

2.4 Producing target elements
When an MT rule executes it produces one or more target

elements. As this implies, MT is distinct from e.g. graph
transformation approaches which take an input and grad-
ually mutate it into the output. MT takes an input and
produces a fresh output; at no point is the input model al-
tered.

If a rule executes but fails to produce any elements, an
exception is raised. The number of elements produced is de-
termined by the number of expressions in the tgtp clause.
Each expression is a normal Converge expression, but with
an important addition. The MT DSL admits model ele-

ment expressions by extending Converge’s builtin grammar.
Model element expressions differ from model element pat-
terns both conceptually and syntactically. Conceptually a
model element expression is an imperative, creational ac-
tion; to reinforce this notion, slot assignments in a model
element expression use the normal Converge assignment op-
erator :=.

Expressions in tgtp have an optional for suffix which
allows a single expression to generate multiple values. If
one ignores the obvious syntactic difference of the relative
location of the keyword, the for suffix works largely as a
standard for construct, taking a single expression and con-
tinuously producing a model element for each iteration of
the loop. Variables defined in the for suffix are scoped only
over the single expression in the tgtp clause that it suffixes.

The tgt where clause, if it exists, is a sequence of Con-
verge expressions which are executed before the tgtp clause.
Variables in the tgt where clause are automatically scoped
over the tgtp clause. Unlike the src when clause, there is
no notion of success or failure with the tgt where clause,
which is simply a helper function for the tgtp clause. Note
that expressions in the tgt where clause can contain model
element expressions.

2.5 Pattern multiplicities
One problem with approaches such as the QVT-Partners

approach is that model element patterns can only match
against a fixed number of elements. Some very simple trans-
formations naturally consist only of rules which match again-
st a fixed number of elements in the source model. However,
many, if not most, non-trivial transformations contain rules
which need to match against an arbitrary number of source
elements. Expressing such transformations in the QVT-
Partners approach, and indeed many other model transfor-

mation approaches, requires cumbersome work arounds [14].
To solve this problem, MT adapts the concept of multi-

plicities found in many textual regular expression languages.
Each source pattern in MT can optionally be given a mul-

tiplicity and an associated variable binding. Multiplicities
specify how often a given source pattern can, or must, match
against its source elements. Multiplicities are a constraint
on the universe of model elements passed in the parameter
corresponding to the patterns position in the srcp clause.
The following example of a pattern multiplicity will match
zero or more dogs whose owner is Fred, assigning the result
of the match to the dogs variable:

(Dog, <d>)[owner == (Person)[name == "Fred"]] : * <dogs>

The syntax for multiplicities is inspired by Perl-esque reg-
ular expression languages. Amongst the multiplicities, and
possible qualifiers, defined in MT are the following:

m Must match exactly m source elements.
* Will match against zero or more source ele-

ments.
* ! Must match against every source element.
m .. n Must match no less than m, and no more

than n source elements.
m .. * ? Will match against the minimum number of

source elements once m elements have been
matched.

As with Perl-esque textual regular expressions, multiplici-
ties default to ‘greedy’ matching — that is, they will match
their pattern against the maximum number of elements that
causes the multiplicity to be satisfied. When backtracking
in a srcp clause calls upon a multiplicity to provide alterna-
tive matches, it then returns matches of lesser lengths. The
concept of greedy and non-greedy matching is simple in the
case of textual regular expressions since text is an inherently
ordered data type; the length of a match is calculated by de-
termining how many characters past a fixed starting point a
match extends. In contrast to this, model elements have no
order with respect to one another, and MT has to take a very
different approach to the concepts of greedy and non-greedy
matches. MT defines the length of a multiplicities’ match
as the number of times the multiplicity matched; however
since model elements are not ordered, this does not present
an obvious way of returning successively smaller matches. In
order to resolve this problem in the case of greedy matching,
MT creates the powerset of matches, and iterates over it,
successively returning sets with smaller number of elements
when called upon to do so. Note that whilst MT guarantees
that with greedy matching |matchn| ≥ |matchn+1|, it makes
no guarantees about the order that sets of equal size in the
powerset will be returned.

The ? qualifier reverses the default greedy matching be-
haviour, attempting to match the minimum number of el-
ements that causes the multiplicity to be satisfied, succes-
sively returning sets of greater size from the powerset when
called upon to do so. The ! qualifier is the ‘complete’
qualifier which ensures that the pattern matches success-
fully against every model element passed in the patterns
appropriate argument. Whilst the ? qualifier, in a slightly
different form, is standard in most textual regular expression
languages, the ! qualifier is specific to MT.



2.5.1 Variable bindings in the presence of multiplic-
ities

Variable bindings in patterns suffixed by multiplicities
need to be treated differently from variables in bare pat-
terns. When a multiplicity is satisfied, its associated variable
binding is assigned a list of dictionaries1. Each dictionary
contains the variable bindings from a particular match of the
pattern. The need for different treatment of variable bind-
ings inside and outside multiplicities is most easily shown
by examining what would happen if they were treated iden-
tically. Consider the following incorrect MT code:

(Dog)[owner == (Person)[name = <n>]] : * <ds>
(Person, <p>)[name == n]

A first glance may suggest that when the rule these patterns
are a part of runs, p will be set to the person who owns the
dog. However, the example is nonsensical since n has no
single value. Indeed n may have no value at all, since it will
be bound to zero or more owners’ names as the multiplic-
ity attempts to match the model pattern as many times as
possible. As this example shows, n has no meaning outside
of the multiplicity it is bound in; however it clearly has a
meaning in the context of the multiplicity.

In order to resolve this quandary, MT takes a two stage
approach. Within multiplicities, local variable bindings are
accessed as normal. At the end of each successful match, MT
creates a dictionary relating variable binding names to their
bound values. The list of these values is then assigned to the
variable binding associated with the multiplicity. Thus the
variable bindings for each individual match can be accessed.
To illustrate this, I reuse the original multiplicities example:

(Dog)[owner == (Class)[name = <n>]] : * <ds>

Printing the ds variable would lead to output along the fol-
lowing lines:

[Dict{"n" : "Fred"}, Dict{"n" : "Barney"}]

The MT module provides a convenience function mult ex-

tract(bindings, name) (which, unlike the transform of
section 3 is not specific to any particular transformation)
which iterates over a list of dictionaries, as generated by a
multiplicity, and extracts the particular binding name from
each dictionary, returning a list. A standard idiom when us-
ing multiplicities in MT is to use the mult extract function
with a model element pattern with a self variable binding.

2.6 Tracing information
MT transformations hold a record of tracing informa-

tion, which is automatically created as transformation rules
are executed. Each rule executed adds a new trace. Each
trace is a tuple of the form [[source elements ], [target

elements ]]. All elements created by model element expres-
sions are automatically stored in the tuple. However by de-
fault, only elements matched by non-nested model element
patterns are recorded in the tracing information; this means
that the source elements that are stored in the tracing in-
formation do not necessarily constitute the entire universe
of elements passed via parameters to the transformation.
Non-nested model element patterns are defined to be those
which are not nested within another model element pattern.
For example in the following model element pattern, tracing
information will be created only from instances of the Dog

model class:
1Dictionary is Converge’s name for the datatype sometimes
known as a hash table or associative array.

(Dog, <d>)[name == <n>, owner == (Person)[name != "Fred"]]

It may seem somewhat arbitrary to try to minimise the
source elements used in tracing information since MT max-
imises the target elements used. The reason for minimising
the source elements used is due to a simple observation: in-
dividual source elements are often matched in more than one
rule execution. This then causes some source elements to be
the source for large numbers of traces which can obscure
the result of the transformation. Empirical observations of
MT transformations suggest that when model elements are
matched via nested model element patterns, they are also
matched by a non-nested model element pattern during a
separate rule execution. In the case of target elements, a
different challenge emerges. Rather than trying to create an
‘optimum’ amount of traces one wishes to ensure that, as far
as is practical, every target element has at least one trace
associated with it. Since target element expressions are in-
herently localised to individual rule executions it is highly
unusual for an element created by such an expression to be
the target of more than one trace. Thus it is important to
ensure that nested target element expressions have traces
associated with them. [14] shows how nested model element
patterns in MT can be made to contribute towards tracing
information if desired.

2.6.1 Augmenting or overriding the standard mech-
anism

Whilst the standard tracing creation mechanism performs
well in many cases, users may wish to augment, or override,
the default tracing information created. Users may wish
to add extra tracing information to emphasise certain re-
lationships within a transformation, or to remove certain
tracing information that unnecessarily clutters the transfor-
mation visualization. Although not detailed due to space
constraints, MT provides a simple capability for augment-
ing, or overriding, the default tracing information created
by the standard mechanism via optional tracing add and
tracing override clauses in a transformation rule.

3. EXAMPLE
The example I use in this paper is a variant of the standard

class to relational model transformation as found in [11], and
which should be consulted for a more complete description
of the transformation. The ‘Simple UML’ meta-model is
shown in figure 1, and the relational database meta-model in
figure 2. In essence, classes which have the is persistent

attribute set to true will be transformed to tables; refer-
ences to such classes (via attribute types or associations)
will result in the classes primary key attributes being to
converted to columns used as a foreign key. Classes which
do not have the is persistent attribute set to true will
not be transformed into tables, and will be ‘flattened’ when
a persistent class is transformed into a table; the attributes
of non-persistent classes are prefixed with the name of the
class when so flattened. When transforming a class, all as-
sociations for which the class is a src must be considered.
Attributes can be marked as being part of a classes primary
key by having the is primary attribute set to true. Note
that associations play no part in determining a classes pri-
mary key.

This example, whilst relatively simple, is interesting be-
cause of considerations such as the following:



Class

Attribute
is_primary : bool
name : String

attrs

type

*{ordered}

src

dest

is_persistent : bool

PrimitiveDataType Association

Classifier
name : String

Figure 1: Extended ‘Simple UML’ meta-model.

*{ordered}

colsTable
fkeys : Seq(Seq(Column))
name : String

Column
type : String
name : String

pkey

*{ordered}

Figure 2: Extended relational database meta-model.

• Classes can not be transformed in isolation – all asso-
ciations for which a class is the source must be consid-
ered in order that the table that results from a class
contains all necessary columns.

• Classes which are marked as persistent must be trans-
formed substantially different from those not marked
as persistent.

• Foreign keys and primary keys both reference columns;
it is important that the column model elements pointed
to by a table are the appropriate model elements, and
not duplicates.

Noting that booleans in MT are represented by 0 (false)
and 1 (true), the MT version of this example is as follows:

$<MT.mt>:
transformation Classes_To_Tables

rule Persistent_Class_To_Table:

srcp:
(Class, <c>)[name == <n>, attrs == <attrs>, \
is_persistent == 1]

(Association, <assoc>)[src == c] : * <assocs>

tgtp:
(Table)[name := n, cols := cols, pkey := pkeys, \

fkeys := fkeys]

tgt_where:

cols := []
pkeys := []

fkeys := []
for aa := (attrs + MT.mult_extract(assocs, "assoc")) \
.iterate():

a_cols, a_pkeys, a_fkeys := self.transform([""], [aa])
cols.extend(a_cols)

pkeys.extend(a_pkeys)
fkeys.extend(a_fkeys)

rule Primary_Primitive_Type_Attribute_To_Columns:
srcp:

(String, <prefix>)[]
(Attribute)[name == <attr_name>, type == \

(PrimitiveDataType)[name == <type_name>], \
is_primary == 1]

tgtp:
[col]

[col]
[]

tgt_where:

col := (Column)[name := concat_name(prefix, \
attr_name), type := type_name]

rule Non_Primary_Primitive_Type_Attribute_To_Columns:
srcp:

(String, <prefix>)[]
(Attribute)[name == <attr_name>, type == \

(PrimitiveDataType)[name == <type_name>], \
is_primary == 0]

tgtp:
[(Column)[name := concat_name(prefix, attr_name), \

type := type_name]]
[]

[]

rule Persistent_User_Type_Attribute_To_Columns:

srcp:
(String, <prefix>)[]

(Attribute, <attr>)[name == <attr_name>, type == \
(Class, <class_>)[name == <class_name>, attrs == \

<attrs>, is_persistent == 1]]

tgtp:

cols
[]

[cols]

tgt_where:

cols := []
for attr := attrs.iterate():

a_cols, a_pkeys, a_fkeys := self.transform(\
[concat_name(prefix, attr_name)], [attr])

cols.extend(a_pkeys)

rule Non_Persistent_User_Type_Attribute_To_Columns:

srcp:
(String, <prefix>)[]

(Attribute, <attr>)[name == <attr_name>, type == \
(Class, <class_>)[name == <class_name>, attrs == \
<attrs>, is_persistent == 0]]

tgtp:

cols
[]

[]

tgt_where:

cols := []
for attr := attrs.iterate():

a_cols, a_pkeys, a_fkeys := self.transform( \
[concat_name(prefix, attr_name)], [attr])

cols.extend(a_cols)

rule Persistent_Association_To_Columns:

srcp:
(String, <prefix>)[]

(Association)[name == <attr_name>, dest == (Class, \
<class_>)[name == <class_name>, attrs == <attrs>, \
is_persistent == 1]]

tgtp:

cols
[]
[cols]

tgt_where:

cols := []
for attr := attrs.iterate():

a_cols, a_pkeys, a_fkeys := self.transform( \
[concat_name(prefix, attr_name)], [attr])

cols.extend(a_pkeys)

rule Association_Non_Persistent_Class_To_Columns:

srcp:
(String, <prefix>)[]
(Association)[name == <attr_name>, dest == (Class, \

<class_>)[name == <class_name>, attrs == <attrs>, \
is_persistent == 0]]

(Association, <assoc>)[src == class_] : * <assocs>

tgtp:



cols

[]
fkeys

tgt_where:
cols := []

fkeys := []
for aa := (attrs + MT.mult_extract(assocs, "assoc")).\

iterate():
a_cols, a_pkeys, a_fkeys := self.transform( \

[concat_name(prefix, attr_name)], [aa])
cols.extend(a_cols)

rule Default:
srcp:

(MObject)[]

tgtp:

null

In order to run this transformation, a list of top-level el-
ements (classes and associations) should be passed to it.
There is no requirement to designate one particular class as
being the ‘start’ class for the transformation. The output of
the transformation will consist of a number of tables.

The overall structure of this transformation is hopefully
relatively straight forward even if some of the finer details
are not. The Persistent Class To Table rule ensures
that each class marked as being persistent in the source
model is transformed into a table in the target model. It
takes a persistent class, and finds all of the associations for
which the class is a source; it then iterates over the union
of the classes’ attributes and associations for which it is a
source, transforming them into columns. All of the other
rules take in a string prefix (representing the column pre-
fix being constructed as the transformation drills into user
types), and an attribute or association (and, in the case
of the Association Non Persistent Class To Columns

rule, an additional set of associations) and produces three
things: a list of normal table columns; a list of primary key
columns; a list of foreign key columns. The final rule in
the transformation Default is a ‘catch all’ rule that takes
in model elements from the root set which not matched by
other rules – non-persistent classes and associations – and
transforms them into the null object; this causes MT to
discard the result of the transformation rule, and not cre-
ate any tracing information. The Default rule is necessary
to ensure that such elements in the root set of source ele-
ments do not cause the transformation to raise a Can not

transform exception.
Two features in this transformation need extra explana-

tion in the context of this paper. The transform function
used throughout the transformation is present in every MT
transformation. It takes an element(s) in, and successively
tries every transformation rule in the transformation using
the arguments passed to it, attempting to find one which ex-
ecutes given the element(s) as input. If no rule executes, the
transform function raises an error. The transform function
is used internally by MT to transform each element in the
root set but, as in this example, may be called at will by the
user.

The second feature that requires explanation leads on
from the first, but is less obvious to the casual reader. Many
of the rules have more patterns than there are arguments
passed to the transform function. The Association Non-

Persistent Class To Columns rule, for example, defines
three patterns but the transform function is never called
with more than two arguments – it would thus seem impos-

sible for this rule to ever execute. However, MT defines that
when a rule is passed fewer arguments than it has parame-
ters, the root set of source elements is substituted for each
missing argument. This is effectively an escape mechanism
allowing rules access to the complete source graph. This
mechanism is vital for ensuring that transformations such
as this are not complicated by the need to pass the root set
of source elements to every rule execution.

4. AN EXECUTION
Figure 3 shows a complete run of the example transfor-

mation on a simple input, automatically visualized as a hy-
brid object diagram. Input elements are shown as rounded
boxes, with links between input elements being shown with
dashed lines. Output elements are shown in non-rounded
boxes, with solid links. The dotted links are tracing infor-
mation and are explained in section 4.1. An execution of
this transformation with a significantly larger input model
can be found in [14], which also documents MT’s other vi-
sualization techniques and options.

4.1 Visualizing tracing information
Visualizing tracing information is an interesting challenge,

and one that has hitherto received scant attention in the con-
text of model transformations. Work on trace visualization
in areas such as object orientated systems (e.g. [2]) is of
little use in the context of model transformations. Egyed
motivates the use of tracing information in the context of
modelling, but explains neither how to generate or visual-
ize such information [6]. MT and TM cooperate together
to present a simple visualization of tracing information that
also allows users to build up a detailed picture of how the
transformation executed.

In figure 3, the dotted lines between source and target el-
ements represent the individual traces between source and
target elements. To avoid cluttering, the visualization of a
trace is always from a single source element to a single tar-
get element. Each trace has a name of the form tn where n

is an integer starting from 1. The integer values reflect the
traces position in the execution sequence; trace numbers can
be compared to one another to determine whether a rule ex-
ecution happened earlier or later in the execution sequence.
Trace names can be looked up in the ‘Tracing’ table at the
top right of figure. The tracing table contains the name of
each rule which was executed at least once during the trans-
formation. Against each rule name are the names of traces;
each trace name represents an execution of that rule. Note
that a single rule execution can create more than one trace;
however each trace created in a single execution will share
the same name.

Although the visualization of tracing information may
seem simple, it allows one to infer a great deal of useful
information about the execution of a transformation. This
information is useful both for analysis and debugging of a
transformation. At a simple level, one can use the names
of tracing information to determine which rule consumed
which source elements and produced which target elements.
For example a trace marked ‘t1’ is a result of an execution
of the Persistent Class To Table rule. One can also de-
duce from this traces name that it was the result of the first
rule execution in the system. Equally since two traces share
the name ‘t1’, one can determine that during a single execu-
tion the Persistent Class To Table rule produced two



:Class

mod_id = "11" 
name = "Order" 
is_persistent = 1

attrs = []

:Table

mod_id = "30" 
pkey = []
name = "Order"

t1

:Association

mod_id = "18" 
name = "billing_addr"

src

:Class

mod_id = "12" 
name = "Address" 
is_persistent = 1

destt1

:Column

mod_id = "20" 
type = "String" 
name = "billing_addr__house"

t2

:Column

mod_id = "24" 
type = "String" 
name = "billing_addr__postcode"

t2

:Attribute

mod_id = "13" 
is_primary = 1
name = "house"

attrs

:Attribute

mod_id = "14" 
is_primary = 0
name = "addr2"

attrs

:Attribute

mod_id = "15" 
is_primary = 0
name = "addr3"

attrs

:Attribute

mod_id = "16" 
is_primary = 0
name = "county"

attrs

:Attribute

mod_id = "17" 
is_primary = 1
name = "postcode"

attrs

:Table

mod_id = "36" 
fkeys = []
name = "Address"

t14

:Association

mod_id = "19" 
name = "delivery_addr"

src

destt1

:Column

mod_id = "25" 
type = "String" 
name = "delivery_addr__house"

t8

:Column

mod_id = "29" 
type = "String" 
name = "delivery_addr__postcode"

t8

:PrimitiveDataType

mod_id = "10" 
name = "String"

type

t3

t9

:Column

mod_id = "31" 
type = "String" 
name = "house"

t15

type

:Column

mod_id = "32" 
type = "String" 
name = "addr2"

t16

type

:Column

mod_id = "33" 
type = "String" 
name = "addr3"

t17

type

:Column

mod_id = "34" 
type = "String" 
name = "county"

t18

typet7

t13

:Column

mod_id = "35" 
type = "String" 
name = "postcode"

t19

fkeys

cols

cols

fkeys

cols

cols

pkeycolspkeycols cols cols cols

Tracing
Persistent_Class_To_Table: t1, t14

Persistent_Association_To_Columns: t2, t8

Primary_Primitive_Type_Attribute_To_Columns: t3, t7, t9, t13, t15, t19

Non_Primary_Primitive_Type_Attribute_To_Columns: t4, t5, t6, t10, t11, t12, t16, t17, t18

Figure 3: An example execution of the extended transformation.

elements.

4.2 Pruning the target model
One thing not immediately obvious from viewing figure

3 is that, unlike the majority of model transformation ap-
proaches, MT does not force the final target model to be a
union of the model elements produced in every rule execu-
tion. In fact, if one were to take the union of model elements
produced by every rule execution, the target model would
contain many superfluous model elements. The reason for
this can be seen by examining a rule such as Persistent -

Association To Columns. This rule calls the transform

function but then effectively discards some of the model ele-
ments produced by this call (the rule in question cares only
about primary key columns, and ignores any non-primary
key columns that may have been produced). Knowing that,
as an implementation detail, TM assigns each new model
element a unique and monotonically increasing identifier,
one can see from figure 3, that some elements have been dis-
carded, due to the non-contiguous model identifiers in target
model elements. The lowest mod id for a target model el-
ement is 20 and the highest 36, but only 11 elements with
identifiers in that range are present in the output – the miss-
ing 5 identifiers are evidence that elements were produced
by a rule execution, but subsequently discarded.

To determine the final target model, MT’s uses the model
elements that resulted from transforming each element in the
root set. It uses these elements as the root nodes in a simple
graph walking scheme. Only target model elements which

are reachable from these elements are considered to be part
of the eventual target model. Although the example in this
paper does not demonstrate it, this scheme does allow the
eventual target model to consist of unconnected subgraphs.

5. RELATED WORK
As with the majority of existing model transformation sys-

tems, MT is a unidirectional stateless model transformation
system (in the language of [13]). MT’s most obvious an-
cestor is the QVT-Partners approach [11] which pioneered
the use of patterns in model transformations and which is a
core part of the forthcoming QVT standard [10]; the com-
mercial XMap language [3] is also similar. MT takes the
base QVT-Partners pattern language and enriches it with
features such as pattern multiplicities and variable slot com-
parisons. Converge’s approaches to generating and visu-
alizing tracing information, and its pruning of the output
model have no precedent in the QVT-Partners approach.
A significant difference from the QVT-Partners approach
is in MT’s imperative aspects. Due to its implementation
as a Converge DSL, MT can embed normal Converge code
within it. This contrasts sharply with the QVT-Partners
approach which is forced to define an OCL variant with im-
perative features in order to have a usable language. The
forthcoming QVT standard also separately includes wholly
declarative and wholly imperative model transformations;
MT can be thought of as treading the ground in between
these two extremes, gaining many of the advantages of both,
whilst avoiding many of their respective pitfalls. Section 6



describes some early work which extends MT in directions
beyond that of the forthcoming QVT standard.

Perhaps surprisingly, given the seeming simplicity of the
task, one of MT’s most distinctive features is its automatic
creation of tracing information. Most approaches neglect
this problem; the few that tackle it, such as the DSTC ap-
proach [5], require the user to manually specify the tracing
information to be created. Using patterns defined by the
user to automatically derive tracing information has not, to
the best of my knowledge, been used by any other system.
MT distinguishes itself further by its simple, but effective,
technique for reducing superfluous tracing information.

6. FUTURE WORK
Although I believe that MT is currently one of the most

advanced model transformation languages available, the rel-
ative immaturity of the area means that no new approach
can claim to present a definitive solution. Perhaps the most
pressing question for every model transformation approach,
including MT, regards scalability. Although MT has been
used to express transformations of the order of magnitude
of the low tens of rules, it is clear that in order to make
larger transformations feasible, new techniques for structur-
ing and combining rules will be required. For example, cur-
rently all the rules in a MT transformation exist in a single
namespace; there is no notion of ‘transformation modules’.
Tackling this problem is perhaps the most important step
in maturing model transformations as an area.

MT has been used as the basis for a change propagat-
ing model transformation approach, which raise a number
of new challenges above the stateless model transformations
MT is capable of performing. The change propagating ap-
proach will be documented in a follow up paper.

7. CONCLUSIONS
In this paper I presented the MT model transformation

language. After detailing MT’s basic features, I presented
features novel in the field of model transformations, such as
its visualization of transformation executions, its strategies
for automatically generating tracing information, its defini-
tion of pattern multiplicities, and its approach to producing
the final target model. I then made use of these novel fea-
tures in a non-trivial example.

An extended version of this paper can be found in the
technical report [14]. MT can be found as part of the Con-
verge programming language, freely available under a MIT
/ BSD-style licence from http://convergepl.org/.

This research was funded by a grant from Tata Consul-
tancy Services.
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