
APT Session 3: Version control andtesting

Laurence
Tratt

Software Development Team
2014-11-18

1 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/
http://soft-dev.org/


What to expect from this sessionWhat to expect from this session

1 What is version control?
2 git essentials.

3 Testing.

2 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


What to expect from this sessionWhat to expect from this session

1 What is version control?
2 git essentials.
3 Testing.

2 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


PrerequisitesPrerequisites

You should have:
1 Created a github account.
2 Downloaded and installed git 2.1.x from
http://git-scm.com/downloads

3 Downloaded and installed Python 3 from
https://www.python.org/download/releases/3.4.2/

4 Ensured your laptop can connect to one of the College’s wireless
networks.

3 / 18 http://soft-dev.org/

https://github.com/
http://git-scm.com/downloads
https://www.python.org/download/releases/3.4.2/
http://soft-dev.org/
http://soft-dev.org/


Version controlVersion control

• ‘Version control’ systems keep track of changes to source code.

• Allows multiple people to edit a single system – even a single file
– in a predictable manner.

• Without version control, working in teams is torture.

4 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Version controlVersion control

• ‘Version control’ systems keep track of changes to source code.
• Allows multiple people to edit a single system – even a single file
– in a predictable manner.

• Without version control, working in teams is torture.

4 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


An incomplete history of version controlAn incomplete history of version control

• 1982: RCS.

• 1990: CVS.
• 2000: SVN.
• 2005: git / mercurial.
• My advice: use git or (if you have to) Mercurial. Ignore the rest.
• Free hosting sites: github (Git), Bitbucket (Git, Mercurial, multiple
free private repos).

5 / 18 http://soft-dev.org/

http://github.com
http://bitbucket.org
http://soft-dev.org/
http://soft-dev.org/


An incomplete history of version controlAn incomplete history of version control

• 1982: RCS.
• 1990: CVS.

• 2000: SVN.
• 2005: git / mercurial.
• My advice: use git or (if you have to) Mercurial. Ignore the rest.
• Free hosting sites: github (Git), Bitbucket (Git, Mercurial, multiple
free private repos).

5 / 18 http://soft-dev.org/

http://github.com
http://bitbucket.org
http://soft-dev.org/
http://soft-dev.org/


An incomplete history of version controlAn incomplete history of version control

• 1982: RCS.
• 1990: CVS.
• 2000: SVN.

• 2005: git / mercurial.
• My advice: use git or (if you have to) Mercurial. Ignore the rest.
• Free hosting sites: github (Git), Bitbucket (Git, Mercurial, multiple
free private repos).

5 / 18 http://soft-dev.org/

http://github.com
http://bitbucket.org
http://soft-dev.org/
http://soft-dev.org/


An incomplete history of version controlAn incomplete history of version control

• 1982: RCS.
• 1990: CVS.
• 2000: SVN.
• 2005: git / mercurial.

• My advice: use git or (if you have to) Mercurial. Ignore the rest.
• Free hosting sites: github (Git), Bitbucket (Git, Mercurial, multiple
free private repos).

5 / 18 http://soft-dev.org/

http://github.com
http://bitbucket.org
http://soft-dev.org/
http://soft-dev.org/


An incomplete history of version controlAn incomplete history of version control

• 1982: RCS.
• 1990: CVS.
• 2000: SVN.
• 2005: git / mercurial.
• My advice: use git or (if you have to) Mercurial. Ignore the rest.

• Free hosting sites: github (Git), Bitbucket (Git, Mercurial, multiple
free private repos).

5 / 18 http://soft-dev.org/

http://github.com
http://bitbucket.org
http://soft-dev.org/
http://soft-dev.org/


An incomplete history of version controlAn incomplete history of version control

• 1982: RCS.
• 1990: CVS.
• 2000: SVN.
• 2005: git / mercurial.
• My advice: use git or (if you have to) Mercurial. Ignore the rest.
• Free hosting sites: github (Git), Bitbucket (Git, Mercurial, multiple
free private repos).

5 / 18 http://soft-dev.org/

http://github.com
http://bitbucket.org
http://soft-dev.org/
http://soft-dev.org/


Distributed version controlDistributed version control

• Typical scenario: a ‘central’ repository:
• from which everyone pulls other people’s changes.
• to which everyone pushes changes they have made.

• Best practice: regularly push and pull (at least daily, in general).
• But don’t:

• push half-finished changes.
• pull if you’re in the middle of something.

6 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Distributed version controlDistributed version control

• Typical scenario: a ‘central’ repository:
• from which everyone pulls other people’s changes.
• to which everyone pushes changes they have made.

• Best practice: regularly push and pull (at least daily, in general).
• But don’t:

• push half-finished changes.
• pull if you’re in the middle of something.

6 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


gitgit

• We will be using git (and its terminology).
• Fearsome complexity if you go looking for it. Relatively simple, if
you keep it that way.

• All commands are of the form git <cmd> [options]

7 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


gitgit

• We will be using git (and its terminology).
• Fearsome complexity if you go looking for it. Relatively simple, if
you keep it that way.

• All commands are of the form git <cmd> [options]

7 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


CloningCloning

• To work with someone else’s repository, we first clone it, to get a
local copy.

• Use: git clone <repo>

• Note: once cloned, you can edit the repository as much as you
want. No changes make their way back to the ‘central’ repository
until you explicitly do so.

Exercises:
1 Clone the repository http://github.com/ltratt/apt/
2 Run python3 old.py 150; enter whole numbers (on the same
line) and press return. Quit with Ctrl-D.

8 / 18 http://soft-dev.org/

http://github.com/ltratt/apt/
http://soft-dev.org/
http://soft-dev.org/


CloningCloning

• To work with someone else’s repository, we first clone it, to get a
local copy.

• Use: git clone <repo>

• Note: once cloned, you can edit the repository as much as you
want. No changes make their way back to the ‘central’ repository
until you explicitly do so.

Exercises:
1 Clone the repository http://github.com/ltratt/apt/
2 Run python3 old.py 150; enter whole numbers (on the same
line) and press return. Quit with Ctrl-D.

8 / 18 http://soft-dev.org/

http://github.com/ltratt/apt/
http://soft-dev.org/
http://soft-dev.org/


diffdiff
• diff -u <old file> <new file> shows you what
changes you would need to apply to old file to change it into
new file.

• Lines beginning with:
• --- or +++ tell you the old / new filenames.
• @@ tells you where within the file you’re looking.
• (i.e. a space) are lines that are unchanged.
• - is a deleted line
• + is a newly added line

Exercises:
1 Can you spot the difference between old.py and new.py?
2 Run python3 simplediff.py old.py new.py to see output
equivalent to running diff -u (or git diff).

9 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


diffdiff
• diff -u <old file> <new file> shows you what
changes you would need to apply to old file to change it into
new file.

• Lines beginning with:
• --- or +++ tell you the old / new filenames.
• @@ tells you where within the file you’re looking.
• (i.e. a space) are lines that are unchanged.
• - is a deleted line
• + is a newly added line

Exercises:
1 Can you spot the difference between old.py and new.py?
2 Run python3 simplediff.py old.py new.py to see output
equivalent to running diff -u (or git diff).

9 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


PullingPulling
• To integrate all changes other people have made since you
cloned/pulled, git pull.

• If you have made local changes you have to git stash before
pulling, then git stash pop afterwards.

• You can see which files you’ve modified with git status.
• You can permanently remove your local changes by git
checkout <file>.

Exercises:
1 Pull my changes to old.py into your repository.
2 Add a print statement at line 4 (i.e. immediately after the import
statement) print("Enter numbers"). Then pull, and read the
instructions carefully. [Hint: you might need to stash and then
stash pop.]

3 Remove your local changes to old.py.

10 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


PullingPulling
• To integrate all changes other people have made since you
cloned/pulled, git pull.

• If you have made local changes you have to git stash before
pulling, then git stash pop afterwards.

• You can see which files you’ve modified with git status.
• You can permanently remove your local changes by git
checkout <file>.

Exercises:
1 Pull my changes to old.py into your repository.

2 Add a print statement at line 4 (i.e. immediately after the import
statement) print("Enter numbers"). Then pull, and read the
instructions carefully. [Hint: you might need to stash and then
stash pop.]

3 Remove your local changes to old.py.

10 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


PullingPulling
• To integrate all changes other people have made since you
cloned/pulled, git pull.

• If you have made local changes you have to git stash before
pulling, then git stash pop afterwards.

• You can see which files you’ve modified with git status.
• You can permanently remove your local changes by git
checkout <file>.

Exercises:
1 Pull my changes to old.py into your repository.
2 Add a print statement at line 4 (i.e. immediately after the import
statement) print("Enter numbers"). Then pull, and read the
instructions carefully. [Hint: you might need to stash and then
stash pop.]

3 Remove your local changes to old.py.
10 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


PushingPushing
• git add xmakes git track the file x.
• git commit . (notice the ‘.’) records all changes into a commit.
• git push pushes all new commits to the central repository.

Exercises:
1 Join up into pairs. Choose one person to create a new repository.
2 Login to your github account, click on the ‘repositories’ tab and
click ‘new’. Name it ‘apttest’. Make sure ‘Initialize this repository
with a README’ is checked then press ‘create repository. Go to
‘Settings > Collaborators’ and add the other person’s username.

3 Both clone the repository (over ssh).
4 One person should copy the file old.py into their cloned
repository, add the file, commit it, and push.

5 One at a time: edit the file, commit, push; and have the other
person pull. Swap roles.

11 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


PushingPushing
• git add xmakes git track the file x.
• git commit . (notice the ‘.’) records all changes into a commit.
• git push pushes all new commits to the central repository.

Exercises:
1 Join up into pairs. Choose one person to create a new repository.
2 Login to your github account, click on the ‘repositories’ tab and
click ‘new’. Name it ‘apttest’. Make sure ‘Initialize this repository
with a README’ is checked then press ‘create repository. Go to
‘Settings > Collaborators’ and add the other person’s username.

3 Both clone the repository (over ssh).
4 One person should copy the file old.py into their cloned
repository, add the file, commit it, and push.

5 One at a time: edit the file, commit, push; and have the other
person pull. Swap roles.

11 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Merges and conflictsMerges and conflicts
• If two people both modify the same file, the first to push ‘wins’.
The second person will have to pull and merge before pushing.

• Changes in different parts of a file are automatically merged.
• Changes in the same part of a file cause conflicts (between <<<
=== >>>) and require the user to manually resolve them. Can
select either HEAD (your changes) or remote, or a mix of the two.

• Two merging cases: have / haven’t committed.

Exercises:
1 Edit old.py so that line 1 is #! /usr/bin/python3.
2 Try git pull: follow its suggestions carefully until you have
successfully pulled and integrated your changes.

3 Commit your changes. Pull my changes. Merge appropriately.

12 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Merges and conflictsMerges and conflicts
• If two people both modify the same file, the first to push ‘wins’.
The second person will have to pull and merge before pushing.

• Changes in different parts of a file are automatically merged.
• Changes in the same part of a file cause conflicts (between <<<
=== >>>) and require the user to manually resolve them. Can
select either HEAD (your changes) or remote, or a mix of the two.

• Two merging cases: have / haven’t committed.

Exercises:
1 Edit old.py so that line 1 is #! /usr/bin/python3.
2 Try git pull: follow its suggestions carefully until you have
successfully pulled and integrated your changes.

3 Commit your changes. Pull my changes. Merge appropriately.

12 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Merges and conflictsMerges and conflicts
• If two people both modify the same file, the first to push ‘wins’.
The second person will have to pull and merge before pushing.

• Changes in different parts of a file are automatically merged.
• Changes in the same part of a file cause conflicts (between <<<
=== >>>) and require the user to manually resolve them. Can
select either HEAD (your changes) or remote, or a mix of the two.

• Two merging cases: have / haven’t committed.

Exercises:
1 Edit old.py so that line 1 is #! /usr/bin/python3.
2 Try git pull: follow its suggestions carefully until you have
successfully pulled and integrated your changes.

3 Commit your changes. Pull my changes. Merge appropriately.
12 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


CommitsCommits

• Merge commits record where parallel development unified.

• How does git keep track of things when parallel development
happens?

• Every commit has an ID (it’s hash), which is a 40 character SHA-1
hash based on the commit’s content. Not guaranteed to be
unique; but it probably is.

Exercises:
1 Run gitk (if you don’t have that, try git log --graph).
2 Use git diff to see the differences between your latest version
of old.py and the first version in the repository. [You will need to
lookup the documentation for git-diff; you may want to use
commit hashs.]

13 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


CommitsCommits

• Merge commits record where parallel development unified.
• How does git keep track of things when parallel development
happens?

• Every commit has an ID (it’s hash), which is a 40 character SHA-1
hash based on the commit’s content. Not guaranteed to be
unique; but it probably is.

Exercises:
1 Run gitk (if you don’t have that, try git log --graph).
2 Use git diff to see the differences between your latest version
of old.py and the first version in the repository. [You will need to
lookup the documentation for git-diff; you may want to use
commit hashs.]

13 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


CommitsCommits

• Merge commits record where parallel development unified.
• How does git keep track of things when parallel development
happens?

• Every commit has an ID (it’s hash), which is a 40 character SHA-1
hash based on the commit’s content. Not guaranteed to be
unique; but it probably is.

Exercises:
1 Run gitk (if you don’t have that, try git log --graph).
2 Use git diff to see the differences between your latest version
of old.py and the first version in the repository. [You will need to
lookup the documentation for git-diff; you may want to use
commit hashs.]

13 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


BranchesBranches
• A repository (local and remote) can have explicit branches.
• The default branch is called master.
• Create branches with git branch <name>; switch branches
with git checkout <branch name>.

• To merge branch X into Y , checkout Y and run git merge X
(i.e. you say “I want to merge another branch into me”).

• Branches are used extensively (e.g. some like feature branches).

Exercises:
1 Create a new branch in the apt repository called floats.
2 In the new branch, edit old.py so that int(num) becomes
float(num). Commit your change.

3 Switch back to master, and merge in the floats branch.

14 / 18 http://soft-dev.org/

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow/
http://soft-dev.org/
http://soft-dev.org/


BranchesBranches
• A repository (local and remote) can have explicit branches.
• The default branch is called master.
• Create branches with git branch <name>; switch branches
with git checkout <branch name>.

• To merge branch X into Y , checkout Y and run git merge X
(i.e. you say “I want to merge another branch into me”).

• Branches are used extensively (e.g. some like feature branches).
Exercises:
1 Create a new branch in the apt repository called floats.
2 In the new branch, edit old.py so that int(num) becomes
float(num). Commit your change.

3 Switch back to master, and merge in the floats branch.
14 / 18 http://soft-dev.org/

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow/
http://soft-dev.org/
http://soft-dev.org/


Regression testing (1)Regression testing (1)

...as a consequence of the introduction of new bugs, program
maintenance requires far more system testing per statement
written than any other programming. Theoretically, after each
fix one must run the entire batch of test cases previously run
against the system, to ensure that it has not been damaged in
an obscure way. In practice, such regression testing must
indeed approximate this theoretical idea, and it is very costly.

–Fred Brooks, The Mythical Man Month (1975), p. 122

15 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Regression testing (2)Regression testing (2)

• Premise: program maintenance (re)introduces bugs.
• Keeping round a test suite prevents old bugs making it into
production.

• Every time a bug is found, a testmust be added to the test suite
to stop it ever reappearing.

• Whenever a change is made to the system, the relevant parts of
the regression suite are run again.

• Regression testing builds confidence when modifying a system.
• Without regression testing, sensible people will tend to become
nervous about modifying a large system for fear of breaking it.

16 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Regression testing (2)Regression testing (2)

• Premise: program maintenance (re)introduces bugs.
• Keeping round a test suite prevents old bugs making it into
production.

• Every time a bug is found, a testmust be added to the test suite
to stop it ever reappearing.

• Whenever a change is made to the system, the relevant parts of
the regression suite are run again.

• Regression testing builds confidence when modifying a system.
• Without regression testing, sensible people will tend to become
nervous about modifying a large system for fear of breaking it.

16 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Regression testing (2)Regression testing (2)

• Premise: program maintenance (re)introduces bugs.
• Keeping round a test suite prevents old bugs making it into
production.

• Every time a bug is found, a testmust be added to the test suite
to stop it ever reappearing.

• Whenever a change is made to the system, the relevant parts of
the regression suite are run again.

• Regression testing builds confidence when modifying a system.
• Without regression testing, sensible people will tend to become
nervous about modifying a large system for fear of breaking it.

16 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Regression testing (2)Regression testing (2)

• Premise: program maintenance (re)introduces bugs.
• Keeping round a test suite prevents old bugs making it into
production.

• Every time a bug is found, a testmust be added to the test suite
to stop it ever reappearing.

• Whenever a change is made to the system, the relevant parts of
the regression suite are run again.

• Regression testing builds confidence when modifying a system.
• Without regression testing, sensible people will tend to become
nervous about modifying a large system for fear of breaking it.

16 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Unit testingUnit testing

• The xunit family of libraries are available for nearly every
language.

• They allow us to easily write and run tests.
• Let’s try a few Python examples.

17 / 18 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Post-session exercisesPost-session exercises

Try these (no particular order):
• Experiment with committing parts of a file with git gui.
• Experiment with rebasing, particularly squashing small commits
into bigger ones before merging (I set rebase=true in my
.gitconfig). Be careful: you can go badly wrong if you rebase
commits that have been pushed to another repository.

• Make your editor display which lines have been changed in a file
relative to your last commit (e.g. in Vim, I use the vim-signify
plugin).

• Downloand and use JUnit for Java.

18 / 18 http://soft-dev.org/

http://www.vim.org
https://github.com/mhinz/vim-signify
http://junit.org/
http://soft-dev.org/
http://soft-dev.org/

