
APT Session 4: C

Laurence

Tratt

Software Development Team

2014-12-02

1 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/
http://soft-dev.org/

What to expect from this sessionWhat to expect from this session

1 C.

2 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

PrerequisitesPrerequisites

1 Install either GCC or LLVM/clang onto your computer. Most

Unixes will have either/both installed by default, or as

easy-to-install packages.

3 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Prerequisites (Windows)Prerequisites (Windows)

Windows users may find these instructions (courtesy of Sam White) useful:

1 Download the MinGW web installer.

2 Launch the installer, hit ’Install’, then ’Continue’ (leave the installation directory

as the default, C:\MinGW). The installer will now download the files necessary.
Once complete, hit ’Continue’.

3 The MinGW Installation Manager will now launch. Right-click ’mingw32-base’ and

select ’Mark for Installation’. Now, select ’Apply Changes’ from the ’Installation’

menu.

4 Hit ’Apply’. MinGW will now download and install the base package. This may

take a minute or two. Once finished, you can close both windows. MinGW is now

installed.

5 You can now find gcc in C:\MinGW\bin. You should add this directory to your
PATH to make development easier.

4 / 14 http://soft-dev.org/

http://sourceforge.net/projects/mingw/files/Installer/mingw-get-setup.exe/download
http://soft-dev.org/
http://soft-dev.org/

Prerequisites (OS X)Prerequisites (OS X)

OS X users may find these instructions (courtesy of Sam White) useful:

• If XCode is already installed, gcc can be installed by selecting Command Line
Tools from Xcode Menu > Preferences > Downloads.

• If you don’t want to install XCode you have two choices:

• Download the command line tools from the Apple Developer website
(registration, albeit free, required).

• Use the installer at
https://github.com/kennethreitz/osx-gcc-installer/downloads.

5 / 14 http://soft-dev.org/

https://developer.apple.com/downloads/
https://github.com/kennethreitz/osx-gcc-installer/downloads
http://soft-dev.org/
http://soft-dev.org/

CC

• C is a low-level programming language initially designed to
implement Unix in.

• First usable version debuted in 1973.

• Still used for writing operating systems, programming languages
critical utilities, embedded systems etc. etc.

• C++ is a separate language that adds many extra things to C; too
complex for my tastes.

• C is still actively (if slowly) developed: new versions in ’99 and ’11.
We will use C99.

6 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

CC

• C is a low-level programming language initially designed to
implement Unix in.

• First usable version debuted in 1973.
• Still used for writing operating systems, programming languages
critical utilities, embedded systems etc. etc.

• C++ is a separate language that adds many extra things to C; too
complex for my tastes.

• C is still actively (if slowly) developed: new versions in ’99 and ’11.
We will use C99.

6 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

CC

• C is a low-level programming language initially designed to
implement Unix in.

• First usable version debuted in 1973.
• Still used for writing operating systems, programming languages
critical utilities, embedded systems etc. etc.

• C++ is a separate language that adds many extra things to C; too
complex for my tastes.

• C is still actively (if slowly) developed: new versions in ’99 and ’11.
We will use C99.

6 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

The basicsThe basics

C is syntactically very similar to Java. Major immediate differences:
• No classes or objects, just top-level functions and structs.
• Memory must be allocated and freed automatically.

Other useful things to know:

• The main method in C is int main(int argc, char

**argv); the return value is returned to the shell. return 0;
means ‘I finished successfully’.

• #include <stdio.h> is similar to a Java import. It makes
printf available which prints a string to screen.

Exercises:
1 Write a program which prints out Hello world! in C. Put it in a
file hello.c and compile it with gcc -Wall --std=c99
hello.c. This will produce an a.out or a.exe file which can
then be run.

7 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

The basicsThe basics

C is syntactically very similar to Java. Major immediate differences:
• No classes or objects, just top-level functions and structs.
• Memory must be allocated and freed automatically.
Other useful things to know:

• The main method in C is int main(int argc, char

**argv); the return value is returned to the shell. return 0;
means ‘I finished successfully’.

• #include <stdio.h> is similar to a Java import. It makes
printf available which prints a string to screen.

Exercises:
1 Write a program which prints out Hello world! in C. Put it in a
file hello.c and compile it with gcc -Wall --std=c99
hello.c. This will produce an a.out or a.exe file which can
then be run.

7 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

The basicsThe basics

C is syntactically very similar to Java. Major immediate differences:
• No classes or objects, just top-level functions and structs.
• Memory must be allocated and freed automatically.
Other useful things to know:

• The main method in C is int main(int argc, char

**argv); the return value is returned to the shell. return 0;
means ‘I finished successfully’.

• #include <stdio.h> is similar to a Java import. It makes
printf available which prints a string to screen.

Exercises:
1 Write a program which prints out Hello world! in C. Put it in a
file hello.c and compile it with gcc -Wall --std=c99
hello.c. This will produce an a.out or a.exe file which can
then be run.

7 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Basic typesBasic types

• C has some similar basic types to Java: int and char.
• For any type, one can make a pointer type with ‘*’. char * is a
pointer to a sequence of characters of unknown length

(i.e. roughly equivalent to a Java string).

Other useful things to know:

• C can’t concatenate strings with +. printf takes a format string
as its first argument. %s characters are replaced with strings

passed as parameters. printf("hello %s", "world")
prints out hello world.

Exercises:
1 Assign the string Hello world! to a variable of type char *
then print out the contents of the variable.

8 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Basic typesBasic types

• C has some similar basic types to Java: int and char.
• For any type, one can make a pointer type with ‘*’. char * is a
pointer to a sequence of characters of unknown length

(i.e. roughly equivalent to a Java string).

Other useful things to know:

• C can’t concatenate strings with +. printf takes a format string
as its first argument. %s characters are replaced with strings

passed as parameters. printf("hello %s", "world")
prints out hello world.

Exercises:
1 Assign the string Hello world! to a variable of type char *
then print out the contents of the variable.

8 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Basic typesBasic types

• C has some similar basic types to Java: int and char.
• For any type, one can make a pointer type with ‘*’. char * is a
pointer to a sequence of characters of unknown length

(i.e. roughly equivalent to a Java string).

Other useful things to know:

• C can’t concatenate strings with +. printf takes a format string
as its first argument. %s characters are replaced with strings

passed as parameters. printf("hello %s", "world")
prints out hello world.

Exercises:
1 Assign the string Hello world! to a variable of type char *
then print out the contents of the variable.

8 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

PointersPointers

• Pointers are everything to C.

• A pointer is a number which references an address in memory.
• Pointers can be changed to other memory addresses.
• Think of a piece of string (the pointer) tied to a balloon (the bit of
memory we’re interested in). Multiple pieces of string can point

to the same balloon. We can untie our string and tie it to

another balloon if we want.

• e.g. if we have a variable v pointing to a char * array, we can
access the first character either by explicit dereferencing with *v
or using array syntax v[0] (the two are equivalent).

• strlen returns the length of a string. #include <string.h>

Exercises:
1 Assign the string Hello world! to a variable of type char *
then print out each character of the string on a new line.

9 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

PointersPointers

• Pointers are everything to C.
• A pointer is a number which references an address in memory.
• Pointers can be changed to other memory addresses.
• Think of a piece of string (the pointer) tied to a balloon (the bit of
memory we’re interested in). Multiple pieces of string can point

to the same balloon. We can untie our string and tie it to

another balloon if we want.

• e.g. if we have a variable v pointing to a char * array, we can
access the first character either by explicit dereferencing with *v
or using array syntax v[0] (the two are equivalent).

• strlen returns the length of a string. #include <string.h>

Exercises:
1 Assign the string Hello world! to a variable of type char *
then print out each character of the string on a new line.

9 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

PointersPointers

• Pointers are everything to C.
• A pointer is a number which references an address in memory.
• Pointers can be changed to other memory addresses.
• Think of a piece of string (the pointer) tied to a balloon (the bit of
memory we’re interested in). Multiple pieces of string can point

to the same balloon. We can untie our string and tie it to

another balloon if we want.

• e.g. if we have a variable v pointing to a char * array, we can
access the first character either by explicit dereferencing with *v
or using array syntax v[0] (the two are equivalent).

• strlen returns the length of a string. #include <string.h>

Exercises:
1 Assign the string Hello world! to a variable of type char *
then print out each character of the string on a new line.

9 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

PointersPointers

• Pointers are everything to C.
• A pointer is a number which references an address in memory.
• Pointers can be changed to other memory addresses.
• Think of a piece of string (the pointer) tied to a balloon (the bit of
memory we’re interested in). Multiple pieces of string can point

to the same balloon. We can untie our string and tie it to

another balloon if we want.

• e.g. if we have a variable v pointing to a char * array, we can
access the first character either by explicit dereferencing with *v
or using array syntax v[0] (the two are equivalent).

• strlen returns the length of a string. #include <string.h>

Exercises:
1 Assign the string Hello world! to a variable of type char *
then print out each character of the string on a new line.

9 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

ArraysArrays

• Pointers can be used as arrays. e.g. char ** is an array of
strings.

• But C arrays don’t know their length. That must always be
passed around separately.

• int main(int argc, char **argv) is a great example.
argv will contain argc number of elements, each a char *.

• C ‘strings’ are a pointer to a NUL-terminated region of memory.
i.e. a sequence (of unknown length) of characters finishing with

a char of value 0. strlenmanually walks the string each time!

Exercises:
1 Print out all the command-line arguments passed to your
program. What is the first parameter?

2 Print out all the command-line arguments passed to your
program along with the length of the arguments.

10 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

ArraysArrays

• Pointers can be used as arrays. e.g. char ** is an array of
strings.

• But C arrays don’t know their length. That must always be
passed around separately.

• int main(int argc, char **argv) is a great example.
argv will contain argc number of elements, each a char *.

• C ‘strings’ are a pointer to a NUL-terminated region of memory.
i.e. a sequence (of unknown length) of characters finishing with

a char of value 0. strlenmanually walks the string each time!

Exercises:
1 Print out all the command-line arguments passed to your
program. What is the first parameter?

2 Print out all the command-line arguments passed to your
program along with the length of the arguments.

10 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

ArraysArrays

• Pointers can be used as arrays. e.g. char ** is an array of
strings.

• But C arrays don’t know their length. That must always be
passed around separately.

• int main(int argc, char **argv) is a great example.
argv will contain argc number of elements, each a char *.

• C ‘strings’ are a pointer to a NUL-terminated region of memory.
i.e. a sequence (of unknown length) of characters finishing with

a char of value 0. strlenmanually walks the string each time!

Exercises:
1 Print out all the command-line arguments passed to your
program. What is the first parameter?

2 Print out all the command-line arguments passed to your
program along with the length of the arguments.

10 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

FunctionsFunctions

• C functions have a return type and 0 or more parameters
(similar to Java).

Exercises:
1 Write a ROT13 function which takes in a single char and returns
its ROT13 equivalent. Test it with these cases rot13(’a’) , ’n’
and rot13(’n’) , ’a’. You may assume only lower and upper
case characters a–z will be passed.

2 Print out all command line arguments passed to your program
after being ROT13ed.

11 / 14 http://soft-dev.org/

http://en.wikipedia.org/wiki/ROT13
http://soft-dev.org/
http://soft-dev.org/

FunctionsFunctions

• C functions have a return type and 0 or more parameters
(similar to Java).

Exercises:
1 Write a ROT13 function which takes in a single char and returns
its ROT13 equivalent. Test it with these cases rot13(’a’) , ’n’
and rot13(’n’) , ’a’. You may assume only lower and upper
case characters a–z will be passed.

2 Print out all command line arguments passed to your program
after being ROT13ed.

11 / 14 http://soft-dev.org/

http://en.wikipedia.org/wiki/ROT13
http://soft-dev.org/
http://soft-dev.org/

MemoryMemory

• Memory is allocated in n bytes with malloc(n). This returns
void *, which can be cast to any pointer type you want
(e.g. (char *) c = malloc(n)).

• Free memory with free(c).
• You’re responsible for freeing memory you allocated.
• strcat(dst, cpy) appends cpy to dst.

Exercises:
1 Concatenate all the command line parameters passed to the
program into one string in memory. Print out a ROT13 version of

the string, then the original string afterwards. Make sure you

account for line endings when allocating memory!

12 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

MemoryMemory

• Memory is allocated in n bytes with malloc(n). This returns
void *, which can be cast to any pointer type you want
(e.g. (char *) c = malloc(n)).

• Free memory with free(c).
• You’re responsible for freeing memory you allocated.
• strcat(dst, cpy) appends cpy to dst.

Exercises:
1 Concatenate all the command line parameters passed to the
program into one string in memory. Print out a ROT13 version of

the string, then the original string afterwards. Make sure you

account for line endings when allocating memory!

12 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

IOIO

• Reading / writing to a file in C can be fiddly—need to do your
own error handling.

• Can read input from stdin with read(STDIN_FILENO, buf,
len) where: STDIN_FILENO is a magic number (on Windows
you might need to explicitly change this to 0); buf is a pointer to
a buffer of len bytes.

Exercises:
1 Change your rot13 function so that it leaves spaces, newlines
(etc.) untouched (i.e. it only applies rot13 to a-zA-Z).

2 Read input from stdin, rot13 it, and print it to stdout.

3 What happens if you chain your program twice? i.e. cat file |
rot13_stdin | rot13_stdin?

13 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

IOIO

• Reading / writing to a file in C can be fiddly—need to do your
own error handling.

• Can read input from stdin with read(STDIN_FILENO, buf,
len) where: STDIN_FILENO is a magic number (on Windows
you might need to explicitly change this to 0); buf is a pointer to
a buffer of len bytes.

Exercises:
1 Change your rot13 function so that it leaves spaces, newlines
(etc.) untouched (i.e. it only applies rot13 to a-zA-Z).

2 Read input from stdin, rot13 it, and print it to stdout.

3 What happens if you chain your program twice? i.e. cat file |
rot13_stdin | rot13_stdin?

13 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

IOIO

• Reading / writing to a file in C can be fiddly—need to do your
own error handling.

• Can read input from stdin with read(STDIN_FILENO, buf,
len) where: STDIN_FILENO is a magic number (on Windows
you might need to explicitly change this to 0); buf is a pointer to
a buffer of len bytes.

Exercises:
1 Change your rot13 function so that it leaves spaces, newlines
(etc.) untouched (i.e. it only applies rot13 to a-zA-Z).

2 Read input from stdin, rot13 it, and print it to stdout.

3 What happens if you chain your program twice? i.e. cat file |
rot13_stdin | rot13_stdin?

13 / 14 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Post-session exercisesPost-session exercises

Try these (no particular order):

• You might find this ‘C for Java programmer guide’ useful.
• Writing insecure programs in C is easy: read a guide to secure
programming in C (e.g. this).

• Some of the best written – despite, oddly, having few comments
– C code can be found in Unix kernels.

e.g. OpenBSD’s kernel is a work of art.

14 / 14 http://soft-dev.org/

http://www.comp.lancs.ac.uk/~ss/java2c/ndiffs
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/sys/
http://soft-dev.org/
http://soft-dev.org/

