
APT Session 7: Compilers

Laurence
Tratt

Software Development Team
2015-03-17

1 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/
http://soft-dev.org/

What to expect from this sessionWhat to expect from this session

1 Building a compiler.

2 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

PrerequisitesPrerequisites

1 Have the programming language of your choice (e.g. Java, Python)
installed and running on your computer.

2 Clone and compile Mark Ormesher’s Stack Program Visualiser.
3 For Java: clone and compile Sam White’s parser.
4 For Python: download my simple parser.

3 / 12 http://soft-dev.org/

https://github.com/markormesher/Stack-Program-Visualiser
https://github.com/samwhite0/sapt-compiler
http://tratt.net/laurie/teaching/2014_2015/apt/s7parser.py
http://soft-dev.org/
http://soft-dev.org/

Compilers (1)Compilers (1)
• In previous sessions we’ve written: an interpreter for a stack
machine; and a parser for simple languages.

• A compiler is the link we need between the two to takes in
‘human readable’ programs and convert them to stack format.

• Compilers for dynamically typed languages are simple. [Statically
typed languages’ compilers, especially if they heavily optimise code, are
superficially more complex, though they’re still conceptually simple.]

• Our starting grammar:
Stmt ::= Assign | While | Print
Assign ::= ID = Expr ;
Expr ::= INT + Expr | INT - Expr | INT < Expr

| INT > Expr | INT
While ::= WHILE Expr { stmt* }
Print ::= PRINT Expr ;

• Python and Java tree-creating parsers are provided for this
grammar.

4 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Compilers (1)Compilers (1)
• In previous sessions we’ve written: an interpreter for a stack
machine; and a parser for simple languages.

• A compiler is the link we need between the two to takes in
‘human readable’ programs and convert them to stack format.

• Compilers for dynamically typed languages are simple. [Statically
typed languages’ compilers, especially if they heavily optimise code, are
superficially more complex, though they’re still conceptually simple.]

• Our starting grammar:
Stmt ::= Assign | While | Print
Assign ::= ID = Expr ;
Expr ::= INT + Expr | INT - Expr | INT < Expr

| INT > Expr | INT
While ::= WHILE Expr { stmt* }
Print ::= PRINT Expr ;

• Python and Java tree-creating parsers are provided for this
grammar.

4 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Compilers (1)Compilers (1)
• In previous sessions we’ve written: an interpreter for a stack
machine; and a parser for simple languages.

• A compiler is the link we need between the two to takes in
‘human readable’ programs and convert them to stack format.

• Compilers for dynamically typed languages are simple. [Statically
typed languages’ compilers, especially if they heavily optimise code, are
superficially more complex, though they’re still conceptually simple.]

• Our starting grammar:
Stmt ::= Assign | While | Print
Assign ::= ID = Expr ;
Expr ::= INT + Expr | INT - Expr | INT < Expr

| INT > Expr | INT
While ::= WHILE Expr { stmt* }
Print ::= PRINT Expr ;

• Python and Java tree-creating parsers are provided for this
grammar.

4 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Compilers (1)Compilers (1)
• In previous sessions we’ve written: an interpreter for a stack
machine; and a parser for simple languages.

• A compiler is the link we need between the two to takes in
‘human readable’ programs and convert them to stack format.

• Compilers for dynamically typed languages are simple. [Statically
typed languages’ compilers, especially if they heavily optimise code, are
superficially more complex, though they’re still conceptually simple.]

• Our starting grammar:
Stmt ::= Assign | While | Print
Assign ::= ID = Expr ;
Expr ::= INT + Expr | INT - Expr | INT < Expr

| INT > Expr | INT
While ::= WHILE Expr { stmt* }
Print ::= PRINT Expr ;

• Python and Java tree-creating parsers are provided for this
grammar.

4 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Compilers (2)Compilers (2)

• The transformation our compiler needs is fairly simple. For
example print 2 + 3; should be transformed to:

INT 2
INT 3
ADD
PRINT
EXIT

• The trick is to break this transformation into phases. The first is
parsing (which we did in the last session). The second is code
generation (which we’ll do today). The (optional) third is
optimisation (which we don’t need).

5 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Parse treesParse trees
• Last time we wrote a ‘yes/no’ parser. More commonly we want a
parse tree as output.

• For example the parse tree for x = 2 + 3; is:
ASSIGN: x

BINOP: +

INT: 2 INT: 3

which we will write as assign("x", binop("+", int(2),
int(3)).

• The program print 2; is transformed to the parse tree
print(int(2)) etc.

Exercises:
1 Use your chosen parsing library to parse print 2.

6 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Parse treesParse trees
• Last time we wrote a ‘yes/no’ parser. More commonly we want a
parse tree as output.

• For example the parse tree for x = 2 + 3; is:
ASSIGN: x

BINOP: +

INT: 2 INT: 3

which we will write as assign("x", binop("+", int(2),
int(3)).

• The program print 2; is transformed to the parse tree
print(int(2)) etc.

Exercises:
1 Use your chosen parsing library to parse print 2.

6 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Traversing over a parse treeTraversing over a parse tree
• A compiler is a translater of parse tree nodes to code.

• To make life easier, parse tree edges are labelled. So a print
node has an exp, an int node has a val and so on.

• We iterate over the tree, gradually converting it to stack-based
instructions.

• For a print node: process the exp then add a PRINT instruction.
For an int: simply create an INT instruction.

Exercises:
1 Write the program print 2; into a file ex1.hll.
2 Write a simple compiler which reads a file in, parses it, converts it
to a stack-based format and prints the output to stdout. Initially
you only need to handle parse trees of the form print(int(n))
(where n is an integer). Run the output in the stack visualiser.

7 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Traversing over a parse treeTraversing over a parse tree
• A compiler is a translater of parse tree nodes to code.
• To make life easier, parse tree edges are labelled. So a print
node has an exp, an int node has a val and so on.

• We iterate over the tree, gradually converting it to stack-based
instructions.

• For a print node: process the exp then add a PRINT instruction.
For an int: simply create an INT instruction.

Exercises:
1 Write the program print 2; into a file ex1.hll.
2 Write a simple compiler which reads a file in, parses it, converts it
to a stack-based format and prints the output to stdout. Initially
you only need to handle parse trees of the form print(int(n))
(where n is an integer). Run the output in the stack visualiser.

7 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Traversing over a parse treeTraversing over a parse tree
• A compiler is a translater of parse tree nodes to code.
• To make life easier, parse tree edges are labelled. So a print
node has an exp, an int node has a val and so on.

• We iterate over the tree, gradually converting it to stack-based
instructions.

• For a print node: process the exp then add a PRINT instruction.
For an int: simply create an INT instruction.

Exercises:
1 Write the program print 2; into a file ex1.hll.
2 Write a simple compiler which reads a file in, parses it, converts it
to a stack-based format and prints the output to stdout. Initially
you only need to handle parse trees of the form print(int(n))
(where n is an integer). Run the output in the stack visualiser.

7 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Traversing over a parse treeTraversing over a parse tree
• A compiler is a translater of parse tree nodes to code.
• To make life easier, parse tree edges are labelled. So a print
node has an exp, an int node has a val and so on.

• We iterate over the tree, gradually converting it to stack-based
instructions.

• For a print node: process the exp then add a PRINT instruction.
For an int: simply create an INT instruction.

Exercises:
1 Write the program print 2; into a file ex1.hll.
2 Write a simple compiler which reads a file in, parses it, converts it
to a stack-based format and prints the output to stdout. Initially
you only need to handle parse trees of the form print(int(n))
(where n is an integer). Run the output in the stack visualiser.

7 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

More sophisticated traversalMore sophisticated traversal
• Compilers mostly do a preorder traversal: process the node;
process the LHS of the node (all the way); process the RHS of the
node (all the way).

• For a BINOP (e.g. add/sub/etc.) node: process the lhs then the
rhs then emit the appropriate binop instruction.

• Since there are lots of traversal functions, they need structuring.
I prefer t_X for each node type X. A preorder function takes in
an arbitrary node and dispatches to the appropriate t_ function.

Exercises:
1 Adjust your previous compiler to be a class with traversal
functions t_ and a general preorder function.

2 Write the program print 2 + 3 into a file ex2.hll.
3 Add a binop traversal function.
4 Run the output in the stack visualiser.

8 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

More sophisticated traversalMore sophisticated traversal
• Compilers mostly do a preorder traversal: process the node;
process the LHS of the node (all the way); process the RHS of the
node (all the way).

• For a BINOP (e.g. add/sub/etc.) node: process the lhs then the
rhs then emit the appropriate binop instruction.

• Since there are lots of traversal functions, they need structuring.
I prefer t_X for each node type X. A preorder function takes in
an arbitrary node and dispatches to the appropriate t_ function.

Exercises:
1 Adjust your previous compiler to be a class with traversal
functions t_ and a general preorder function.

2 Write the program print 2 + 3 into a file ex2.hll.
3 Add a binop traversal function.
4 Run the output in the stack visualiser.

8 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

More sophisticated traversalMore sophisticated traversal
• Compilers mostly do a preorder traversal: process the node;
process the LHS of the node (all the way); process the RHS of the
node (all the way).

• For a BINOP (e.g. add/sub/etc.) node: process the lhs then the
rhs then emit the appropriate binop instruction.

• Since there are lots of traversal functions, they need structuring.
I prefer t_X for each node type X. A preorder function takes in
an arbitrary node and dispatches to the appropriate t_ function.

Exercises:
1 Adjust your previous compiler to be a class with traversal
functions t_ and a general preorder function.

2 Write the program print 2 + 3 into a file ex2.hll.
3 Add a binop traversal function.
4 Run the output in the stack visualiser.

8 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

VariablesVariables

• Working only with the stack is frustrating; we want a heap.
Variables are named parts of the heap.

• The stack machine has two variable instructions:
VAR_SET x
VAR_LOOKUP y

VAR_SET sets the variable x to the (peeked) top of the stack.
VAR_LOOKUP looks up a variable y and pushes it onto the stack.

Exercises:
1 Write the program x=2; y=2+3; print y+1; into a file
ex3.hll.

2 Add variable traversal functions.
3 Run the output in the stack visualiser.

9 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

VariablesVariables

• Working only with the stack is frustrating; we want a heap.
Variables are named parts of the heap.

• The stack machine has two variable instructions:
VAR_SET x
VAR_LOOKUP y

VAR_SET sets the variable x to the (peeked) top of the stack.
VAR_LOOKUP looks up a variable y and pushes it onto the stack.

Exercises:
1 Write the program x=2; y=2+3; print y+1; into a file
ex3.hll.

2 Add variable traversal functions.
3 Run the output in the stack visualiser.

9 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

ConditionalsConditionals

• The stack machine defines LESS_THAN, MORE_THAN, and
EQUALS which do:
rhs = stack.pop()
lhs = stack.pop()
stack.push(lhs op rhs)

where op is <, >, or ==. 0 is pushed for false, 1 for true.

Exercises:
1 Write the program print 2 < 3; into a file ex4.hll.
2 Add conditional traversal functions.
3 Run the output in the stack visualiser.

10 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

ConditionalsConditionals

• The stack machine defines LESS_THAN, MORE_THAN, and
EQUALS which do:
rhs = stack.pop()
lhs = stack.pop()
stack.push(lhs op rhs)

where op is <, >, or ==. 0 is pushed for false, 1 for true.

Exercises:
1 Write the program print 2 < 3; into a file ex4.hll.
2 Add conditional traversal functions.
3 Run the output in the stack visualiser.

10 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

LoopsLoops

• A while loop has a condition and a body. While the condition
doesn’t evaluate to 0, the body is executed.

Exercises:
1 Write the program

i = 0;
while i < 10 {

print i;
i = i + 1;

}

into a file ex5.hll.
2 Add a while loop traversal function. You will need labels and
jumps.

3 Run the output in the stack visualiser.

11 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

LoopsLoops

• A while loop has a condition and a body. While the condition
doesn’t evaluate to 0, the body is executed.

Exercises:
1 Write the program

i = 0;
while i < 10 {

print i;
i = i + 1;

}

into a file ex5.hll.
2 Add a while loop traversal function. You will need labels and
jumps.

3 Run the output in the stack visualiser.

11 / 12 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Post-session exercisesPost-session exercises

Try these (no particular order):
• Extend the parser to handle functions and update the compiler
accordingly.

• Read how difficult is it to write a compiler? in light of your
experiences.

12 / 12 http://soft-dev.org/

http://tratt.net/laurie/blog/entries/how_difficult_is_it_to_write_a_compiler
http://soft-dev.org/
http://soft-dev.org/

