
APT Session 2: Python

Laurence
Tratt

Software Development Team
2015-10-21

1 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/
http://soft-dev.org/


What to expect from this session: PythonWhat to expect from this session: Python

1 What is Python?
2 Basic Python functionality.

3 Building a web spider.

2 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


What to expect from this session: PythonWhat to expect from this session: Python

1 What is Python?
2 Basic Python functionality.
3 Building a web spider.

2 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


PrerequisitesPrerequisites

You should have:
1 Downloaded Python 3 from
https://www.python.org/download/releases/3.5.0/

2 Ensured your laptop can connect to one of the College’s wireless
networks.

3 / 17 http://soft-dev.org/

https://www.python.org/download/releases/3.5.0/
http://soft-dev.org/
http://soft-dev.org/


What is Python?What is Python?

• Java is a statically typed programming language.
• Python is a dynamically typed programming language.

• Python programs do not require as much information to be
explicitly written as their Java equivalents.

• Python is more flexible at run-time than Java but provides fewer
compile-time guarantees.

• e.g. 2+"foo" is rejected by javac but is allowed to execute by
Python (leading to a run-time TypeError exception).

• Dynamic and static typing need to be part of your toolkit.

4 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


What is Python?What is Python?

• Java is a statically typed programming language.
• Python is a dynamically typed programming language.
• Python programs do not require as much information to be
explicitly written as their Java equivalents.

• Python is more flexible at run-time than Java but provides fewer
compile-time guarantees.

• e.g. 2+"foo" is rejected by javac but is allowed to execute by
Python (leading to a run-time TypeError exception).

• Dynamic and static typing need to be part of your toolkit.

4 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


What is Python?What is Python?

• Java is a statically typed programming language.
• Python is a dynamically typed programming language.
• Python programs do not require as much information to be
explicitly written as their Java equivalents.

• Python is more flexible at run-time than Java but provides fewer
compile-time guarantees.

• e.g. 2+"foo" is rejected by javac but is allowed to execute by
Python (leading to a run-time TypeError exception).

• Dynamic and static typing need to be part of your toolkit.

4 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


What is Python?What is Python?

• Java is a statically typed programming language.
• Python is a dynamically typed programming language.
• Python programs do not require as much information to be
explicitly written as their Java equivalents.

• Python is more flexible at run-time than Java but provides fewer
compile-time guarantees.

• e.g. 2+"foo" is rejected by javac but is allowed to execute by
Python (leading to a run-time TypeError exception).

• Dynamic and static typing need to be part of your toolkit.

4 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Python versionsPython versions

• Two different, semi-incompatible, versions of Python:
1 Python 2.x: the ‘old but mainstream’ option. Officially deprecated.
2 Python 3.x: the ‘new but less common’ option. Officially supported.

• In essence, Python 3 ‘fixes’ some flaws in Python 2. Some of
those fixes break old programs.

• This version schism is deeply unfortunate.
• Which to use? In general, I use Python 2: more libraries, better
support. Python 3 is a (tiny) bit easier to learn.

• We’ll use Python 3 today.

5 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Python versionsPython versions

• Two different, semi-incompatible, versions of Python:
1 Python 2.x: the ‘old but mainstream’ option. Officially deprecated.
2 Python 3.x: the ‘new but less common’ option. Officially supported.

• In essence, Python 3 ‘fixes’ some flaws in Python 2. Some of
those fixes break old programs.

• This version schism is deeply unfortunate.

• Which to use? In general, I use Python 2: more libraries, better
support. Python 3 is a (tiny) bit easier to learn.

• We’ll use Python 3 today.

5 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Python versionsPython versions

• Two different, semi-incompatible, versions of Python:
1 Python 2.x: the ‘old but mainstream’ option. Officially deprecated.
2 Python 3.x: the ‘new but less common’ option. Officially supported.

• In essence, Python 3 ‘fixes’ some flaws in Python 2. Some of
those fixes break old programs.

• This version schism is deeply unfortunate.
• Which to use? In general, I use Python 2: more libraries, better
support. Python 3 is a (tiny) bit easier to learn.

• We’ll use Python 3 today.

5 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Python versionsPython versions

• Two different, semi-incompatible, versions of Python:
1 Python 2.x: the ‘old but mainstream’ option. Officially deprecated.
2 Python 3.x: the ‘new but less common’ option. Officially supported.

• In essence, Python 3 ‘fixes’ some flaws in Python 2. Some of
those fixes break old programs.

• This version schism is deeply unfortunate.
• Which to use? In general, I use Python 2: more libraries, better
support. Python 3 is a (tiny) bit easier to learn.

• We’ll use Python 3 today.

5 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Python resourcesPython resources

The vital documentation:
• The Python Tutorial covers language features.
• The Python Standard Library covers built-in modules (the
module index is particularly useful).

You will need both of these at some points today.

6 / 17 http://soft-dev.org/

https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/py-modindex.html
http://soft-dev.org/
http://soft-dev.org/


Python resourcesPython resources

The vital documentation:
• The Python Tutorial covers language features.
• The Python Standard Library covers built-in modules (the
module index is particularly useful).

You will need both of these at some points today.

6 / 17 http://soft-dev.org/

https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/py-modindex.html
http://soft-dev.org/
http://soft-dev.org/


The basicsThe basics
Differences from Java:
• Classes are not required, nor is a mainmethod.
• Statements are not followed by a semi-colon.
• Types don’t have to be written out.
• Code can be written at the top-level of a file (i.e. outside a class).

Other useful things to know:
• Strings are enclosed between quotes "this is a string".
• print is a global function that prints strings to screen.

Exercises:
1 Write a program which prints out Hello world! in Python. Put
it in a file hello.py and call it by running python3 hello.py.

2 Assign the string Hello world! to a variable then print out the
contents of the variable.

7 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


The basicsThe basics
Differences from Java:
• Classes are not required, nor is a mainmethod.
• Statements are not followed by a semi-colon.
• Types don’t have to be written out.
• Code can be written at the top-level of a file (i.e. outside a class).
Other useful things to know:
• Strings are enclosed between quotes "this is a string".
• print is a global function that prints strings to screen.

Exercises:
1 Write a program which prints out Hello world! in Python. Put
it in a file hello.py and call it by running python3 hello.py.

2 Assign the string Hello world! to a variable then print out the
contents of the variable.

7 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


The basicsThe basics
Differences from Java:
• Classes are not required, nor is a mainmethod.
• Statements are not followed by a semi-colon.
• Types don’t have to be written out.
• Code can be written at the top-level of a file (i.e. outside a class).
Other useful things to know:
• Strings are enclosed between quotes "this is a string".
• print is a global function that prints strings to screen.

Exercises:
1 Write a program which prints out Hello world! in Python. Put
it in a file hello.py and call it by running python3 hello.py.

2 Assign the string Hello world! to a variable then print out the
contents of the variable.

7 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Basic datatypesBasic datatypes
• Integers look and feel similar to Java.
• Lists are nicer with dedicated syntax:

• lst=[1, 2, 3] is a list with 3 integer elements.
• First element: lst[0] Last element: lst[-1]
• Delete an element: del lst[0]

• Set an element: lst[0] = 4

• Add an element to the end: lst.append(5)

Exercises:
1 Write a program which assigns the empty list to the variable lst.
2 Add (in order) the elements 3, 2, 1.
3 Print out the second and (using -ve indices) last-but-one elements.
4 Sort the list (hint: read ‘sequence types’ in the Python standard
library).

8 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Basic datatypesBasic datatypes
• Integers look and feel similar to Java.
• Lists are nicer with dedicated syntax:

• lst=[1, 2, 3] is a list with 3 integer elements.
• First element: lst[0] Last element: lst[-1]
• Delete an element: del lst[0]

• Set an element: lst[0] = 4

• Add an element to the end: lst.append(5)
Exercises:
1 Write a program which assigns the empty list to the variable lst.
2 Add (in order) the elements 3, 2, 1.
3 Print out the second and (using -ve indices) last-but-one elements.
4 Sort the list (hint: read ‘sequence types’ in the Python standard
library).

8 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


IOIO
• Print out the contents of a file by assigning a file object to f:

with open("filename") as f: # Open a file for reading
print(f.read()) # Print out the contents of the file

f can only be read in the with block. Notice that brackets are
not used for blocks: Python is whitespace sensitive.

• Print out a file line-by-line:
with open("filename") as f:

for line in f: # Read a line and assign it to line
print(line)

Exercises:
1 Create a file x.txt with the contents i d a c (each on a
different line).

2 Read the contents of x.txt into a list, sort it, then print it.
3 What does the strip()method do on strings? Where is it useful
in your program?

9 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


IOIO
• Print out the contents of a file by assigning a file object to f:

with open("filename") as f: # Open a file for reading
print(f.read()) # Print out the contents of the file

f can only be read in the with block. Notice that brackets are
not used for blocks: Python is whitespace sensitive.

• Print out a file line-by-line:
with open("filename") as f:
for line in f: # Read a line and assign it to line

print(line)

Exercises:
1 Create a file x.txt with the contents i d a c (each on a
different line).

2 Read the contents of x.txt into a list, sort it, then print it.
3 What does the strip()method do on strings? Where is it useful
in your program?

9 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


IOIO
• Print out the contents of a file by assigning a file object to f:

with open("filename") as f: # Open a file for reading
print(f.read()) # Print out the contents of the file

f can only be read in the with block. Notice that brackets are
not used for blocks: Python is whitespace sensitive.

• Print out a file line-by-line:
with open("filename") as f:
for line in f: # Read a line and assign it to line

print(line)

Exercises:
1 Create a file x.txt with the contents i d a c (each on a
different line).

2 Read the contents of x.txt into a list, sort it, then print it.
3 What does the strip()method do on strings? Where is it useful
in your program?

9 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


ConditionalsConditionals

• if statements have a mandatory condition, a ‘true’ clause, zero
or more elif clauses and (optionally) an else clause:
if a < b: # True branch

...
elif b == 10: # elif branch

...
else: # else branch

...

10 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


FunctionsFunctions

• Functions have a name and zero or more parameters e.g:
def f(a):
print(a)
return 2 * a

Exercises:
1 Write a function max which takes two parameters and returns the
biggest. Test it with max(1, 3) and max(2, -1).

2 What happens if you do max("2", 3)?
3 Write a function add which takes two parameters and adds them
together. What happens if you do add("2", 3)?

11 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


FunctionsFunctions

• Functions have a name and zero or more parameters e.g:
def f(a):
print(a)
return 2 * a

Exercises:
1 Write a function max which takes two parameters and returns the
biggest. Test it with max(1, 3) and max(2, -1).

2 What happens if you do max("2", 3)?
3 Write a function add which takes two parameters and adds them
together. What happens if you do add("2", 3)?

11 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


ClassesClasses
• Classes have a name, (optionally) an __init__method, and
zero or more other methods:
class Person:

def __init__(self, name, age):
self.name = name
self.age = age

def older_than(self, other):
return self.age > other.age

a = Person("Bob", 42)
b = Person("John", 55)
print(a.age, a.older_than(b))

Exercises:
1 Create a class SortedFile which takes in a filename, reads its
contents and sorts them; and stores the filename and sorted
contents as attributes. SortedFile("path").contents
should evaluate to the sorted contents.

12 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


ClassesClasses
• Classes have a name, (optionally) an __init__method, and
zero or more other methods:
class Person:

def __init__(self, name, age):
self.name = name
self.age = age

def older_than(self, other):
return self.age > other.age

a = Person("Bob", 42)
b = Person("John", 55)
print(a.age, a.older_than(b))

Exercises:
1 Create a class SortedFile which takes in a filename, reads its
contents and sorts them; and stores the filename and sorted
contents as attributes. SortedFile("path").contents
should evaluate to the sorted contents.

12 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


ModulesModules
• import mmakes the module m available in the current file.
• import p.nmakes the module n (which is a module of the
package p) available in the current file.

• from m import fcmakes the function/class fc from the
module m available in the current file.

• Once imported, modules look like normal objects.

Exercises:
1 Write a program sort.py which imports the sysmodule, sorts
its command line arguments (sys.argv) and prints them. Use
e.g. python3 sort.py i a e c.

2 Use the urlopen function in the urllib.requestmodule to
read the contents of http://www.kcl.ac.uk/ and print them
to screen.

13 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


ModulesModules
• import mmakes the module m available in the current file.
• import p.nmakes the module n (which is a module of the
package p) available in the current file.

• from m import fcmakes the function/class fc from the
module m available in the current file.

• Once imported, modules look like normal objects.
Exercises:
1 Write a program sort.py which imports the sysmodule, sorts
its command line arguments (sys.argv) and prints them. Use
e.g. python3 sort.py i a e c.

2 Use the urlopen function in the urllib.requestmodule to
read the contents of http://www.kcl.ac.uk/ and print them
to screen.

13 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Other useful thingsOther useful things

• You can convert objects to a string with str(o) (e.g. str(1)).

• A tuple ("a", "b") is similar to a list ["a", "b"] except the
tuple is immutable.

• Test for an element e in a collection c with e in c (returns
True / False).

14 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Other useful thingsOther useful things

• You can convert objects to a string with str(o) (e.g. str(1)).
• A tuple ("a", "b") is similar to a list ["a", "b"] except the
tuple is immutable.

• Test for an element e in a collection c with e in c (returns
True / False).

14 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Other useful thingsOther useful things

• You can convert objects to a string with str(o) (e.g. str(1)).
• A tuple ("a", "b") is similar to a list ["a", "b"] except the
tuple is immutable.

• Test for an element e in a collection c with e in c (returns
True / False).

14 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


InheritanceInheritance
• class A(B) defines a class A which inherits from B. A contains
all of B’s methods plus any new ones it defines.

• We can overridemethods:
class A(B):

def __init__(self):
B.__init__(self) # Allow the superclass to initialise
self.a = [] # Add a new attribute

Exercises:
1 Make a class Link_Finder which inherits from
html.parser.HTMLParser and overrides the
handle_starttagmethod. Print out all links encountered.

2 Alter Link_Finder so that it stores each attribute found in an
attribute links. Use it thus:
lf = Link_Finder("http://www.kcl.ac.uk/")
print(lf.links)

15 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


InheritanceInheritance
• class A(B) defines a class A which inherits from B. A contains
all of B’s methods plus any new ones it defines.

• We can overridemethods:
class A(B):

def __init__(self):
B.__init__(self) # Allow the superclass to initialise
self.a = [] # Add a new attribute

Exercises:
1 Make a class Link_Finder which inherits from
html.parser.HTMLParser and overrides the
handle_starttagmethod. Print out all links encountered.

2 Alter Link_Finder so that it stores each attribute found in an
attribute links. Use it thus:
lf = Link_Finder("http://www.kcl.ac.uk/")
print(lf.links)

15 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


ExerciseExercise
Write a web spider which crawls over a website. For each page
searched, print out the number of links in it, and recursively crawl
those links. Print out the total number of pages crawled at the end.
$ python3 spider.py http://137.37.8.80:8080/
http://137.73.8.80:8080/ <processed 1 links>
http://137.73.8.80:8080/laurie/ <processed 22 links>
...
http://137.73.8.80:8080/laurie/blog/entries.py?from=35
<processed 83 links>
Total: 322 links

Some hints to start you off:
• Keep a list of all the pages you haven’t yet crawled. While it’s not
empty, you still have pages to crawl.

• Be careful not to crawl the same page twice.
• HTMLParser can only parse HTML (and not png’s etc.).

16 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Post-session exercisesPost-session exercises

Try these (roughly in order):
• Download and play with PyPy.
• Experiment with list comprehensions e.g. [x*2 for x in
[...]].

• Experiment with dictionaries e.g. {"bob":42, "joe":55}.
• Experiment with making your own modules and packages.
• Have a look at external libraries like matplotlib and numpy.

17 / 17 http://soft-dev.org/

http://pypy.org/
http://soft-dev.org/
http://soft-dev.org/

