APT Session 5: Interpreters

Laurence :
Tratt

ING'S
College
[LONDON

Software Development Team
2015-11-18

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/
http://soft-dev.org/

What to)expect firom this session

17 How do programming languages run programs?

2 Building your own interpreter.

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

1 Have the programming language of your choice (e.g. Java, Python)
installed and running on your computer.

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

How do) pregrmming languages run programs?

Generally either by:
17 Compiling down into machine code at compile-time (e.g. C).

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

How do) pregrmming languages run programs?

Generally either by:
17 Compiling down into machine code at compile-time (e.g. C).

2 Compiling to machine code at run-time (e.g. Java).

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

How do) pregrmming languages run programs?

Generally either by:
17 Compiling down into machine code at compile-time (e.g. C).

2 Compiling to machine code at run-time (e.g. Java).

3 Having another program interpret your program at run-time
(e.g. Python).

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

Interpreters

e Aninterpreter for language X loads in X source code and runs it.

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

Interpreters

e Aninterpreter for language X loads in X source code and runs it.

e The main steps of an interpreter are, in essence:
1 Set pc (Program Counter) to 0.

2 Load instruction at position pc.

3 Perform the instruction loaded and adjust the pc (generally adding
1 to it).

4 Jump to step #2.

Software Developme! http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

Interpreters

e Aninterpreter for language X loads in X source code and runs it.

e The main steps of an interpreter are, in essence:
1 Set pc (Program Counter) to 0.

2 Load instruction at position pc.

3 Perform the instruction loaded and adjust the pc (generally adding
1 to it).

4 Jump to step #2.

e Although interpreters aren't particularly fast (on their own),
they're fast enough that they're used heavily in the real-world.

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

Our language

We're going to build an interpreter for a simple stack-based
language. Here's an example program:

INT 2 Push 2 onto the stack

INT 3 Push 3 onto the stack

ADD Pop the last 2 elements from the stack, add them,
and push the result onto the stack

PRINT Peek the last element from the stack and print it

Terminology:

Stack A FILO (First In Last Out) list.
Push Add an element to the top of the stack.
Pop Remove the top-most element from the stack for inspection.

Peek Inspect the top-most element of the stack & don’t remove it.

http://soft-dev.org/



http://soft-dev.org/
http://soft-dev.org/

Parsing

INT 2
INT 3
ADD

PRINT

http://soft-dev.org/



http://soft-dev.org/
http://soft-dev.org/

INT 2
INT 3
ADD

PRINT

Exercises:
1 Put the above program into a file p1 .my1.

2 Write a program which reads the file in and splits each instruction
into a list of strings. You may assume that every instruction has a
name and 0 or 1 arguments. The list in memory should look
roughly like:

[["InNt", "2"], ["INT", "3"], ["ADD", ""], ["PRINT", ""]]

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

A basic interpreter

We now have a list in memory along the lines of:
[IIADD"’ n "] , ["PRINT" , n "] ]

[[("INT", "2"], ["INT", "3"],

Remember the main steps of an interpreter are, in essence:

1 Set pc (Program Counter) to 0.

2 Load instruction at position pc.

3 Perform the instruction loaded and adjust the pc (generally
adding 1 to it).

4 Jump to step #2.

http://soft-dev.org/

Software Development Team


http://soft-dev.org/
http://soft-dev.org/

A basic interpreter

We now have a list in memory along the lines of:
[["INTH, ll2"], [HINT"’ ll3ll], [IIADD"’ ll"]’ ["PRINT", ll"]]

Remember the main steps of an interpreter are, in essence:

1 Set pc (Program Counter) to 0.

2 Load instruction at position pc.

3 Perform the instruction loaded and adjust the pc (generally
adding 1 to it).

4 Jump to step #2.

Exercises:

7 Write the main loop of the interpreter, specifying only INT, ADD,
and PRINT instructions. | suggest that all elements on the stack

are stored as integers.

2 Runpl.myl

http://soft-dev.org/



http://soft-dev.org/
http://soft-dev.org/

Control flew

We can currently only execute a simple linear program. We need a

way of jumping to program locations so that we have loops e.g.:
INT 100

PRINT

INT 1

SUB

JGE 1

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

Control flew

We can currently only execute a simple linear program. We need a
way of jumping to program locations so that we have loops e.g.:
INT 100

PRINT

INT 1

SUB

JGE 1

Exercises:

7 Implement the SUB instruction: it pops (in order) elements e; and
e,, performs e, — e; and puts it back on the stack. [NB: We didn't
need to be this careful for ADD because addition is commutative.|

2 Implement the JGE x instruction. It peeks at the top-most
element of the stack: if it is > 0 it jumps to the instruction at
position x; otherwise it adds 1 to the PC.

3 Store the program above as p2.my1 and run it.

Software Development Team 9/13 http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

Procedures

Jumps can build for/while loops (etc.) but not function/procedures.

0: INT 100 5: INT 1
1: CALL 4 6: SUB
2: JGE 1 7: PRINT
3: EXIT 8: SWAP
4: SWAP 9: RET

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

Procedures

Jumps can build for/while loops (etc.) but not function/procedures.

0: INT 100 5: INT 1
1: CALL 4 6: SUB
2: JGE 1 7: PRINT
3: EXIT 8: SWAP
4: SWAP 9: RET
Exercises:

7 Implement the SWAP instruction which swaps the two top-most
elements on the stack around.

2 Implement the CALL x instruction: it pushes the pc + 1 onto the
stack and jumps to position x.

3 Implement the RET instruction: it pops the top-most value from
the stack and jumps to that value.

4 Implement the EXIT instruction: it exits the program.

5 Store the program above as p3.my1 and run it.

Software Development Team 10/13 http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

Jumping to numeric offsets is fragile. Labels make programs more
robust:

INT 100
L1l: PRINT

INT 1

SUB

JGE L1

Software Development Team 11/13 http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

Jumping to numeric offsets is fragile. Labels make programs more
robust:

INT 100
L1l: PRINT

INT 1

SUB

JGE L1

Exercises:

1 Allow users to define labels before an instruction and to jump to it
later. Labels are text before a colon . A line can contain both a
label (before a colon) and an instruction (after a colon). [NB:
Labels can be defined after a jump which references them.]

2 Store the program above as p4 .my1 and run it.

http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

The Fibonacci relation is defined thus:
F(n)=F(n—1)+F(n—2)

F(1) =1

F(0)=0

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

The Fibonacci relation is defined thus:
F(n)=F(n—1)+F(n—2)

F(1) =1
F(0)=0
Exercises:

1 Write the Fibonacci program in your language. You will probably
need to add DUP (peek at the top-most element on the stack and
push a copy of it), JEQ x (peek at the top-most element of the
stack and if it is O jump to pc x), and POP (discard the top-most
element of the stack).

2 Store the program above as fib.my1l and run it.

Software Development Team http://soft-dev.org/


http://soft-dev.org/
http://soft-dev.org/

PoSt-Session exercises

Try these (no particular order):

e Convert your interpreter to use integer constants instead of
strings to represent instructions (tends to give a small speed-up).

e Rewrite your interpreter in RPython and have a working JIT!

Software Development Team http://soft-dev.org/


http://tratt.net/laurie/blog/entries/fast_enough_vms_in_fast_enough_time
http://soft-dev.org/
http://soft-dev.org/

