
APT Session 5: Interpreters

LaurenceTratt

Software Development Team2015-11-18
1 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/
http://soft-dev.org/


What to expect from this sessionWhat to expect from this session

1 How do programming languages run programs?
2 Building your own interpreter.

2 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


PrerequisitesPrerequisites

1 Have the programming language of your choice (e.g. Java, Python)installed and running on your computer.

3 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


How do programming languages run programs?How do programming languages run programs?

Generally either by:
1 Compiling down into machine code at compile-time (e.g. C).

2 Compiling to machine code at run-time (e.g. Java).
3 Having another program interpret your program at run-time(e.g. Python).

4 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


How do programming languages run programs?How do programming languages run programs?

Generally either by:
1 Compiling down into machine code at compile-time (e.g. C).
2 Compiling to machine code at run-time (e.g. Java).

3 Having another program interpret your program at run-time(e.g. Python).

4 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


How do programming languages run programs?How do programming languages run programs?

Generally either by:
1 Compiling down into machine code at compile-time (e.g. C).
2 Compiling to machine code at run-time (e.g. Java).
3 Having another program interpret your program at run-time(e.g. Python).

4 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


InterpretersInterpreters

• An interpreter for language X loads in X source code and runs it.

• The main steps of an interpreter are, in essence:
1 Set pc (Program Counter) to 0.
2 Load instruction at position pc.
3 Perform the instruction loaded and adjust the pc (generally adding1 to it).
4 Jump to step #2.

• Although interpreters aren’t particularly fast (on their own),they’re fast enough that they’re used heavily in the real-world.

5 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


InterpretersInterpreters

• An interpreter for language X loads in X source code and runs it.
• The main steps of an interpreter are, in essence:
1 Set pc (Program Counter) to 0.
2 Load instruction at position pc.
3 Perform the instruction loaded and adjust the pc (generally adding1 to it).
4 Jump to step #2.

• Although interpreters aren’t particularly fast (on their own),they’re fast enough that they’re used heavily in the real-world.

5 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


InterpretersInterpreters

• An interpreter for language X loads in X source code and runs it.
• The main steps of an interpreter are, in essence:
1 Set pc (Program Counter) to 0.
2 Load instruction at position pc.
3 Perform the instruction loaded and adjust the pc (generally adding1 to it).
4 Jump to step #2.

• Although interpreters aren’t particularly fast (on their own),they’re fast enough that they’re used heavily in the real-world.

5 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Our languageOur language
We’re going to build an interpreter for a simple stack-basedlanguage. Here’s an example program:
INT 2 Push 2 onto the stack
INT 3 Push 3 onto the stack
ADD Pop the last 2 elements from the stack, add them,

and push the result onto the stack
PRINT Peek the last element from the stack and print it

Terminology:
Stack A FILO (First In Last Out) list.
Push Add an element to the top of the stack.
Pop Remove the top-most element from the stack for inspection.
Peek Inspect the top-most element of the stack & don’t remove it.

6 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


ParsingParsing
INT 2
INT 3
ADD
PRINT

Exercises:
1 Put the above program into a file p1.myl.
2 Write a program which reads the file in and splits each instructioninto a list of strings. You may assume that every instruction has aname and 0 or 1 arguments. The list in memory should lookroughly like:

[["INT", "2"], ["INT", "3"], ["ADD", ""], ["PRINT", ""]]

7 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


ParsingParsing
INT 2
INT 3
ADD
PRINT

Exercises:
1 Put the above program into a file p1.myl.
2 Write a program which reads the file in and splits each instructioninto a list of strings. You may assume that every instruction has aname and 0 or 1 arguments. The list in memory should lookroughly like:

[["INT", "2"], ["INT", "3"], ["ADD", ""], ["PRINT", ""]]

7 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


A basic interpreterA basic interpreter
We now have a list in memory along the lines of:
[["INT", "2"], ["INT", "3"], ["ADD", ""], ["PRINT", ""]]

Remember the main steps of an interpreter are, in essence:
1 Set pc (Program Counter) to 0.
2 Load instruction at position pc.
3 Perform the instruction loaded and adjust the pc (generallyadding 1 to it).
4 Jump to step #2.

Exercises:
1 Write the main loop of the interpreter, specifying only INT, ADD,and PRINT instructions. I suggest that all elements on the stackare stored as integers.
2 Run p1.myl

8 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


A basic interpreterA basic interpreter
We now have a list in memory along the lines of:
[["INT", "2"], ["INT", "3"], ["ADD", ""], ["PRINT", ""]]

Remember the main steps of an interpreter are, in essence:
1 Set pc (Program Counter) to 0.
2 Load instruction at position pc.
3 Perform the instruction loaded and adjust the pc (generallyadding 1 to it).
4 Jump to step #2.
Exercises:
1 Write the main loop of the interpreter, specifying only INT, ADD,and PRINT instructions. I suggest that all elements on the stackare stored as integers.
2 Run p1.myl

8 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Control flowControl flow
We can currently only execute a simple linear program. We need away of jumping to program locations so that we have loops e.g.:
INT 100
PRINT
INT 1
SUB
JGE 1

Exercises:
1 Implement the SUB instruction: it pops (in order) elements e1 and
e2, performs e2 − e1 and puts it back on the stack. [NB: We didn’tneed to be this careful for ADD because addition is commutative.]

2 Implement the JGE x instruction. It peeks at the top-mostelement of the stack: if it is ≥ 0 it jumps to the instruction atposition x; otherwise it adds 1 to the PC.
3 Store the program above as p2.myl and run it.

9 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Control flowControl flow
We can currently only execute a simple linear program. We need away of jumping to program locations so that we have loops e.g.:
INT 100
PRINT
INT 1
SUB
JGE 1

Exercises:
1 Implement the SUB instruction: it pops (in order) elements e1 and
e2, performs e2 − e1 and puts it back on the stack. [NB: We didn’tneed to be this careful for ADD because addition is commutative.]

2 Implement the JGE x instruction. It peeks at the top-mostelement of the stack: if it is ≥ 0 it jumps to the instruction atposition x; otherwise it adds 1 to the PC.
3 Store the program above as p2.myl and run it.

9 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


ProceduresProcedures
Jumps can build for/while loops (etc.) but not function/procedures.
0: INT 100 5: INT 1
1: CALL 4 6: SUB
2: JGE 1 7: PRINT
3: EXIT 8: SWAP
4: SWAP 9: RET

Exercises:
1 Implement the SWAP instruction which swaps the two top-mostelements on the stack around.
2 Implement the CALL x instruction: it pushes the pc + 1 onto thestack and jumps to position x.
3 Implement the RET instruction: it pops the top-most value fromthe stack and jumps to that value.
4 Implement the EXIT instruction: it exits the program.
5 Store the program above as p3.myl and run it.

10 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


ProceduresProcedures
Jumps can build for/while loops (etc.) but not function/procedures.
0: INT 100 5: INT 1
1: CALL 4 6: SUB
2: JGE 1 7: PRINT
3: EXIT 8: SWAP
4: SWAP 9: RET

Exercises:
1 Implement the SWAP instruction which swaps the two top-mostelements on the stack around.
2 Implement the CALL x instruction: it pushes the pc + 1 onto thestack and jumps to position x.
3 Implement the RET instruction: it pops the top-most value fromthe stack and jumps to that value.
4 Implement the EXIT instruction: it exits the program.
5 Store the program above as p3.myl and run it.

10 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


LabelsLabels
Jumping to numeric offsets is fragile. Labels make programs morerobust:

INT 100
L1: PRINT

INT 1
SUB
JGE L1

Exercises:
1 Allow users to define labels before an instruction and to jump to itlater. Labels are text before a colon ‘:’. A line can contain both alabel (before a colon) and an instruction (after a colon). [NB:Labels can be defined after a jump which references them.]
2 Store the program above as p4.myl and run it.

11 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


LabelsLabels
Jumping to numeric offsets is fragile. Labels make programs morerobust:

INT 100
L1: PRINT

INT 1
SUB
JGE L1

Exercises:
1 Allow users to define labels before an instruction and to jump to itlater. Labels are text before a colon ‘:’. A line can contain both alabel (before a colon) and an instruction (after a colon). [NB:Labels can be defined after a jump which references them.]
2 Store the program above as p4.myl and run it.

11 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


FibonacciFibonacci
The Fibonacci relation is defined thus:
F(n) = F(n− 1) + F(n− 2)
F(1) = 1
F(0) = 0

Exercises:
1 Write the Fibonacci program in your language. You will probablyneed to add DUP (peek at the top-most element on the stack andpush a copy of it), JEQ x (peek at the top-most element of thestack and if it is 0 jump to pc x), and POP (discard the top-mostelement of the stack).
2 Store the program above as fib.myl and run it.

12 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


FibonacciFibonacci
The Fibonacci relation is defined thus:
F(n) = F(n− 1) + F(n− 2)
F(1) = 1
F(0) = 0
Exercises:
1 Write the Fibonacci program in your language. You will probablyneed to add DUP (peek at the top-most element on the stack andpush a copy of it), JEQ x (peek at the top-most element of thestack and if it is 0 jump to pc x), and POP (discard the top-mostelement of the stack).
2 Store the program above as fib.myl and run it.

12 / 13 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/


Post-session exercisesPost-session exercises

Try these (no particular order):
• Convert your interpreter to use integer constants instead ofstrings to represent instructions (tends to give a small speed-up).
• Rewrite your interpreter in RPython and have a working JIT!

13 / 13 http://soft-dev.org/

http://tratt.net/laurie/blog/entries/fast_enough_vms_in_fast_enough_time
http://soft-dev.org/
http://soft-dev.org/

