
APT Session 6: Regular expressions and
parsing

Laurence
Tratt

Software Development Team
2015-11-25

1 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/
http://soft-dev.org/

What to expect from this sessionWhat to expect from this session

1 Using regular expressions in practise.
2 Building a parser.

2 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

PrerequisitesPrerequisites

1 Have the programming language of your choice (e.g. Java, Python)
installed and running on your computer.

3 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Why regular expressions and parsing?Why regular expressions and parsing?

• Real programming languages parse user input. When you run
something like javac, the compiler first parses the input,
before compiling it into bytecode or machine code.
• So we need to have a knowledge of parsing in order to build a
compiler (next week!).

• And one of the easiest ways to build a parser is to use regular
expressions (which are also useful in many other places).

4 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Why regular expressions and parsing?Why regular expressions and parsing?

• Real programming languages parse user input. When you run
something like javac, the compiler first parses the input,
before compiling it into bytecode or machine code.
• So we need to have a knowledge of parsing in order to build a
compiler (next week!).
• And one of the easiest ways to build a parser is to use regular
expressions (which are also useful in many other places).

4 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Regular expressions: motivationRegular expressions: motivation

• A Domain Specific Language (DSL) for flexibly matching against
text.
• Lots of minor variants, but the basic concepts shared by all
implementations.
• Packs very complex matching down to a few characters.

• Terseness a pro and a con. Some people, when confronted with a
problem, think "I know, I’ll use regular expressions." Now they have
two problems. – Jamie Zawinski, 1997

5 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Regular expressions: motivationRegular expressions: motivation

• A Domain Specific Language (DSL) for flexibly matching against
text.
• Lots of minor variants, but the basic concepts shared by all
implementations.
• Packs very complex matching down to a few characters.
• Terseness a pro and a con.

Some people, when confronted with a
problem, think "I know, I’ll use regular expressions." Now they have
two problems. – Jamie Zawinski, 1997

5 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Regular expressions: motivationRegular expressions: motivation

• A Domain Specific Language (DSL) for flexibly matching against
text.
• Lots of minor variants, but the basic concepts shared by all
implementations.
• Packs very complex matching down to a few characters.
• Terseness a pro and a con. Some people, when confronted with a
problem, think "I know, I’ll use regular expressions." Now they have
two problems. – Jamie Zawinski, 1997

5 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Regular expressions: the basicsRegular expressions: the basics

• A regular expression is a series of atoms.
• Individual letter and number atoms match themselves. i.e.
‘normal’ text matches as per ‘normal’ expectations.

Exercises:
1 Download the words file.
2 Write a program which loads the file in and prints out every line
which contains the string ‘aab’ using normal string search.

3 Modify your program to do the same search, but using a regular
expression. You will probably need to compile the regular
expression to a Pattern; then use that compiled pattern tomatch
against your string of interest and produce a Match which will tell
you if the search succeeded or not.

6 / 17 http://soft-dev.org/

http://cvsweb.openbsd.org/cgi-bin/cvsweb/~checkout~/src/share/dict/web2?rev=1.6&content-type=text/plain
http://soft-dev.org/
http://soft-dev.org/

Regular expressions: the basicsRegular expressions: the basics

• A regular expression is a series of atoms.
• Individual letter and number atoms match themselves. i.e.
‘normal’ text matches as per ‘normal’ expectations.

Exercises:
1 Download the words file.
2 Write a program which loads the file in and prints out every line
which contains the string ‘aab’ using normal string search.

3 Modify your program to do the same search, but using a regular
expression. You will probably need to compile the regular
expression to a Pattern; then use that compiled pattern tomatch
against your string of interest and produce a Match which will tell
you if the search succeeded or not.

6 / 17 http://soft-dev.org/

http://cvsweb.openbsd.org/cgi-bin/cvsweb/~checkout~/src/share/dict/web2?rev=1.6&content-type=text/plain
http://soft-dev.org/
http://soft-dev.org/

Regular expressions: variable matchingRegular expressions: variable matching
• A ‘.’ (dot) matches against any character.
• A ‘*’ matches against 0 or more of the preceding atom. A ‘+’
matches against 1 or more of the preceding atom. A ‘?’ matches
against 0 or 1 of the preceding atom.
• A character class [abc]matches against any of a, b, c. An initial
‘ˆ’ negates this: [ˆabc]matches any character except a, b, c.
• Character sets can contain ranges. [0-3] is equivalent to
[0123]; similarly, [a-d] is equivalent to [abcd].

Exercises:
1 Print out all lines which have a ‘z’, followed by one of ‘f’ or ‘g’.
2 Print out all lines which have a ‘z’, followed by any character
except ‘f’ or ‘g’.

3 Print out all lines which have a capital letter followed later by a
lower-case ‘z’.

7 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Regular expressions: variable matchingRegular expressions: variable matching
• A ‘.’ (dot) matches against any character.
• A ‘*’ matches against 0 or more of the preceding atom. A ‘+’
matches against 1 or more of the preceding atom. A ‘?’ matches
against 0 or 1 of the preceding atom.
• A character class [abc]matches against any of a, b, c. An initial
‘ˆ’ negates this: [ˆabc]matches any character except a, b, c.
• Character sets can contain ranges. [0-3] is equivalent to
[0123]; similarly, [a-d] is equivalent to [abcd].

Exercises:
1 Print out all lines which have a ‘z’, followed by one of ‘f’ or ‘g’.
2 Print out all lines which have a ‘z’, followed by any character
except ‘f’ or ‘g’.

3 Print out all lines which have a capital letter followed later by a
lower-case ‘z’.

7 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Regular expressions: anchoringRegular expressions: anchoring

• ‘ˆ’ (caret) only matches at the beginning of a line.
• ‘$’ only matches at the end of a line.

Exercises:
1 Print out all lines which have a ‘z’ at the beginning and a ‘z’
somewhere else in the word.

2 Print out all lines which have a ‘z’ at the beginning and end with a
‘z’.

8 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Regular expressions: anchoringRegular expressions: anchoring

• ‘ˆ’ (caret) only matches at the beginning of a line.
• ‘$’ only matches at the end of a line.

Exercises:
1 Print out all lines which have a ‘z’ at the beginning and a ‘z’
somewhere else in the word.

2 Print out all lines which have a ‘z’ at the beginning and end with a
‘z’.

8 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Regular expressions: groupsRegular expressions: groups

• Placing atoms within brackets () forms a new atom (so (a b) is
an atom that contains two sub-atoms a and b).
• Brackets create groups, which can be referred to later, and
sub-parts of text extracted.

Exercises:
1 Find every word which contains a ‘z’, then one non-‘z’ character,
and then another ‘z’. Print out only those 3 characters for each
match.

2 Find every word which contains a ‘z’ followed by one other
arbitrary character, and a second ‘z’ followed by one other
arbitrary character. Print out the 4 characters matched. Note: the
4 characters do not have to be consecutive.

9 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Regular expressions: groupsRegular expressions: groups

• Placing atoms within brackets () forms a new atom (so (a b) is
an atom that contains two sub-atoms a and b).
• Brackets create groups, which can be referred to later, and
sub-parts of text extracted.

Exercises:
1 Find every word which contains a ‘z’, then one non-‘z’ character,
and then another ‘z’. Print out only those 3 characters for each
match.

2 Find every word which contains a ‘z’ followed by one other
arbitrary character, and a second ‘z’ followed by one other
arbitrary character. Print out the 4 characters matched. Note: the
4 characters do not have to be consecutive.

9 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Regular expressions: greedinessRegular expressions: greediness

• * and friends are greedy: they matches as many characters as
possible. Greedy matching is often dangerous; it’s generally
better to explicitly use non-greedy.
• Adding ? as a suffix to repetition operators (e.g. *?) uses
non-greedy matching.

Exercises:
1 Create a new file with the contents bold.
2 Find all matches of b followed by another character; print out only
those 2 characters.

3 Print all HTML tags in the input file, each on a new line.

10 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Regular expressions: greedinessRegular expressions: greediness

• * and friends are greedy: they matches as many characters as
possible. Greedy matching is often dangerous; it’s generally
better to explicitly use non-greedy.
• Adding ? as a suffix to repetition operators (e.g. *?) uses
non-greedy matching.

Exercises:
1 Create a new file with the contents bold.
2 Find all matches of b followed by another character; print out only
those 2 characters.

3 Print all HTML tags in the input file, each on a new line.

10 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Regular expressions: other useful bitsRegular expressions: other useful bits

• You can use regular expressions to split apart strings.
• You can use regular expressions to replace strings.

• Unix’s grep allows you to do regular expression searches over
files and directories (albeit with a slightly limited variant of
regular expressions). I use grep heavily when programming
with unfamiliar codebases.
• My srep tool allows you to do regular expression search and
replaceover files and directories.

11 / 17 http://soft-dev.org/

http://tratt.net/laurie/src/srep/
http://soft-dev.org/
http://soft-dev.org/

Regular expressions: other useful bitsRegular expressions: other useful bits

• You can use regular expressions to split apart strings.
• You can use regular expressions to replace strings.
• Unix’s grep allows you to do regular expression searches over
files and directories (albeit with a slightly limited variant of
regular expressions). I use grep heavily when programming
with unfamiliar codebases.
• My srep tool allows you to do regular expression search and
replaceover files and directories.

11 / 17 http://soft-dev.org/

http://tratt.net/laurie/src/srep/
http://soft-dev.org/
http://soft-dev.org/

ParsingParsing

• Parsing is the act of taking a stream of characters and deducing
if and how they conform to an underlying grammar. For
example the sentence ‘Bill hits Ben’ conforms to the part of the
English grammar rule ‘noun verb noun’.

• Parsing is the first step in a compiler, analysing the user’s text
input and turning it into a tree to make later analysis possible.
• Simplest way of doing so: first tokenize the text (i.e. split it into
separate words, removing whitespace); second parse into a tree.
• There aremany ways of doing parsing. Earley, GLR, LL, LR, PEG
etc.
• We’re going to start with the simplest: a recursive descent
parser. You can use this technique easily in any programming
language.

12 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

ParsingParsing

• Parsing is the act of taking a stream of characters and deducing
if and how they conform to an underlying grammar. For
example the sentence ‘Bill hits Ben’ conforms to the part of the
English grammar rule ‘noun verb noun’.
• Parsing is the first step in a compiler, analysing the user’s text
input and turning it into a tree to make later analysis possible.
• Simplest way of doing so: first tokenize the text (i.e. split it into
separate words, removing whitespace); second parse into a tree.

• There aremany ways of doing parsing. Earley, GLR, LL, LR, PEG
etc.
• We’re going to start with the simplest: a recursive descent
parser. You can use this technique easily in any programming
language.

12 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

ParsingParsing

• Parsing is the act of taking a stream of characters and deducing
if and how they conform to an underlying grammar. For
example the sentence ‘Bill hits Ben’ conforms to the part of the
English grammar rule ‘noun verb noun’.
• Parsing is the first step in a compiler, analysing the user’s text
input and turning it into a tree to make later analysis possible.
• Simplest way of doing so: first tokenize the text (i.e. split it into
separate words, removing whitespace); second parse into a tree.
• There aremany ways of doing parsing. Earley, GLR, LL, LR, PEG
etc.
• We’re going to start with the simplest: a recursive descent
parser. You can use this technique easily in any programming
language.

12 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

BNF grammar and recogniserBNF grammar and recogniser
• We write computer grammars in BNF form: R ::= S1 S2 ...
Sn where R is a rule name and Sn is a symbol. Symbols either
reference tokens (e.g. ID) or other rules (e.g. R).
• Before we write a ‘proper’ parser, we can write a recogniser
which says whether a string conforms to a grammar or not.
• A rule R ::= X (where X is a token) becomes a function
parse_R(s, i) where s the string input and i is how through
we are trying to parse it. The function returns -1 if it could not
match; or a new i’ (which must be > i) if successful.

Exercises:
1 For the grammar Assign ::= ID = INT ; write a recogniser
(ID is [a-zA-Z_][a-zA-Z_0-9]* and INT is [0-9]+).

2 Test your recogniser against the inputs x = 2; and y = ; and x
= y; at a minimum.

13 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

BNF grammar and recogniserBNF grammar and recogniser
• We write computer grammars in BNF form: R ::= S1 S2 ...
Sn where R is a rule name and Sn is a symbol. Symbols either
reference tokens (e.g. ID) or other rules (e.g. R).
• Before we write a ‘proper’ parser, we can write a recogniser
which says whether a string conforms to a grammar or not.
• A rule R ::= X (where X is a token) becomes a function
parse_R(s, i) where s the string input and i is how through
we are trying to parse it. The function returns -1 if it could not
match; or a new i’ (which must be > i) if successful.

Exercises:
1 For the grammar Assign ::= ID = INT ; write a recogniser
(ID is [a-zA-Z_][a-zA-Z_0-9]* and INT is [0-9]+).

2 Test your recogniser against the inputs x = 2; and y = ; and x
= y; at a minimum.

13 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Referencing rulesReferencing rules
• Rules can call other rules. Failure propagates. Recursion is
allowed provided at least one character is consumed first.
• But rules can specify alternatives. R ::= A | Bmeans one can
parse R as A or B. [Note: in most parsing algorithms, neither A or
B has priority. In recursive descent parsers, A is tried before B.
This has some subtle effects which we’ll ignore.]

Exercises:
1 Write a recogniser for:

Assign ::= ID = Expr ;
Expr ::= INT + Expr

| INT

2 Test your recogniser against the inputs x = 2; and y = ; and x
= y; and x = 2 + 3; and x = 2 + 3 + 4; and x = 2 + ;
at a minimum.

14 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Referencing rulesReferencing rules
• Rules can call other rules. Failure propagates. Recursion is
allowed provided at least one character is consumed first.
• But rules can specify alternatives. R ::= A | Bmeans one can
parse R as A or B. [Note: in most parsing algorithms, neither A or
B has priority. In recursive descent parsers, A is tried before B.
This has some subtle effects which we’ll ignore.]

Exercises:
1 Write a recogniser for:

Assign ::= ID = Expr ;
Expr ::= INT + Expr

| INT

2 Test your recogniser against the inputs x = 2; and y = ; and x
= y; and x = 2 + 3; and x = 2 + 3 + 4; and x = 2 + ;
at a minimum.

14 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Parse treesParse trees
• Recognisers are rarely useful. What we really want is a parse
tree. e.g. 2 + 3⇒ add(int(2), int(3)).
• Building up a tree as we go along is easy. For each element we
want (e.g. Add), make a class which can hold its contents. When
we parse such a thing, instantiate that element.
• Instead of just returning i’, return a pair (tree, i’).

Exercises:
1 Write a parse-tree creating parser for:

Assign ::= ID = Expr ;
Expr ::= INT + Expr

| INT

2 Add a pp function to each parse tree element so that it can print
itself out and you can see if the parsed tree is consistent with the
input.

15 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Parse treesParse trees
• Recognisers are rarely useful. What we really want is a parse
tree. e.g. 2 + 3⇒ add(int(2), int(3)).
• Building up a tree as we go along is easy. For each element we
want (e.g. Add), make a class which can hold its contents. When
we parse such a thing, instantiate that element.
• Instead of just returning i’, return a pair (tree, i’).

Exercises:
1 Write a parse-tree creating parser for:

Assign ::= ID = Expr ;
Expr ::= INT + Expr

| INT

2 Add a pp function to each parse tree element so that it can print
itself out and you can see if the parsed tree is consistent with the
input.

15 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

A realistic grammarA realistic grammar

Exercises:
1 Write a parse-tree creating parser for:

Stmt ::= Assign | While
Assign ::= ID = Expr ;
Expr ::= INT + Expr

| INT
While ::= WHILE Expr { stmt* }

16 / 17 http://soft-dev.org/

http://soft-dev.org/
http://soft-dev.org/

Post-session exercisesPost-session exercises

Try these (no particular order):
• Discover how to encode precedences for +-*/ and friends (hint:
look for grammars which have rules with names like factor
and term).
• Use a parsing toolkit like ANTLR.
• Experiment with our Eco editor, which uses grammars
extensively.

17 / 17 http://soft-dev.org/

http://www.antlr.org/
http://soft-dev.org/src/eco/
http://soft-dev.org/
http://soft-dev.org/

