
1
Unambiguous UML (2U) Revised Submission to UML 2

Infrastructure RFP (ad/00-09-01)

Convenience document with
errata (ad/2002-06-13) applied

OMG document ad/2002-06-14

www.2uworks.org

Version 0.81 – June 2002

Submitted by
Adaptive
Data Access
Project Technology
Softlab
Siemens

In association with
Dr A. Clark, pUML group & Kings College, London, UK
Dr A. Evans, pUML group & University of York, UK
Dr S. Kent, pUML group & University of Kent, UK

Supported by
Artisan
Cacheon
J P Morgan Chase
Foundatao
Kinetium
SINTEF
Tata Consultancy Services
University of Kent
Kings College London
University of York

Copyright © 2001 Adaptive Ltd
Copyright © 2001 Data Access
Copyright © 2001 Project Technology
Copyright © 2001 Kinetium
Copyright © 2001 Softlab
Copyright © 2001 Siemens
Copyright © 2001 Dr Tony Clark
Copyright © 2001 Dr Andy Evans
Copyright © 2001 Dr Stuart Kent
The companies and individuals listed above hereby grants a royalty-free license to the Object Management

Group, Inc. (OMG) for worldwide distribution of this document or any derivative works thereof within OMG and
to OMG members for evaluation purposes, so long as the OMG reproduces the copyright notices and the below
paragraphs on all distributed copies.

The companies and individuals listed above have granted to the Object Management Group, Inc. (OMG) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this
document and distribute copies of the modified version.

The copyright holders listed above have agreed that no person shall be deemed to have infringed the copyright,
in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

NOTICE: The information contained in this document is subject to change with notice.
The material in this document details a submission to the Object Management Group for evaluation in accord-

ance with the license and notices set forth on this page. This document does not represent a commitment to
implement any portion of this specification by the submitter.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES AND INDIVIDUALS LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The Object Management Group and the companies and individuals listed above shall not be liable for errors con-
tained herein or for incidental or consequential damages in connection with the furnishing, performance or use of
this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through
its designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

This document contains information that is patented which is protected by copyright. All Rights Reserved. No
part of the work covered by copyright hereon may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval sys-
tems--without permission of the copyright owners. All copies of this document must include the copyright and
other information contained on this page.

The copyright owners grant member companies of the OMG permission to make a limited number of copies of
this document (up to fifty copies) for their internal use as part of the OMG evaluation process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as
set forth in subdivision (c) (1) (ii) of the Right in Technical, Data and Computer Software Clause at DFARS
252.227.7013

OMG® is a registered trademark of the Object Management Group, Inc.

1 Contents

Contents...3

Preface...9
0.1 Introduction to the Submission..9

0.2 Outline of this Submission .. 11

0.3 Submitters and Contributors..12

0.4 Acknowledgements ...12

0.5 Document History ...13

0.6 Mapping to RFP Requirements ...16

0.7 Tool Validation ..19

0.8 Compliance..21

APPROACH 23

Chapter 1:
Introduction ..25

Chapter 2:
Metamodeling Language ...27
2.1 Classes, Attributes, Query Operations...27

2.2 Associations...28

2.3 Packages ..28

2.4 Constraint Language..28

2.5 Package Extension & Imports ...29

2.6 Package Templates ..31

Chapter 3:
Language Architecture...33
3.1 The Architecture of UML 2...34

3.2 MOF ..41

3.3 Programming in Pictures ...42
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 3

3.4 Backwards Compatibility ..43

3.5 Metalayers ...44

Chapter 4:
Language Extension and Profiles ..45

DEFINITIONS 48

Chapter 5:
Reading Guide ...50

Chapter 6:
DataTypes..51
6.1 Position in Architecture ...51

6.2 Abstract Syntax ...52

6.3 Semantic Domain ..55

6.4 Semantic Mapping...57

6.5 Example Snapshots..58

6.6 Changes from UML 1.4...59

Chapter 7:
Classes ..60
7.1 Position in Architecture ...60

7.2 Abstract Syntax ...61

7.3 Semantic Domain ..66

7.4 Semantic Mapping...68

7.5 Example Snapshots..70

7.6 Changes from UML 1.4...71

Chapter 8:
Associations...72
8.1 Position in Architecture ...72

8.2 Abstract Syntax ...73

8.3 Semantic Domain ..78

8.4 Semantic Mapping...81

8.5 Example Snapshots..83
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 4

8.6 Changes from UML 1.4...84

Chapter 9:
Packages ...85
9.1 Position in Architecture ...85

9.2 Abstract Syntax ...86

9.3 Semantic Domain ..90

9.4 Semantic Mapping...93

9.5 Example Snapshots..95

9.6 Changes to UML 1.4 ...96

Chapter 10:
Package Extension ..97
10.1 Position in Architecture ...97

10.2 Abstract Syntax ...98

10.3 Semantic Domain .. 112

10.4 Semantic Mapping... 112

10.5 Example Snapshots.. 112

10.6 Changes to UML 1.4 ... 114

Chapter 11:
Templates ..115
11.1 Position in Architecture ... 115

11.2 Abstract Syntax ... 116

11.3 Semantic Domain ..125

11.4 Semantic Mapping...125

11.5 Example Snapshots..126

11.6 Changes to UML 1.4 ...127

Chapter 12:
Static Expressions ...128
12.1 Position in Architecture ...129

12.2 Abstract Syntax ...130

12.3 Semantic Domain ..138

12.4 Semantic Mapping...144

12.5 Example Snapshots..149
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 5

12.6 Templates...150

12.7 Changes from UML 1.4...155

12.8 Relationship to OCL 2.0 Submission ..155

Chapter 13:
Constraints...156
13.1 Position in Architecture ...156

13.2 Abstract Syntax ...157

13.3 Semantic Domain ..160

13.4 Semantic Mapping...162

13.5 Example Snapshots..163

13.6 Changes to UML 1.4 ...164

Chapter 14:
Queries ..165
14.1 Position in Architecture ...165

14.2 Abstract Syntax ...166

14.3 Semantic Domain ..170

14.4 Semantic Mapping...172

14.5 Example Snapshots..174

14.6 Changes to UML 1.4 ...175

Chapter 15:
Behaviour...176
15.1 Position in Architecture ...176

15.2 Abstract Syntax ...177

15.3 Semantic Domain ..178

15.4 Semantic Mapping...183

15.5 Example Snapshots..186

15.6 Changes to UML 1.4 ...187

Chapter 16:
Actions ...188
16.1 Position in Architecture ...188

16.2 Abstract Syntax ...189

16.3 Semantic Domain ..194
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 6

16.4 Semantic Mapping...200

16.5 Example Snapshots..203

16.6 Changes to UML 1.4 ...204

16.7 Templates...204

Chapter 17:
Operations ...208
17.1 Position in Architecture ...208

17.2 Abstract Syntax ...210

17.3 Semantic Domain ..215

17.4 Semantic Mapping...218

17.5 Example Snapshots..220

17.6 Changes from UML 1.4...221

Chapter 18:
Messaging..222
18.1 Position in Architecture ...222

18.2 Abstract Syntax ...223

18.3 Semantic Domain ..226

18.4 Semantic mapping ...229

18.5 Example Snapshots..231

18.6 Changes to UML 1.4 ...232

Chapter 19:
Foundation Templates ...233
19.1 Introduction ...233

19.2 Container ...233

19.3 TypedElement..234

19.4 Parameterized ..235

19.5 Multiplicity ..237

19.6 Named..239

19.7 Namespace...240

19.8 Relationship...242

19.9 Generalizable ...243

19.10Extendable ...245
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 7

19.11 Import ..246

19.12Semantics...248

19.13ParameterizedValue ...249

19.14ParameterizedValueSemantics...250

Chapter 20:
UMLTemplates...252
20.1 Introduction ...252

20.2 FeatureClassifier..252

20.3 StructuralFeatureClassifier ..255

20.4 BehaviouralFeatureClassifier ..258

20.5 Package..262

20.6 StructualFeatureClassifierValue ..263

20.7 StructuralFeatureClassifierSemantics..265

20.8 BehaviouralFeatureClassifierValue ...267

20.9 BehaviouralFeatureClassifierSemantics..268

20.10ExtendableNamespace...271

20.11 ExtendablePackage..274

20.12ExtendableStructuralFeatureClassifier ..277

20.13ExtendableBehaviouralFeatureClassifier ..281

20.14TemplateInstantiation ..285

Appendix A:
Mapping Package to Class Hierarchies ...287
A.1 Introduction ...287

A.2 Overview ...287

A.3 Rules ..288

Bibliography ...293
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 8

1 Preface

0.1 INTRODUCTION TO THE SUBMISSION

This is a response to the UML 2.0 Request for Proposals on Infrastructure (ad/00-09-01). We propose an architec-
ture for the definition of UML 2.0 which supports the layered and extensible definition of UML as a family of
languages, and depends on the use of package extension (composition) and package template mechanisms in the
metamodelling language. This submission defines that architecture and populates it with the definition of a core
foundation for the definition of structural and behavioural modelling constructs for UML. Chapter 3 (“Language
Architecture”) identifies all those parts of the architecture defined in any given version of this document.

Although this is not a submission to the RFP on the Object Constraint Language (OCL), the definition does
include a metamodel for the core of OCL. This is intended to show how OCL can be fitted into our architecture,
and we have made every effort to align the metamodel with that proposed in the submission by Boldsoft et al.,
which the 2U team support. Further alignment may be required in finalisation.

The goal in the revision of UML must, in the end, be to provide better languages and tools to engineers so that
they can build better and safer systems, at less cost. This submission aims to deliver on this goal by providing a
definition that adheres to seven principles:

1. The definition should be unambiguous, so that questions of understanding, use and conformance can be
answered definitively. An unambiguous definition provides a better foundation for provisioning tools.

2. The definition should separate concerns. At one level there should be a clear separation between those
aspects of the definition that deal with representation (syntax) and those that deal with the meaning underlying
representation. At another level, it is important to identify and separate mechanisms that deal with differing
aspects of languages. For example, the mechanism that deals with static information structures (classes)
should be separated from the mechanism that deals with behaviour (actions).

3. On the other hand, the definition should support integrated modelling languages. The separate parts of the
definition should be formed in such a way that they can be easily combined to form useful languages.

4. The definition should be complete: as far as possible, all aspects of a language (including semantics) should
be defined unambiguously. The foundation should be rich enough to support the various modelling paradigms
used in UML.

5. The definition should be layered and extensible to support the construction of new members of the UML fam-
ily. New modelling languages will require new features. It should be possible to introduce new features on top
of existing concepts.

6. The definition should have a consistent and disciplined architecture, so that it can be readily understood
and easily extended. For example it should follow well-defined naming disciplines.

7. The definition should be checked in a tool. The size of the definitions warrants it, to be confident that the def-
inition is correct. At a simple level the use of a tool identifies syntax and type errors. However, tools can also
be used to validate the definition, by validating the definition against candidate elements of syntax and seman-
tics domain. The tool checking done in this submission is summarised in Section 0.7, “Tool Validation,” on
page 19.

These principles are in line with the requirements of the RFP and the broader context of the OMG’s MDA strat-
egy, which has risen in prominence since the RFPs were issued. A response to the specific requirements of the
Requests for Proposals is provided in Section 0.6, “Mapping to RFP Requirements,” on page 16. UML has been
flagged as one of the key technologies in making the MDA strategy a success. To realise MDA we believe that
the definitions of modelling languages in general, and UML in particular, need to be:
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 9

• as clear and unambiguous as possible in all aspects (concrete & abstract syntax, semantics), otherwise it
will be harder to build tools and training material, and know that these conform to the standard;

• extensible and composable, so that language variants for use in specific application areas can be con-
structed easily, and so that tools can be configured to support these definitions;

• supported by tools, which means supporting the exploration and validation of models, which are first class
artefacts in MDA, not just supporting their syntactic representation.

The definition of UML proposed in this submission meets the first two of these requirements. It should be easier
to build tools to support the definition, not least because it has an unambiguous definition of syntax and seman-
tics.

Another key technology for MDA is MOF, which is, after all, the language that should be used to define lan-
guages, and (after its revision to version 2) should also support the definition of transformations between meta-
models, which is critical to the success of MDA. This submission shows how the MOF modelling language can
be defined as a UML family member, using the package extension (composition) and template mechansims. Of
course, those mechanisms (whose metamodel definition is also provided here) are included in that language, so
that MOF can support the extensible and composable definition of languages, as required by MDA. The package
extension and template mechanisms provide one embodiment of an approach to aspect-oriented design; they ena-
ble us to apply this approach in the design of languages.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 10

0.2 OUTLINE OF THIS SUBMISSION

The submission comprises this preface and two parts, each containing a number of chapters.

Preface An introduction and overview of the document, a description of the
submission team, a change history, a statement indicating how the
various RFP requirements have been met, a summary of the work
done to validate the definition in a tool, and a statement of what it
means to conform to the standard.

Approach Three chapters:
• An overview of the language used to formulate the defini-

tions, including the language itself which is subset of UML
and, it is proposed, will be at the heart of MOF.

• A description of the overall architecture of the UML family
of languages, and the identification of those languages and
language units that are defined in this document. A guide on
how to read each chapter in the "Definitions" part.

• A description of how the approach supports the extension of
UML and the definition of Profiles.

Definitions A series of chapters providing the full metamodel definitions of
templates, language units and languages that lays the foundation
for the UML family. The definitions are supported by informal
descriptions of the language components and illustrated with
examples.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 11

0.3 SUBMITTERS AND CONTRIBUTORS

0.4 ACKNOWLEDGEMENTS

We would like to thank many others from various organisations for direct input of ideas, review and comments.
Thanks in particular to Steve Cook (IBM) for initiating the feasibility study (Clark et al., 2000), which was an
important step towards realising this work. We would also like to acknowledge funding from Tata Consultancy
Services and BAE Systems.

Submitters
Adaptive Pete Rivett pete.rivett@adaptive.com
Data Access Cory Casanave cory-c@enterprise-component.com
Project Technology Steve Mellor steve@projtech.com
Softlab Andreas Elting andreas.eling@soflab.com
Siemens Ilir Kondo ilir.kondo@siemens.at
Other Contributors
King’s College and pUML group Tony Clark anclark@dcs.kcl.ac.uk
Kinetium Desmond D’Souza desmond@kinetium.com
University of York and pUML group Andy Evans andye@cs.york.ac.uk
University of Kent and pUML group Stuart Kent sjhk@ukc.ac.uk
Tata Consultancy Services
funded researchers and
consultants

Biju Appukuttan
Girish Maskari
Laurence Tratt
James Willans

biju@dcs.kcl.ac.uk
girishmr@cs.york.ac.uk
laurie@tratt.net
jwillans@cs.york.ac.uk

BAE Systems funded researchers Paul Sammut pauls@cs.york.ac.uk
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 12

0.5 DOCUMENT HISTORY

This section maintains a history of revisions to this document (summarised in the table above), including the
OMG milestones that the document has been submitted to, and outlines significant changes between each revi-
sion.

Changes in 0.81
• Various typographical and cross-referencing errors have been corrected. One minor change to submitters’ list.

Changes in 0.8
Organisation
• Refocussed document just on Infrastructure RFP. Infrastructure = a core set of templates, language units and

languages to support the definition of both structural and behavioural aspects of UML.

Technical
• Completed "Approach" part, specifically filled in gaps in chapters on "Architecture", "Metamodelling Lan-

guage" and "Language Extension & Profiles".
• Updated "Preface" including a rewrite of the mapping to RFP requirements.
• Added two new chapters on behaviour and messaging. The former is to define a core semantic model for

behaviour. The messaging chapter describes an abstract transport mechanism for object communication and
its semantics.

• Generally tightened up the chapter structures and cross checking of templates, etc.
• All chapters have at least one object diagram representing a metamodel instance, for validation purposes.

Nature of submission Date
Combined Infrastructure and OCL
initial submission

August 2001

Superstructure initial submission. October 2001
UML 2.0 submission (combined
Infrastructure, Superstructure and
OCL) version 0.51.

December 2001

UML 2.0 submission (combined
Infrastructure, Superstructure and
OCL), version 0.61

January 2002

UML 2.0 submission (combined
Infrastructure, Superstructure and
OCL), version 0.75

April 2002

UML 2.0 submission (combined
Infrastructure, Superstructure and
OCL), version 0.76

April 2002

UML 2.0 revised submission to the
Infrastructure RFP, version 0.8
(OMG doc no. ad/2002-06-07)

June 2002

UML 2.0 revised submission to the
Infrastructure RFP, minor errors
corrected, version 0.81 (OMG doc
no. ad/2002-06-14)

June 2002
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 13

• A model of scope and environment has been added.
• A mapping from package hierarchy to class hierarchy has been added. These rules show how, in principle, a

package hirearchy based on package extension can be implemented as a class framework in an OOPL.

Changes in 0.76
• Harmonised format of definitions chapters.
• Added more instances of the metamodel, represented as object diagrams, for illustration.

Changes in 0.75
Organisation

• Re-designed to conform to a more traditional format for standards documents. Specifically, the first part (pre-
amble) has been reduced to a single Preface. Also, there are now just two other parts: A part describing the
"Approach", and a part detailing the metamodel "Definitions" themselves.

• Detailed descriptions of the metamodels have now been put back in the submission, in revised form (they
were removed in version 0.61, whilst work was being done on reworking and extending the definitions in the
MMT tool).

Technical

• Templates and stamped out models now conform more closely to existing UML standards and the work being
carried out by other UML 2.0 submittors.

• The coverage of the metamodels is far wider than in any previous version. In particular, it now includes
detailed metamodels for expressions, including OCL, and for actions and operations, including semantic
primitives for dynamic behaviour.

Changes in 0.61
Organisation
• Detailed descriptions of the metamodels (language units and languages) and templates have been removed

from the document. Instead (tool generated) web-based documentation for these can be obtained from
www.2uworks.org/documents.html.

• Chapters overviewing the language unit metamodels and templates have been added.

Technical
• The metamodels and templates are now completely defined using a tool. The tool can generate web-based

documentation for the models loaded into it.
• The metamodels have been brought in line with the architecture described in this document.
• A definition of (the structural aspects of) OCL has been added. Although not yet fully aligned, it is intended to

bring this into alignment with the OCL submission submitted by Boldsoft et al.
• The models of DataTypes and Associations, on the structural side, have been refactored.
• The architecture of the behaviour language units has been worked out, and some of the core parts of this have

been filled in, specifically fundamental additions to classes and packages from structure, and actions.
• The templates have been simplified and redundant templates removed. Terminology used in templates has

been improved.

Changes in 0.51
Organisation
• The document structure has been overhauled. It is now organised into 6 parts: “A: Preamble”, “B: Architec-

ture and Approach”, “C: Infrastructure”, “D: Language Definition and Extension”, “E: Superstructure”, “F:
Backwards Compatibility”, “F: Templates”.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 14

• This chapter and a statement of conformance chapter have been included in the part “A: Preamble”. Also
included is a chapter on mapping to RFP requirements (also in “Preamble”), which replaces the “Preface”.
The overview chapter has been replaced by two chapters: “Introduction” and “Submitters and Contributors”

• The “Context” chapter has been replaced by a chapter on the architecture of the definition (in Part B). The
“Metamodeling Approach” chapter has been renamed “MOF.LDL - Informal Description”, as it provides an
informal description of the language for defining languages, which is used for all definitions throughout the
submission.

• The “Templates” chapter has been reorganised and revised into the part “F: Templates”.
• Part C now contains the chapters on “Static Core” and “Dynamic Core”, which have been retitled “Static

Infrastructure” and “Dynamic Infrastructure”.
• The parts on “D: Language Definition and Extension” and “F: Backwards Compatibility” have been added as

placeholders.

Technical
• The architecture of the definition has been overhauled, to be much clearer about the whole UML family, its

relationship to MOF and the parts contributed by this document.
• Templates and packages are currently undergoing major revision, to take into account comments received and

to capture more of what is required. These should start to appear in the next release.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 15

0.6 MAPPING TO RFP REQUIREMENTS

0.6.1 General Requirements
Proposals shall enforce a clear separation of concerns between the specification of the metamodel
semantics and notation, including precise bi-directional mappings between them.

The initial submission clearly separates semantics and (abstract) syntax. Both are metamodeled, and the map-
ping between them is also precisely modeled. In principle, concrete syntax and its mapping to abstract syntax can
be treated in a similar way, though the submission has not done this.

Proposals shall minimize the impact on users of the current UML 1.x, XMI 1.x and MOF 1.x specifica-
tions, and will provide a precise mapping between the current UML 1.x and the UML 2.0 metamodels.
Proposals shall ensure that there is a well-defined upgrade path from the XMI DTD for UML 1.x to the
XMI DTD for UML 2.0. Wherever changes have adversely impacted backward compatibility with previ-
ous specifications, submissions shall provide rationales and change summaries along with their precise
mappings.

The architecture supports the metamodeled definition of mappings between metamodels. The submission does
not provide these mappings in detail, as (a) they should be done when a metamodel for UML 2.0 has been final-
ised and (b) could usefully use the results of the MOF transformations RFP to express them. Upgrade from XMI
1.x to XMI 2.0 can be achived via implementations of these metamodel mappings.

Proposals shall identify language elements to be retired from the language for reasons such as being
vague, gratuitous, too specific, or not used.

It is only possible to make such a list once both superstructure and infrastructure has been fully defined. This
submssion, therefore, refrains from identifying such language elements.

Proposals shall specify an XMI DTD for the UML metamodel.
An XMI DTD (or schema) will be generated from putting the metamodel through the MOF tools. For this, the

metamodel has to be in a certain form (Essential MOF – see MOF 2 submission from IBM et al.). In particular, it
can not use package extension or templates. The rules provided in Appendix A show how a package extension
hiererachy can be converted into a class hierarchy which is suitable input for XMI DTD (or schema) generation
by MOF tools. There are also rules (explained informally in Chapter 3) and defined in the metamodel for package
extension, which allow a package in a package hierarchy to be expanded so that it is no longer dependent on the
hierarchy. These expansions are also in a form suitable for processing by MOF tools, and provide an alternative
source for generating XMI DTD/schema.

0.6.2 Architectural alignment and restructuring
Proposals shall specify the UML metamodel in a manner that is strictly aligned with the MOF meta-
metamodel by conformance to a 4-layer metamodel architectural pattern. Stated otherwise, every UML
metamodel element must be an instance of exactly one MOF meta-metamodel element. If this architec-
tural alignment requires that the MOF meta-metamodel also needs to be changed, then those changes
(including changes to XML and IDL mappings) should be fully documented in the proposal.

The metamodels in this submission are defined using a metamodelling language that is summarised in Chapter
3. The metamodeling language is, effectively, a revised form of the MOF 1.4. language, enhanced with package
extension and package template facilities. The metamodel for the abstract syntax and semantics of this language
is defined in the definitions part of the document. The intention is to ensure that, after finalization, this meta-
model matches exactly with the metamodel define in MOF 2 (see below).
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 16

The metamodel is an expression in the language for which it is a metamodel of, as are all the other metamodels
defined in this submission. Chapter 2 ("Architecture") includes further discussion on the 4-layer metamodel
architecture pattern.

Proposals shall strive to share the same metamodel elements between the UML kernel and the MOF
kernel, so that there is an isomorphic mapping between MOF meta-metamodel kernel elements and
UML metamodel kernel elements.

A new version of MOF is defined in the submission to be a member of the UML family of languages. It shares
all its model elements with those of other members of the family that require similar capabilities. In subsequent
revision or finalization, the metamodel will be refactored to align with the definition of MOF in the MOF 2.0
submission. This will be achieved by refactoring the package templates so that, under the mapping rules
described in Appendix A, the class hierarchy that results from mapping the abstract syntax parts of the meta-
model, matches exactly with that defined in the MOF submission (either its MOF or EMOF form).

Proposals shall restructure the UML metamodel to separate kernel language constructs from the stan-
dard elements that depend on them. The standard elements shall be restructured consistent with the
requirements in 6.5.3.

The architecture described in chapter 2 separates out package templates from language units from languages.
These are further categorized into templates/language units that are UML specific and those that could be used to
support the definition of languages not in the UML family. This submission, on infrastructure, identifies a core
set of language units, with the templates to support their definition. This core, we believe, provides a foundation
for defining most structural and behavioural aspects of UML.

Proposals shall decompose the metamodel into a package structure that supports compliance points
and efficient implementation.

See the compliance statement at the end of this preface for an indication of how the architecture defined in
chapter 3 supports different compliance points. It does so very cleanly.

Appendix A defines a series of mapping rules which provide one route through to implementation: they show
how to convert a package hierarchy to a class hierarchy that can then be processed through MOF tools to build
and implementation of the metamodel. The definition has also been run through a tool which is able to expand a
particular package in the hierarchy so that it is no longer dependent on the hierarchy. The result can also be proc-
essed through MOF tools.

Proposals shall identify all semantic variation points in the metamodel.
Our architecture supports the ability to define families of languages which may vary in their semantics in some

places and be common in others. If a language does not support quite what is required, then infrastructure support
is provided through reusable templates to define an alternative language, or language unit, that can be combined
with existing languages or language units. See Chapter 4 on Language Extension and Profiles for more details.

Proposals may refactor the UML metamodel to improve its structure if they can demonstrate that the
refactoring will make it easier to implement, maintain or extend.

The submission refactors the UML metamodel somewhat. The refactoring is a direct consequence of defining
the semantics in terms of primitives on which the remainder of UML 2.0 is built. This layered approach is easier
to implement, maintain and modify.

Proposals may consider architectural alignment with other specification language standards.
Not applicable.

0.6.3 Extensibility
Proposals shall specify how profiles are defined.

Examining so-called profiles currently being standardised in the OMG, one observes that the following
approach is adopted: define a new metamodel; show how that metamodel maps into UML notation, specialised
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 17

using stereotypes etc. This submission provides two mechanisms – package extension and package templates –
that make it much easier to combine and extend fragments of metamodel to form new members of the UML fam-
ily of languages. This is a accompanied by an architecture which is populated with reusable templates for lan-
guage design and predefined language units. No longer will profiles need to define a new metamodel from
scratch; there is a whole infrastructure on which they can build. Furthermore, as the infrastructure supports the
definition of concrete syntax and semantics, both these aspects of a profile definition can be handled in a similar
way. This is explained further in Chapter 4, which also explains how to mix in a simple definition of stereotypes
and tagged values to support a very lightweight form of extension, which is useful for bespoke, user-defined
extensions of UML notation, but not recommended for the definition of profiles.

Proposals shall specify a first-class extension mechanism that will allow modelers to add their own
metaclasses, which will be instances of MOF meta-metaclasses. This mechanism must be compatible
with profiles and consistent with the 4-layer metamodel architecture described in 6.5.2.

The mechanisms used to construct UML profiles are first class extension mechanisms. That is, they work
directly with the metamodel.

Proposals shall identify model elements whose detailed semantics preclude specialization in a profile. If
proposals need to generalize these model elements, they should propose refactoring consistent with the
architecture and restructuring requirements described in 6.5.2.

Not applicable.

Proposals may support the definition of new kinds of diagrams using profiles.
The infrastructure supports the definition of concrete syntax in metamodels. Thus the mechanisms used to

build profiles can also be used to add new kinds of diagrams in the definition of a profile.

0.6.4 Issues to be discussed
Proposals should provide guidelines to determine what constructs should be defined in the kernel lan-
guage and what constructs should be defined in UML profiles and standard model libraries.

This issue is discussed in Chapter 3 on Architecture.

Proposals should stipulate the mechanisms by which compliance to the specification will be deter-
mined, recognizing that determination of conformance is on a subset of the specification and that not all
parts of a metamodel package are always needed. For example, proposals might submit XMI DTDs to
test the compliance of a tool to the specification in a subset of a metamodel package.

See the section on compliance in this preface.

Proposals should discuss the impact of any changes to the UML metamodel on adopted profiles. In par-
ticular, the impact of any refactoring should be discussed.

The metamodels of many of the existing profiles are not constructed on top of the UML metamodel at all. It
would be advisable to refactor these metamodels to be based on the library of templates and language units defin-
ied in this submission, and, where those are found wanting, incrementally extend that library. Of course it would
also be advisable to bring those profiles (e.g. SPEM) that are based on the UML metamodel, to be based on the
library defined here. Further discussion of our vision of how this infrastructure submission supports the eveolu-
tion of the UML family of languages (including profiles) is provided in Chapter 4, "Language Extension and Pro-
files".
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 18

0.7 TOOL VALIDATION

In accordance with our seventh principle, the majority of the metamodels defined in this submission have been
checked in a prototype tool (MetaModelling Tool – MMT, screenshot provided in Figure 0-1).

What this means is that definitions have been rendered in a human readable textual notation accepted by the tool
which matches, in a fairly transparent way, the graphical definitions presented in this model. All source files are
available from the submission website (www.2uworks.org).

The tool is actually being developed to support MDA. The features used to support this submission are:
• Syntax and type checking of all input, including OCL constraints.

Figure 0-1 MMT screenshot
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 19

• A prototype implementation of the package extension and templates mechanism. This has been used to
process package extension and template instantiation hierarchies and generate the expanded form of any
package in that hierarchy. The tool is not currently able to automatically generate documentation of these
expansions (this is a resource problem, not an inherent limitation of the tool), but is able to generate some
useful elements of the expansion in text form (e.g. constraints) which have been pasted into this document.

• Construction of instances of the metamodels, and checking that they satisfy all well-formedness con-
strraints on the metamodel. A number of these have been constructed to provide some validation that the
metamodel presented in this document captures the required concepts.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 20

0.8 COMPLIANCE

Overview
The architecture of this submission distinguishes language units from languages, where a language is a particular
combination of language units. Each language unit / language has three components: concrete syntax(es), abstract
syntax, semantics domain, with requisite mappings between them.

Thus a statement of compliance should be clear about which languages and language units the tool or method
supports, where a language is a particular combination of language units. It should also be clear as to what
aspects of a language or language unit definition it supports: concrete syntax and/or abstract syntax and/or
semantics.

XMI for a language or language unit can be thought of as an XML concrete syntax (the interchange syntax) for
a metamodel. MOF XMI tools support the generation and implementation of this syntax for any MOF-compliant
metamodel in a standard way, where ‘implementation’ means the generation of a parser and generator for the
metamodel specific XMI.

A useful way of presenting a compliance statement is to use a table, which lists language units and/or lan-
guages as rows, and aspects of the definition of a language or language unit as columns, one each for asbtract
syntax and semantics, and for each concrete syntax (including XMI). Compliance to a language that is the combi-
nation of a number of language units automatically guarantees compliance to those language units.

Finally, if a new language or language unit is constructed and has not been ratified by the OMG, then one can
not claim it to be a member of the UML family, and complying to that language or language unit can not be a
claim to compliance with UML. On the other hand, it may still be possible to claim compliance to any language
or language unit, that is part of the UML family and which is extended by the new language or language unit.

Test Examples
Compliance should be checked through a representative sample of example models which are expressed using
the language or language unit in question. Some examples will not be well-formed. Some examples will come in
pairs, where the second in the pair will be like the first except for a designated set of changes. The examples may
be provided in a number of formats: as instances of any of the concrete syntaxes defined for that language or lan-
guage unit (including XMI), or as instances of the abstract syntax metamodel. Semantic compliance will also
need example abstract syntax / semantic domain pairs. Some examples have been provided in this submission to
validate the definitions (see chapters in the ‘Definitions’ part of document). This set will need to be expanded
during finalization.

Concrete Syntax (including XMI)
A tool claiming concrete syntactic compliance to a language or language unit must demonstrate its ability to read
in the example in appropriate forms (e.g. if it claims compliance to XMI, then it should be able to read in the
XMI), and provide some way of notifying or enforcing well-formedness. To demonstrate that it can output files
appropriately, it will read in an example from a pair, the designated changes will be perfomed in the tool, and the
example will then be output and checked against the second element of the pair. Some of this process can be auto-
mated.

Abstract Syntax
A tool claiming compliance to abstract syntax should provide a standard API (e.g. JMI or IDL) to its model
repository.

Semantics
A tool claiming semantic compliance must provide an ability (e.g. through XMI or a JMI compliant API) to
access elements ins the semantic domain. It should demonstrate that it is able to determine whether or not a
semantic domain element is well-formed, and whether or not it satisfies an expression of abtract syntax. This
could be tested using a standard set of AS/SD pairs.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 21

Automatic Compliance Testing
Automatic compliance testing will only be possible for tools that support a standard API, which could be, for
example, JMI or IDL generated from the metamodel definition of any aspect of the language or language unit
definition. Then test scripts can be written which automatically feed in examples to the tool and check results. It
may be possible to automate testing for tools that support XMI, but then some specification of how the input and
ouput of XMI is orchestrated will be required.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 22

APPROACH

1 Chapter 1
Introduction

This document provides a definition of UML 2.0. It has two main parts.

The first part (Approach) includes:
• This Introduction
• A description of the Metamodelling Language in which the definition is unambiguously expressed
• A description of the overall Architecture of the definition, expressed in the metamodelling language
• A description of how the approach supports the Extension of UML, including the definition of UML Pro-

files

The second part (Definitions) provides a series of chapters detailing, explaining and illustrating the definitions.
Chapter 3 (“Language Architecture”) in the Approach part, provides an overview of the content of these chapters.
The metamodel definitions are interspersed with chapters explaining and illustrating parts of the definition
through examples.

A reader who wishes just to understand UML in an informal way, should begin by looking at the example sna-
phots section of the chapters in the Definitions part. A reader who wishes to gain a formal understanding of the
definition, in order to build a tool, for example, should begin by reading the Approach part (at least the Metamod-
elling and Architecture chapters) before the Definitions part.

A metamodelling approach is used for the definition of UML. In essence, this means the definition of syntax
and semantics as object models. The metamodelling language is an object modelling language that is a subset of
UML itself (hence defined in this document). This risks circularity in definition, which can be broken in a
number of ways:

• The metamodelling language is small enough and uses commonly enough used concepts that one can be
confident in understanding what it means intuitively. Any questions can usually be answered by looking
closely at the definition of itself in itself.

• The metamodelling language is implemented in a tool, which validates the syntax and well-formedness of
definitions, and provides a means to validate the language semantically.

• The metamodelling language is defined in another formalism (e.g. mathematical set theory), which may
may be used to increase one’s confidence that it is correct and captures the desired concepts.

The definition of the UML 2.0 infrastructure provided by this document uses the first two devices to break circu-
larity. In particular, a tool implementation of the metamodelling language has been favoured over a mathematical
definition, as not only does it provide a similar level of confidence in the definition, it also provides a useful tool
for validating metamodels, including the definition of itself in itself!

The definition of UML infrastructure is architected in a way that directly supports the notion that UML is a
family of languages, not a single language. Thus Language Units are defined, each focussing on a particular
grouping of language features (e.g. model management and packaging, structural modelling, constraints, various
forms of behavioural modelling, etc.). Language units can be composed to form different Languages. Both lan-
guage units and languages are constructed from language definition templates, which, amongst other advantages,
help to enforce a consistent architecture across the definition. The definition architecture is described in Chapter
3 (“Language Architecture”).

 Templates also help in the extension and construction of new language units, which can then, in turn, be com-
posed with existing language units (possibly) to form new languages. This process is explained in Chapter 4
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 25

INTRODUCTION
(“Language Extension and Profiles”), which also provides guidelines for determining the status of these new lan-
guage units and languages, with regard to UML 2. The default is that they are not part of the UML 2 family,
though, of course, languages and language units developed in this way may be standardised as official UML pro-
files using normal OMG procedures.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 26

1 Chapter 2
Metamodeling Language

This chapter provides an informal description of the language used to define the UML 2 metamodels. The lan-
guage used is itself a member of the UML family of languages, so is defined in itself as part of this document (see
Chapter 3), and is the language for metamodeling employed by OMG’s meta-object facility [Note: Or so it is pro-
posed by this submission].The metamodeling language has the following components:

Classes, attributes, query operations. With associations, provides the means for defining the (unconstrained)
structure of all aspects of a language.

Associations. With classes etc., provides the means for defining the (unconstrained) structure of all aspects of a
language.

Packages, including nesting. Allows related concepts to be grouped into different namespaces. Nesting of name-
spaces is permitted.

A constraint language (OCL). For expressing well-formedness constraints on the structures admitted by the
metamodel.

Package extension and package imports. Provides a means of building packages up incrementally, and a
means for composing packages by merging elements within those packages. Can be used to define languages by
composing separately defined language components. Package imports is just a (very) restricted form of package
extension.

Package templates. Can be used to capture metamodelling patterns in a precise and effective way. Models can
be constructed by instantiating one or more package templates, then merging and (optionally) extending the
result. The package template mechanism is defined as a layer on top of package extension, which supports the
merging or composition of multiple instantiantions from templates, and construction of templates through tem-
plate composition.

Package extension provides a means for separating out different concerns of a metamodel into separate packages,
that can then be merged or weaved together as necessary. Package imports does not include a concept of merging,
which makes it much harder to separate out often overlapping and cross-cutting concerns. Package templates pro-
vides a simple layer on top of package extension which allows common applications of extension from the pack-
age, involving a set of renamings, to be generated from a small number of template parameters.

All six components are described in the remainder of this chapter. Well-know concepts are treated in summary;
package extension and package templates are considered in more detail. A metamodel definition of all compo-
nents is provided in the Definitions part of this document.

2.1 CLASSES, ATTRIBUTES, QUERY OPERATIONS

Classes, attributes and query operations are permitted in the metamodelling language. Visibility annotations on
any of these are not permitted (or should be ignored). Query operations are operations which return a result and
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 27

METAMODELING LANGUAGE
may have arguments. Query operations may be accompanied by an OCL expression whose type is conformant
with the type of the result of the operation.

Classes may be specialised. Attributes and query operations may not be redefined, but additional OCL con-
straints can be used e.g. to strengthen result types.

2.2 ASSOCIATIONS

Binary associations only are included in the metamodelling language. Association classes and qualified associa-
tions are not included. Association specialisation is not permitted.

2.3 PACKAGES

All classes and associations must be defined in the context of a package. Packages may contain other packages,
so a package may contain a mixture of classes, associations and packages. There are no constraints on the types
of associations ends, attributes and parameters/result of queries, with respect to packages. For example, it is not
necessary for the type of an attribute to belong to the same package as the class in which that attribute is con-
tained. This does mean, however, that some cases can be difficult to represent graphically, for example if there is
an association contained in Package P, whose ends refer to classes in package Q.

Similarly a class C may specialise classes from packages which do not contain C.

2.4 CONSTRAINT LANGUAGE

The metamodelling language uses the object constraint language (see submission to the UML 2.0 OCL RFP) to
express invariant constraints on classes, and for expressions that determine the value returned by a query opera-
tion (in such cases the type of the expression must conform to the return type of the query operation). An example
of the latter is provided below:

context Class::conformsTo(c : Class):Boolean
self.generalElements()->includes(c) or self = c

This defines a query operation conformsTo on the class Class, whose result is calculated by evuating the OCL
expression appearing on the second line.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 28

METAMODELING LANGUAGE
2.5 PACKAGE EXTENSION & IMPORTS

We describe package extension and package imports together, as package imports is really just a restricted form
of package extension. The restrictions are so draconian, that, in practice, package extension tends to be used.

2.5.1 Package Extension
Package extension provides two facilities to the metamodeller:

• It can be used to extend a fragment of metamodel as a whole, rather then piecemeal (e.g. class by class).
This supports incremental definition of language fragments, where each increment may add new features
to a number of classes used to define the original fragment.

• It can be used to compose fragments of a metamodel. Here it differs from package imports in the case
where a child package is importing two or more packages. Specifically, it merges elements of the parents to
form the child, wherever there is overlap between the packages being imported.

The package extension mechanism is illustrated by Figure 2-1.

Figure 2-1 Package Extension

P

R

Q

X Y Z

1
*

*

1

*

x

y y

z
zx*

x.z= z

X Y
0..1

distinguishedY

containedY
*1 x

containedY->includes(distinguishedY)

Z / Y
Y / X
distinguishedZ / X::distinguishedY
containedZ / X::containedY
y / Y::x

containedZ / Y::z

a:int

Z

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 29

METAMODELING LANGUAGE
Q is a package that extends R and P. Extension between packages is shown by a UML generalisation arrow. The
contents of R and P get included in Q, with anything common between the two being merged. Common model
elements are elements of the same kind with the same name. Renaming clauses may be used to annotate a pack-
age extension either to prevent a merge or to force one. In this case, the classes X and Y in R are renamed to Y and
Z, respectively, to force them to be merged with the classes Y and Z in P. Q also contains a fragment a class Z,
with an attribute a, that is also merged with P::Z and R::Y (which is renamed to Z). The unfolding of both pack-
age extensions results in the expansion of Q which is given in Figure 2-2.

As with classes may specialise classes from other packages, so packages may extend packages contained in other
packages.

2.5.2 Package Imports
Package imports is a restricted form of package extension. The restrictions are:

• Nothing can be renamed on import.

• The elements being imported can not be merged in the child with elements obtained via import or
extension from another package, or elements introduced in the child itself.

These restrictions make package imports easier to define, e.g. in a metamodel, than package extension, but at the
severe cost of a considerably weaker notion than package extension.

Figure 2-2 Package Expansion

Q

X Y

1

*
*

1
*

x

y

y
containedZ

zx*

x.z= z

a:int

Z

containedZ->includes(distinguishedZ)

0..1

distinguishedZ
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 30

METAMODELING LANGUAGE
2.6 PACKAGE TEMPLATES

Package templates allow a package definition to be parameterised over arguments, thereby supporting the encod-
ing of common patterns which can be bound to particular fragments of metamodel through parameter substitu-
tion. The package template mechanism is illustrated by Figure 2-3.

This is similar to the package extension example of Figure 2-1, except that now package R has been turned into a
package template. The template takes two string arguments (X and Y in the dashed box), and names of elements
in the package are parameterised by these arguments. Not only are the names of classes parameterised, but also
the labels on the association ends, which are referred to in the accompanying constraint.

Instantiation of a template is shown using a generalisation arrow, which must be annotated by a substitution for
the arguments, shown by a dashed box called out from the arrow. Template instantiation works by evaluating the

Figure 2-3 Package Templates

P

R

Q

X Y Z

1

*
*

1

*

x

y y

z
zx*

x.z= z

<X> <Y>
0..1

distinguished<Y>

contained<Y> *

1

<x>

contained<Y>->includes(distinguished<Y>)

containedZ / Y::z

a:int

Z

X, Y

Y, Z
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 31

METAMODELING LANGUAGE
expressions that provide the names for elements in the template with arguments substituted. The result is then
merged with the target of the instantiation. A template instatiation may be annotated further with one or more
renaming clauses, which override any names calculated from the argument substitutions. In this example there
are no such renamings.

Templates effectively allow a (sometimes large) set of renamings to be calculated from a small number of
arguments. In this example, the five renamings on the extension from R to Q in Figure 2-1 are replaced by a sub-
stitution for two arguments. Not only does this save work for the modeller, it also ensures more accurate use of
the template by forcing a particular set of renamings (which may be overridden in extremis) whenever the tem-
plate is applied.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 32

1 Chapter 3
Language Architecture

This chapter defines the overall architecture of the definition of UML 2. The definition is organised into a
number of packages related by nesting, imports and package extension. A distinction is made between language
units, and languages composed from these units. Both language units and languages are defined as packages in a
layered fashion. Both languages and language units have the same internal architecture, which separates concrete
syntax from abstract syntax from semantics. The relationship of MOF with UML is clarified. Backwards compat-
ibility with UML 1.4. is defined using “mapping” packages. The relationship of this approach with the 4-layer
model for language definition is explained.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 33

LANGUAGE ARCHITECTURE
3.1 THE ARCHITECTURE OF UML 2

The overall architecture of the definition UML 2 is given by Figure 3-1.

Family of Languages
UML2 is defined to be a family of languages not a single language. This reflects the history of use of UML,
where modellers tend to use only a subset of the language (and sometimes a specialised subset) for particular pur-
poses.

Figure 3-1 Overall Architecture

LanguageUnits

UML2

Languages

Templates

Templates

Foundation

Core

MOF

Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 34

LANGUAGE ARCHITECTURE
Languages and Language Units

To support the definition of different family members, the architecture supports the definition of language units
and languages. Language units allow related features of UML to be grouped into separate fragments; fragments
may be common to many languages in the family. Language units can be composed, using package extension, to

Figure 3-2 Languages and Language Units

UML2::Languages

MOF

Core

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 35

LANGUAGE ARCHITECTURE
form complete languages. Package imports is not sufficient in many cases to compose language units, as lan-
guage units may overlap in content. Package extension allows language units to be merged. The mechanism may
also be used to incrementally extend language units.

The distinction between language units and languages is somewhat fuzzy. Although many language units will
be mini-languages in their own right, it is expected that they only become practically useful when combined with
other units to form a language. Thus the languages are combinations of language units that the designer of the
language family has deemed fit for a particular purpose.

There is a core set of language units (a statement of what we mean by core is given below), from which a core
language and the MOF modelling language are derived. An overview of the language units and languages
defined for UML2 is provided by Figure 3-2. They are detailed and explained in the Definitions part of this docu-
ment.

Core
A subset of the language units have been wrapped in a package called Core. This section explains what is meant
by "core".

Given the definition of a language syntax (such as UML) there are often a number of design choices to be
made regarding the semantic model. It is usual to apply the following principles to the design of a semantic
domain: every syntax element denotes exactly one configuration of semantic elements; no configuration of
semantic elements can be the denotation of more than one syntactic element.

A consequence of the semantic domain design principles is that the semantic domain should not contain equiv-
alences; i.e. all semantic elements denote distinct concepts. However, for practical reasons it can be useful to
define equivalence relationships over a semantic domain: if the domain is used to define a data repository; in
order to support an inter-operable tool suite; or, just for conceptual clarity. To meet such practical considerations
it is useful to define new semantic elements that represent configurations of existing semantic elements; the new
elements do not represent an extension to the expressiveness of the domain, they are provided for convenience.

Given a language definition L it is possible to identify one or more core languages. A core language C of L
consists of models of syntax and semantics and a mapping between them such that the extensions added to C to
produce L do not extend the expressiveness of C.

The core of UML is defined to a set of language units which together will be expressive enough to support
predicted structural and behavioural modelling needs. Together they provide a semantic domain including
objects, snapshots and filmstrips, and a syntax domain containing just those features needed to denote elements
of the core semantic domain. The core represents the essential features of the UML infrastructure. The UML
superstructure does not represent an extension to infrastructure expressiveness and can therefore (in principle) be
translated to elements of the core. It is expected that any language in the UML family will, in principle, be trans-
lateable into this core. If it turns out that the core needs to be extended to support a proposed new family member,
then that will require a revision to the UML core – this should be a consideration whenever a new profile for
UML is proposed.

Templates
Package templates are used to capture cross-cutting architectural patterns, and which support the imposition of a
uniform and consistent architecture across definitions. The latter is essential for the composition of language
units to work correctly. They also ensure more complete definitions by enabling reuse: important structures and
constraints are captured once in a template and reused many times over in stamping out definitions of language
units. In this way, one is able to reap the rewards from effort invested in a template.

Two groupings of templates have been identifed. Templates which may be regarded as fundamental to lan-
guage definition per se, capturing concepts such as namespace and typing, and templates which are more specific
to UML, using, for example, UML-specific terminology. The UML-specific templates are constructed from the
fundamental templates. An overview of the templates used to construct the UML is provided by Figure 3-3,
which shows the templates used to build the abstract syntax, Figures 3-4 & 3-5, which shows the templates used
to build the semantics, and Figure 3-6 which shows the templates for defining package extension and templates.
They are detailed and explained in Definitions part of this document.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 36

LANGUAGE ARCHITECTURE
.

Figure 3-3 Templates (abstract syntax)

FeatureClassifier Classifier
Feature
Type

<Classifier>
<Feature>

TypedElement

Namespace Namespace
NamedElement

<Feature>
<Type>

<Classifier>

Container Container
Contained

TypedElement
Type

Generalizable
NamedElement

<Namespace>
<NamedElement>

StructuralFeatureClassifier

<Classifier>
<StructuralFeature>
<Type>

Classifier
StructuralFeature
Type

Parameterized <ParameterizedElement>
<Type>

<ParameterizedElement>
Parameter

Parameter
<Type>

BehaviouralFeatureClassifier

<BehaviouralFeature>
<Type>

Classifier
BehaviouralFeature
Type

<Classifier>
<BehaviouralFeature>

<Type>

Package

<Package>
<NamedElement>

Package
NamedElement
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 37

LANGUAGE ARCHITECTURE
Figure 3-4 Templates (structural semantics)

Container Container
Element

<ClassifierValue>
<StructuralFeatureValue>

Structural
Feature

Classifier
Semantics

Classifier
StructuralFeature
Type
ClassifierValue
StructuralFeatureValue
Value

Structural
Feature

Classifier Classifier
StructuralFeature
Type

<Classifier>
<StructuralFeature>

<Type>

Structural
Feature

Classifier
Value

<ClassifierValue>
<StructuralFeatureValue>
<Value>

ClassifierValue
StructuralFeatureValue
Value
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 38

LANGUAGE ARCHITECTURE
Figure 3-5 Templates (behavioural semantics)

BehaviouralFeatureClassifierSemantics

Classifier
BehaviouralFeature
Type
ClassifierValue
BehaviouralFeatureValue
Value

Behavioural
Feature

Classifier Classifier
BehaviouralFeature
Type

<Classifier>
<BehaviouralFeature>

<Type>

Behavioural
Feature

Classifier
Value

<ClassifierValue>
<BehaviouralFeatureValue>
<Value>

ClassifierValue
BehaviouralFeatureValue
Value

Parameterized
Semantics <ParameterizedElement>

<ParameterType>
<ParameterizedElementValue>
<Value>

<BehaviouralFeature>
<Type>

<BehaviouralFeatureValue>
<value>

Parameterized ParameterizedElement
ParameterType

<ParameterizedElementValue>
<Value><ParameterizedElement>

<ParameterType>

<BehaviouralFeature>
<Type>

<BehaviouralFeatureValue>
<Value>

Parameterized
Value ParameterizedElementValue

Value

Container Container
Contained

<ParameterizedElementValue>
<Value>

<BehaviouralFeatureValue >
ParameterValue
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 39

LANGUAGE ARCHITECTURE
Figure 3-6 Templates (package extension & templates)

ExtendableNamespace

Extendable
Element

Namespace Namespace
NamedElement

NamespaceNamespace
NamedElement

NamedElement

ExtendablePackage

<Package>
<NamedElement>

ExtendableStructural
FeatureClassifier

<Classifier>
<StructuralFeature>

Namespace
NamedElement

Package
NamedElement

Classifier
StructuralFeature
Type

ExtendableBehaviouralFeatureClassifier Classifier
BehaviouralFeature
Type

<Classifier>
<BehaviouralFeature>

Parameterized ParameterizedElement
Type

<BehaviouralFeature>
<Type>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 40

LANGUAGE ARCHITECTURE
Syntax and Semantics

The internal architecture of languages and language units is given by Figure 3-7. A language definition comprises
any number of concrete syntaxes, an abstract syntax and a semantics domain. The abstract syntax is a model of
the valid expressions of the language, abstracted away from from any particular concrete rendition of those
expressions. There may be many concrete syntaxes for one abstract syntax. For example, XMI defines how a
UML model may be rendered as XML, a concrete syntax. A class diagram is concrete syntax for models con-
structed from classes and associations.

Semantics concerns the definition of what it means for an example or instance of behaviour to satisfy the spec-
ification of that behaviour, as characterised by an expression of the language under consideration. For example,
the semantics of a Java program can be given by stating the rules by which an execution trace satisfies an expres-
sion of Java. Because a Java program is deterministic, one might also give the semantics in a slightly different
way, that is given a valid starting state, what is the execution trace that is then generated. In the architecture
examples of behaviour are defined in the semantics domain. Semantics is then defined to be a mapping between
semantics domain and abstract syntax.

Note that semantics in this sense should be distinguished from static semantics, which are the rules which dic-
tate whether or not an expression of the language is well-formed. Static semantics rules are those employed by
tools such as type checkers, and correspond to OCL constraints over the concrete and abstract syntax parts of a
language (unit) metamodel.

3.2 MOF
One of the languages in the UML family is the language used in the Meta Object Facility (MOF) for metamodel-
ling. This is defined as a member of the UML family of languages to be the composition of the core language
units concerned with structural modelling, including the object constraint language. The construction has already

Figure 3-7 Syntax and Semantics

...

Abstract
Syntax

Semantics
Domain

notation
X

model

CS
X

AS

notation
Concrete
Syntax

Semantics
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 41

LANGUAGE ARCHITECTURE
been given by Figure 3-2. Figure 3-8 illustrates the relationship between this language and other parts of MOF,
though these are outside the scope of UML.

Here dashed arrows indicate a package dependency (something inside the source package is dependent on some-
thing inside the target package), not package imports, and presumes that JMI (XMI) are models characterising
transformations between JavaAS (XML) and UML2::Languages::MOF::AbstractSyntax, in a way that does not
intefere with either side of the mapping. If this is not possible, then the dashed arrows would need to be replaced
by package extension relationships.

3.3 PROGRAMMING IN PICTURES

Although not explicitly called out in the UML 2 RFP, there is a large community of UML users who tailor UML
so that it can be used to provide diagrammatic views of object-oriented programs in specific programming lan-
gauges. This can be accomodated by defining a programming language specific UML language, which brings
together and specialises the required UML language units. The definition for Java is illustrated in 3-9 on page 43.
This captures most current uses of UML profiles for programming languages, which only require UML views of
Java programs, not execution traces. For this reason a semantics domain has not been included in the Java profile.

Figure 3-8 UML and MOF

UML2::Languages

MOF

JavaAS
MOF

XMI

XML
JMI

Core

Abstract
Syntax

Semantics
Domain

CSxAS notationConcrete
Syntax

Semantics
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 42

LANGUAGE ARCHITECTURE
However, the profile must include a definition of the mapping from abstract syntax in the profile to the abstract
syntax of Java. Of course the definition of Java is outside the scope of UML.

3.4 BACKWARDS COMPATIBILITY

The differences between UML 1.4 and UML 2 can be defined by modelling the mapping between packages in
UML 1.4. and packages in the new version of UML, as illustrated by Figure 3-10 on page 44. Not only should
this approach formally define the differences between the two versions, it also provides a specification for tools
that will automate the transition.

[Note: The details of this mapping should be deferred until it is known what the UML 2 metamodel has been
agreed by the OMG. It is not technically difficult to write (it can be expressed as an object model with OCL con-
straints), just laborious. It might be more appropriate to construct it using MOF technology for transformations;
however, that might be in place too late.]

Figure 3-9 Java profile

LanguageUnits

Java

UML2

Abstract
Syntax

Java
ASXJavaAS

notation
X

model

AS
X

CS

notation
Concrete
Syntax

Abstract
Syntax
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 43

LANGUAGE ARCHITECTURE

3.5 METALAYERS

In this submission, a metamodel (which is just a model expressed in a particular language) is used to capture and
define the relationship between two metalayers: the relationship between models of a particular language, and
instances of the models of that language. The abstract syntax metamodel defines the collection models that can be
expressed in the language, and the semantics domain metamodel defines the collection of instances of models for
that language. The semantics metamodel defines the relationship between the two. This means that a repository
generated from the metamodels used in this submission, could store both models and instances of those models,
and, if all the well-formedness rules were implemented as checks on the repository, one could check which
instances were valid instances of the models.

Of course, a metamodel is itself a model of the language used to express metamodels, and one of those models
can be a definition of the metamodelling language itself. This fact allows metamodels to be cast as instances of
that model, which can be useful e.g. to check the well-formedness of metamodels, and can be used to support
reflection. However, this is enteriing the domain of MOF and is really beyond the scope of a UML submission.

Figure 3-10 Backwards compatibility

UML2

UML1.4

? X UML1.4... x UML1.4

UMLBackwards
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 44

1 Chapter 4
Language Extension and Profiles

The package extension and package template mechanisms support the definition of a new language based on the
UML metamodel, as follows.

• Identify appropriate language units. It may be that the new language can be formed through the composi-
tion of the existing language units. In which case, defining the language is a matter of having the new lan-
guage extend each of the chosen language units.

• Specialise existing language units. The language may require some specialisation of language units before
they are composed. For example, it may have stronger well-formedness constraints, or specialist forms of
certain model elements. In this case, those units should be extended, and the extended versions composed
with any other units required to form the language.

• Create new language units. If there are elements of the language which can not be supplied by existing lan-
guage units, then it will be necessary to construct new language units. These could be created from scratch,
or existing templates used to generate the new unit. The application of templates will depend on the rich-
ness and flexibility of the template library. In extremis it may be necessary to define new templates.

The following two questions remain to be answered:
• Is a new language unit or language constructed in this way a member of the UML family?
• Can these techniques be used to support so-called "lightweight" extension, or is something else required?

The answer to the first question is closely related to what is meant by "compliance" to the UML standard. In this
submission, we propose that a statement of compliance should be clear about which languages and language units
the tool or method supports, where a language is a particular combination of language units. It should also be
clear as to what aspects of a language or language unit definition it supports: concrete syntax and/or abstract syn-
tax and/or semantics. Thus if a new language or language unit is constructed and has not been ratified by the
OMG, then one can not claim it to be a member of the UML family, and complying to that language or language
unit can not be a claim to compliance with UML. On the other hand, it may still be possible to claim compliance
to any language or language unit, that is part of the UML family and which is extended by the new language or
language unit.

In answer to the second question, the position taken by this submission is that for significant extensions of
UML, such as many of the profiles currently being standardised within the OMG, the extension should be made
directly to the metamodel as described above. Indeed, we note that these so-called profiles are accompanied by
new metamodels, often not even based on the UML metamodel, and that the lightweight extension mechanism in
UML 1.4. is really only used to tailor the concrete syntax of UML to provide a concrete syntax for these meta-
models: there is a mapping from the new metamodel to a specialised UML concrete syntax. If concrete syntax is
also defined as a metamodel (a vision of this submission, but not directly tackled by the submission), then the
metamodel extension process described above can be used to specialise the concrete syntax in a profile, in con-
junction with the abstract syntax, for which new metamodels are already being constructed. Note that the special-
ised concrete syntax could be, for example, the insertion of the label <<Y>> in the symbol corresponding to
model element X, where Y extends X in the metamodel for the profile. Indeed a metamodel template could be
written to make such a definition easy.

When a profile is standardised, not only will the new language be standardised, but also any additional tem-
plates and language units required to support that profile. Also, issues might be raised against existing units and
templates, and an impact analysis can be conducted on the existing supported languages to ascertain the best way
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 45

LANGUAGE EXTENSION AND PROFILES
to handle any issue. In this way, the set of modelling languages, language units and templates supported by the
OMG can be evolved and expanded in an incremental fashion, avoiding major revisions such as we have now.

The degree to which a tool supports the manipulation of the metamodel, is really a question about the degree to
which it supports MOF, not UML. Nevertheless, this submission does already provide a lightweight extension
mechanism. The package extension and template mechanisms defined in the submission can be used for applica-
tion modelling (standard UML modelling) as well as for metamodelling. They provide a way of capturing stand-
ard modelling patterns, and reusing those patterns. Thus it would be possible to establish a library of modelling
patterns or templates for (re)use in a particular domain or domains, which, in many cases, would obviate the need
to extend the language, using mechanisms such as stereotypes.

 Finally, there is a use of stereotypes for which full-blown metamodelling is too heavyweight, and for which
the template mechanism is inappropriate. This is when stereotypes are treated as pure syntactic annotations,
which have no meaning for the UML modelling tool, but might have significant meaning for other tools that
process the output (XMI) from the UML modelling tool. Indeed, the support that most existing modelling tools
provide for UML stereotypes is of this form. If this is deemed important, then the facility can be provided simply
by allowing every modelling element that can be sterotyped to have an optional attribute of type string called
"stereotype".

If tagged values are also required, then the more sophisticated model can be provided by applying the template
in Figure 4-1 as appropriate.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 46

LANGUAGE EXTENSION AND PROFILES
This template defines a stereotype to be something with a name that can be associated with named tagged fields.
The application of a stereotype supplies values for the tagged fields. Tagged fields can only have strings as val-
ues, though this could be relaxed if necessary.

An application of this template would be to substitute Context by Package and Element by Class, and then
Context by Package and Element by Association. Merging the results would mean that a package could define
separate stereotypes to be applied to classes and associations respectively, where definitions would need to be
provided for queries stereotypeableClass and stereotypableAssociation. For example, stereotypeableClass could
be defined to return all those classes in the package or any packages nested in the package (a package defines
stereotypes that can be used on any classes within its scope).

--stereotypes can only be applied to designated elements
context <Context> inv:

stereoTypeable<Element>-
>includesAll(<element>Stereotype.application.element->asSet())

--there is only one value per field in a stereotype application
--and values are only of fields defined for the stereotype
context StereotypeApplication inv:

value.field->asSet()->asBag() = value.field and
value.field = stereotype.field and

--field names are unique
context Stereotype inv:

field.name->asSet()->asBag() = field.name

Figure 4-1 Stereotype Template

Stereotype Context,
Element

<Element>
stereoTypeable<Element> : Set(<Element>)

<Context>

name:String

Stereotype

name:String

TaggedFieldStereotype
Application

value:String

TaggedValue

1element

application

* stereotype

1

<element>Stereotype *

*

field

*

value

1field
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 47

DEFINITIONS

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 50

1 Chapter 5
Reading Guide

The definitions part comprises a series of chapters describing the language units, which is followed by definitions
of languages and definitions of templates. This is interspersed with chapters giving informal introductions to the
languages and language units being defined. Each language unit/language/template is described in a separate
chapter which has the following format:

Position in architecture
Abstract syntax

Deivation from templates
Expansion of metamodel itself

class diagram
well-formedness rules in OCL
query operations defined in OCL

Semantic domain
Deivation from templates
Expansion of metamodel itself

class diagram
well-formedness rules in OCL
query operations defined in OCL

Semantic mapping (between abstract syntax and semantic domain)
Deivation from templates
Expansion of metamodel itself

class diagram
well-formedness rules in OCL
query operations defined in OCL

In diagrams, we have generally omitted to declare the full path names of packages – to do so is cumbersome. The
"position in Architecture" section clarfies the location of packages representing language units and languages.
Templates are either from Foundation::Templates or from UML::Templates.

1 Chapter 6
DataTypes

The DataTypes package defines the primitive data types supported by UML (such Integers and Strings) and col-
lection types (Sets, Sequences and Bags).

6.1 POSITION IN ARCHITECTURE

6.1.1 Example
Data types are typically used for declaring the types of attributes. For example, the following diagram shows a
class with three attributes of type Boolean, Seq (String) and Seq(Set(Real)):

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 51

DATATYPES
Values of types are described by the basic values and collection values defined in the semantic domain package.
For example, values of the type Integer are the set of all integer values (1,2,3,..), whilst values of the type Seq(T)
are the set of all ordered values of type T. An object of the class AClass (shown above) might have the following
values for its attributes:

6.2 ABSTRACT SYNTAX

6.2.1 Derivation
This package is derived from no other packages or templates.

6.2.2 Model
The model in Figure 6-1 on page 53 shows the datatypes that can occur in a UML model. The basic type is the
UML Classifier, which includes all subtypes of Classifier from the UML infrastructure.

BagType
A bag type is an unordered collection type which describes a multiset of elements where each element may occur
multiple times in the bag. Part of a bag type is the declaration of the type of its elements.

CollectionType
A collection type describes a list of elements of a particular given type. Collection types are Set, Sequence and
Bag types. Part of every collection type is the declaration of the type of its elements, i.e. a collection type is
parameterized with an element type. Note that there is no restriction on the element type of a collection type.
This means in particular that a collection type may be parameterized with other collection types allowing nested
collections.

Associations
elementType The type of the elements in a collection. All elements in a collection must conform to this type.

EnumerationLiteral
An enumeration literal.

Associations

x : Integer
y : Seq(String)
z : Seq(Set(Real))

AClass

x = 1
y = Seq("2U","Works")
z = Seq(Set(1.1,1.2),Set(1.3,1.4))

x:AClass
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 52

DATATYPES
 elementType The type of the enumeration literal.

EnumerationType
An enumeration type describes a collection of enumeration literals, each of which may be of a different type.

Associations
enumerationLiteral The set of enumeration literals belonging to the enumeration type.

Primitive
A primitive is a basic data type, such as a boolean, string, integer or real. A primitive has a name, which is its
type, e.g. (“Integer”).

SeqType
A seq type is an ordered collection type which describes a list of elements where each element may occur multi-
ple times in the sequence. Part of a seq type is the declaration of the type of its elements.

SetType
A set type is an unordered collection type which describes a set of elements where each distinct element occurs
only once in the set. Part of a set type is the declaration of the type of its elements.

Figure 6-1 Abstract syntax for the DataTypes package

6.2.3 Type Conformance
The rules for checking the conformance of types are given below. Each type must define a method, con-
formsTo(t), which returns true if the type conforms to another type, t.

DataTypes::AbstractSyntax

Classifier

DataType

Collection
Type

SetTypeSeqTypeBagType

1 elementType

name : String

Primitive
Enumeration

Type

name : String

Enumeration
Literal

1 elementType

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 53

DATATYPES
BagType
[1] A bag type conforms to a classifier if the classifier is a bag type and their element types conform.

context BagType
conformsTo(c : Classifier) : Boolean
 if c.isKindOf(BagType) then
 self.elementType.conformsTo(c.elementType)
 else
 false
 endif

EnumerationType
[1] An enumeration type conforms to a classifier if the classifier is an enumeration type and each of its enumera-
tion literals conforms to a corresponding enumeration literal belonging to the classifier.

context EnumerationType
conformsTo(c : Classifier) : Boolean
 if c.isKindOf(EnumerationType) then
 c.enumerationLiteral->forAll(e |
 self.enumerationLiteral->exists(e’ |
 e’.elementType.conformsTo(e.elementType)
 else
 false
 endif

Primitive
[1] A primitive conforms to a classifier if the classifier is a primitive and has the same name. An integer may also
conform to a real.

context Primitive
conformsTo(c : Classifier) : Boolean
 if c.isKindOf(Primitive) then
 self.name = c.name or self.name = "Integer" and c.name = "Real"
 else
 false
 endif

SeqType
[1] A seq type conforms to a classifier if the classifier is a seq type and their element types conform.

context SeqType
conformsTo(c : Classifier) : Boolean
 if c.isKindOf(SeqType) then
 self.elementType.conformsTo(c.elementType)
 else false
 endif

SetType
[1] A set type conforms to a classifier if the classifier is a set type and their element types conform.

context SetType
conformsTo(c : Classifier) : Boolean
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 54

DATATYPES
 if c.isKindOf(SetType) then
 self.elementType.conformsTo(c.elementType)
 else false
 endif

6.3 SEMANTIC DOMAIN

The model in Figure 6-2 on page 56 describes the values that form the semantic domain of the UML types pack-
age. The basic type is the class Value, which includes all values of the elements described in the abstract syntax
package. There is a special sub-class of the class Value called UndefinedValue, which is used to represent the
undefined value for any type in the abstract syntax.

6.3.1 Derivation
This package is not derived from any other packages or templates.

6.3.2 Model

BagTypeValue
A bag type value is a collection value. It contains a set of elements, where more than one element may have the
same value. Bag type values are unordered.

CollectionTypeValue
A collection type value contains a collection of elements.

Associations
elements The elements in a collection.

Element
An element representing a component of a collection. An element has a value. An element identifies the position
of a element in a sequence by its indexNo. It also provides a count of the number of identical elements in a bag.

EnumerationTypeValue
An enumeration type value is a collection of enumeration literal values.

Associations
enumerationLiteralValue The set of enumeration literal values.

EnumerationLiteralValue
An enumeration literal value.

Associations
value The value of the enumeration literal value.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 55

DATATYPES
SeqTypeValue
A seq type value is a collection value. It contains a set of elements, where more than one element may have the
same value. Sequence type values are ordered.

Figure 6-2 Semantic domain for the DataTypes package

SetTypeValue
A set type value is a collection value. It contains a set of elements, where each distinct element occurs only once
in the set. Set type values are unordered.

6.3.3 Well-formedness rules

SeqTypeValue
[1] All elements belonging to a sequence have unique index numbers

context SeqTypeValue
self.element -> forAll(e1, e2 | e1 <> e2 implies
 e1.indexNo <> e2.indexNo)

SetTypeValue
[1] All elements belonging to a set have unique values

context SetTypeValue
self.element -> forAll(e1, e2 | e1 <> e2 implies
 e1.value <> e2.value)

DataTypes::SemanticDomain

Value

DataType
Value

Collection
TypeValue

SetType
Value

SeqType
Value

BagType
Value

element

Primitive
Value

indexNo : Integer

Element

*

1 value

Undefined
Value

Enumeration
Type
Value

Enumeration
Literal
Value

1 value

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 56

DATATYPES
6.4 SEMANTIC MAPPING

Each type has a counterpart value. A value is a valid "value" of the type if its well-formedness rules are satisfied.
For example, a set type value is a valid value of a set type if its elements are valid values of the set type’s element
type.

6.4.1 Derivation
The semantic mapping package extends the abstract syntax and semantic domain packages of the types package
with associations between semantic domain and abstract syntax elements. These associations are derived from
the Semantics template as shown in 6-3.

Figure 6-3 Derivation of semantic mapping package

DataTypes

SemanticMapping

Semantics

<Element> <Value>
1

of

Element
Value

BagType
BagTypeValue

SeqType
SeqTypeValue

SetType
SetTypeValue

Primitive
PrimitiveValue

EnumerationType
EnumerationTypeValue
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 57

DATATYPES
6.4.2 Model

Figure 6-4 Semantic mapping for the DataTypes package

6.4.3 Well-formedness rules

CollectionTypeValue
[1] The elements of a collection type value must be values of the element type of the collection type.

context CollectionTypeValue
self.element -> forAll(e | e.value.of = self.of.elementType)

EnumerationLiteralValue
[1] The value of an enumeration literal value must be a value of the element type of the enumeration literal.

context EnumerationLiteralValue
self.of.elementType = self.value.of

EnumerationTypeValue
[1] There is an enumeration literal value for every enumeration literal belonging to the enumeration type.

context EnumerationTypeValue
self.of.enumerationLiteral = self.enumerationLiteralValue.of

6.5 EXAMPLE SNAPSHOTS

Figure 6-5 on page 59 shows a snapshot with a set type whose element type is an Integer, and a set type value
containing two primitive values that is a valid value of the set type. Note, as shown here, each element value must
be unique.

DataTypes::SemanticMapping

BagType BagType
Value

1

of

SeqType SeqType
Value

1

of

SetType SetType
Value

1

of

Primitive Primitive
Value

1

of

Enumeration
Type

EnumerationType
Value

1

of
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 58

DATATYPES
Figure 6-5 Snapshot of a set type

6.6 CHANGES FROM UML 1.4
The class Instance has been renamed to Value as the term "instance" was found to be generally confusing. Collec-
tion types have been added to provide support for OCL collections. The abstract association between the classes
Instance and Classifier has been replaced by a uni-directional "of" association from elements in the semantic
domain to elements in the abstract syntax.

S : SetType

elementType

S :
SetTypeValue

of

index = 1

: Element

1:Primitive
Valuename = "Integer"

: Primitive of

element

value

index = 2

: Element

2:Primitive
Value

element

value

of
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 59

1 Chapter 7
Classes

This package defines the abstract syntax and semantics of the static features of classes (operations and queries are
dealt with in later chapters). Classes describe the possible states of the system in terms of objects. An object is a
value or instance of a class. The structure of each class is described in terms of a set of attributes. An attribute has
a type, which specifies the values that can be assigned to its class’s objects. Classes also support the notion of
generalization: the ability to reuse structural definitions from one class (the parent, or super-class) in another (the
child, or sub-class).

7.1 POSITION IN ARCHITECTURE

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 60

CLASSES
7.1.1 Example

Figure 7-1 Classes example

An example of a pair of classes is shown in figure 7-1 on page 61. In this model, class A has an attribute x which
is of type Real while class B has an attribute y which is of type Integer. Class B specializes class A.

7.2 ABSTRACT SYNTAX

7.2.1 Derivation
Figure 7-2 on page 62 shows the derivation of the Classes abstract syntax package using the structural feature-
classifier and multiplicity templates. A class is a namespace for its structural features (its members). The mem-
bers of a class’s namespace include its owned and inherited structural features. Classes are generalizable. A
generalisation relationship results in all members of the parent namespace being inherited by the child. Attributes
are structural features and have a name and a type. Attributes have an optional multiplicity. A multiplicity is a set
of integer values including the distinguished value "unLimited" and defines the range of values that can be
assigned to an attribute.

x : Real

A

y : Integer

B

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 61

CLASSES

Figure 7-2 Derivation of Classes abstract syntax package

7.2.2 Model
Figure 7-3 on page 63 shows the abstract syntax of the classes package. A class is a namespace for its attributes
(its members). The members of a class’s namespace include its owned and inherited attributes. Classes may spe-
cialize other classes, in which case, all members of the parent classes namespace are inherited by the child
classes. Attributes have a name and a type. Attributes can also be redefined in a generalization relationship.
Redefinition allows the name of an attribute to be changed by the redefining attribute but the types of the atrib-
utes must conform. Attributes also have an optional multiplicity. A multiplicity is a set of integer values including
the distinguished value "unLimited" that specifies whether an attribute is multi-valued and what the range of its
values can be.

StructuralFeatureClassifier

name : Name

<Structural
Feature>

owned<StructuralFeature>

*owning<Classifier>

Classifier
StructuralFeature
Type

<Type>

<Classifier>
Generalization

specialization generalization* *

1 1general specific

type

1

Classes

*

*

AbstractSyntax

1

member<StructuralFeature>

*

*

inherited<StructuralFeature>

Multiplicity

isOrdered : Boolean

Multiplicity

lower : Integer
upper : Integer
isUnlimited : Boolean

Range

<TypedFeature>

multiplicity0..1

range*

TypedFeature

*redefined<StructuralFeature>

Class
Attribute
Classifier

Attribute

*

*

*

*

Attribute

PropertyClass
member
Property

*

isAbstract:
Boolean

<Classifier>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 62

CLASSES
Figure 7-3 Abstract syntax for Classes package

Attribute
Attributes define the type of the values that can be stored in the objects of a class. Attributes have a name, a type,
and an optional multiplicity. If an attribute has a multiplicity, the attribute’s type is defined to be a set (or a
sequence if the multiplicity is ordered). Attributes may redefine their parent classes’ attributes. A redefined
attribute may have a different name to the attribute it redefines, but their types must be conformant. An attribute
is a property, which means that they can be referenced through a property call expression (see Expressions chap-
ter).

Attributes
name The name of the attribute.
Associations
multiplicity Specifies the range of values of the attribute.
owningClass The class that owns the attribute.
redefinedAttribute The attribute that the attribute redefines.
type The type of the attribute.

Class
A class describes the structure of its values in terms of attributes. Classes permit the reuse of their parent classes’
features through specialization. A class inherits its parents member attributes into its namespace provided that
they have not been redefined.

Associations
generalization All generalization relationships that generalize the class. The generalization relationship navi-
gates to the class that is the more general (parent) class.
ownedAttribute The attributes owned by the class.

Classes::AbstractSyntax

name : Name

Attribute

ownedAttribute

*owningClass

Classifier

Class
Generalization

specialization generalization* *

1 1general specific

type

1
*

memberAttribute
*

*

*

inheritedAttribute

lower : Integer
upper : Integer
isUnlimited : Boolean

Range

multiplic ity

0..1

range *

isOrdered : Boolean

Multiplicity

redefinedAttribute *

*

*

*

Property

member
Property *

isAbstract:Boolean

Class
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 63

CLASSES
memberAttribute The attributes that can be viewed as being in its namespace of the class, including its owned,
inherited and imported attributes.
memberProperty The properties that can be viewed as being in its namespace of the class - this must include
all member attributes as well as queries (see Chapter 14)
inheritedAttribute The attributes inherited from the class’s parents.
isAbstract True if the class is abstract
specialization All specialization relationships that specialize the class. The specialization relationship navi-
gates to the class that is the more specific (child) class.

ClassGeneralization
A generalization relationship between classes.
Associations
general The class that is the more general (parent) class in the relationship.
specialization The class that is the more specific (child) class in the relationship.

Multiplicity
Specifies the number of elements that may be assigned to a value of an attribute.
Attributes
isOrdered True if the elements are ordered.
Associations
range The set of number ranges belonging to the multiplicity.

7.2.3 Well-formedness Rules

Attribute
[1] An attribute’s type must conform to the type of its redefined attributes.

context Attribute inv:
self.redefinedAttribute->forAll(f |
 self.type.conformsTo(f.type))

[2] If an attribute has a multiplicity, its type must be of the appropriate collection type.

context Attribute inv:
if self.multiplicity <> null then
 if self.multiplicity.isOrdered then
 self.type.isKindOf(Core::DataTypes::SetType)
 else
 self.type.isKindOf(Core::DataTypes::SeqType)
 endif
endif

Class
[1] Circular inheritance is not permitted.

context Class inv:
not self.allGeneralElements()->includes(self)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 64

CLASSES
[2] The member attributes of a class include its owned and inherited attributes.

context Class inv:
self.memberAttribute->includesAll(self.ownedAttribute ->
 union(self.inheritedAttribute))

[3] Attributes cannot be owned and inherited.

context Class inv:
self.ownedAttribute->intersection(self.inheritedAttribute) -> isEmpty

[4] A class cannot have two attributes with the same name.

context Class inv:
self.memberAttribute->forAll(e1|
 self.memberAttribute->forAll(e2|
 e1 <> e2 implies e1.name <> e2.name))

[5] The inherited members of a class are the attributes of its parents classes that aren’t redefined.

context Class inv:
self.inheritedAttribute = self.generalElements()->iterate(p s = Set{} |
 s->union(p.memberAttribute->reject(c |
 self.memberAttribute -> exists(c' |
 c'.redefinedAttributes->includes(c)))))

[6] A class’s attributes may only redefine its parent classes attributes.

context Class inv:
self.memberAttribute -> forAll(a |
 self.generalElements()-> collect(g | g.memberAttributes) ->
 includesAll(a.redefinedAttribute))

[7] The member properties of a class include all its member attributes.

context Class inv:
self.memberProperty->includesAll(self.memberAttribute)

7.2.4 Operations

Class
[1] A class conforms to another class if it specializes the class or is the same class.

context Class::conformsTo(c : Class):Boolean
self.generalElements()->includes(c) or self = c

[2] Returns the parents of a class.

context Class::generalElements():Set(Class)
self.generalization->iterate(p s=Set{} | s->union(Set{p.general}))

[3] Transitively returns all parents of a class.

context Class::allGeneralElements():Set(Class)
self.generalElements()->iterate(g s=self.generalElements() |
 s->union(g.allGeneralElements()))

[4] Looks up an attribute in a class when given a name.

context Class::lookupAttributeforName(x : Name):Attribute
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 65

CLASSES
self.memberAttribute->select(e| e.name = x).selectElement()

[5] Looks up an attribute’s name when given the attribute.

context Class::lookupNameForAttribute(x : Attribute):Name
self.memberAttribute->select(e|e = x).selectElement().name

7.3 SEMANTIC DOMAIN

7.3.1 Derivation
Figure 7-4 on page 66 shows the derivation of the Classes semantic domain package from the structural feature
classifier value template. A classifier value is a value of a classifier and contains a set of static structural feature
values.

Figure 7-4 Derivation of Classes semantic domain package

7.3.2 Model
The semantic domain of the classes package is shown in 7-5 on page 67. It defines the fundamental concepts that
are necessary to express the static meaning of classes. An object is a value or instance of a class. The state of an

StructuralFeatureClassifierValue

<Classifier
Value>

<Value>
value

owning<ClassifierValue>

owned<StructuralFeatureValue>1

*

ClassifierValue
StructuralFeatureValue
Value

1

<Structural
Feature
Value>

Classes

Object
Slot
Value

SemanticDomain

Slot

Property
Evaluation

Object
owned

PropertyEval

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 66

CLASSES
object is described by its slots. A slot is a value of an attribute. It contains a reference to a value, which is the
value that is assigned to the slot.

Figure 7-5 Semantic domain for the Classes package

Object
Objects are containers of slots.

Associations

 ownedSlot The slots owned by the object.

 ownedPropertyEval The property evaluations (including slots) that are owned by the object.

Slot
Slots represent the data values of an object. A slot is a property evaluation, which means that it can be accessed
through a property call evaluation (see Expressions chapter).

Associations

 value The value of the slot.

7.3.3 Well-formedness Rules

Object
[1] The owned property evaluations of an object includes all its slots..

context Object inv:
self.ownedPropertyEval->includesAll(self.ownedSlot)

Value

Object

1

value

*

owned
Slot

owning
Object

1 *
Slot

Property
Evaluation

Classes::SemanticDomain

owned
PropertyEval *
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 67

CLASSES
7.4 SEMANTIC MAPPING

7.4.1 Derivation
The structural feature semantics template is used to derive the semantic mapping for the classes package as
shown in figure 7-6 on page 68. This template ensures that each element in the semantic domain is mapped to
their appropriate abstract syntax element and that the necessary constraints on their relationships are also gener-
ated.

Figure 7-6 Derivation of the Classes semantic mapping package

7.4.2 Model
The semantics mapping package of the classes package is shown in Figure 7-7 on page 68. It defines the relation-
ship that holds between classes and attributes and their values: objects and slots. An object is a value of a class.
The meaning of a class is defined by the set of objects that are its valid values. The state of an object is described
by its slots. A slot is a value of an attribute. For an object to be a valid value of a class then it must contain slots
for each of the attributes in the namespace of the class and vice versa. Furthermore, the value of a slot must be a
value of the type of its attribute.

Figure 7-7 Semantic mapping for the Classes package

Class
Attribute
Object
Slot

StructuralFeatureClassifierSemantics Classifier,
StructuralFeature,
ClassifierValue,
StructuralFeatureValue

Classes

SemanticMapping

<Classifier> <Classifier
Value>

1

of

<Structural
Feature>

<Structural
Feature
Value>

1

of

*

*

Class Object
1

of

Attribute Slot
1

of

*

*

Classes::SemanticMapping
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 68

CLASSES
7.4.3 Well-formedness rules

Object
[1] An object should contain a slot for all attributes in the object’s class’s namespace.

context Object inv:
self.of.memberAttribute->forAll(c |
 self.ownedSlot->exists(d | d.of = c))

[2] For each slot owned by an object there should be an attribute of the object’s class’s namespace that the slot is
a value of.

context Object inv:
self.ownedSlot->forAll(c |
 self.of.memberAttribute->exists(d | c.of = d))

[3] For each property evaluation owned by an object there should be a property of the object’s class’s namespace
that the property evaluation is a value of.

context Object inv:
self.ownedPropertyEvaluation->forAll(pv |
 self.of.memberProperty->exists(p | pv.of = p))

[4] Objects cannot be instances (values) of abstract classes.

context Object inv:
not self.of.isAbstract

Slot
[1] The value of a slot should be a value of the type that conforms to the slot’s attribute.

context Slot inv:
self.value.of.conformsTo(self.of.type)

[2] The values of a slot should match the multiplicity of the slot’s attribute.

context Slot inv:
if self.of.multiplicity <> null then
 self.of.multiplicity.range->exists(mr |
 self.value.element->collect(e | e.value)->size >= mr.lower and
 (mr.isUnlimited or
 (not mr.isUnlimited and
 self.value.element->collect(e | e.value)->size <= mr.upper)))
else
 true
endif

7.4.4 Operations

Object

[1] Returns true if the object is an instance of the class or one of its parents.
context Object::isKindOf(x:Class)

self.of.conformsTo(x)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 69

CLASSES
7.5 EXAMPLE SNAPSHOTS

The model in figure 7-8 on page 70 is instantiated and the resulting snapshot shown in 7-9 on page 70. Class B is
a specialization of class A and therefore attribute x is inherited into the namespace of class B.

Figure 7-8 Example classes

Figure 7-9 Snapshot of Figure 7-8 on page 70

x : Real

A

y : Integer

B

g : Class
Generalization

parent

name = "A"

A : Class

name = "B"

B : Class

child

name = "x"

x : Attribute

name = "y"

y : Attribute

owned
Attribute

member
Attribute

name = "Real"

: Primitive

name = "Integer"

: Primitive
type

type

inherited
Attribute

member
Attribute

owned
Attribute

owningClass

owningClass

specialization

generalization

member
Attribute
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 70

CLASSES
Figure 7-10 on page 71 shows what happens when the attribute y redefines the attribute x. In this case, x is no
longer required to be inherited by the class B. The redefinition is permitted becuase the type of attribute y (Inte-
ger) conforms to the type of attribute x (Real).

Figure 7-10 Snapshot of y redefines x
Figure 7-11 on page 71 shows an object that is a valid instance of class B from figure 7-9 on page 70. It has a two
slots, one for attribute x which has the instance of a real type as its value, and one for the slot of the inherited
attribute y. It is important to note that the inheritence has been flattened out and the slots corresponding to inher-
ited attributes also become owned slots of the object.

Figure 7-11 Snapshot with Object of Class B

7.6 CHANGES FROM UML 1.4
Redefinable features are not a part of UML 1.4.
AttributeLink has been replaced by Slot.

g : C lass
Generalization

parent

name = "A"

A : C lass

name = "A"

A : Class

child

name = "x"

x : Attribute

name = "y"

y : Attribute

owned
Attribute

member
Attribute

name = "Real"

: Primitive

name = "Integer"

: Primitive
type

type

redefined
Attribute

member
Attribute

owned
Attribute

owningClass

owningClass

specialization

generalization

g : C la ss
G enera liza tion

parent

nam e = "A "

A : C lass

nam e = "B "

B : C lass

c hild

nam e = "x "

x : A ttrib ute

nam e = "y "

y : A ttrib ute

owned
A ttribute

m em ber
A ttribute

nam e = "Real"

: P rim itive

nam e = " In teger"

: P rim itive
ty pe

ty pe

inherited
A ttribute

m em ber
A ttribute

owned
A ttribute

owningC las s

owningC las s

s pec ia liz a t ion

genera liz at ion

m em ber
A ttribute

o : O b jec t

s2 : S lo t

s1 : S lo t

of

o f

of

1 0 : P rim itive
V a lue

10 .00 : P rim itive
V a luevalue

value

of

of

ownedS lot

ownedS lot
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 71

1 Chapter 8
Associations

This package defines the abstract syntax and semantics of associations. Associations describe static relationships
between classes. The meaning of an association is defined in terms of links between objects. Associations have
association ends that specify the types of objects that they link and the number of links that can exist between
specific objects. Associations are also generalizable: thus permitting the reuse of the features of one association
(the parent, or super-class) in another (the child, or sub-class).

In this chapter, an alternative (and equivalent) semantics for associations is described via a translation from
navigable association ends to pairs of attributes or queries.

8.1 POSITION IN ARCHITECTURE

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 72

ASSOCIATIONS
8.1.1 Example

Figure 8-1 An example of an assocation between two classes

Figure 8-1 on page 73 shows an example of an association. It describes two classes A and B with a bidrectional
navigable association between them. This association has a one to many multiplicity .

8.2 ABSTRACT SYNTAX

8.2.1 Derivation
Figure 8-2 on page 73 shows how the associations abstract syntax package is derived from the StructuralFeature-
Classifier and Multiplicity templates. An association is a classifier. It is a namespace for its structural features and
is generalisable. An association end is a structural feature and supports redefinition. An association end may have
an (optional) multiplicity.

Figure 8-2 Derivation of Associations abstract syntax package

toA
A B

toB

*1

StructuralFeatureClassifier

name : Name

<Structural
Feature>

owned<StructuralFeature>

*owning<Classifier>

Classifier
StructuralFeature
Type

<Type>

<Classifier>
Generalisation

generalizatin specializatin* *

1 1specific general

type

1

Associations

Association
AssociationEnd
Class

*

*

AbstractSyntax

1

member<StructuralFeature>

*

*

inherited<StructuralFeature>

Multiplicity

isOrdered : Boolean

Multiplicity

lower : Integer
upper : Integer
isUnlimited : Boolean

Range

<TypedFeature>

multiplicity0..1

range*

AssociationEnd

TypedFeature

redefined<StructuralFeature>

*

isAbstract:
Boolean

<Classifier>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 73

ASSOCIATIONS
8.2.2 Model
Figure 8-3 on page 74 shows the abstract syntax of the associations package. An association is a namespace for
its association ends. An association may have two or more association ends. An association end has a name, a
type, which is the class it is connected to, and a multiplicity, which specifies how many objects an object of the
class at the other end of the association end can be linked to.

Navigable ends are specializations of association ends. An equivalence mapping is defined from navigable
association ends to properties. A property is the abstract superclass of an attribute and a query. This enables a
navigable association end to be viewed as either an attribute or query of a class at the opposite end of the associ-
ation - a common interpretation used by many modellers.

Member association ends are those association ends that belong to the association’s namespace and include its
owned association ends and its inherited association ends. An association has a set of generalizations that relate it
to its parent associations, and set of specializations that relate it to its child associations.

Figure 8-3 Abstract syntax for Associations package

Association
An association connects two or more classes and specifies a relationship between objects of these classes. Asso-
ciations permit the reuse of their parent associations features through specialization. An association inherits its
parents member association ends into its namespace provided that they are not redefined.

Associations
generalization All generalization relationships that generalize the association. The generalization relationship
navigates to the association that is the more general (parent) association.
ownedAssociationEnd The association ends owned by the association.
memberAssociationEnd The association ends that can be viewed as being in its namespace of the association,
including its owned, inherited and imported association ends.
inheritedAssociationEnd The association ends inherited from the association’s parents.
isAbstract True if the association is abstract.

A ssocia tions::A bstractS yntax

nam e : Nam e

A ssocia tionE nd

ownedA s s oc iat ionE nd

2..*owningA s s oc iat ion

C lass

A ssocia tion
Genera lisa tion

generalis at ion s pec ialis at ion* *

1 1s pec ific general

ty pe

1

*

2..*

m em berA s s oc iat ionE nd
*

*

2..*

inheritedA s s oc iat ionE nd

Navigab leE nd

lower : Integer
upper : Integer
is Unlim ited : B oolean

Range

m ult ip lic ity

0..1

range *

P roperty

property *

is O rdered : B oolean

M ultip lic ity

redefinedA s s oc iat ionE nd*

1

*

is A bs trac t :
B oolean

A ssocia tion
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 74

ASSOCIATIONS
specialization All specialization relationships that specialize the association. The specialization relationship
navigates to the association that is the more specific (child) association.

AssociationGeneralization
A generalization relationship between associations. When an association specializes another association, its par-
ents association ends are inherited into the child’s namespace.

Associations
general The association that is the more general (parent) association in the relationship.
specialization The association that is the more specific (child) association in the relationship.

AssociationEnd
An association end connects an association to a class. Its multiplicity defines the number of objects at the other
ends of the association that an object of the class can be linked to. An association end can be redefined, in which
case the redefining association end may have a different name to the redefined association end. However, their
types must be conformant.

Attributes
name The name of the association end.
Associations
multiplicity The number of objects of the classes at the other ends of the association that an object of its class
can be linked to.
redefinedAssociationEnd The association ends that the association end redefines.
type The type of the association end, i.e. the class which the association end connects to.

Multiplicity
Specifies the number of objects that an object of a class at the other at the other end of the association can be
linked to.

Attributes
 isOrdered True if the objects are to be ordered.
Associations
range The set of number ranges belonging to the multiplicity.

NavigableEnd
An association end that is navigable from any of the classes at the others ends of the association. A navigable end
is associated with properties (attributes or a queries) that belong to the classes at the other ends of the association.
Each property has the same name, multiplicity and element type as the navigable end. Classes at the other ends of
the association can thus navigate to objects of the navigable end’s type through these properties.

Associations
property The attributes or queries that enable classes at the other end of the association to navigate to objects
of the navigable end’s type.

Property
An abstract superclass for attributes and queries.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 75

ASSOCIATIONS
8.2.3 Well-formedness Rules

Association
[1] Circular inheritance is not permitted.

context Association inv:
not self.allGeneralElements()->includes(self)

[2] The members of an association include its owned and inherited association ends.

context Association inv:
self.memberAssociationEnd->includesAll(self.ownedAssociationEnd ->
 union(self.inheritedAssociationEnd))

[3] Association ends cannot be owned and inherited.

context Association inv:
self.ownedAssociationEnd->intersection(self.inheritedAssociationEnd) ->
 isEmpty

[4] The inherited members of an association are the association ends of its parents association ends that are not
redefined.

context Association inv:
self.inheritedAssociationEnd = self.generalElements()->iterate(p s = Set{} |
 s->union(p.memberAssociationEnd->reject(c |
 self.memberAssociationEnd -> exists(c' |
 c'.redefinedAssociationEnd->includes(c)))))

[5] An association’s association ends may only redefine its parent classes association ends.

context Association inv:
self.memberAssociationEnd -> forAll(a |
 self.generalElements()-> collect(g | g.memberAssociationEnd) ->
 includesAll(a.redefinedAssociationEnd))

AssociationEnd
[1] An association end’s type must conform to the type of its redefined association ends.

context AssociationEnd inv:
self.redefinedAssociationEnd->forAll(f |
 self.type.conformsTo(f.type))

[2] An association end’s multiplicity must conform to the multiplicity of its redefined parent association ends.

context AssociationEnd inv:
self.redefinedAssociationEnd->forAll(f |
 self.conformsTo(f))

Class
[1] A class’s association ends must include a reference to the class.

context Class inv:
self.associationEnd -> exists(l | l.type = self)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 76

ASSOCIATIONS
NavigableEnd
[1] A navigable end is associated with properties (attributes or queries) belonging to all classes at the other ends
of the association through which values of the navigable end’s type can be navigated to.

context NavigableEnd inv:
self.property.owningClass =
self.otherEnd().type

[2] The properties of a navigable end have the same element type, multiplicity and name as the navigable end.

context NavigableEnd inv:
self.property->forAll(p |
 p.type.elementType = self.type and
 p.multiplicity = self.multiplicity and
 p.name = self.name)

8.2.4 Operations

AssociationEnd
[1] Returns the opposite ends of the association end.

context AssociationEnd::otherEnd() : Set(AssociationEnd)
 self.owningAssociation.memberAssociationEnd->reject(y | y = self)

Association
[1] Returns the parents of an association.

context Association::generalElements():Set(Association)
self.generalization->iterate(p s=Set{} | s->union(Set{p.general}))

[2] Transitively returns all parents of an association.

context Association::allGeneralElements():Set(Association)
self.generalElements()->iterate(g s=self.generalElements() |
 s->union(g.allGeneralElements()))

[3] Looks up an association end in a association when given a name.

context Association::lookupAssociationEndforName(x : Name):AssociationEnd
self.memberAssociationEnd->select(e| e.name = x).selectElement()

[4] Looks up an association end’s name when given the association.

context Association::lookupNameForAssociationEnd(x : AssociationEnd):Name
self.memberAssociationEnd->select(e|e = x).selectElement().name

Class
[1] Returns the associations attached to the class.

 context Class::associations():Set(Association)
self.associationEnd->collect(x | x.owningAssociation)

[2] Returns the opposite association ends attached to the class.

 context Class::oppositeAssociationEnds():Set(AssociationEnd)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 77

ASSOCIATIONS
self.associations()->iterate(x s = Set{} |
s->union(x.memberAssociationEnd->reject(y | y.type = self))

Multiplicity
[1] Returns true if a multiplicity conforms to another multiplicity.

context Multiplicity::conformsTo(x : Multiplicity):Boolean
 TBD.

8.3 SEMANTIC DOMAIN

8.3.1 Derivation
Figure 8-4 on page 78 shows the derivation of the Associations semantic domain package from the structural fea-
ture classifier value template. A classifier value is a value of a classifier and contains a set of static structural fea-
ture values.

Figure 8-4 Derivation of Classes semantic domain package

8.3.2 Model
The semantic domain of the associations package is shown in 8-5 on page 79. A link is a value of an association.
A link relates objects of the classes connected by the association. A link contains link ends. A link end is a value
of an association end. A navigable link end is a link end whose value can be navigated to from a property evalua-
tion (a slot or query evaluation) belonging to the objects at the other end of the link.

Structu ra lF ea tu reC lass ifie rVa lu e

<C lassifie r
Va lue >

<Va lue >
value

o wn ing <C lassifie rVa lue >

o wn ed<Stru ctu ra lF e a tu reVa lu e>1

*

C lass ifie rVa lu e
Stru ctu ra lF ea tu re Va lue
Va lue1

<Structu ra l
F ea tu re
Va lu e>

Asso cia tion s

Sema n ticD o ma in

L in k
L in k En d
Ob je ct
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 78

ASSOCIATIONS
Figure 8-5 Semantic domain for the Associations package

Link
Links contain link ends.

Associations
 ownedLinkEnd The link ends owned by the object.

LinkEnd
Link ends represent the values of an link.

Associations
 value The value of the link end.

NavigableLinkEnd
Navigable link ends represent the values of a link that can be navigated to from a property evaluation (slot or
query) belonging to an object at the opposite end of the link.

Associations
 value The value of the navigable link end.

Object
An object.

Associations
 linkEnd The linkends that the object is attached to.

Associations::SemanticDomain

Object

Link

1

value

*ownedLinkEnd

owningLink

0..1

*

LinkEnd

Navigable
LinkEnd

Property
Evaluation

*

propertyEvaluation

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 79

ASSOCIATIONS
8.3.3 Well-formedness Rules

NavigableLinkEnd
[1] A navigable link end is associated with property evaluations (slots or query evaluations) belonging to all
objects at the other ends of the link through which the navigable link end’s value can be navigated to.

context NavigableLinkEnd inv:
self.propertyEvaluation.owningObject =
self.otherEnd().value

[2] The property evaluations of a navigable link end include the navigable link end’s value.

context NavigableLinkEnd inv:
self.propertyEvaluation->forAll(p |
 p.value.element.value->includes(self.value))

Object
[1] An object’s link ends must include a reference to the object.

context Object inv:
self.linkEnd -> exists(l | l.value = self)

8.3.4 Operations

LinkEnd
[1] Returns the opposite ends of the link end.

context LinkEnd::otherEnd() : Set(LinkEnd)
self.owningLink.ownedLinkEnd->reject(y | y = self)

Object
[1] Returns the links that are attached to the object.

 context Object::links() : Set(Link)
self.LinkEnd -> collect(x | x.owningLink)

 [2] Returns the opposite link ends to the object.

context Object::oppositeLinkEnds() : Set(LinkEnd)
self.links()->iterate(x s = Set{} |s -> union(x.ownedLinkEnd->
 reject(y | y.value = self)))
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 80

ASSOCIATIONS
8.4 SEMANTIC MAPPING

8.4.1 Derivation
The template used to stamp out the semantic mapping for the associations package is shown in figure 8-6 on
page 81. This ensures that each element in the semantic domain is mapped to their appropriate abstract syntax
element and that the necessary constraints on their relationships are stamped out.

Figure 8-6 Derivation of the Associations semantic mapping package

8.4.2 Model
The semantics mapping package of the associations package is shown in Figure 8-7 on page 81. A link is a value
of an association. A link end is a value of an association end. A link must contain link ends for each of the
attributes owned by its association and vice versa. The value of a link end must be a value of the type of its asso-
ciation end.

Figure 8-7 Semantic mapping for the Associations package

Structura lFeatureSem antics
C lassifier
S tructuralFeature
C lassifierValue
StructuralFeatureValue

Associations

Sem anticM apping

Association
AssociationEnd
Link
LinkEnd

<C lassifier> <C lassifier
Value>

1

of

<S tructura l
Feature>

<Structura l
Feature
Value>

1

of

Associations::SemanticMapping

Association Link
1

of

Association
End LinkEnd

1

of

*

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 81

ASSOCIATIONS
8.4.3 Well-formedness rules

Link
[1] A link should contain a link end for all association ends in the link’s association’s namespace.

context Link inv:
self.of.memberAssociationEnd->forAll(c |
 self.ownedLinkEnd->exists(d | d.of = c))

[2] For each link end owned by a link there should be an association end of the link’s association’s namespace
that the link end is a value of.

context Link inv:
self.ownedLinkEnd->forAll(c |
 self.of.memberAssociationEnd->exists(d | c.of = d))

[3] Links cannot be values of abstract associations.

context Link inv:
not self.of.isAbstract

LinkEnd
[1] The value of a link end should be a value of the type that conforms to the link end’s association end’s type.

context LinkEnd inv:
self.value.of.conformsTo(self.of.type)

NavigableLinkEnd
[1] The property evaluations of a navigable link end must commute with its navigable end’s properties.

context NavigableLinkEnd inv:
self.of.property = self.propertyEvaluation.of->asSet

Object
[1] The number of objects at the opposite link ends of the object must conform to the opposite association ends
multiplicity.

context Object inv:
self.of.oppositeAssociationEnds()->forAll(ae |
 ae.multiplicity.range->exists(mr |
 self.selectedLinkEnds(ae)->size >= mr.lower and
 (mr.isUnlimited or
 (not mr.isUnlimited and

 self.selectedLinkEnds(ae)->size <= mr.upper))))

8.4.4 Operations
[1] Returns the set of link ends given an association end.

context Object::selectedLinkEnds(ae : AssociationEnd) : Set(LinkEnd)
self.oppositeLinkEnds()->select(x | x.of = ae)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 82

ASSOCIATIONS
8.5 EXAMPLE SNAPSHOTS

Figure 8-9 on page 83 is a snapshot of the association of figure 8-8 on page 83. The navigable association ends of
the association are associated with two attributes that the opposite ends of the association can be navigated
through.

Figure 8-8 Association example

Figure 8-9 Snapshot of Figure 8-8 on page 83
Figure 8-10 on page 84 shows an example of a link and pair of navigable link ends that satisfy the properties of
the above association. Note that each link end is associated with a slot through which an object can navigate to
the objects at the opposite end of the link. Because the both association ends multiplicities are unordered, the
appropriate slot values will be sets as opposed to sequences.

toA
A B

toB

*1

a : Association

ownedAssociationEnd

name = "A"

A : Class

name = "B"

B : Class

type

name = "toB"

x : Attribute

name = "toA"

y : Attribute

owned
Attribute

member
Attribute

member
Attribute

owned
Attribute

owningClass

owningClass

name = "toB"

ae2 :
NavigableEnd

name = "toA"

ae1 :
NavigableEnd

type

ownedAssociationEndmemberAssociationEnd

memberAssociationEnd

lower = 1
upper = 1
unLimited = false

r2 : Range

lower = 1
upper = 1
unLimited = true

r1 : Range

multiplicity

isOrdered = false

m2 : Multiplicity

multiplicity

isOrdered = false

m1 : Multiplicity

range

range

multiplicity

multiplicity

property

property

type

type

st2 : SetType

st1 : SetType

elementType

elementType

owningAssociation

owningAssociation
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 83

ASSOCIATIONS
Figure 8-10 Snapshot of Association Values

8.6 CHANGES FROM UML 1.4
Navigable link ends have been added and an explicit recognition that association ends can be interpreted as
attributes or queries has been made.

a : Association

ownedA ssoc iationE nd

nam e = "A "

A : C lass

nam e = "B "

B : C lass

type

nam e = "toB "

x : A ttribute

nam e = "toA "

y : A ttribute

owned
A ttribute

m em ber
A ttribute

m em ber
A ttribute

owned
Attribute

owningClass

owningClass

nam e = "toB"

ae2 :
NavigableEnd

nam e = "toA"

ae1 :
NavigableEnd

type

ownedA ssoc iationE nd
m em ber

A ssoc iationEnd

m em ber
A ssoc iationEnd

property

property

l : Link

l1 : Navigable
LinkEnd

l2 : Navigable
LinkEnd

sl2 : S lot

sl1 : S lot

o1 : Object

o2 : Object

ownedLinkE nd

ownedLinkE nd

property
E valuation

value

ownedS lot

ownedS lot

property
E valuation

value

type

elem entType

elem ent

elem ent

owningLinlk

owningLinlkowningA ssoc iatiion

owningA ssoc iatiion

of

of

of

of

of

of

of

owningObjec t

owningObjec t

st2:SetType

type

st:SetType

elem entType

stv2:SetType
Value

stv1:SetType
Value

value

value

e1 : E lement

e2 : E lement

value

value

navigableEnd

navigableEnd

navigableLinkEnd

navigableLinkEnd
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 84

1 Chapter 9
Packages

This package defines the abstract syntax and semantics of packages. Packages are namespaces for the elements
they contain. Packages can also import elements into their namespace. This definition will be extended in Chap-
ter 10, “Package Extension,” on page 93 with package extension mechanisms that will enable packages to be
composed and reused in more sophisticated ways.

9.1 POSITION IN ARCHITECTURE

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 85

PACKAGES
9.1.1 Example

Figure 9-1 An example of using Packages

An example of the use of packages is shown in figure 9-1 on page 86. A package R contains two classes C and D.
The package P containing a package Q is imported by R.

9.2 ABSTRACT SYNTAX

9.2.1 Derivation
Figure 9-2 on page 86 gives an overview of the templates used to stamp out using the Packages package. A Pack-
age is a namespace for named elements. A package may also import named elements from other packages. The
named elements defined in the core are: classes, packages, associations and datatypes.

Figure 9-2 Derivation of Packages

R

Q

C D

P

<<import>>

Package

name : Name

<NamedElement>
<Package> owned<NamedElement>

*owning<Package>

Package
NamedElement

Packages

*

*

AbstractSyntax

member<NamedElement>

1

Package
Class

Package
Association

Package
Package

Package
Primitive

Import

<Namespace>

Namespace
NamedElement

*

<Namespace>
Import

parentchild

*

<Named
Element>

Package
Class

Package
Association

Package
Package

Package
Primitive

*

**

imported importing
imported

<NamedElement>

member
<NamedElement>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 86

PACKAGES
9.2.2 Model
Figures 9-3 on page 87 show the abstract syntax of the Packages package. A package is a namespace for its
classes, associations, packages and primitive datatypes. A package has owned elements, member elements and
imported elements. Owned elements and imported elements are members of the namespace of a package.

A package imports all elements in the namespace of its imported packages into its own namespace. A package
also imports all elements belonging to its containing package.

Figure 9-3 Abstract Syntax for Packages package

Package
A package is used to group related elements, and provides a namespace for those elements. Packages are also
namespaces for their sub-packages.

Attributes
name The name of the package.
Associations
ownedAssociation The associations that are owned by the package.
importedAssociation The associations imported by the package.
memberAssociation The associations that are in the namespace of the package.
ownedClass The classes that are owned by the package.
importedClass The classes imported by the package.
memberClass The classes that are in the namespace of the package.
ownedPrimitive The primitive datatypes that are owned by the package.
memberPrimitive The primitive datatypes that are in the namespace of the package.
importedPrimitive The primitives imported by the package.

P ackages::A bstractS yntax

nam e : Nam e

C lass

ownedClas s
*

owningP ac k age

*

m em berClas s

nam e : Nam e

A ssocia tion

ownedA s s oc iat ion

*

*

*

m em berA s s oc iat ion

ownedP ac k age

owningP ac k age

1

1

*

nam e : Nam e

P rim itive

ownedP rim it ive
* * owningP ac k age

m em berP ac k age

m em berP rim it ive
*

*

1

*

nam e : Nam e

P ackage

im portedA s s oc iat ion *

*

im portedP rim it ive
*

*

im portedClas s

*

*

*1

*

im portedP ac k age

P ackage
Im port

parentc hild 11

im ported
im port ing

* *
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 87

PACKAGES
ownedPackage The packages that are owned by the package.
importedPackage The sub-packages imported by the package.
memberPackage The packages that are in the namespace of the package.

9.2.3 Well-formedness Rules

Package
[1] No two associations in a package’s namespace may have the same name.

context Package inv
 self.memberAssociation -> forAll(e1 |
 self.memberAssociation -> forAll(e2 |
 e1 <> e2 implies e1.name <> e2.name))

[2] No two classes in a package’s namespace may have the same name.

context Package inv
 self.memberClass -> forAll(e1 |
 self.memberClass -> forAll(e2 |
 e1 <> e2 implies e1.name <> e2.name))

[3] No two primitive datatypes in a package’s namespace may have the same name.

context Package inv
 self.memberPrimitive -> forAll(e1 |
 self.memberPrimitive -> forAll(e2 |
 e1 <> e2 implies e1.name <> e2.name))

[4] No two packages in a package’s namespace may have the same name.

context Package inv
 self.memberPackage -> forAll(e1 |
 self.memberPackage -> forAll(e2 |
 e1 <> e2 implies e1.name <> e2.name))

[5] Imported and owned associations, classes, primitives and packages belong to the namespace of the package.

context Package inv
self.memberAssociation -> includesAll(self.importedAssociation ->
 union(self.ownedAssociation)) and
self.memberClass -> includesAll(self.importedClass->union(self.ownedClass))
 and
self.memberPrimitive -> includesAll(self.importedPrimitive->
 union(self.ownedPrimitive)) and
self.memberPackage -> includesAll(self.importedPackage->
 union(self.ownedPackage))

[6] Imported associations, classes, primitives and packages cannot be owned and vice versa.

context Package inv
self.importedAssociation -> intersection(self.ownedAssociation) -> isEmpty and
self.importedClass -> intersection(self.ownedClass) -> isEmpty and
self.importedPrimitive -> intersection(self.ownedPrimitive) -> isEmpty and
self.importedPackage -> intersection(self.ownedPackage) -> isEmpty

[7] Parent packages associations are imported.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 88

PACKAGES
context Package inv:
self.importedNamespaces()->forAll(x |
 self.importedAssociation->includesAll(x.memberAssociation))

[8] Parent packages classes are imported.

context Package inv:
self.importedNamespaces()->forAll(x |
 self.importedClass->includesAll(x.memberClass))

[9] Parent packages primitives are imported.

context Package inv:
self.importedNamespaces()->forAll(x |
 self.importedPrimitive->includesAll(x.memberPrimitive))

[10] Parent packages packages are imported.

context Package inv:
self.importedNamespaces()->forAll(x |
 self.importedPackage->includesAll(x.memberPackage))

[11] A package imports its owning package’s associations.

context Package inv
self.owningPackage <> self implies
 self.memberClass->includesAll(self.owningPackage.memberAssociation)

[12] A package imports its owning package’s classes.

context Package inv
self.owningPackage <> self implies

 self.memberClass->includesAll(self.owningPackage.memberClass)

[13] A package imports its owning package’s packages.

context Package inv
self.owningPackage <> self implies
 self.memberPackage->includesAll(self.owningPackage.memberPackage)

[14] A package imports its owning package’s primitives.

context Package inv
self.owningPackage <> self implies
 self.memberClass->includesAll(self.owningPackage.memberPrimitive)

9.2.4 Operations

Package
[1] Looks up an association in a package when given a name.

context Package::lookupAssociationforName(x : Name):Association
self.memberAssociation->select(e| e.name = x).selectElement()

[2] Looks up an association’s name when given the association.

context Package::lookupNameForAssociation(x : Association):Name
self.memberAssociation->select(e|e = x).selectElement().name

[3] Looks up a class in a package when given a name.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 89

PACKAGES
context Package::lookupClassforName(x : Name):Class
self.memberClass->select(e| e.name = x).selectElement()

[4] Looks up a class’s name when given the class.

context Package::lookupNameForClass(x : Class):Name
self.memberClass->select(e|e = x).selectElement().name

[5] Looks up a primitive in a package when given a name.

context Package::lookupPrimitiveforName(x : Name):Primitive
self.memberPrimitive->select(e| e.name = x).selectElement()

[6] Looks up a primitive’s name when given the primitive.

context Package::lookupNameForPrimitive(x : Primitive):Name
self.memberPrimitive->select(e|e = x).selectElement().name

[7] Looks up a package in a package when given a name.

context Package::lookupPackageforName(x : Name):Package
self.memberPackage->select(e| e.name = x).selectElement()

[8] Looks up a package’s name when given the package.

context Package::lookupNameForPackage(x : Package):Name
self.memberPackage->select(e|e = x).selectElement().name

[9] Returns the imported packages of the package.

context Package::importedPackage():Set(Package)
self.imported->iterate(p s=Set{} | s->union(Set{p.parent}))

[10] Transitively returns all imported packages of the package.

context Package::allImportedPackage():Set(Package)
self.importedPackage()->iterate(g s=self.importedPackage() |
 s->union(g.allImportedPackage()))

9.3 SEMANTIC DOMAIN

9.3.1 Derivation
The values in the packages package are derived from the PackageValue template shown in figure. A Package-
Value is a container of named element values with identity.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 90

PACKAGES
Figure 9-4 Derivation of Packages Semantic Domain Package

9.3.2 Model
The semantic domain of the Packages package is shown in 9-5 on page 92. A Snapshot is a value of a Package
and describes a particular instantiation of the elements in the Package at a specific point in time. A Snapshot
therefore contains objects, links, primitive values and snapshots. Objects, links and snapshots all have unique
identities within a snapshot, whilst primitive values do not.

PackageValue PackageValue
NamedElementValue

Packages

SemanticDomain

<Package
Value>

*

owning
<PackageValue>

1

owned<Value>

Snapshot
Snapshot

Snapshot
Object

Snapshot
Link

<Named
Element
Value>

<NamedElement
Value>Identity

identity

1

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 91

PACKAGES
Figure 9-5 Semantic Domain for the Packages package

Snapshot
Snapshots are containers of objects, links, primitive values and snapshots.

Associations

 ownedObject The objects owned by the snapshot.

 ownedLink The links owned by the snapshot.

 ownedPrimitiveValue The primitive values owned by the snapshot.

 ownedSnapshotThe snapshots owned by the snapshot.

9.3.3 Well-formedness rules
[1] No two objects in a snapshot’s valuespace may have the same identity.

context Snapshot inv
 self.ownedObject -> forAll(e1 |
 self.ownedObject -> forAll(e2 |
 e1 <> e2 implies e1.identity <> e2.identity))

[2] No two links in snapshot’s valuespace may have the same identity.

context Snapshot inv
 self.ownedLink -> forAll(e1 |
 self.ownedLink -> forAll(e2 |
 e1 <> e2 implies e1.identity <> e2.identity))

[3] No two snapshots in snapshot’s valuespace may have the same identity.

context Snapshot inv
 self.ownedSnapshot -> forAll(e1 |
 self.ownedSnapshot -> forAll(e2 |
 e1 <> e2 implies e1.identity <> e2.identity))

*ownedObject

owningSnapshot

1

*

ownedPrimitiveValue

owningSnapshot

1

Primitive
Value

*

ownedLink

1

identity :
SnapshotIdentity

Snapshot

owningSnapshot

identity :
ObjectIdentity

Object

identity :
LinkIdentity

Link

owningSnapshot

ownedSnapshot

*

1

Packages::SemanticDomain
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 92

PACKAGES
9.4 SEMANTIC MAPPING

9.4.1 Derivation
The template used to stamp out the semantic mapping for the packages package is shown in figure 9-6 on
page 93. Each element in the semantic domain is mapped to the appropriate abstract syntax element and the nec-
essary constraints on their relationships are stamped out.

Figure 9-6 Derivation of the Packages SemanticMapping Package

9.4.2 Model
The semantics mapping package of the packages package is shown in Figure 9-7 on page 94. It defines the rela-
tionship that holds between packages, named elements and their values. A Snapshot is a value of a Package. An
Object is a value of an Class. A Link is a value of an Association and a primitive value is a value of a primitive

PackageSemantics Package
PackageValue
Packageable
NamedElementValue

Classes

SemanticMapping

<Package> <Package
Value>

1

of

<NamedElement
>

<Named
Element
Value>

1

of

Package
Snapshot
Association
Link

Package
Snapshot
Class
Object

Package
Snapshot
Package
Snapshot
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 93

PACKAGES
data type. The objects contained by a snapshot must be values of the classes owned by the snapshot’s package,
and similarly for the other values..

Figure 9-7 Semantic Mapping for the Packages package

9.4.3 Well-formedness rules

Snapshot
[1] For each object owned by a snapshot there should be a class of the snapshot’s package’s namespace that the
object is a value of.

context Snapshot inv:
self.ownedObject->forAll(c |
 self.of.memberClass->exists(d | c.of = d))

[2] For each link owned by a snapshot there should be an association of the snapshot’s package’s namespace that
the link is a value of.

context Snapshot inv:
self.ownedLink->forAll(c |
 self.of.memberAssociation->exists(d | c.of = d))

[3] For each primitive value owned by a snapshot there should be a primitive of the snapshot’s package’s name-
space that the primitive value is a value of.

context Snapshot inv:
self.ownedPrimitiveValue->forAll(c |
 self.of.memberPrimitive->exists(d | c.of = d))

[4] For each snapshot owned by a snapshot there should be a package of the snapshot’s package’s namespace that
the snapshot is a value of.

context Snapshot inv:
self.ownedSnapshot->forAll(c |
 self.of.memberPackage->exists(d | c.of = d))

Package Snapshot
1

of

Class Object
1

of

Association Link
1

of

Primitive Primitive
Value

1

of

Packages::SemanticMapping
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 94

PACKAGES
9.5 EXAMPLE SNAPSHOTS

Figure 9-9 on page 95 illustrates a snapshot corresponding to the model shown in 9-8 on page 95. Note how the
package import results in an import relationship between package R and the contents of package P (i.e. R imports
P::Q into its namespace).

Figure 9-8 Example packages

Figure 9-9 Snapshot of example shown in fig. 9-8 on page 95

R

Q

C D

P

<<import>>

: Package
Import

parent

name = "P"

P :
Package

name = "R"

R :
Package

child

name = "Q"

Q :
Package

name = "C"

C : Class

owned
Package

member
Class

member
Package

owned
Class

owningPackage

owningPackage

importing

imported

name = "D"

D : Class
member

Class

owned
Class

member
Package

imported
Package

owningPackage
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 95

PACKAGES
9.6 CHANGES TO UML 1.4
Packages have values (snapshots). Snapshots are an extremely useful abstraction for modelling system level
states. They will be extended in later chapters to deal with dynamic aspects (filmstrips).
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 96

1 Chapter 10
Package Extension

This package defines an extended abstract syntax and semantics for packages that permits their use as a powerful
"aspect-oriented" extension mechanism. In their most basic form, packages are namespaces for the elements they
contain. In the definition presented in this chapter, packages can additionally extend other packages, extending,
renaming and merging their elements. The ability to reuse large-grained language components through package
extension is a fundamental part of this submission.

10.1 POSITION IN ARCHITECTURE

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 97

PACKAGE EXTENSION
10.1.1 Example
Figure 10-1 on page 98 illustrates the use of package extension to merge and extend the contents of two packages
P and Q. Because the class A in Q is redefined during extension, the end result (shown in grey) is to merge the
contents of the two classes A and B into a single class A in R.

Figure 10-1 Example of package extension

10.2 ABSTRACT SYNTAX

10.2.1 Derivation
Figure 10-2 on page 99 gives an overview of the templates used to stamp out the extensions part of the Packages
package. Templates are used to generate extension relationships between all namespace and feature elements in
the core, including packages, classes, associations, association ends, attributes and operations.

R

P

x

A

Q

y

B

A/B

x
y

A

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 98

PACKAGE EXTENSION
Figure 10-2 Extension Templates

The ExtendablePackage template (see Figure 10-3 on page 100) describes the notion of package extension.
When a package extends another package, the elements in the parent package’s namespace are extended into the
namespace of the child package. For example, an element may be a class or an association. Extending a package
will result in the classes and association in the namespace of the parent package/s being extended into the child
package’s namespace. Note that the definition is deliberately abstract about how this is implemented: for example
an element may be inherited or copied - the choice of mechanism is entirely up to the implementor. However, in
the case where an element is redefined, it must copied down (see [Clark02]). A redefined extension represents an
explicit substitution of one element by another.

E xtendab le
B ehavioura l

C lassifie r Clas s ifier
B ehaviouralFeature
Ty pe

P ackages

A bstractS yntax

E xtendab le
P ackage P ac k age

Nam edE lem ent

E xtendab le
S tructura l
Feature

C lassifier Clas s ifier
S truc turalFeature
Ty pe
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 99

PACKAGE EXTENSION
Figure 10-3 Derivation of Packages from extendable package templates

The ExtendableStructuralFeatureClassifier template (see Figure 10-4 on page 101) defines the semantics of clas-
sifier and structural feature extension. When a classifier extends another classifier, the structural features in the
parent classifier/s namespace are extended into the namespace of the child classifier. For example, extending a
class will result in the class’s attributes being extended into the namespace of the extending class. In addition, a
structural feature that is extended into a namespace must be conformant with the structural feature it extends, for
example their types must be conformant. If a redefinition has occurred, the child structural feature’s type must
also belong to the same namespace as the child class.

ExtendablePackage

name : Name

<NamedElement>
<Package>

Package
NamedElement

extending
extendied* *

1parent child

Packages

AbstractSyntax

*

*

member<NamedElement>

extending extended* *

1parent child1

owned<NamedElement>
 Extension

*1

1

Package
Package

Package
Class

Package
Association

isRedefined : Boolean

<Package>
Extension

isRedefined : Boolean

<NamedElemen>
Extension
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 100

PACKAGE EXTENSION
Figure 10-4 Derivation of Packages from ExtendableStructuralFeatureClassifier template

The ExtendableBehaviouralFeature template (see Figure 10-5 on page 102) describes the general extension rela-
tionship between classifiers and their behavioural features. A classifier can extend another classifier with the
result that the parent’s behavioural features are extended into the namespace of the child classifier. It is also
required that an extended behavioural feature’s type and parameters conform to the type and parameters of its
parent behavioural feature. If a renaming or redefinition has occurred, the child behavioural feature’s types must
belong to the same namespace as the behavioural feature.

ExtendableStructuralFeatureClassifier

name : Name

<StructuralFeature>
<Classifier>

Classifier
StructuralFeature
Type

extending
extended* *

1parent child

Packages

AbstractSyntax

* *

member<StructuralFeature>

extending extended* *

1parent child1

owned<StructuralFeature
 Extension>

*1

1

Class
Attribute

Association
AssociationEnd

Class
Constraint

isRedefined : Boolean

<Classifier>
Extension

isRedefined : Boolean

<StructuralFeature>
Extension

<Type>
type

1

*

Class
Query
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 101

PACKAGE EXTENSION
Figure 10-5 Derivation of Packages from ExtendableBehaviouralFeature template

10.2.2 Model (Package extension)
Figures 10-6 on page 103 to Figure 10-8 on page 110 show the abstract syntax of the extensions part of the Pack-
ages package. As shown in Figures 10-6 on page 103 packages that extend packages will include extended
classes, associations and sub-packages as a part of their namespace. Extensions can be redefined, which means
that no restriction is placed on the names of the child elements in the relationship.

ExtendableBehaviouralClassifier

name : Name

<Behavioural
Feature>

<Classifier>

Classifier
BehaviouralFeature
Type

extending extended* *

1parent child

Packages

AbstractSyntax

* *

member<BehaviouralFeature>

extending extended* *

1parent child1

owned<BehaviouralFeature
 Extension>

*1

1

Class
Operation

isRedefined : Boolean

<Classifier>
Extension

isRedefined : Boolean

<BehaviouralFeature>
Extension

<Type>

type1

*

name : Name

Parameter

type1

{ordered}

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 102

PACKAGE EXTENSION
Figure 10-6 Abstract syntax for Packages package

Package
A package.

Associations
memberAssociation The associations that are included in the namespace of the package.
memberClass The classes that are included in the namespace of the package.
memberPackage The packages that are included in the namespace of the package.

PackageExtension
An extension relationship between packages. When a package extends another package, the parent packages ele-
ments are included in the namespace of the child package. A package extension has a set of renamings that are
applied to any elements copied from the parent package to the child package.

Associations
child The child package.
ownedAssociationExtension The association extensions that extend associations in the parent packages name-
space.

Packages::AbstractSyntax

* mem berClass

*

mem berPackage
*

*

*

name : Name

Package

nam e : Name

Association

extending ex tended* *

1parent child1

1

1

parent

child

ex tending

ex tended

*

*

childparent 1 1

ex tending ex tended* *

nam e : Name

C lass

isRedefined : Boolean

Association
Extension

isRedefined : Boolean

C lass
Extension

isRedefined :
Boolean

Package
Extension

mem berAssoc iation

ownedAssoc iationExtens ion

*

ownedClassExtens ion

*

ownedPackage
Extens ion

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 103

PACKAGE EXTENSION
ownedClassExtension The class extensions that extend classes in the parent packages namespace.
ownedPackageExtension The package extensions that extend packages in the parent packages namespace.
parent The parent package.
renaming The renamings that apply to elements extended from the parent package’s namespace.

10.2.3 Well-formedness Rules (Package extension)

PackageExtension
[1] The associations in the namespace of the parent package must be included in the namespace of the child and
they must be related by an association extension.

context PackageExtension inv:
self.parent.memberAssociation->forAll(e |
 self.ownedAssociationExtension->exists(e' |
 e'.parent = e and
 self.child.memberAssociation->exists(e'' |
 e'.child = e'')))

[2] If the child association does not equal the parent association in an ownedAssociationExtension then it must be
owned by the child package.

context PackageExtension inv:
self.ownedAssociationExtension -> forAll(e |
 e.child <> e.parent implies
 self.child.ownedAssociation -> includes(e.child))

[3] The classes in the namespace of the parent package must be included in the namespace of the child and they
must be related by a class extension.

context PackageExtension inv:
self.parent.memberClass->forAll(e |
 self.ownedClassExtension->exists(e' |
 e'.parent = e and
 self.child.memberClass->exists(e'' |
 e'.child = e'')))

[4] If the child class does not equal the parent class in an ownedClassExtension then it must be owned by the
child package.

context PackageExtension inv:
self.ownedClassExtension -> forAll(e |
 e.child <> e.parent implies
 self.child.ownedClass -> includes(e.child))

[5] The packages in the namespace of the parent package must be included in the namespace of the child and they
must be related by a package extension.

context PackageExtension inv:
self.parent.memberPackage->forAll(e |
 self.ownedPackageExtension->exists(e' |
 e'.parent = e and
 self.child.memberPackage->exists(e'' |
 e'.child = e'')))
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 104

PACKAGE EXTENSION
[6] If the child package does not equal the parent package in an ownedPackageExtension then it must be owned
by the child package.

context PackageExtension inv:
self.ownedPackageExtension -> forAll(e |
 e.child <> e.parent implies
 self.child.ownedPackage -> includes(e.child))

[7] The child package must have the same name as the parent, unless it is redefined..

context PackageExtension inv:
not self.isRedefined implies child.name = parent.name

10.2.4 Model (Structural features)
As shown in Figures 10-7 on page 106 classes that extend classes will include (extended) attributes, constraints
and queries as a part of their namespace. Associations that extend associations include (extended) association
ends. Again, extensions can be redefined, which means that no restriction is placed on the names of the child ele-
ments in the relationship.

AssociationExtension
An extension relationship between associations. An association extension has a set of renamings that are applied
to extended association ends.

Associations
child The child association.
ownedAssociationEndExtension The association end extensions that extend association ends in the parent
associations namespace.
parent The parent association.
renaming The renamings that apply to association ends extended from the parent association.

AssociationEndExtension
An extension relationship between association ends.

Associations
child The child association end.
parent The parent association end.

AttributeExtension
An extension relationship between attributes.

Associations
child The child attribute.
parent The parent attribute.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 105

PACKAGE EXTENSION
Figure 10-7 Abstract syntax for the Package package

ClassExtension
An extension relationship between classes. A class extension has a set of renamings that are applied to any ele-
ments copied from the parent class to the child class.

Associations
child The child class.
ownedAttributeExtension The attribute extensions that extend attributes in the parent classes namespace.
ownedConstraintExtension The constraint extensions that extend constraints in the parent classes namespace.
ownedQueryExtension The query extensions that extend queries in the parent classes namespace.
parent The parent class.
renaming The renamings that apply to any element copied from the parent class.

ConstraintExtension
An extension relationship between constraints.

Associations
child The child constraint.
parent The parent constraint.

Packages::AbstractSyntax

*

*

mem ber
AssociationEbd

*

name : Name

C lass

name : Name

AssociationEnd

extending ex tended* *

1parent child11

1

parent

child

extending

ex tended

*

*

childparent 1 1

extending ex tended* *

name : Name

Constraint

isRedefined : Boolean

AssociationEnd
Extension

isRedefined : Boolean

Constraint
Extension

isRedefined : Boolean

Attribute
Extension

mem berConstraint

name : Name

Query
parentextending

extended

*

*
isRedefined : Boolean

Query
Extension

memberQuery

*

1

1
name : Name

Attribute

m emberA ttribute*

*

*

name : Nam e

Association

isRedefined : Boolean

C lass
Extension

isRedefined : Boolean

Association
Extension

ownedConstraintExtens ion

*

ownedAttributeEx tens ion*

ownedQueryExtens ion*

owned
AssociationEnd

Extens ion

*

child
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 106

PACKAGE EXTENSION
QueryExtension
An extension relationship between queries.

Associations
child The child query.
parent The parent query.

10.2.5 Well-formedness Rules (Structural features)
AssociationExtension
[1] The association ends in the namespace of the parent association must be included in the namespace of the
child association and they must be related by an association end extension.

context AssociationExtension inv:
self.parent.memberAssociationEnd->forAll(e |
 self.ownedAssociationEndExtension->exists(e' |
 e'.parent = e and
 self.child.memberAssociationEnd->exists(e'' |
 e'.child = e'')))

[2] If the child association end doesn’t equal the parent association end in an ownedAssociationEndExtension
then it must be owned by the child association.

context AssociationExtension inv:
self.ownedAssociationEndExtension -> forAll(e |
 e.child <> e.parent implies
 self.child.ownedAssociationEnd -> includes(e.child))

[3] The child association must have the same name as the parent association, unless it is redefined.

context AssociationExtension inv:
not self.isRedefined implies child.name = parent.name

AssociationEndExtension
[1] The child association end’s type in an association end extension must conform to the parent association end’s
type.

context AssociationEndExtension inv:
 self.child.type.conformsToExtension(self.parent.type)

[2] The child association end’s multiplicity in an association end extension must conform to the parent associa-
tion end’s multiplicity.

context AssociationEndExtension inv:
 self.child.multiplicity.conformsToExtension(self.parent.multiplicity)

[3] If the child association end in an association end extension has been extended into another namespace (i.e. the
child does not equal the parent) then the child’s type must belong to the same namespace as the child’s class.

context AttributeExtension inv:
 self.child <> self.parent implies
 self.child.owningClass.sameNamespace(self.child.type)

[4] The child association end must have the same name as the parent association end, unless it is redefined..

context AssociationEndExtension inv:
 not self.isRedefined implies child.name = parent.name
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 107

PACKAGE EXTENSION
AttributeExtension
[1] The child attribute’s type in an attribute extension must conform the parent attribute’s type.

context AttributeExtension inv:
 self.child.type.conformsToExtension(self.parent.type)

[2] The child attribute’s multiplicity in an attribute extension must conform the parent attribute’s multiplicity.

context AttributeExtension inv:
self.parent.multiplicity <> null implies

 self.child.multiplicity.conformsToExtension(self.parent.multiplicity)

[3] If the child attribute in an attribute extension has been extended into another namespace (i.e. the child does
not equal the parent) then the child’s type must belong to the same namespace as the child’s class.

context AttributeExtension inv:
 self.child <> self.parent implies
 self.child.owningClass.sameNamespace(self.child.type)

[4] The child attribute must have the same name as the parent attribute, unless it is redefined..

context AttributeExtension inv:
not self.isRedefined implies child.name = parent.name

ClassExtension
[1] The attributes in the namespace of the parent class must be included in the namespace of the child class and
they must be related by an attribute extension.

context ClassExtension inv:
self.parent.memberAttribute->forAll(e |
 self.ownedAttributeExtension->exists(e' |
 e'.parent = e and
 self.child.memberAttribute->exists(e'' |
 e'.child = e'')))

[2] If the child attribute does not equal the parent attribute in an ownedAttributeExtension then it must be owned
by the child class.

context ClassExtension inv:
self.ownedAttributeExtension -> forAll(e |
 e.child <> e.parent implies
 self.child.ownedAttribute -> includes(e.child))

[3] The constraints in the namespace of the parent class must be included in the namespace of the child class and
they must be related by a constraint extension.

context ClassExtension inv:
self.parent.memberConstraint->forAll(e |
 self.ownedConstraintExtension->exists(e' |
 e'.parent = e and
 self.child.memberConstraint->exists(e'' |
 e'.child = e'')))

[4] If the child constraint does not equal the parent constraint in an ownedConstraintExtension then it must be
owned by the child class.

context ClassExtension inv:
self.ownedConstraintExtension -> forAll(e |
 e.child <> e.parent implies
 self.child.ownedConstraint -> includes(e.child))
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 108

PACKAGE EXTENSION
[5] The queries in the namespace of the parent class must be included in the namespace of the child class and they
must be related by a query extension.

context ClassExtension inv:
self.parent.memberQuery->forAll(e |
 self.ownedQueyExtension->exists(e' |
 e'.parent = e and
 self.child.memberQuery->exists(e'' |

 e'.child = e'')))

[6] If the child query doesn’t equal the parent query in an ownedQueryExtension then it must be owned by the
child class.

context ClassExtension inv:
self.ownedQueryExtension -> forAll(e |
 e.child <> e.parent implies
 self.child.ownedQuery -> includes(e.child))

ConstraintExtension
[1] The child constraint’s type in an constraint extension must conform to the parent constraint’s type.

context ConstraintExtension inv:
 self.child.type.conformsToExtension(self.parent.type)

[2] The child constraint’s expression in an constraint extension must conform to the parent constraint’s expres-
sion.

context ConstraintExtension inv:
 self.child.expression.conformsToExtension(self.parent.expression)

[3] If the child constraint in an constraint extension has been extended into another namespace (i.e. the child does
not equal the parent) then the child’s type must be in the same namespace as the child’s class.

context ConstraintExtension inv:
 self.child <> self.parent implies
 self.child.owningClass.sameNamespace(self.child.type)

[4] The child constraint must have the same name as the parent constraint, unless it is redefined..

context AttributeExtension inv:
not self.isRedefined implies child.name = parent.name

QueryExtension
[1] The child query’s type in an query extension must conform to the parent query’s type.

context QueryExtension inv:
 self.child.type.conformsToExtension(self.parent.type)

[2] The child query’s expression in an query extension must conform to the parent query’s expression.

context QueryExtension inv:
 self.child.expression.conformsToExtension(self.parent.expression)

[3] The child query must have the same name as the parent query, unless it is redefined..

context QueryExtension inv:
 not self.isRedefined implies child.name = parent.name
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 109

PACKAGE EXTENSION
[4] If the child query in a query extension has been extended into another namespace (i.e. the child does not equal
the parent) then the child’s type must belong to the same namespace as the child’s class.

context QueryExtension inv:
 self.child <> self.parent implies
 self.child.owningClass.sameNamespace(self.child.type)

10.2.6 Model (Behavioural features)
As shown in Figures 10-8 on page 110 classes that extend classes will include operations as a part of their name-
space. Extensions can be redefined, which means that no restriction is placed on the names of the child elements
in the relationship.

Figure 10-8 Abstract Syntax for the Packages package

OperationExtension
An extension relationship between operations.

Associations
child The child operation.
parent The parent operation.

10.2.7 Well-formedness Rules (Behavioural features)

ClassExtension
[1] The operations in the namespace of the parent class must be included in the namespace of the child class and
they must be related by an operation extension.

context ClassExtension inv:
self.parent.memberOperation->forAll(e |

Packages::AbstractSyntax

*

name : Name

Class

extending extended* *

1parent child

1

parent

child

extending

extended

*

*

name : Name

Operation

isRedefined : Boolean

Operation
Extension

isRedefined : Boolean

Class
Extension

memberOperation
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 110

PACKAGE EXTENSION
 self.ownedOperationExtension->exists(e' |
 e'.parent = e and
 self.child.memberOperation->exists(e'' |
 e'.child = e'')))

[2] If the child operation doesn’t equal the parent operation in an ownedOperationExtension then it must be
owned by the child class.

context ClassExtension inv:
self.ownedOperationExtension -> forAll(e |
 e.child <> e.parent implies
 self.child.ownedOperation -> includes(e.child))

OperationExtension
[1] The child operation’s type in an operation extension must conform to the parent operation’s type.

context OperationExtension inv:
 self.child.type.conformsToExtension(self.parent.type)

[2] The child operation’s parameter types must be an extension of the parent parent’s parameter types.

context OperationExtension inv:
self.parent.parameter -> forAll(f |

 1..(self.child.parameter->size) -> forAll(n |
 self.child.parameter.at(n).type.conformsToExtension(
 f.parameter.at(n).type)))

[3] If the child operation in an operation extension has been extended into another namespace (i.e. the child does
not equal the parent) then the child’s types must be in the same namespace as the child’s class.

context OperationExtension inv:
 self.child <> self.parent implies
 self.child.owningClass.sameNamespace(self.child.type) and
 self.child.parameter -> forAll(f |
 self.child.owningClass.sameNamespace(f)

[4] The child operation must have the same name as the parent operation, unless it is redefined..

context OperationExtension inv:
not self.isRedefined implies child.name = parent.name

10.2.8 Additional Definitions
A number of additional definitions are required to support the extension mechanism. Firstly, the conformsToEx-
tension() operation must be defined on the data types. The most important is for a class:

Class
[1] A class conforms to another class if its is extended.

 context Class::conformsToExtension(c : Class) : Boolean
self.allExtendedElements()->includes(c)

and similarly for the other datatypes.

Secondly, conformance rules for multiplicities needs to be defined:
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 111

PACKAGE EXTENSION
Multiplicity
[1] A multiplicity conforms to another multiplicity if their ranges are conformant.

 context Multiplicity::conformsToExtension(m : Multiplicity) : Boolean
TBD

Finally, conformance rules for expressions needs to be defined:

Expression
[1] An expression conforms to another expression if they are conformant extensions.

 context Expression::conformsToExtension(m : Expression) : Boolean
TBD

This will be defined recursively, considering each kind of expression in turn. The aim is to check that the expres-
sion conforms to the expression passed as argument, and that the sub-expressions, where present, also conform,
and so on.

10.3 SEMANTIC DOMAIN

No additional semantics.

10.4 SEMANTIC MAPPING

No additional semantics.

10.5 EXAMPLE SNAPSHOTS

Fugure 10-10 on page 113 shows the example package extension model shown in figure 10-9 on page 113 as a
snapshot. Note that the redefinition of class B in package Q, permits it to have a different name, i.e. A. Because
two classes with the same name are extending into package R, they must be merged to be well-formed. The result
is to also merge their contents (i.e. attributes).
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 112

PACKAGE EXTENSION
Figure 10-9 Example of package extension

Figure 10-10 Snapshot of Figure 10-9 on page 113

R

P

x

A

Q

y

B

A/B

x
y

A

P:Package

R:Package

ownedClass

ownedClass

child

isRedefined = true

ce : Class
Extension

name = "A"

A2 : Class

e2 : Package
Extension

ownedClassExtension

parent

child

memberClass

memberClass

e1 : Package
Extension

Q:Package

parent

name = "B"

B : Class

child

name = "A"

A : Class
memberClass

ownedClass

isRedefined = false

ce : Class
Extension

child

parent parent

ownedClassExtension

name = "x"

x1 : Attribute

name = "y"

y1 : Attribute
memberAttribute memberAttribute

owned
Attribute

owned
Attribute

name = "y"

y2 : Attribute

name = "x"

x2 : Attribute

isRedefined = false

ae1 : Attribute
Extension

isRedefined = false

ae1 : Attribute
Extension

parent

child

child

parent

ownedAttributeExtensionownedAttributeExtension

member
Attribute

member
Attribute
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 113

PACKAGE EXTENSION
10.6 CHANGES TO UML 1.4
Package extension is new to UML 2.0.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 114

1 Chapter 11
Templates

A package template is an extendable package with substitutable parameter variables. In this chapter, the defini-
tion of packages and package extension is extended to support package templates. A description of class tem-
plates and association templates is also given to illustrate the generic nature of the template used in the definition.

11.1 POSITION IN ARCHITECTURE

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 115

TEMPLATES
11.1.1 Example
As shown below a package template is a namespace for named elements, whose names can be placeholders for
parameters passed by the package template. Package template instantiation is an extension relationship between a

Figure 11-1 Example package template
package template and package, in which substitutions can be made for the parameters. In this example, the value
Y is substituted for X, resulting in the class <X> being copied and renamed to "Y" in the package Q.

11.2 ABSTRACT SYNTAX

11.2.1 Derivation
Figure 11-2 on page 117 shows the templates used to derive the abstract syntax and well-formedness rules for
package templates. A template is a namespace for name elements which may have a renaming expression
attached to them. For example, a package template may attach a renaming expression "<X>" to a class. A Tem-
plateInstantiation defines an instantiation relationship that generates named element extensions with the appro-
priate name substitutions.

P

name : String

<X>

X

YQ
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 116

TEMPLATES
Figure 11-2 Derivation of the Templates Package

11.2.2 Model
Figure 11-3 on page 117 extends a RenamingExpression so that it can describe a simple renaming expression lan-
guage (similar to that used in this submission), including parameterised values, e.g. "<X>" and concatenated val-
ues, e.g. "owned<X>".

Figure 11-3 Renaming Expressions

Renameable

name : Name

<Named
Element>

<NamedElement>
Renaming

Expression

Namespace
NamedElement

named<NamedElement>

1

*

TemplateInstantiation

<Namespace>
Template

Instantiation

value : String

Template
Parameter

Substitution templateParameterSubstitution

Template
Parameter

templateParameter

1

*

<Namespace>
Extension

<Named
Element>
Extension

extension 1

owned<NamedElement>Extension

*

* generated<NamedElement>Extension

Namepace
NamedElement

Templates

AbstractSyntax

PackageTem pla te
Package

PackageTem pla te
Class

PackageTem pla te
Associa tion

Package
Package

Package
Class

Package
Associa tion

<Namespace>

<Namespace>
Template

*

templateParameter

Class
Attribute

Class
Constra int

Class
Query

Class
Action

Class
Opera tion

Associa tion
Associa tionEnd

ClassTem pla te
Attribute

ClassTem pla te
Constra int

ClassTem pla te
Query

ClassTem pla te
Action

ClassTem pla te
Opera tion

Associa tionTem pla te
Associa tionEnd

eval(...) : Name

Renaming
Expression

Concatenation

value : String

Constant

1

1

rhs

lhs

name : String

Template
Parameter
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 117

TEMPLATES
Figure 11-4 on page 118 shows the abstract syntax of the templates package that describes package templates. A
PackageTemplate is a Package and therefore can be extended as described in the Package Extension chapter. A
PackageTemplate owns a set of template parameters and a set of renaming expressions.

Figure 11-4 Templates Abstract Syntax package (package templates)

PackageTemplate
A package template.

Associations
renamingExpression The renaming expressions that are associated with the contents of the package template.
templateParameter The parameters of the package template.

PackageTemplateInstantiation
An instantiation relationship between a package template and a package.

Associations
child The package that results from the instantiation.
parent The package template.
templateParameterSubstitution The parameters that are substituted when instantiating the template.
generatedAssociationExtension The association extensions that are generated to realise the instantiation.
generatedClassExtension The class extensions that are generated to realise the instantiation.
generatedPackageExtension The package extensions that are generated to realise the instantiation

Templates::AbstractSyntax

Package
Template

Instantiation

value : Name

Template
Parameter
Substitution

templateParameterSubstitution

Template
Parameter

templateParameter

1

*

Package
Extension

Package
Extension

extension 1

ownedPackageExtension

*
* generatedPackageExtension

Package
Template

templateParameter

name : Name

Association

Association
Renaming
Expression

Package

*

*

1

1

child

parent

namedAssociation
1

Class
Extension

ownedClassExtension

*

Association
Extension

ownedAssociationExtension

*

generated
Class

Extension

generated
Association
Extension

*

*

name : Name

Class

Class
Renaming
Expression

*

namedClass
1

name : Name

Package

Package
Renaming
Expression

namedPackage
1

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 118

TEMPLATES
TemplateParameter
A template parameter. A subclass of RenamingExpression.

TemplateParameterSubstitution
The substitution that is made for a template parameter.

Attributes
value The value that is being substituted.
Associations

 templateParameter The parameter that is being substituted for.

11.2.3 Well-formedness Rules
A number of rules are necessary to ensure that a PackageTemplateInstantiation is well-formed. The most impor-
tant of these are as follows. Firstly, a PackageTemplateInstantiation must guarantee to rename all parameters in
its parent TemplatePackage. Secondly, redefined association, class and package extensions must be generated for
each of the substitutions that take place in the instantiation.

PackageTemplate
[1] Only one renaming expression per association in a template.

context PackageTemplate inv:
self.associationRenamingExpression -> forAll(r1, r2 |
 r1 <> r2 implies r1.namedAssociation <> r2.namedAssociation)

[2] Only associations in the template’s namespace have renaming expressions associated with them.

context PackageTemplate inv:
self.memberAssociation->
 includesAll(self.associationRenamingExpression.namedAssociation)

[3] Only one renaming expression per class in a template.

context PackageTemplate inv:
self.classRenamingExpression -> forAll(r1, r2 |
 r1 <> r2 implies r1.namedClass <> r2.namedClass)

[4] Only classes in the template’s namespace have renaming expressions associated with them.

context PackageTemplate inv:
self.memberClass->
 includesAll(self.classRenamingExpression.namedClass)

[5] Only one renaming expression per package in a template.

context PackageTemplate inv:
self.packageRenamingExpression -> forAll(r1, r2 |
 r1 <> r2 implies r1.namedPackage <> r2.namedPackage)

[6] Only packages in the template’s namespace have renaming expressions associated with them.

context PackageTemplate inv:
self.memberPackage->
 includesAll(self.packageRenamingExpression.namedClass)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 119

TEMPLATES
PackageTemplateInstantiaton
[1] Parameter substitutions parameters must match those owned by the template.

context PackageTemplateInstantiation inv:
self.templateParameterSubstitutions.templateParameter =
self.ownedParameter->asBag

[2] Association substitutions are generated for each of the renamed associations in the parents namespace.

context PackageTemplateInstantiation inv:
self.generatedAssociationExtension.parent =
self.extension.parent.associationRenamingExpression.namedAssociation

[3] Generated association extensions shadow redefined owned associations extensions.

context PackageTemplateInstantiation inv:
self.extension.ownedAssociationExtension->select(e | e.isRedefined) =
self.generatedAssociationExtension

[4] The name of the child elements of any generated named element extension is the evaluation of the appropriate
renaming expression.

context PackageTemplateInstantiation inv:
self.generatedAssociationExtension->forAll(n |
 n.child.name = self.associationRenamingExpression->
 select(r | r.namedAssociation = n.parent).eval(self)->asSet)

[5] Class substitutions are generated for each of the renamed classes in the parents namespace.

context PackageTemplateInstantiation inv:
self.generatedClassExtension.parent =
self.extension.parent.classRenamingExpression.namedClass

[6] Generated class extensions shadow redefined owned class extensions.

context PackageTemplateInstantiation inv:
self.extension.ownedClassExtension->select(e | e.isRedefined) =
self.generatedClassExtension

[7] The name of the child elements of any generated named element extension is the evaluation of the appropriate
renaming expression.

context PackageTemplateInstantiation inv:
self.generatedClassExtension->forAll(n |
 n.child.name = self.classRenamingExpression->
 select(r | r.namedClass = n.parent).eval(self)->asSet)

[8] Package substitutions are generated for each of the renamed packages in the parents namespace.

context PackageTemplateInstantiation inv:
self.generatedPackageExtension.parent =
self.extension.parent.packageRenamingExpression.namedPackage

[9] Generated package extensions shadow redefined owned package extensions.

context PackageTemplateInstantiation inv:
self.extension.ownedPackageExtension->select(e | e.isRedefined) =
self.generatedPackageExtension
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 120

TEMPLATES
[10] The name of the child elements of any generated package extension is the evaluation of the appropriate
renaming expression.

context PackageTemplateInstantiation inv:
self.generatedPackageExtension->forAll(n |
 n.child.name = self.packageRenamingExpression->
 select(r | r.namedPackage = n.parent).eval(self)->asSet)

Figure 11-5 on page 121 shows the abstract syntax of the templates package that describes class templates. A
ClassTemplate is a Class and therefore can be extended as described in the Package Extension chapter. A Tem-
plateClass owns a set of template parameters and a set of renaming expressions.

Figure 11-5 Templates Abstract Syntax package (class templates)

ClassTemplate
A class template.

Associations
renamingExpression The renaming expressions that are associated with the contents of the class template.
templateParameter The parameters of the class template.

ClassTemplateInstantiation
An instantiation relationship between a class template and a class.

Associations
child The package that results from the instantiation.
parent The package template.

Templates::AbstractSyntax

Class
Template

Instantiation

value : Name

Template
Parameter
Substitution

templateParameterSubstitution

Template
Parameter

templateParameter

1

*

Class
Extension

Query
Extension

extension 1

ownedQueryExtension

*
* generatedQueryExtension

Class
Template

templateParameter

name : Name

Attribute

Attribute
Renaming
Expression

Class

*

*

1

1

child

parent

namedAttribute
1

Constraint
Extension

ownedConstraintExtension

*generated
Constraint
Extension

*

name : Name

Constraint

Constraint
Renaming
Expression

*

namedConstraint
1

name : Name

Query

Query
Renaming
Expression

namedQuery
1

*

Attribute
Extension

ownedAttributeExtension

*generated
Attribute

Extension

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 121

TEMPLATES
templateParameterSubstitution The parameters that are substituted when instantiating the template.
generatedAttributeExtension The attribute extensions that are generated to realise the instantiation.
generatedConstraintExtension The constraint extensions that are generated to realise the instantiation.
generatedQueryExtension The constraint extensions that are generated to realise the instantiation.

11.2.4 Well-formedness Rules
A number of rules are necessary to ensure that a ClassTemplateInstantiation is well-formed. These are similar to
those defined for PackageTemplateInstantiation. A ClassTemplateInstantiation must guarantee to rename all
parameters in its parent ClassTemplate. Secondly, redefined attribute, constraint and query extensions must be
generated for each of the substitutions that take place in the instantiation.

ClassTemplate
[1] Only one renaming expression per attribute in a template.

context ClassTemplate inv:
self.attributeRenamingExpression -> forAll(r1, r2 |
 r1 <> r2 implies r1.namedAttribute <> r2.namedAttribute)

[2] Only attributes in the template’s namespace have renaming expressions associated with them.

context ClassTemplate inv:
self.memberAttribute->
 includesAll(self.attributeRenamingExpression.namedAttribute)

[3] Only one renaming expression per constraint in a template.

context ClassTemplate inv:
self.constraintRenamingExpression -> forAll(r1, r2 |
 r1 <> r2 implies r1.namedConstraint <> r2.namedConstraint)

[4] Only attributes in the template’s namespace have renaming expressions associated with them.

context ClassTemplate inv:
self.memberConstraint->
 includesAll(self.constraintRenamingExpression.namedConstraint)

[5] Only one renaming expression per query in a template.

context ClassTemplate inv:
self.queryRenamingExpression -> forAll(r1, r2 |
 r1 <> r2 implies r1.namedQuery <> r2.namedQuery)

[6] Only packages in the template’s namespace have renaming expressions associated with them.

context ClassTemplate inv:
self.memberQuery->
 includesAll(self.queryRenamingExpression.namedQuery)

ClassTemplateInstantiaton
[1] Parameter substitutions parameters must match those owned by the template.

context ClassTemplateInstantiation inv:
self.templateParameterSubstitutions.templateParameter =
self.ownedParameter->asBag
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 122

TEMPLATES
[2] Attribute substitutions are generated for each of the renamed classes in the parents namespace.

context ClassTemplateInstantiation inv:
self.generatedAttributeExtension.parent =
self.extension.parent.attributeRenamingExpression.namedAttribute

[3] Generated attribute extensions shadow redefined owned attribute extensions.

context ClassTemplateInstantiation inv:
self.extension.ownedAttributeExtension->select(e | e.isRedefined) =
self.generatedAttributeExtension

[4] The name of the child elements of any generated named element extension is the evaluation of the appropriate
renaming expression.

context ClassTemplateInstantiation inv:
self.generatedAttributeExtension->forAll(n |
 n.child.name = self.attributeRenamingExpression->
 select(r | r.namedAttribute = n.parent).eval(self)->asSet)

[5] Constraint substitutions are generated for each of the renamed constraints in the parents namespace.

context ClassTemplateInstantiation inv:
self.generatedConstraintExtension.parent =
self.extension.parent.constraintRenamingExpression.namedConstraint

[6] Generated constraint extensions shadow redefined owned constraint extensions.

context ClassTemplateInstantiation inv:
self.extension.ownedConstraintExtension->select(e | e.isRedefined) =
self.generatedConstraintExtension

[7] The name of the child elements of any generated named element extension is the evaluation of the appropriate
renaming expression.

context ClassTemplateInstantiation inv:
self.generatedConstraintExtension->forAll(n |
 n.child.name = self.constraintRenamingExpression->
 select(r | r.namedConstraint = n.parent).eval(self)->asSet)

[8] Query substitutions are generated for each of the renamed queries in the parents namespace.

context ClassTemplateInstantiation inv:
self.generatedQueryExtension.parent =
self.extension.parent.queryRenamingExpression.namedQuery

[9] Generated query extensions shadow redefined owned query extensions.

context ClassTemplateInstantiation inv:
self.extension.ownedQueryExtension->select(e | e.isRedefined) =
self.generatedQueryExtension

[10] The name of the child elements of any generated named element extension is the evaluation of the appropri-
ate renaming expression.

context ClassTemplateInstantiation inv:
self.generatedQueryExtension->forAll(n |
 n.child.name = self.queryRenamingExpression->

 select(r | r.namedQuery = n.parent).eval(self)->asSet)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 123

TEMPLATES
Figure 11-6 on page 124 shows the abstract syntax of the templates package that describes association templates.
An AssociationTemplate is an Association and therefore can be extended as described in the AssociationEx-
tension chapter. An AssociationTemplate owns a set of template parameters and a set of renaming expressions.

Figure 11-6 Templates Abstract Syntax package (association templates)

AssociationTemplate
A package template.

Associations
renamingExpression The renaming expressions that are associated with the namespace of the association tem-
plate.
templateParameter The parameters of the association template.

AssociationTemplateInstantiation
An instantiation relationship between an association template and an association

Associations
child The association that results from the instantiation.
parent The association template.
templateParameterSubstitution The parameters that are substituted when instantiating the template.
generatedAssociationEndExtension The association end extensions that are generated to realise the instantia-
tion.

Templates::AbstractSyntax

Association
Template

Instantiation

value : Name

Template
Parameter
Substitution

templateParameterSubstitution

Template
Parameter

templateParameter

1

*

Association
Extension

Association
End

Extension
extension 1

ownedPackageExtension

*
* generatedPackageExtension

Association
Template

templateParameter

name : Name

Association
End

Association
End

Renaming
Expression

Association

*

*

1

1

child

parent

namedAssociation
1

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 124

TEMPLATES
11.2.5 Well-formedness Rules

AssociationTemplate
[1] Only one renaming expression per association end in a template.

context AssociationTemplate inv:
self.associationEndRenamingExpression -> forAll(r1, r2 |
 r1 <> r2 implies r1.namedAssociationEnd <> r2.namedAssociationEnd)

[2] Only association ends in the template’s namespace have renaming expressions associated with them.

context AssociationTemplate inv:
self.memberAssociationEnd->
 includesAll(self.associationEndRenamingExpression.namedAssociationEnd)

AssociationTemplateInstantiaton
[1] Parameter substitutions parameters must match those owned by the template.

context AssociationTemplateInstantiation inv:
self.templateParameterSubstitutions.templateParameter =
self.ownedParameter->asBag

[2] Association end substitutions are generated for each of the renamed association end in the parents namespace.

context AssociationE=TemplateInstantiation inv:
self.generatedAssociationEndExtension.parent =
self.extension.parent.associationEndRenamingExpression.namedAssociationEnd

[3] Generated association eend xtensions shadow redefined owned association end extensions.

context AssociationTemplateInstantiation inv:
self.extension.ownedAssociationEndExtension->select(e | e.isRedefined) =
self.generatedAssociationEndExtension

[4] The name of the child elements of any generated named element extension is the evaluation of the appropriate
renaming expression.

context AssociationTemplateInstantiation inv:
self.generatedAssociationEndExtension->forAll(n |
 n.child.name = self.associationEndRenamingExpression->
 select(r | r.namedAssociationEnd = n.parent).eval(self)->asSet)
 select(r | r.namedClass = n.parent).eval(self)->asSet)

11.3 SEMANTIC DOMAIN

No additional semantics.

11.4 SEMANTIC MAPPING

No additional semantics.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 125

TEMPLATES
11.5 EXAMPLE SNAPSHOTS

The snapshot in figure 11-8 on page 126 illustrates the example in Figure 11-7 on page 126. Note that instantiat-
ing the package template results in a generated class extension between the parameterised class in the template
package P and the class B in package Q.

Figure 11-7 Example template

Figure 11-8 Snapshot illustrating figure 11-7 on page 126

P

name : String

<X>

X

Y
Q

p:Package
Template

parent

i :Package
Template

Instantiation

q:Package

child

parameter

x:Class
ownedClass

classRenamingExpression

extension

ownedClass

child

namedClass

name = "X"

t1 : Template
Parameter

templateParameter
Substitution

name = "Y"

s : Template
Parameter
Substitution

template
Parameter

parent

isRedefined = true

ce : Class
Extension

name = "Y"

y : Class

pe : Package
Extension

ownedClassExtension

generatedClassExtension

parent

child
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 126

TEMPLATES
11.6 CHANGES TO UML 1.4
UML 1.4 already provides support for templates but did not define their semantics.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 127

1 Chapter 12
Static Expressions

This package defines the abstract syntax and semantics of expressions. This chapter is mostly concerned with
static expressions, which describe how computations take place which do not change the state of the system, and
are used as a basis for describing constraints and queries (Chapters 13 and 14). Expressions that describe compu-
tations that do change the state of the system are called actions - these are covered in Chapter 16. The templates
that are introduced towards the end of this chapter however are generic enough to be used for both static expres-
sions and actions.

An expression has a return type, and its evaluations have values which must conform to that type. An expres-
sion may also have a number of operands, which are themselves expressions. The return type of an expression
and its operand expressions may or may not need to be constrained, depending upon the actual expression. The
operands can be thought of as sub-expressions of the originating expression. The operand expressions may have
their own operands or sub-expressions, and in this way a hierarchy or expression tree may be formed. An expres-
sion also has a scope, which consists of one or more variable declarations - these declare the variables that may
be referred to in any sub-expressions of the originating expression. The scope variable declarations are propa-
gated down the expression hierarchy; ultimately bound variables at the leaves of the expression tree must point to
a variable declaration that is within scope. Similarly an expression evaluation has an environment consisting of
variable values, which provides the context for the evaluation, and a bound variable evaluation must similarly be
within its environment.

This chapter presents the static expressions that lie at the core of the Object Constraint Language (OCL 2.0),
an expression language incorporated into UML that is used to describe computations in object models. A com-
plete definition of OCL is outside of the scope of this document - this can be found in the OCL 2.0 submission
document [OCL 2.0]. The generic expression templates that allow a family of expression languages to be
stamped out are introduced at the end of the chapter.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 128

STATIC EXPRESSIONS
12.1 POSITION IN ARCHITECTURE

12.1.1 Example
A typical expression may look like the following:

bank.hasMoney and bank.hasStaff

This expression has two boolean sub-expressions "bank.hasMoney" and "bank.hasStaff", which are evaluated;
the logical and operator is then applied to the two results, yielding an overall boolean value for the expression.
This is a very simple expression, but shows that expressions can have sub-expressions, and when evaluated they
yield a result of specified type.

This expression could either be used to form the basis of a constraint (that a bank must have both money and
staff) or a query (a means of enquiring whether a bank has both money and staff). Thus every expression must
have a context to show how its evaluation is used.

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 129

STATIC EXPRESSIONS
12.2 ABSTRACT SYNTAX

12.2.1 Derivation
Figure 12-1 on page 130 shows the derivation of the static expressions abstract syntax package using the abstract
syntax templates described in sections 12.6.1 and 12.6.2.

Note that the type attribute inherited from expression is overridden for not, and, equals, greater than and
includes expressions to be boolean.

Figure 12-1 Derivation of Static Expressions abstract syntax Package

Expression ConcreteExp
ExpCategory

Typed
Expression
Operand ConcreteExp

ExpCategory
operand
operandType

StaticExpressions

AbstractSyntax

type:Boolean

IncludesExp

name:String

ConstantExp Variable
Declaration

iterator

VariableExp

StaticExp

Bound
Variable

Property
CallExp

1 Property

referred
Property1

referred
Variable 1

type:Boolean

NotExp

type:Boolean

AndExp

type:Boolean

EqualsExp

result
1

type:Boolean

GreaterThan
Exp

IterateExp

EqualsExp
StaticExp

GreaterThanExp
StaticExp

IfExp
StaticExp

NotExp
StaticExp

AndExp
StaticExp NotExp

StaticExp
operand
Boolean

AndExp
StaticExp
left
Boolean

AndExp
StaticExp
right
Boolean

IfExp
StaticExp
condition
Boolean

IncludesExp
StaticExp
source
CollectionType

IterateExp
StaticExp
source
CollectionType

<Exp
Category>

Classifier

<Concrete
Exp>

1

type

varName:String

Variable
Declaration

1..*scope
1type

Expression

IncludesExp
StaticExp

ConstantExp
StaticExp

BoundVariable
StaticExp

PropertyCallExp
StaticExp

IterateExp
StaticExp

<Exp
Category>

<Concrete
Exp> 1

<operand>

Expression
Operand ConcreteExp

ExpCategory
operand

<Exp
Category>

<Concrete
Exp> 1

<operand>

EqualsExp
StaticExp

left

EqualsExp
StaticExp

right

GreaterThanExp
StaticExp

left

GreaterThanExp
StaticExp

right

IfExp
StaticExp

thenExpression

IfExp
StaticExp

elseExpression

IncludesExp
StaticExp

element

IterateExp
StaticExp

body

PropertyCallExp
VariableExp

source
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 130

STATIC EXPRESSIONS
12.2.2 Model
Figure 12-2 on page 131 shows the stamped out abstract syntax of the static expressions package. A static expres-
sion is an expression whose evaluation does not change the state of the system. An expression can either be a
static expression or an action (an expression whose evaluation changes the state of the system). An expression
has a type that its evaluation must conform to, and a scope which consists of one or more variable declarations -
these are variables that may be referred to in any sub-expressions (operand expressions) of that expression. Vari-
able expressions are static expressions that contain a bound variable that is a reference to a variable declaration
that has been introduced to its scope by another expression higher in the expression tree. Property call expres-
sions return the value of a property (e.g. an attribute, query or association end) in relation to a particular source
variable. An iterate expression evaluates a sub-expression for each element in a collection, and returns a value
dependent upon that computation. An if expression returns one of two alternative values dependent upon the
evaluation of a condition expression. A constant expression is a named expression that evaluates to an immutable
value. Not, and, equals, greater than and includes expressions all return boolean values dependent upon the val-
ues of their operands.

Many of the descriptions of the modelling constructs in this and subsequent sections in this chapter are based
upon those in the OCL 2.0 submission [OCL 2.0].

Figure 12-2 Abstract syntax for Static Expressions package

AndExp
An and expression is an expression that evaluates to the logical and of its two operand values.

Associations

StaticExp ClassifierExpression

name:String

ConstantExp

varName:String

Variable
Declaration

IfExp

type:Boolean

NotExp

type:Boolean

AndExp

type:Boolean

EqualsExp

type:Boolean

GreaterThanExp

type:Boolean

IncludesExp

IterateExp

condition1
thenExpression1
elseExpression1

source1
body1

source1

element1

right1

left1

right1

left1

right1

left1

operand1

VariableExp

Bound
Variable

PropertyCall
Exp

source 1

referred
Variable

1

Property

referred
Property 1

type

type

scope

1
1

1..*

StaticExpressions::AbstractSyntax

iterator result1 1
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 131

STATIC EXPRESSIONS
left The left hand operand.
right The right hand operand.
type The return type of the expression (boolean).

BoundVariable
A bound variable is an expression that is a reference to variable declaration that is within scope (i.e. a variable
that has been declared by another expression higher in the expression tree). Every expression has a variable "self"
within its scope, which points to the object that owns the feature (such as a constraint or query) that provides the
context for the evaluation.

Associations
referredVariable The variable declaration that the bound variable acts as a pointer to. This variable declaration
must be within the scope of the bound variable.

ConstantExp
A constant is an expression that has a name and whose evaluation points to an immutable value.

Attributes
name The name of the constant.

EqualsExp
An equals expression is an expression that evaluates to the logical result of the equality test of its two operand
values.

Associations
left The left hand operand.
right The right hand operand.
type The return type of the expression (boolean).

Expression
Expression is the abstract superclass for all expressions including static expressions and actions (see Chapter 16).
An expression has a type which its evaluation must conform to, and a scope (one or more variable declarations
that may be referred to in any operand sub-expressions).

Associations
type The return type of the expression.
scope The set of variable declarations that may be referred to within any operand sub-expressions.

GreaterThanExp
A greater than expression is an expression that evaluates to the logical result of testing whether its left operand
value is greater than its right operand value.

Associations
left The left hand operand.
right The right hand operand.
type The return type of the expression (boolean).
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 132

STATIC EXPRESSIONS
IfExp
An if expression evaluates to the value of one of two alternative expressions, depending on the evaluation of the
condition expression. Both the then and the else expressions are mandatory since the if expression must guarantee
to result in a value.

Associations
condition The logical expression whose evaluation determines whether the value of the then expression (if the
condition evaluates to true) or the else expression (if the condition evaluates to false) gets returned as the
value of the if expression.
thenExpression The expression whose value is returned by the if expression if the condition expression evalu-
ates to true.
elseExpression The expression whose value is returned by the if expression if the condition expression evalu-
ates to false.

IncludesExp
An includes expression is an expression that evaluates to the logical result of testing whether its element operand
value is a member of the collection returned by the source operand.

Associations
source The expression that returns a collection that the value of element is tested against.
element The expression whose value is tested to be within the collection returned by the source expression.
type The return type of the expression (boolean).

IterateExp
An iterate expression is an expression which evaluates its body expression for each element in the collection
returned by the source expression, and returns a result whose value depends upon the computation.

Associations
source An expression that returns a collection - the body expression is then evaluated for each element in that
collection.
body The expression that is evaluated for each member of the collection returned by the source expression.
iterator The variable that is bound to each element in the source collection whilst evaluating the body expres-
sion.
result The variable that represents the result returned by the evaluation of the iterate expression.

NotExp
A not expression is an expression that evaluates to the logical not of its operand value.

Associations
operand The boolean operand expression.
type The return type of the expression (boolean).

PropertyCallExp
A property call expression is an expression that refers to a property (e.g. an attribute, query or association end) of
a particular source element, and which evaluates to the value of that property.

Associations
source The expression includes some bound variable whose value is used as the context for the referred prop-
erty.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 133

STATIC EXPRESSIONS
referredProperty The property whose value is returned by the property call expression. Properties include
attributes, queries and association ends.

StaticExp
A static expression is an expression that does not change the state of the system (in contrast with an action). All
the expressions described in this chapter are static expressions. Any static expression may be used to form the
basis of a query (see Chapter 14) providing its type matches the query type, and any static expression that returns
a boolean value may form the basis of a constraint (see Chapter 13) or an operation pre-condition or post-condi-
tion (see Chapter 17).

VariableDeclaration
A variable declaration binds a name to a type. Certain expressions, notably iterate expressions, introduce variable
declarations which can be referred to in expressions where the variable is in scope (i.e. expressions lower down in
the expression tree). In addition, every expression has a variable "self" within its scope, which points to the object
whose class ultimately owns the expression - this is introduced by the context of the root expression in an expres-
sion tree (e.g. a constraint, query or operation). It is important to note that a variable declaration is not itself an
expression.

Attributes
varName The name of the variable.
Associations
type The type of the variable.

VariableExp
A variable expression is an expression that contains a bound variable. A variable expression may be a property
call expression or a bound variable itself.

12.2.3 Well-formedness rules

AndExp
[1] The scope of the left hand operand of an and expression must include all the variable declarations within the
scope of the and expression.

context AndExp inv:
self.left.scope -> includesAll(self.scope)

[2] The scope of the right hand operand of an and expression must include all the variable declarations within the
scope of the and expression.

context AndExp inv:
self.right.scope -> includesAll(self.scope)

[3] The left hand operand of an and expression must have a boolean return type.

context AndExp inv:
self.left.type.isKindOf(Boolean)

[4] The right hand operand of an and expression must have a boolean return type.

context AndExp inv:
self.right.type.isKindOf(Boolean)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 134

STATIC EXPRESSIONS
BoundVariable
[1] The referred variable declaration of a bound variable must be within scope.

context BoundVariable inv:
self.scope -> includes(self.referredVariable)

[2] The return type of a bound variable must match the type of the referred variable declaration.

context BoundVariable inv:
self.type = self.referredVariable.type

EqualsExp
[1] The scope of the left hand operand of an equals expression must include all the variable declarations within
the scope of the equals expression.

context EqualsExp inv:
self.left.scope -> includesAll(self.scope)

[2] The scope of the right hand operand of an equals expression must include all the variable declarations within
the scope of the equals expression.

context EqualsExp inv:
self.right.scope -> includesAll(self.scope)

[3] The left and right hand operands of an equals expression must match.

context EqualsExp inv:
self.left.type = self.right.type

Expression
[1] An expression cannot have two variable declarations with the same name within its scope.

context Expression inv:
self.scope -> forAll(v1 |
 self.scope -> forAll(v2 |
 v1 <> v2 implies v1.varName <> v2.varName))

GreaterThanExp
[1] The scope of the left hand operand of a greater than expression must include all the variable declarations
within the scope of the greater than expression.

context GreaterThanExp inv:
self.left.scope -> includesAll(self.scope)

[2] The scope of the right hand operand of a greater than expression must include all the variable declarations
within the scope of the greater than expression.

context GreaterThanExp inv:
self.right.scope -> includesAll(self.scope)

[3] The left and right hand operands of a greater than expression must match.

context GreaterThanExp inv:
self.left.type = self.right.type
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 135

STATIC EXPRESSIONS
IfExp
[1] The scope of the condition expression of an if expression must include all the variable declarations within the
scope of the if expression.

context IfExp inv:
self.condition.scope -> includesAll(self.scope)

[2] The scope of the then expression of an if expression must include all the variable declarations within the
scope of the if expression.

context IfExp inv:
self.thenExpression.scope -> includesAll(self.scope)

[3] The scope of the else expression of an if expression must include all the variable declarations within the scope
of the if expression.

context IfExp inv:
self.elseExpression.scope -> includesAll(self.scope)

[4] The condition expression of an if expression must have a boolean return type.

context IfExp inv:
self.condition.type.isKindOf(Boolean)

[5] The return type of an if expression must match the types of both the then and else expressions.

context IfExp inv:
self.type = self.thenExpression.type and
 self.type = self.elseExpression.type

IncludesExp
[1] The scope of the source expression of an includes expression must include all the variable declarations within
the scope of the includes expression.

context IncludesExp inv:
self.source.scope -> includesAll(self.scope)

[2] The scope of the element expression of an includes expression must include all the variable declarations
within the scope of the includes expression.

context IncludesExp inv:
self.element.scope -> includesAll(self.scope)

[3] The type of the source expression of an includes expression must be a collection type.

context IncludesExp inv:
self.source.type.isKindOf(CollectionType)

[4] The type of the element expression in an includes expression must match the element type of the source col-
lection.

context IncludesExp inv:
self.element.type.isKindOf(self.source.type.elementType)

IterateExp
[1] The scope of the source expression of an iterate expression must include all the variable declarations within
the scope of the iterate expression.

context IterateExp inv:
self.source.scope -> includesAll(self.scope)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 136

STATIC EXPRESSIONS
[2] The scope of the body expression of an iterate expression must include all the variable declarations within the
scope of the iterate expression.

context IterateExp inv:
self.body.scope -> includesAll(self.scope)

[3] The scope of the body expression of an iterate expression must include the iterator and result variable decla-
rations.

context IterateExp inv:
self.body.scope -> includes(self.iterator) and
self.body.scope -> includes(self.result)

[4] The type of the source expression of an iterate expression must be a collection type.

context IterateExp inv:
self.source.type.isKindOf(CollectionType)

[5] The type of the iterator variable in an iterate expression must match the element type of the source collection.

context IterateExp inv:
self.iterator.type.isKindOf(self.source.type.elementType)

[6] The return type of an iterate expression must match the type of the result variable.

context IterateExp inv:
self.type = self.result.type

NotExp
[1] The scope of the operand expression of a not expression must include all the variable declarations within the
scope of the not expression.

context NotExp inv:
self.operand.scope -> includesAll(self.scope)

[2] The operand expression of a not expression must have a boolean return type.

context NotExp inv:
self.operand.type.isKindOf(Boolean)

PropertyCallExp
[1] The referred property of a property call expression must be one of the member properties of the return type of
the source expression.

context PropertyCallExp inv:
self.source.type.memberProperty -> includes(self.referredProperty)

[2] The return type of a property call expression must match the type of the referred property.

context PropertyCallExp inv:
self.type = self.referredProperty.type
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 137

STATIC EXPRESSIONS
12.3 SEMANTIC DOMAIN

12.3.1 Derivation
Fig 12-3 on page 138 shows the derivation of the static expressions semantic domain package using the semantic
domain templates described in sections 12.6.1 and 12.6.2.

Figure 12-3 Derivation of Static Expressions semantic domain Package

12.3.2 Model
Fig. 12-4 on page 139 shows the stamped out semantic domain of the static expressions package. It defines the
concepts that are necessary to express the meaning of static expressions. A static expression evaluation is one that
does not change the state of the system (as opposed to an action evaluation).

An expression evaluation is an instance of an expression, and has a value and an environment, which consists
of one or more variable values that may be used as the context of any operand sub-expression evaluations. A var-

Expression
OperandValue ConcreteExpEval

ExpEvalCategory
operand

StaticExpressions

SemanticDomain

Variable
Value

iterator

Variable
ExpEval

StaticExpEval

Bound
VariableEval

Property
CallExp

1 Property
Evaluation

referred
Property1

referred
Variable1

result
1

Iterate
ExpEval

EqualsExpEval
StaticExpEval

GreaterThanExpEval
StaticExpEval

IfExpEval
StaticExpEval

NotExpEval
StaticExpEval

AndExpEval
StaticExpEval

<ExpEval
Category>

<Concrete
ExpEval> 1

<operand>

ExpressionValue ConcreteExpEval
ExpEvalCategory

<ExpEval
Category>

Value

<Concrete
ExpEval>

1

valueVariable
Value

1..*env 1value

Expression
Evaluation

ConstantExpEval
StaticExpEval

BoundVariableEval
StaticExpEval

PropertyCallExpEval
StaticExpEval

IncludesExpEval
StaticExpEval

IterateExpEval
StaticExpEval

AndExpEval
StaticExpEval

left

AndExpEval
StaticExpEval

right

EqualsExpEval
StaticExpEval

left

EqualsExpEval
StaticExpEval

right

GreaterThanExpEval
StaticExpEval

left

NotExpEval
StaticExpEval

operand GreaterThanExpEval
StaticExpEval
right

IfExpEval
StaticExpEval
condition

IfExpEval
StaticExpEval
thenExpression

IfExpEval
StaticExpEval
elseExpression

IncludesExpEval
StaticExpEval
source

IncludesExpEval
StaticExpEval
element

IterateExpEval
StaticExpEval
source

IterateExpEval
StaticExpEval
body

PropertyCallExpEval
VariableExpEval
source
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 138

STATIC EXPRESSIONS
iable value points to some value which is used as the basis for any variable expression evaluation. Property call
expression evaluations return a property evaluation (which may be a slot, query or link end evaluation) in relation
to a particular source variable value. Each of the other concrete expressions described in section 12.2 have an
equivalent concrete expression evaluation - fuller descriptions for these are given in section 12.2.2 than are given
below.

Figure 12-4 Semantic domain for Static Expressions package

AndExpEval
An and expression evaluation is an evaluation of an and expression.

Associations
left The evaluation of the left hand operand.
right The evaluation of the right hand operand.

BoundVariableEval
A bound variable evaluation is an evaluation of a bound variable. It points to a variable value which in turn points
to a value that acts as the reference for a property call expression evaluation.

Associations
referredVariable Points to the variable value that in turns points to the reference value.

Static
ExpEval ValueExpression

Evaluation

Constant
ExpEval

Variable
Value

If
ExpEval

Not
ExpEval

And
ExpEval

Equals
ExpEval

GreaterThan
ExpEval

Includes
ExpEval

Iterate
ExpEval

condition1
thenExpression1
elseExpression1

source1
body1

source1

element1

right1

left1

right1

left1

right1

left1

operand1

Variable
ExpEval

Bound
VariableEval

PropertyCall
ExpEval

source 1

referred
Variable

1

Property
Evaluation

referred
Property 1

value

value

env

1
1

1..*

StaticExpressions::SemanticDomain

iterator result1 1
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 139

STATIC EXPRESSIONS
ConstantExpEval
A constant expression evaluation is an evaluation of a constant expression. It is a reference to some immutable
value.

EqualsExpEval
An equals expression evaluation is an evaluation of an equals expression.

Associations
left The evaluation of the left hand operand.
right The evaluation of the right hand operand.

ExpressionEvaluation
Expression evaluation is the abstract superclass for all expression evaluations including static expression evalua-
tion and action evaluations (see Chapter 16. An expression evaluation has a value and an environment, which
consists of one or more variable values that may be used as the context of any operand sub-expression evalua-
tions.

Associations
value The value of the expression evaluation.
env The set of variable values that form the environment.

GreaterThanExpEval
A greater than expression evaluation is an evaluation of a greater than expression.

Associations
left The evaluation of the left hand operand.

right The evaluation of the right hand operand.

IfExpEval
An if expression evaluation is an evaluation of in if expression.

Associations
condition The logical expression evaluation that determines whether the value of the then expression (if the
condition is true) or the else expression (if the condition is false) gets returned as the value of the if expression
evaluation.
thenExpression The expression evaluation that is returned by the if expression evaluation if the condition is
true.
elseExpression The expression evaluation that is returned by the if expression evaluation if the condition is
false.

IncludesExpEval
An includes expression evaluation is an evaluation of an includes expression.

Associations
source The expression evaluation that returns a collection that the element is tested against.
element The expression evaluation that is tested to be within the collection returned by the source.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 140

STATIC EXPRESSIONS
IterateExpEval
An iterate expression evaluation is an evaluation of an iterate expression which evaluates its body expression for
each element in the collection returned by the source expression, and returns a result whose value depends upon
the computation.

Associations
source An expression evaluation that returns a collection - there is a body expression evaluation and iterator
variable value for each element in that collection.
body The expression evaluations that are associated with each member of the collection returned by the
source.
iterator The variable values that are bound to each element in the source collection and which are used in the
body expression evaluations.
result The variable value that represents the result of the iterate expression evaluation.

NotExpEval
A not expression evaluation is an evaluation of a not expression.

Associations
operand The evaluation of the operand expression.

PropertyCallExpEval
A property call expression evaluation is an evaluation of a property call expression. It refers to a property evalua-
tion (e.g. a slot, query or link end evaluation).

Associations
source The expression evaluation that includes some bound variable value that is used as the context for the
referred property.
referredProperty The property evaluation that is returned by the property call expression. Property evaluations
include slot values, query evaluations and link end evaluations.

StaticExpEval
A static expression evaluation is an expression evaluation that does not change the state of the system. All
expression evaluations described in this chapter are static expression evaluations. Static expression evaluations
may form the basis of evaluations of queries, constraints and operation pre-conditions and post-conditions.

VariableExpEval
A variable expression evaluation is an evaluation of a variable expression. A variable expression evaluation may
be a property call expression evaluation or a bound variable evaluation.

VariableValue
A variable value is an instance of a variable declaration, and is a reference to some value which provides the con-
text for property call expression evaluations. It is important to note that a variable value is not an expression eval-
uation.

Associations
value The value of the variable.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 141

STATIC EXPRESSIONS
12.3.3 Well-formedness rules

AndExpEval
[1] The environment of the left hand operand of an and expression evaluation must include all the variable values
within the environment of the and expression evaluation.

context AndExpEval inv:
self.left.env -> includesAll(self.env)

[2] The environment of the right hand operand of an and expression evaluation must include all the variable val-
ues within the environment of the and expression evaluation.

context AndExpEval inv:
self.right.env -> includesAll(self.env)

BoundVariableEval
[1] The referred variable value of a bound variable evaluation must be within that evaluation’s environment.

context BoundVariableEval inv:
self.env -> includes(self.referredVariable)

[2] The value of a bound variable evaluation must be the same as its referred variable’s value.

context BoundVariableEval inv:
self.value = self.referredVariable.value

EqualsExpEval
[1] The environment of the left hand operand of an equals expression evaluation must include all the variable val-
ues within the environment of the equals expression evaluation.

context EqualsExpEval inv:
self.left.env -> includesAll(self.env)

[2] The environment of the right hand operand of an equals expression evaluation must include all the variable
values within the environment of the equals expression evaluation.

context EqualsExpEval inv:
self.right.env -> includesAll(self.env)

GreaterThanExpEval
[1] The environment of the left hand operand of a greater than expression evaluation must include all the variable
values within the environment of the greater than expression evaluation.

context GreaterThanExpEval inv:
self.left.env -> includesAll(self.env)

[2] The environment of the right hand operand of a greater than expression evaluation must include all the varia-
ble values within the environment of the greater than expression evaluation.

context GreaterThanExpEval inv:
self.right.env -> includesAll(self.env)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 142

STATIC EXPRESSIONS
IfExpEval
[1] The environment of the condition expression evaluation of an if expression evaluation must include all the
variable values within the environment of the if expression evaluation.

context IfExpEval inv:
self.condition.env -> includesAll(self.env)

[2] The environment of the then expression evaluation of an if expression evaluation must include all the variable
values within the environment of the if expression evaluation.

context IfExpEval inv:
self.thenExpression.env -> includesAll(self.env)

[3] The environment of the else expression evaluation of an if expression evaluation must include all the variable
values within the environment of the if expression evaluation.

context IfExpEval inv:
self.elseExpression.env -> includesAll(self.env)

IncludesExpEval
[1] The environment of the source expression evaluation of an includes expression evaluation must include all the
variable values within the environment of the includes expression evaluation.

context IncludesExpEval inv:
self.source.env -> includesAll(self.env)

[2] The environment of the element expression evaluation of an includes expression evaluation must include all
the variable values within the environment of the includes expression evaluation.

context IncludesExpEval inv:
self.element.env -> includesAll(self.env)

IterateExpEval
[1] The environment of the source expression evaluation of an iterate expression evaluation must include all the
variable values within the environment of the iterate expression evaluation.

context IterateExpEval inv:
self.source.env -> includesAll(self.env)

[2] The environment of the body expression evaluation of an iterate expression evaluation must include all the
variable values within the environment of the iterate expression evaluation.

context IterateExpEval inv:
self.body.env -> includesAll(self.env)

[3] The environment of the body expression evaluation of an iterate expression evaluation must include the itera-
tor and result variable values.

context IterateExpEval inv:
self.body.env -> includes(self.iterator) and
self.body.env -> includes(self.result)

NotExpEval
[1] The environment of the operand of a not expression evaluation must include all the variable values within the
environment of the not expression evaluation.

context NotExpEval inv:
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 143

STATIC EXPRESSIONS
self.operand.env -> includesAll(self.env)

PropertyCallExpEval
[1] The environment of the source expression evaluation of an property call expression evaluation must include
all the variable values within the environment of the property call expression evaluation.

context PropertyCallExpEval inv:
self.source.env -> includesAll(self.env)

[2] The referred property evaluation of a property call expression evaluation must be one of the owned property
evaluations of the value of the source expression evaluation.

context PropertyCallExpEval inv:
self.source.value.ownedPropertyEval -> includes(self.referredProperty)

[3] The value of a property call expression evaluation must be the same as its referred property’s value.

context PropertyCallExpEval inv:
self.value = self.referredProperty.value

12.4 SEMANTIC MAPPING

12.4.1 Derivation
Fig 12-5 on page 145 shows the derivation of the static expressions semantic domain package using the semantic
mapping templates described in sections 12.6.1 and 12.6.2. These templates ensure that each expression evalua-
tion in the semantic domain is mapped to the appropriate expression in the abstract syntax, and that operand eval-
uations are mapped to the corresponding operand expressions.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 144

STATIC EXPRESSIONS
Figure 12-5 Derivation of Static Expressions semantic mapping package

12.4.2 Model
The semantic mappings package for expressions is shown in 12-6 on page 146. It defines the relationship that
holds between expressions and their evaluations. An expression evaluation is an instance of an expression, and
the meaning of an expression is defined by the set of all possible evaluations that can be assigned to the expres-
sion. In addition, a variable value is an instance of a variable declaration (which is not an expression). For an
expression evaluation to be a valid instance of an expression, its value must conform to the type of that expres-
sion, and any operand values must also conform to the operand types in that expression.

StaticExpressions

SemanticDomain

EqualsExp
EqualsExpEval

GreaterThanExp
GreaterThanExpEval

IfExp
IfExpEval

NotExp
NotExpEval

AndExp
AndExpEval ConstantExp

ConstantExpEval

BoundVariablel
BoundVariableEval

PropertyCallExp
PropertyCallExpEval

IncludesExp
IncludesExpEval

IterateExp
IterateExpEval

NotExpEval
operand

ExpressionSemantics ConcreteExp
ConcreteExpEval

<ConcreteExp> <Concrete
ExpEval>

of

1

Variable
Declaration VariableValue

of

1

Expression Expression
Evaluation

of

1

ExpressionOperand
Semantics ConcreteExpEval

operand

StaticExp
StaticExpEval

AndExpEval
left

AndExpEval
right

EqualsExpEval
left

EqualsExpEval
right

GreaterThanExpEval
left

GreaterThanExpEval
right

IfExpEval
condition

IfExpEval
thenExpression

IfExpEval
elseExpression

IncludesExpEval
source

IncludesExpEval
element

IterateExpEval
source

IterateExpEval
body

PropertyCallExpEval
source
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 145

STATIC EXPRESSIONS
Figure 12-6 Semantic Mapping for the Static Expressions Package

12.4.3 Well-formedness rules

AndExpEval
[1] An and expression evaluation’s left hand operand commutes with the corresponding expression’s left hand
operand.

context AndExpEval inv:
self.left.of = self.of.left

[2] An and expression evaluation’s right hand operand commutes with the corresponding expression’s right hand
operand.

context AndExpEval inv:
self.right.of = self.of.right

BoundVariableEval
[1] A bound variable evaluation’s referred variable value commutes with the corresponding bound variable’s
referred variable declaration.

context BoundVariableEval inv:
self.referredVariable.of = self.of.referredVariable

EqualsExpEval
[1] An equals expression evaluation’s left hand operand commutes with the corresponding expression’s left hand
operand.

context EqualsExpEval inv:
self.left.of = self.of.left

StaticExpressions::SemanticMapping

Expression Expression
Evaluation

of

1

Static
Exp

Static
ExpEval

of

1

Variable
Declaration

Variable
Value

of

1

Not
Exp

Not
ExpEval

of

1

And
Exp

And
ExpEval

of

1

Equals
Exp

Equals
ExpEval

of

1

GreaterThanExp
Exp

GreaterThan
ExpEval

of

1

If
Exp

If
ExpEval

of

1

Includes
Exp

Includes
ExpEval

of

1

Iterate
Exp

Iterate
ExpEval

of

1

Constant
Exp

Constant
ExpEval

of

1

BoundVariable
Exp

BoundVariable
ExpEval

of

1

PropertyCall
Exp

PropertyCall
ExpEval

of

1

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 146

STATIC EXPRESSIONS
[2] An equals expression evaluation’s right hand operand commutes with the corresponding expression’s right
hand operand.

context EqualsExpEval inv:
self.right.of = self.of.right

ExpressionEvaluation
[1] The value of an expression evaluation should conform to its expression’s type.

context ExpressionEvaluation inv:
self.value.of.conformsTo(self.of.type)

[2] An expression evaluation should have a variable value within its environment for every variable declaration
within the scope of the corresponding expression.

context ExpressionEvaluation inv:
self.of.scope -> forAll(v |
 self.env -> exists(vv | vv.of=v))

[3] For each variable value within the environment of an expression evaluation, there should be a variable decla-
ration within the scope of the corresponding expression.

context ExpressionEvaluation inv:
self.env -> forAll(vv |
 self.of.scope -> exists(v | vv.of=v))

GreaterThanExpEval
[1] A greater than expression evaluation’s left hand operand commutes with the corresponding expression’s left
hand operand.

context GreaterThanExpEval inv:
self.left.of = self.of.left

[2] A greater than expression evaluation’s right hand operand commutes with the corresponding expression’s
right hand operand.

context GreaterThanExpEval inv:
self.right.of = self.of.right

IfExpEval
[1] An if expression evaluation’s condition operand commutes with the corresponding expression’s condition
operand.

context IfExpEval inv:
self.condition.of = self.of.condition

[2] An if expression evaluation’s then operand commutes with the corresponding expression’s then operand.

context IfExpEval inv:
self.thenExpression.of = self.of.thenExpression

[3] An if expression evaluation’s else operand commutes with the corresponding expression’s else operand.

context IfExpEval inv:
self.elseExpression.of = self.of.elseExpression
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 147

STATIC EXPRESSIONS
IncludesExpEval
[1] An includes expression evaluation’s source operand commutes with the corresponding expression’s source
operand.

context IncludesExpEval inv:
self.source.of = self.of.source

[2] An includes expression evaluation’s element operand commutes with the corresponding expression’s element
operand.

context IncludesExpEval inv:
self.element.of = self.of.element

IterateExpEval
[1] An iterate expression evaluation’s source operand commutes with the corresponding expression’s source
operand.

context IterateExpEval inv:
self.source.of = self.of.source

[2] An iterate expression evaluation’s body operand commutes with the corresponding expression’s body oper-
and.

context IterateExpEval inv:
self.body.of = self.of.body

[3] An iterate expression evaluation’s iterator variable value commutes with the corresponding expression’s iter-
ator variable declaration.

context IterateExpEval inv:
self.iterator.of = self.of.iterator

[4] An iterate expression evaluation’s result variable value commutes with the corresponding expression’s result
variable declaration.

context IterateExpEval inv:
self.result.of = self.of.result

NotExpEval
[1] A not expression evaluation’s operand commutes with the corresponding expression’s operand.

context NotExpEval inv:
self.operand.of = self.of.operand

PropertyCallExpEval
[1] A property call expression evaluation’s source operand commutes with the corresponding expression’s source
operand.

context PropertyCallExpEval inv:
self.source.of = self.of.source

[2] A property call expression evaluation’s referred property evaluation commutes with the corresponding
expression’s referred property.

context PropertyCallExpEval inv:
self.referredProperty.of = self.of.referredProperty
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 148

STATIC EXPRESSIONS
VariableValue
[1] The value of a variable value should conform to its variable declaration’s type.

context VariableValue inv:

self.value.of.conformsTo(self.of.type)

12.5 EXAMPLE SNAPSHOTS

Figure 12-8 on page 150 shows a partial snaphot of the constraint shown in figure 12-7 on page 149. This snap-
shot is concerned largely with showing the relationship between expressions (and their evaluations) in an expres-
sion tree, how the variables within scope and environment are propagated. As a result, the constraint itself is
omitted for brevity - an alternative partial view of the same snapshot can be found in the constraints chapter
(Chapter 13), where the relationship between a constraint and its body expression is depicted.

Figure 12-7 Example class and constraint

x : Integer

A

context A inv:
 self.x = 10
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 149

STATIC EXPRESSIONS
Figure 12-8 Snapshot of Static Expression semantic mapping package

12.6 TEMPLATES

This section introduces a set of generic templates which capture the essence of expressions, and can be used to
stamp out a family of expression languages. These were used in Sections 12.2 to 12.4 to stamp out the core of
OCL 2.0.

12.6.1 Expression
Expressions have a type and a scope (a set of variable declarations), and their evaluations have a value and an
environment (a set of variable values), which provides the context for the evaluation.

Figure 12-9 on page 151 shows the abstract syntax for expressions. An expression has a type - this may be fur-
ther constrained for a stamped out concrete expression (for example, an and expression has a boolean type). An
expression also has a scope, which consists of one or more variable declarations - these declare the variables that
may be referred to in any sub-expressions of the originating expression. A variable declaration also has a type,

name = "A"

A : Class

name = "Boolean"

: Primitive

:EqualsExp

varName =
"self"

:Variable
Declaration

scope
type

:EqualsExp
Eval

envvalue

:Primitive
Value

:Object
of

of Variable
Value

type value

of

of

name = "x"

x : Attribute
:Slot

of

name = "Integer"

: Primitive :Primitive
Value

of

value
type

member
Property

owned
Property

Eval

:Property
CallExp

name = "10"

: ConstantExp :Constant
ExpEval

of

right right

type value

PropertyCall
ExpEval

left left

scope
env

scope
env

type value

referred
Property

referred
Property

owned
Slot

member
Attribute

:Bound
Variable

scope

referred
Variable

source

:Bound
VariableEval

source

env

referred
Variable

type value
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 150

STATIC EXPRESSIONS
and a name by which it is referred. Expressions are grouped into categories (static expressions and actions), and
each concrete expression belongs to a particular category.

Figure 12-9 Expression (abstract syntax) template

An expression cannot have two variable declarations with the same name within its scope. This is expressed
using the following constraint:

context Expression inv:
self.scope -> forAll(v1 |
 self.scope -> forAll(v2 |
 v1 <> v2 implies v1.varName <> v2.varName))

Figure 12-10 on page 151 shows the semantic domain for expressions. An expression evaluation has a value
(for example, an and expression evaluation must return a Boolean value), and is bound to a set of variable values,
which represents the environment or context for the evaluation. A variable value is in effect a pointer to a value.
Expression evaluations are grouped into categories (static expression evaluations and action evaluations), and
each concrete expression evaluation belongs to a particular category.

Figure 12-10 Expression value (semantic domain) template

Figure 12-11 on page 152 shows the semantic mapping for expressions, which associates expression evalua-
tions with expressions, and variable values with variable declarations. The meaning of an expression is defined
by the set of valid evaluations, and the meaning of a variable declaration is defined by the set of valid variable
values. It should be noted that this template is stamped out from the basic semantics template, but its derivation is
not explicitly shown here.

Expression ConcreteExp
ExpCategory

<ExpCategory>

Classifier

<Concrete
Exp>

1

type

varName:String

Variable
Declaration

1..*scope
1type

Expression

ExpressionValue ConcreteExpEval
ExpEvalCategory

<ExpEval
Category>

Value

<Concrete
ExpEval>

1

value
VariableValue

1..*env 1value

Expression
Evaluation
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 151

STATIC EXPRESSIONS
Figure 12-11 Expression semantics template

The value of an expression evaluation should be valid in view of its type:

context ExpressionEvaluation inv:
self.value.of.conformsTo(self.of.type)

An expression evaluation should have a variable value within its environment for every variable declaration
within the scope of its corresponding expression:

context ExpressionEvaluation inv:
self.of.scope -> forAll(v |
 self.env -> exists(vv | vv.of=v))

For each variable value within the environment of an expression evaluation, there should be a variable declara-
tion within the scope of its corresponding expression:

context ExpressionEvaluation inv:
self.env -> forAll(vv |
 self.of.scope -> exists(v | vv.of=v))

The value of a variable value should conform to its variable declaration’s type:

context VariableValue inv:
self.value.of.conformsTo(self.of.type)

12.6.2 Expression operands
Expressions have operands upon which they act, which are themselves expressions. The type of those operand
expressions must sometimes be constrained (for example the operands of a logical expression such as and or not
must have a boolean return type). The variable declarations that are within the scope of an expression gets propa-
gated down to its operand (sub-)expressions, and similarly for the variable values within the environment of an
expression evaluation. In this section, templates are introduced that allow one or more operands to be added to
expressions, along with corresponding semantic domain and semantic mapping templates. Each template adds a
single operand - the templates can be stamped out multiple times for multiple operands.

Figure 12-12 on page 153 shows the two abstract syntax templates for expression operands. The upper tem-
plate is a basic operand template, which adds to an expression a single operand, which is itself an expression. The
lower template augments the first by adding a constraint on the return type of the operand.

It should be noted that semantic domain and semantic mapping templates for typed expression operands are
not required, since expression values are already checked against type in the expression operand semantics tem-
plate (see below).

ExpressionSemantics ConcreteExp
ConcreteExpEval

<ConcreteExp> <Concrete
ExpEval>

of

1

Variable
Declaration VariableValue

of

1

Expression Expression
Evaluation

of

1

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 152

STATIC EXPRESSIONS
Figure 12-12 Expression operand (abstract syntax) templates

A crucial aspect of expressions is that their scope is propagated down to their operand sub-expressions; i.e.
whatever variable declarations are within the scope of an expression are also within the scope of that expression’s
operand sub-expressions. This is expressed using the following constraint:

context <ConcreteExp> inv:
self.<operand>.scope -> includesAll(self.scope)

In addition, within the typed expression operand template, an operand’s type should match the type specified
in the parameters:

context <ConcreteExp> inv:
self.<operand>.type.isKindOf(<operandType>)

Figure 12-13 on page 153 shows the semantic domain template for expression operands. An expression evalu-
ation has an operand, which is itself an expression evaluation.

Figure 12-13 Expression operand value (semantic domain) template

As with expression scope, the environment of an expression evaluation is propagated down to its operand sub-
expression evaluations:

context <ConcreteExpEval> inv:
self.<operand>.env -> includesAll(self.env)

ExpressionOperand ConcreteExp
ExpCategory
operand

<Exp
Category>

<Concrete
Exp> 1

<operand>

TypedExpressionOperand ConcreteExp
ExpCategory
operand
operandType

<Exp
Category>

<Concrete
Exp> 1

<operand>

<ConcreteExp>
<ExpCategory>

<operand>

ExpressionOperandValue ConcreteExpEval
ExpEvalCategory
operand

<ExpEval
Category>

<Concrete
ExpEval> 1

<operand>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 153

STATIC EXPRESSIONS
Figure 12-14 on page 154 shows the semantic mapping template for expression operands. The template con-
tains no classes, as it simply adds a constraint to the model that would be stamped out from the abstract syntax
and semantic domain templates.

Figure 12-14 Expression operand semantics template

An expression evaluation’s operands commute with the corresponding expression’s operands:

context <ConcreteExpEval> inv:
self.<operand>.of = self.of.<operand>

12.6.3 Expression context
Expressions cannot exist in isolation - they must always relate to some context, such as a class constraint or
query, or an operation pre- or post-condition. It is the responsibility of the expression context to introduce one or
more variable declarations (such as "self" or any parameters) to the scope of their root expression. These variable
declarations are then propagated down the expression hierarchy as described in expression operands section (sec-
tion 12.6.2). Similarly, instances of these expression context elements introduce corresponding variable values to
the scope of their root expression evaluation. These templates introduce a single variable to the scope; for multi-
ple variables, the templates can be stamped out more than once.

The templates in this section are not actually used to stamp out expressions themselves, and hence they are not
used in this chapter. Instead they are used to stamp out any context for expressions such are constraints, queries
and operations.

Figure 12-15 on page 154 shows the abstract syntax template for an expression context.

Figure 12-15 Expression Context (Abstract Syntax) Template

An expression context introduces one or more variable declarations into the scope of its root expression using
the following constraint:

context <ExpContext> inv:
self.<rootExp>.scope -> exists(v | v.varName=<varName> and v.type=<varType>)

Figure 12-16 on page 155 shows the semantic domain template for an expression context.

ExpressionOperand
Semantics ConcreteExpEval

operand

ExpressionContext
ExpContext
ExpCategory
rootExp
varName
varType

<Exp
Category><ExpContext>

1

<rootExp>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 154

STATIC EXPRESSIONS
Figure 12-16 Expression context (semantic domain) template

An expression context evaluation introduces one or more variable values into the scope of its root expression
evaluation:

context <ExpContextEval> inv:
self.<rootExp>.scope -> exists(v | v.value=<varValue>)

No semantic mapping template is required for expression context, as variable values and variable declarations
are already matched up via the expression semantic mapping constraints in section 12.6.1.

12.7 CHANGES FROM UML 1.4
UML 1.4 defines expressions as strings. This submission aims to provide a fuller definition that is com-
patible with the OCL 2.0 submission.

12.8 RELATIONSHIP TO OCL 2.0 SUBMISSION

• The goal of this submission has not been to match the inheritance hierarchy of the OCL 2.0 submission
exactly (there is no loop expression for example), but the flattened OCL 2.0 model, as templates are used in
place of abstract classes unless polymorphism is required.

• There are no separate property call expressions for individual properties (there is no attribute call expression
for example) - instead the abstract property class is used as a plug-in point.

• There is only one generic iterate expression rather than the iterate expression and iterator expression for sim-
plicity in the OCL 2.0 submission.

• Namespaces (a key part of the OCL 2.0 semantic domain) are not covered in this chapter as they are described
in Chapter 7. Similarly action expressions are covered in Chapter 16.

• A variable declaration is not an expression, as this would mean it could be substituted anywhere an expression
is expected - only certain expressions (such as iterator expressions) can introduce variable declarations.

ExpressionContextValue ExpContextValue
ExpEvalCategory
rootExp
varValue

<ExpEval
Category>

<ExpContext
Eval> 1

<rootExp>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 155

1 Chapter 13
Constraints

This chapter describes the definition of constraints on classes. A constraint is an invariant that must hold true for
all instances (values) of a class. The properties of a constraint are described by an expression that is evaluated in
the context of each instance.

13.1 POSITION IN ARCHITECTURE

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 156

CONSTRAINTS
13.1.1 Example
Figure 13-1 on page 157 shows an example of a simple constraint on a class A. It states that the attribute x in A
must always be equal to 10 for all instances of A.

Figure 13-1 An example of a constraint on a class

13.2 ABSTRACT SYNTAX

13.2.1 Derivation
Figure 13-2 on page 157 describes how the constraints abstract syntax package is derived from the StructuralFea-
tureClassifier and ExpressionContext templates. A constraint is a structural feature. A constraint is associated
with a static expression and has a type (which should be a boolean).

Figure 13-2 Derivation of Constraints abstract syntax package.

x : Integer

A"x Equals 10"
context A inv:

self.x = 10

C onstraints

AbstractSyntax

Class
Cons traint

Boolean

S tructuralFeatureC lassifier

nam e : Nam e

<Structural
Feature>

<C lassifier>
owned<Struc turalFeature>

*owning<Class ifier>

Class ifier
S truc turalFeature
Type

<C lassifier>
Generalization

spec ialization generalization* *

1general spec ific

*

*
1

m em ber<Struc turalFeature>

*

*

inherited<S truc turalFeature>

*redefined<S truc turalFeature>

*

Cons traint
S taticExp
express ion
"self"
self.owningClass

ExpressionC ontext

<Exp
Category>

<ExpC ontext>

1 <rootExp>

1

<Type>
type

1

ExpContex t
ExpCategory
rootExp
varNam e
varType
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 157

CONSTRAINTS
13.2.2 Model
Figure 13-3 on page 158 shows the abstract syntax for the constraints package. Classes are namespaces for con-
straints. Constraints have a name, an expression and a type. A generalisation relationship results in all constraints
of the parent class being inherited by the child class (unless they are redefined).

Figure 13-3 Abstract syntax for the Constraints package.

Class
A class is a namespace for its constraints.

Attributes
isAbstract Describes whether or not the class is abstract.
Associations
generalization The generalizations of the class.
inheritedConstraint The constraints inherited by the class.
memberConstraint The set of all constraints in the namespace of the class.
ownedConstraint The constraints owned by the class.
specializations The specialisations of the class.

Constraint
A constraint is an invariant property of a class that holds true for all values of the class. A constraint has an static
expression that describes the properties of the constraint.

Attributes
name The name of the constraint.
Associations
expression The expression that describes the properties of the constraint.
owningClass The class that owns the constraint.
redefinedConstraint The constraints that have been redefined by the constraint.
type The type of the constraint.

C onstra ints ::A bstractS yntax

nam e : Nam e
ty pe : B oolean

C onstra int

ownedCons traint

*owningClas s

C lass
Genera liza tion

generaliz ation s pec ializ at ion* *

1 1
s pec ific general

*
1

m em berCons traint

*

*

inheritedCons traint

is A bs trac t:B oolean

C lass *

S tatic
E xp

ex pres s ion

*

redefinedCons traint

*

1

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 158

CONSTRAINTS
ClassGeneralization
A generalization relationship between classes.

Associations
general The class that is the more general (parent) class in the relationship.
specific The class that is the more specific (child) class in the relationship.

StaticExpression
An abstract static expression. This class is specialised in Chapter 12 with concrete expressions.

13.2.3 Well-formedness Rules

Class
[1] The members of a class include its owned and inherited constraints.

context Class inv:
self.memberConstraint->includesAll(self.ownedConstraint ->
 union(self.inheritedConstraint))

[2] Constraints cannot be owned and inherited.

context Class inv:
self.ownedConstraint->intersection(self.inheritedConstraint) -> isEmpty

[3] A class cannot have two constraints with the same name.

context Class inv:
self.memberConstraint->forAll(e1|
 self.memberConstraint->forAll(e2|
 e1 <> e2 implies e1.name <> e2.name))

[4] The inherited members of a class are the constraints of its parents classes that aren’t redefined.

context Class inv:
self.inheritedConstraint = self.generalElements()->iterate(p s = Set{} |
 s->union(p.memberConstraint->reject(c |
 self.memberConstraint -> exists(c' |
 c'.redefinedConstraint->includes(c)))))

[5] A class’s constraints may only redefine its parent classes constraints.

context Class inv:
self.memberConstraint -> forAll(a |
 self.generalElements()-> collect(g | g.memberConstraint) ->
 includesAll(a.redefinedConstraint))

Constraint
[1] A constraint introduces the variable declaration "self" into its scope.

context Constraint inv:
self.expression.scope -> exists(v | v.varName="self" and
 v.type=self.owningClass)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 159

CONSTRAINTS
13.2.4 Operations

Class
[1] Looks up a constraint in a class when given a name.

context Class::lookupConstraintforName(x : Name):Constraint
self.memberConstraint->select(e| e.name = x).selectElement()

[2] Looks up a constraint’s name when given the constraint.

context Class::lookupNameForConstraint(x : Constraint):Name
self.memberConstraint->select(e|e = x).selectElement().name

13.3 SEMANTIC DOMAIN

13.3.1 Derivation
Figure 13-4 on page 160 shows how the Constraints semantic domain package is derived from the StructuralFea-
tureClasifierValue and ExpressionContextValue templates. A constraint evaluation is structural feature value and
has an expression evaluation that is evaluated in the context of its owning object.

Figure 13-4 Derivation of Constraints semantic domain package

C onstra ints

S emanticD omain

Cons traintE valuation
S tatic E x pV E val
exprE val
s elf.owningObjec t

E xpressionC ontextV alue

<ExpEval
Category>

<E xpC ontext
E val>

1 < rootE x p>

S tructura lFeatureC lassifie rV alue

<C lassifie r
V alue>

<V alue>
value

owning<C lassifie rV alue>

owned<S tructura lFeatureV alue>

*

C lassifierV alue
S tructura lFeatureV alue
V alue

1

<S tructura l
Feature
V alue>

O bjec t
Cons traintE valuation

V alue

E xpC ontextV alue
E xpE valC ategory
rootE xp
varV alue
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 160

CONSTRAINTS
13.3.2 Model
Figure 13-5 on page 161 shows the semantic domain of the constraints package. A constraint evaluation
describes the result of evaluating a static expression. The result must be true in the context of the constraint eval-
uation’s owning object (the object that is bound to the variable "self").

Figure 13-5 Semantic domain for the Constraints package

ConstraintEvaluation
Constraint evaluations describe the result of evaluating an expression belonging to a constraint.

Associations
expressionEvaluation A constraint’s expression evaluation.
owningObject The object that is the context of the constraint evaluation.
value The result of the constraint evaluation.

13.3.3 Well-formedness Rules

ConstraintEvaluation
[1] A constraint evaluation introduces the value of its context into the environment of its expression evaluation.

context ConstraintEvaluation inv:
self.expressionEvaluation.env -> exists(v |
 v.value=self.owningObject)

[2] A constraint evaluation’s value should be the same as its expression evaluation’s value.

context ConstraintEvaluation inv:
self.value = self.expressionEvaluation.value

[3] A constraint evaluation’s value should evaluate to true.

context ConstraintEvaluation inv:
self.value = true

C onstraints::SemanticD omain

Object

express ionEvaluation 1

owningObjec t

1

StaticExp
Evaluation

C onstraint
Evaluation

ownedConstraint
Evaluation

*

Value
value

1

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 161

CONSTRAINTS
13.4 SEMANTIC MAPPING

13.4.1 Derivation
Figure 13-6 on page 162 illustrates the derivation of the Constraints semantic mapping package using the Struc-
turalFeatureClassifierSemantics template.

Figure 13-6 Derivation of Constraints semantic mapping package

13.4.2 Model
The semantic mapping for the Constraints package is shown in figure 13-7 on page 162. An expression evalua-
tion is a value of an expression and must contain a variable value that binds the variable "self". An object must
contain a constraint evaluation for each of its class’s constraints and vice versa.

Figure 13-7 Semantic mapping for Constraints package

ConstraintEvaluation
Associations
of The constraint of which the constraint evaluation is a value.

Constraints

SemanticMapping

Class
Constraint
Object
ConstraintEvaluation

StructuralFeatureClassifierSemantics Classifier
StructuralFeature
ClassifierValue
StructuralFeatureValue

<Classifier> <Classifier
Value>

1

of

<Structural
Feature>

<Structural
Feature
Value>

1

of

Class
of

Constraints::SemanticMapping

Object
1

Constraint
of Constraint

Evaluation
1

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 162

CONSTRAINTS
13.4.3 Well-formedness rules

ConstraintEvaluation
[1] A constraint evaluation will bind the variable value "self" to its owning object.

context ConstraintEvaluation inv:
self.expressionEvaluation.env -> forAll(v |
 v.of.varName="self" implies v.value=self.owningObject)

[2] An expression evaluation’s expression commutes with its constraint’s expression.

context ConstraintEvaluation inv:
self.expressionEvaluation.of = self.of.expression

[3] The value of a constraint evaluation should be a value of the type that conforms to its constraint’s type.

context ConstraintEvaluation inv:
self.value.of.conformsTo(self.of.type)

Object
[1] An object should contain a constraint evaluation for all constraints in the object’s class’s namespace.

context Object inv:
self.of.memberConstraint->forAll(c |
 self.ownedConstraintEvaluation->exists(d | d.of = c))

[2] For each constraint evaluation owned by an object there should be an constraint of the object’s class’s name-
space that the constraint evaluation is a value of.

context Object inv:
self.ownedConstraintEvaluation->forAll(c |
 self.of.memberConstraint->exists(d | c.of = d))

13.5 EXAMPLE SNAPSHOTS

Figure 13-9 on page 164 shows a partial snapshot of the evaluation of the constraint shown in figure 13-8 on
page 163. The complete evaluation of the expression is omitted for brevity. A constraint is satisfied if it evaluates
to true in the context of an instance of its class. Note how the scope of the equals evaluation expression binds the
constrained object to the variable "self".

Figure 13-8 Example class and constraint

x : Integer

A

"x E quals 10"
c ontex t A inv:

s elf.x = 10
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 163

CONSTRAINTS
Figure 13-9 Snapshot of Constraints semantic mapping package

13.6 CHANGES TO UML 1.4
In UML 1.4, constraint is a concrete class that can be applied to any model element. The machinery involved in
evaluating a constraint for any model element is unacceptably vague in UML 1.4 given the importance of con-
straints in the definition of UML itself. In this submission, templates for defining and evaluating expressions can
be used to generate context specific constraints on any type of element. However, class constraints are considered
sufficient for the infrastructure submission due to the fact that they are the most widely used constraint in UML.

name = "A"

A : C lass

name = "Boolean"

: Primitive

member
Constraint

owningClass

name =
"xEquals10"

 : Constraint

owned
Constraint

:EqualsExp

expression

varName = "self"

:Variable
Declaration

scope
type

:EqualsExp
Eval

expression
Evaluation

envvalue

:Primitive
Value

:Object

:Constraint
Evaluation

of

of

of Variable
Value

owningObject

type
value

of

of

owned
ConstraintEvaluation

type value
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 164

1 Chapter 14
Queries

This chapter describes the definition of queries. A query is a static operation that returns a result in the context of
an instance of a class. The properties of a query are described by an expression.

14.1 POSITION IN ARCHITECTURE

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 165

QUERIES
14.1.1 Example
Figure 14-1 on page 166 shows an example of a simple query on a class A. It returns the value of the attribute x
plus the value of the passed parameter variable y.

Figure 14-1 An example of a query on a class

14.2 ABSTRACT SYNTAX
Figure 14-2 on page 166 describes how the queries abstract syntax package is derived from the StructuralFeature-
Classifier, ExpressionContext and Parameterized templates. A query is a structural feature. A query is also a
parameterized element and is associated with a static expression.

14.2.1 Derivation

Figure 14-2 Derivation of Queries abstract syntax package.

x : Integer

A

context A::getX+Y(y:Integer):Integer
 self.x + y

Queries

AbstractSyntax

Class
Query

Classifier

StructuralFeatureClassifier

name : Name

<Structural
Feature>

<Classifier>
owned<StructualFeature>

*owning<Classifier>

Classifier
StructuralFeature
Type

<Classifier>
Generalization

specialization generalization* *

1general specific

*
1

member<StructualFeature>

*

inherited<StructualFeature>

*redefined<Feature>

Query
StaticExp
expression
"self"
self.owningClass

ExpressionContext
ExpContext
ExpCategory
rootExp
varName
varType

<Exp
Category>

<ExpContext>

1 <rootExp>

1

Parameterized ParameterizedElement
ParameterType

<Parameterized
Element>

Parameter

<Parameter
Type>

1

*

1

owning
<Parameterized

Element>

ownedParameter

type

* memberParameter

Query
Classifier

*

<Type>
type

1

Query

Property

Class

memberProperty
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 166

QUERIES
14.2.2 Model
Figure 14-3 on page 167 shows the abstract syntax for the queries package. Classes are namespaces for queries.
Queries have a name, a type, an expression and a set of parameters. A generalisation relationship results in all
queries of the parent class being inherited by the child class (unless they are redefined).

Figure 14-3 Abstract syntax for the Queries package.

Class
A class is a namespace for its queries.

Attributes
isAbstract Describes whether or not the class is abstract.
Associations
generalization The generalizations of the class.
inheritedQuery The queries inherited by the class.
memberQuery The set of all queries in the namespace of the class.
ownedQuery The queries owned by the class.
specialization The specializations of the class.
memberProperty The properties that are a member of the class.

Queries::AbstractSyntax

name : Name

Query

ownedQuery

*owningClass

Class
Generalization

generalization specialization* *

1 1
specific general

*
1

memberQuery

*

inheritedQuery

isAbstract:Boolean

Class

*

Static
Exp

expression

*

redefinedQuery

1

Classifier
type

1

1
*

1 owningQuery

ownedParameter

type

*

memberParameter

*

name : Name

Parameter

PropertymemberProperty
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 167

QUERIES
Query
A query is a static operation that returns a value in the context of an instance of a class. A query has a static
expression that describes the result of the query. A query is a property, and can therefore be accessed through a
property call expression (see Chapter 12).

Attributes
name The name of the query.
Associations
expression The expression that describes the result of the query.
memberParameter The parameters in the namespace of the query.
ownedParameter The parameters owned by the query.
owningClass The class that owns the query.
redefinedQuery The queries that have been redefined by the query.
type The return type of the query.

ClassGeneralization
A generalization relationship between classes.

Associations
general The class that is the more general (parent) class in the relationship.
specific The class that is the more specific (child) class in the relationship.

StaticExpression
An abstract static expression. This class is specialised in Chapter 12 with concrete expressions.

14.2.3 Well-formedness Rules

Class
[1] The member queries of a class include its owned and inherited queries.

context Class inv:
self.memberQuery->includesAll(self.ownedQuery ->
 union(self.inheritedQuery))

[2] Queries cannot be owned and inherited.

context Class inv:
self.ownedQuery->intersection(self.inheritedQuery) -> isEmpty

[3] A class cannot have two queries with the same name.

context Class inv:
self.memberQuery->forAll(e1|
 self.memberQuery->forAll(e2|
 e1 <> e2 implies e1.name <> e2.name))

[4] The inherited members of a class are the queries of its parents classes that are not redefined.

context Class inv:
self.inheritedQuery = self.generalElements()->iterate(p s = Set{} |
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 168

QUERIES
 s->union(p.memberQuery->reject(c |
 self.memberQuery -> exists(c' |
 c'.redefinedQuery->includes(c)))))

[5] A class’s queries may only redefine its parent classes queries.

context Class inv:
self.memberQuery -> forAll(a |
 self.generalElements()-> collect(g | g.memberQuery) ->
 includesAll(a.redefinedQuery))

[6] A class’s member properties include its member queries.

context Class inv:
self.memberProperty -> includesAll(memberQuery)

Query
[1] A query’s type must conform to the type of its redefined queries.

context Query inv:
self.redefinedQuery->forAll(f |
 self.type.conformsTo(f.type))

[2] The members of a query include its owned parameters

context Query inv:
self.memberParameter->includesAll(self.ownedParameter)

[3] A query cannot have two parameters with the same name.

context Query inv:
self.memberParameter->forAll(e1|
 self.memberParameter->forAll(e2|
 e1 <> e2 implies e1.name <> e2.name))

[4] A query introduces the variable declaration "self" into its scope.

context Query inv:
self.expression.scope -> exists(v | v.varName="self" and
 v.type=self.owningClass)

[5] A query introduces variable declarations for each of its parameters into its scope.

context Query inv:
self.parameter -> forAll(p |
 self.expression.scope -> exists(v | v.varName=p.name and
 v.type=p.type))

14.2.4 Operations

Class
[1] Looks up a query in a class when given a name.

context Class::lookupQueryforName(x : Name):Query
self.memberQuery->select(e| e.name = x).selectElement()

[2] Looks up a query’s name when given the query.

context Class::lookupNameForQuery(x : Query):Name
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 169

QUERIES
self.memberQuery->select(e|e = x).selectElement().name

Query
[1] Looks up a parameter in a query when given a name.

context Query::lookupParameterforName(x : Name):Parameter
self.memberParameter->select(e| e.name = x).selectElement()

[2] Looks up a parameter’s name when given the parameter.

context Query::lookupNameForParameter(x : Parameter):Name
self.memberParameter->select(e|e = x).selectElement().name

14.3 SEMANTIC DOMAIN

14.3.1 Derivation
Figure 14-4 on page 170 describes how the Queries semantic domain package is derived from the Expression-
ContextValue template. A query evaluation is an expression evaluation that is evaluated in the context of an
object.

Figure 14-4 Derivation of Queries semantic domain package

Constraints

SemanticDomain

QueryEvaluation
StaticExpVEval

exprEval
self.context

ExpressionContextValue ExpContextValue
ExpEvalCategory
rootExp
varValue

<ExpEval
Category>

<ExpContext
Eval>

1 <rootExp>

Query
Evaluation Object

context

1

Para meterizedValue Paramet erizedElementValue
Value

<Parameterized
ElementValue>

.

ParameterValue <Value>
1

1
owning

<Parameterized
ElementValue>

ownedParameterValue

value

*

QueryEvaluation
Value

Property
Evaluation

ownedPropertyEval

*

ownedQueryEval

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 170

QUERIES
14.3.2 Model
Figure 14-5 on page 171 shows the semantic domain of the queries package. A query evaluation describes the
result of evaluating a static expression. The result is calculated in the context of the query evaluation’s context
(the object that is bound to the variable "self") and its bound parameter values.

Figure 14-5 Semantic domain for the Queries package

QueryEvaluation
Query evaluations describe the result of evaluating an expression belonging to a query. A query evaluation is a
property evaluation, which means it can be referenced through a property call evaluation (see Chapter 12).

Associations
context The object that is the context of the query evaluation.
expressionEvaluation A query’s expression evaluation.
ownedParameterValue The parameter values owned by the query evaluation.

Object
Associations
ownedPropertyEval The property evaluations owned by the object.
ownedQueryEval The query evaluations owned by the object.

ParameterValue
Associations
owningQueryEvaluation The query evaluation owning the parameter.

Constraints::SemanticDomain

Object

expressionEvaluation 1

context

1

StaticExp
Evaluation

Query
Evaluation .

ParameterValue

Value
1

owning
QueryEvaluation

ownedParameterValue

value

*

PropertyEvaluation

ownedQueryEval

1

*

*

ownedPropertyEval

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 171

QUERIES
14.3.3 Well-formedness Rules

QueryEvaluation
[1] A query evaluation introduces the value of its context into the environment of its expression evaluation.

context QueryEvaluation inv:
self.expressionEvaluation.env -> exists(v |
 v.value=self.context)

[2] A query evaluation introduces the value of its parameters into the environment of its expression evaluation.

context QueryEvaluation inv:
self.ownedParameterValue -> forAll(p |
 self.expressionEvaluation.scope -> exists(v |
 v.value=p.value))

14.4 SEMANTIC MAPPING

14.4.1 Derivation
Figure 14-6 on page 172 illustrates the derivation of the Queries semantic mapping package using the Semantics
template. An expression evaluation is an instance of an expression and must contain a variable value that binds
the variable "self".

Figure 14-6 Derivation of Queries semantic mapping package

<Element> <Value>
of

Semantics Element
Value

Queries

SemanticMapping

1

Query
QueryEvaluation

ParameterizedSemantics

<Parameterized
ElementValue>

ParameterValue

1

of
<Parameterized

Element>

Parameter
1

of

<ParameterizedElement>
<ParameterType>
<ParameterizedElementValue>
<Value>

Query
Classifier
QueryEvaluation
Value
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 172

QUERIES
14.4.2 Model
The semantic mapping for the Queries package is shown in figure 14-7 on page 173. A query evaluation is a
value of a query. A parameter value is a value of a parameter.

Figure 14-7 Semantic mapping for Queries package

QueryEvaluation
Associations
of The query of which the query evaluation is a value.

ParameterValue
Associations
of The parameter of which the parameter value is a value.

14.4.3 Well-formedness rules

Object
[1] For each property evaluation owned by an object there should be a property of the object’s class’s namespace
that the property is a value of.

context Object inv:
self.ownedPropertyEvaluation->forAll(pv |
 self.of.memberProperty->exists(p | pv.of = p))

QueryEvaluation
[1] Ensures that the variable value bound to self is the context of the query evaluation.

context QueryEvaluation inv:
self.expressionEvaluation.env -> forAll(v |
 v.of.varName="self" implies v.value=self.context)

[2] Ensures that the variables values bound to parameter names are the parameter values of the query evaluation.

context QueryEvaluation inv:
self.parameterValue -> forAll(p |
 self.expressionEvaluation.env -> forAll(v |
 v.of.varName=p.of.name implies v.value=p.value)

Query
of

Queries::SemanticMapping

Query
Evaluation1

Parameter
of Parameter

Value1
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 173

QUERIES
[3] The query evaluation’s expression evaluation commutes with its query’s expression.

context QueryEvaluation inv:
self.expressionEvaluation.of = self.of.expression

[4] A query evaluation should contain a parameter value for all parameter’s in the query evaluation’s query’s
namespace.

context QueryEvaluation inv:
self.of.memberParameter->forAll(c |
 self.ownedParameterValue->exists(d | d.of = c))

[5] For each parameter value owned by a query evaluation there should be a parameter of the query evaluation’s
query’s namespace that the parameterized element value is a value of.

context QueryEvaluation inv:
self.ownedParameterValue->forAll(c |
 self.of.memberParameter->exists(d | c.of = d))

14.5 EXAMPLE SNAPSHOTS

Figure 14-9 on page 175 shows a partial snapshot of the evaluation of the query shown in figure 14-8 on
page 174. The complete evaluation of the expression is omitted for brevity. A query evaluation’s evaluation
expression returns a value in the context of an instance of its class and a collection of bound parameter variables.

Figure 14-8 Example class and query

x : Integer

A

context A::getX+Y(y:Integer):Integer
 self.x + y
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 174

QUERIES
Figure 14-9 Snapshot of Queries semantic mapping package

14.6 CHANGES TO UML 1.4
UML 1.4 defines a query as an operation with isQuery set to true. However, the semantics of queries are static,
and not operational, and therefore it makes sense to define them as a stand-alone static concept.

name = "A"

A : Class

member
Query

owningClass

name =
"getX+Y"

 : Query

owned
Query

:AddExp

expression

varName = "self"

:Variable
Declaration

scope

type

:AddExpEval

expression
Evaluation

envvalue

:Primitive
Value

:Object

:Query
Evaluation

of

of

of

Variable
Value

context
type value

of

of

varName = "y"

:Variable
Declaration

scope
name = "Integer"

: Primitive

type

name = "y"

Y:Parameter

type

member
Parameter

owned
Parameter

Variable
Value

env

:PrimitiveValue

of
of

value

:Parameter
Valueowned

Parameter
Value

value

of
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 175

1 Chapter 15
Behaviour

The definition described so far has been concerned with characterising the static components of UML. In this
chapter we describe the behaviour package which deals with supporting the modelling of systems which evolve
over time. This is achieved by enabling the instances of model elements to have multiple states at different points
in time. These states are related by the ordering in which they occur and a mechanism that manages this order-
ing. The definition presented here lays a foundation for the definition of actions (Chapter 16) and operations
(Chapter 17).

15.1 POSITION IN ARCHITECTURE

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 176

BEHAVIOUR
15.1.1 Example

15.2 ABSTRACT SYNTAX

Figure 15-1 on page 177 shows the abstract syntax for the Behaviour package. A package has member packages
and member classes, and classes have member attributes.

15.2.1 Model

Figure 15-1 Abstract Syntax for Behaviour package

Package
Associations
memberPackage The member packages.
memberClass The member classes.

Class
Associations
memberAttributes The member attributes.

15.2.2 Well-formedness Rules
There are no well-formedness rules.

R eacto r N orm a l R eacto r overhea t R eacto r S a fe

Package

Class

*

*

Attribute

Behaviour::AbstractSyntax

memberPackage

memberClass

* memberAttribute
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 177

BEHAVIOUR
15.2.3 Operations
There are no operations.

15.3 SEMANTIC DOMAIN

15.3.1 Derivation

Figure 15-2 Derivation of Behaviour Semantic Domain package

15.3.2 Model
Figure 15-3 on page 179 shows the semantic domain for the Behaviour packages derived as illustrated in figure
15-2 on page 178. A snapshot has an identity, and the identity has a set of snapshots ordered in a filmstrip. An
object has an identity, and the identity has a set of objects ordered in a filmstrip. Similarly, a slot has an identity,
and the identity has a set of slots ordered in a filmstrip. An identity can be considered as persisting through time,
whereas the elements ordered by the identity’s filmstrip (i.e. snapshots,objects and slots) are the same element at
different periods of time.

BehaviouralValue
Value

<Value>
Identity <Value>

identity

1
filmstrip[ordered]

State

Behaviour

SemanticDomain

Container Container
Element

<Container> <Element>
owning<Container>

owned<Element>1

*

Snapshot

Object

Slot

Snapshot
Snapshot

Snapshot
Object

Object
Slot
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 178

BEHAVIOUR
A snapshot contains snapshots and objects, and an object contain slots. A snapshot, object and slot are general-
ised from State. A State can be considered as the state of an element at a particular time frame.

Figure 15-3 Semantic Domain for Behaviour package

Snapshot
Associations
identity The identity of the snapshot.
ownedSnapshot The snapshots owned by the snapshot.
ownedObject The objects owned by the snapshot.
owningSnapshot The snapshot owning the snapshot.

SnapshotIdentity
Associations
filmstrip An ordered set of snapshots.

Object
Associations
identity The identity of the object.
ownedSlot The slots owned by the object.
owningSnapshot The snapshot owning the object.

ObjectIdentity
Associations
filmstrip An ordered set of objects.

Snapshot

Object

owningSnapshot

ownedObject

1

*

owningSnapshot

ownedSnapshot 1

*

Slot

owningObject

ownedSlot

1

*

Snapshot
Identity

identity

1

filmstrip

[ordered]

Object
Identity

identity

1

filmstrip

[ordered]

1

Slot
Identity

identity

filmstrip

[ordered]

State

Behaviour::SemanticDomain
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 179

BEHAVIOUR
Slot
Associations
identity The identity of the slot.
owningObject The object owning the slot.

SlotIdentity
Associations
filmstrip An ordered set of slots.

15.3.3 Well-formedness Rules

SnapshotIdentity
[1] The identity of the snapshot commutes with its filmstrips.

context SnapshotIdentity inv:
 self.filmstrip->forAll(v | v.identity = self)

[2] Each snapshot in the filmstrip must be unique.

context SnapshotIdentity inv:
self.flimstrip->forAll(e1 | self.filmstrip->forAll(e2 | e1 <> e2))

ObjectIdentity
[1] The identity of the object commutes with its filmstrips.

context ObjectIdentity inv:
 self.filmstrip -> forAll(v | v.identity = self)

[2] Each object in the filmstrip must be unique.

context ObjectIdentity inv:
 self.flimstrip->forAll(e1 | self.filmstrip->forAll(e2 | e1 <> e2))

SlotIdentity
[1] The identity of the slot commutes with its filmstrips.

context SlotIdentity inv:
 self.filmstrip -> forAll(v | v.identity = self)

[2] Each slot in the filmstrip must be unique.

context SlotIdentity inv:
 self.flimstrip->forAll(e1 | self.filmstrip->forAll(e2 | e1 <> e2))

15.3.4 Operations
Absolute ordering of states is maintained by the filmstrip of the root snapshot identity. This contains a number of
operations which enable the comparison of the temporal occurrence of two states (snapshots, objects or slots).
Each state has an operation, such as isLater, which given a state checks to see where that state occurs. This is
achieved by navigating to the root snapshot’s identity and calling the namesake operation, such as isLater, with
the state and self. Each state also has an operation (isState) which checks to see if two states are in fact the same
state. This is used by the root snapshot identity in determining where states occur within its filmstrip.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 180

BEHAVIOUR
SnapshotIdentity
[1] Given two states determines whether the first state occurs before the second.

context SnapshotIdentity::isEarlier(s1:State,s2:State):Boolean
state1:State
state2:State
filmstrip->forAll(s | if(s.isState(s1)) state1 = s
 if(s.isState(s2)) state2 = s)
filmstrip.getIndex(state1) < filmstrip.getIndex(state2)

[2] Given two states determines whether the first state occurs after the second.

context SnapshotIdentity::isLater(s1:State,s2:State):Boolean
state1:State
state2:State
filmstrip->forAll(s | if(s.isState(s1)) state1 = s
 if(s.isState(s2)) state2 = s)
filmstrip.getIndex(state1) > filmstrip.getIndex(state2)

[3] Given two state determines whether the first state occurs at the same time as the second.

context SnapshotIdentity::isSameTime(s1:State,s2:State):Boolean
state1:State
state2:State
filmstrip->forAll(s | if(s.isState(s1)) state1 = s
 if(s.isState(s2)) state2 = s)
filmstrip.getIndex(state1) = filmstrip.getIndex(state2)

Snapshot
[1] Checks to see if the snapshot, or any of its owned objects or snapshots, are the same as a given state.

context Snapshot::isState(s: State):Boolean
flag: Boolean
flag := false
if(self = s)
 true
else
 self.ownedSnapshot->forAll(i | if(i.isState(s)) flag := true)
 self.ownedObject->forAll(i | if(i.isState(s)) flag := true)
 flag
end

[2] Checks to see if a state occurs before this snapshot.

context Snapshot::isEarlier(s:State):Boolean
if(owningSnapshot<>self)
 owningSnapshot.isLater(s)
else
 owningSnapshotIdentity(s,self)
end
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 181

BEHAVIOUR
[3] Checks to see if a state occurs after this snapshot.

context Snapshot::isLater(s:State):Boolean
if(owningSnapshot<>self)
 owningSnapshot.isLater(s)
else
 owningSnapshotIdentity(s,self)
end

[4] Checks to see if a state occurs at the same time as this snapshot.

context Snapshot::isSameTime(s:State):Boolean
if(owningSnapshot<>self)
 owningSnapshot.isLater(s)
else
 owningSnapshotIdentity(s,self)

 end

Object
[1] Checks to see if the object, or its slots, are the same as a given state.

context Object::isState(s:State):Boolean
flag: Boolean
flag := false
if(self = s)
 true
else
 self.ownedSlot->forAll(i | if(i.isState(s)) flag := true)
 flag
end

[2] Checks to see if a state occurs before this object.

context Object::isEarlier(s:State):Boolean
owningSnapshot.isEarlier(s)

[3] Checks to see if a state occurs after this snapshot.

context Object::isLater(s:State):Boolean
owningSnapshot.isLater(s)

[4] Checks to see if a state occurs at the same time as this snapshot.

context Object::isSameTime(s:State):Boolean
owningSnapshot.isSameTime(s)

Slot
[1] Checks to see if the slot is the same as a given state.

context Object::isState(s:State):Boolean
self = s

[2] Checks to see if a state occurs before this object.

context Slot::isEarlier(s:State):Boolean
owningSnapshot.isEarlier(s)

[3] Checks to see if a state occurs after this snapshot.

context Slot::isLater(s:State):Boolean
owningSnapshot.isLater(s)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 182

BEHAVIOUR
[4] Checks to see if a state occurs at the same time as this snapshot.

context Slot::isSameTime(s:State):Boolean
owningSnapshot.isSameTime(s)

15.4 SEMANTIC MAPPING

15.4.1 Derivation

Figure 15-4 Derivation of Behaviour Semantic Mapping package

15.4.2 Model
Figure 15-5 on page 184 shows the Semantic Mapping for the Behaviour packages derived as illustrated in figure
15-4 on page 183. An instance of a package is an snapshot identity and a snapshot. The snapshot identity
uniquely identifies a particular package instance and the snapshot describes the evolution of a particular package
instance over time. An instance of a class is an object identity and a slot identity. An instance of an attribute is a
slot identity and a slot.

BehaviouralSemantics Element
Value

<Value>
Identity

<Value>

1 identity

[ordered]<Element>

of

of

filmstrip

Behaviour

SemanticMapping

Package
Snapshot

Class
Object

Attribute
Slot
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 183

BEHAVIOUR
Figure 15-5 Semantic Mapping for Behaviour package

Snapshot
Associations
identity The identity of the snapshot.
of The package the snapshot is an instance of.

SnapshotIdentity
Associations
filmstrip An ordered set of snapshot.
of The package the snapshot identity is an instance of.

Object
Associations
identity The identity of the object.
of The class the object is an instance of.

Snapshot
Identity

SnapshotPackage

of
of

Object
Identity

ObjectClass

of
of

Slot
Identity

SlotAttribute

of
of

Behaviour::SemanticMapping
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 184

BEHAVIOUR
ObjectIdentity
Associations
filmstrip An ordered set of objects.
of The class the object identity is an instance of.

Slot
Associations
identity The identity of the slot.
of The attribute the slot is an instance of.

SlotIdentity
Associations
filmstrip An ordered set of slots.
of The attribute the slot identity is an instance of.

15.4.3 Well-formedness Rules

Snapshot
[1] For each object owned by a snapshot there should be a class of the snapshot’s package’s namespace that the
object is a value of.

context Snapshot inv:

 self.ownedObject->forAll(c |
 self.of.memberClass->exists(d | c.of = d))

[2] For each snapshot owned by a snapshot there should be a package of the snapshot’s package’s namespace that
the snapshot is a value of.

context Snapshot inv:

 self.ownedSnapshot->forAll(c |
 self.of.memberPackage->exists(d | c.of = d))

[3] A snapshot should have a member object for each of its package’s classes.

context Snapshot inv:

 self.of.memberClass->forAll(c |
 self.ownedObject->exists(d | d.of = c))

[4] A snapshot should have a member object for each of its package’s classes.

context Snapshot inv:

 self.of.memberPackage->forAll(c |
 self.ownedSnapshit->exists(d | d.of = c))

Object
[1] For each slot owned by an object there should be an attribute of the object’s class’s namespace that the slot is
a value of.

context Object inv:
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 185

BEHAVIOUR
 self.ownedObject->forAll(c |
 self.of.memberClass->exists(d | c.of = d))

[3] An object should have a member slot for each of its classes’s attributes.

context Object inv:

 self.of.memberAttribute->forAll(c |
 self.ownedSlot->exists(d | d.of = c))

SnapshotIdentity
[1] All snapshots in the filmstrip should be of the same package as me.

context SnapshotIdentity inv:
 self.filmstrip->forAll(e1 | e1.of = of)

ObjectIdentity
[1] All objects in the filmstrip should be of the same class as me.

context ObjectIdentity inv:
 self.filmstrip->forAll(e1 | e1.of = of)

SlotIdentity
[1] All slots in the filmstrip should be of the same attribute as me.

context SnapshotIdentity inv:
 self.filmstrip->forAll(e1 | e1.of = of)

15.4.4 Operations
There are no operations

15.5 EXAMPLE SNAPSHOTS

Figure 15-7 on page 187 exemplifies how the definition introduced in this chapter enables the modelling of
dynamic systems using the example shown in figure 15-6 on page 186.

Figure 15-6 Example of state changes

R eacto r N orm a l R eacto r ove rhea t R eacto r S a fe
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 186

BEHAVIOUR
Figure 15-7 Example snapshot of figure 15-5 on page 184
This example models the evolution of an object through three states (normal, overheat and safe), the state change
at the object level also forces a state change at the snapshot level. Collectively we can consider a model of a sin-
gle state change as a time slice of the systems evolution. Time slices are related via the respective identities of
model element instances.

15.6 CHANGES TO UML 1.4
UML 1.4 does not have a model of behaviour. This chapter has provided a model that can be used as a foundation
for understanding the semantics of UML’s behavioural features.

system:
Package

reactor:
Class

memberClass

:Snapshot
Identityof

:Snapshot :Snapshot :Snapshot

filmstrip@1 filmstrip@2 filmstrip@3

:Object
Identity

of normal:
Object

overheat:
Object

safe:
Object

filmstrip@1 filmstrip@3filmstrip@2

ownedObject ownedObject ownedObject

owningSnapshot owningSnapshot owningSnapshot

identity identity

identity

identity identity

identity

of

of
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 187

1 Chapter 16
Actions

This package defines the abstract syntax and semantics of actions. Actions describe state changing computations
of the system, and are used in the body of operations (Chapter 17). This chapter is broadly split into two parts.
The first part defines a small, but rich, action language. The second part defines the templates used to stamp out
the action language.

16.1 POSITION IN ARCHITECTURE

The definition described in this chapter ultimately aims to precisely define a core subset of the actions described
in the action semantic proposal (ActionSemantics). To this end, it is not the intention to replace that proposal but
to show how that definition can be derived using a template based approach. A characteristic of stamping out def-

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 188

ACTIONS
initions using templates, is that some concepts can be left undefined while others are well defined. In the case of
the action definition presented here, the abstract syntax is non-normative and can be quickly substituted for any
syntactical construct (therefore supporting families of action languages). The essence of the definition lies in its
treatment of the semantic domain.

16.1.1 Example
Figure 16-1 on page 189 gives an example of a simple action that assigns the value 10 to the variable x.

Figure 16-1 Action example

16.2 ABSTRACT SYNTAX

16.2.1 Derivation
Figure 16-2 on page 190 and figure 16-3 on page 191 show how the abstract syntax of the actions package is
stamped out using the composite action abstract syntax template shown in figure 16-11 on page 204 for sequen-
tial and parallel actions, and the typed action operand abstract syntax template shown in figure 16-13 on page 206
for write attribute action and create object action.

x: Integer
op1
(
 x := 10
)

X

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 189

ACTIONS

Figure 16-2 Derivation of the abstract syntax for sequential and parallel actions

Expression

Action

CompositeAction

<ConcreteAction> <ActType>
type

1

CompositeAction ConcreteAction
ActType

subAction

*

SequentialAction

Action
*

subAction

[ordered]

AbstractSyntax

Actions

SequentialAction
Classifier

ParallellAction
Classifier

ParallelAction

subAction

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 190

ACTIONS
Figure 16-3 Derivation of the abstract syntax for create object and write attribute actions

16.2.2 Model
Figure 16-4 on page 192 shows the abstract syntax of the actions package. The action language consists of two
primitive and two compound actions. The first primitive action is write attribute action which updates the value
of an attribute. The two operands of a write attribute action are of type expression (expression is the superclass of
both static expressions and actions) and can therefore be either further actions or static expressions, the first oper-
and is constrained to be of type property call expression which must point to an attribute (see section 16.2.3 on
page 193). The second primitive action is create object action which instantiates a class. The operand of a create
object action can also be of type expression, however this is constrained to be a bound variable which binds a
class (see section 16.2.3 on page 193). The first compound action is parallel action which has a number of sub
actions (which can be either composite or primitive actions). The second compound action is sequential action
which has a number of sub actions (which again can be either composite or primitive actions).

Expression
Expression is an abstract class purely used for the purposes of polymorphism. It is the plugin point for static
expressions (see Chapter 12) and therefore enables write attribute and create object actions to use static expres-
sions or further actions as their operands.

AbstractSyntax

Actions

CreateObjectAction
boundvariable
BoundVar

WriteAttributeAction
propertycall

PropertyCallExpression

TypedAction
Operand <ConcreteExp>

<operand>
<operandType>

WriteAttributeAction
writeValue
Expression

Expression

Action

PrimitiveAction

<ConcreteAction> <ActType>
type

1

PrimitiveAction <ConcreteAction>
<ActType>

WriteAttributeAction
Classifier

CreateObjectAction
Class

<ConcreteAction>

type:Classifier

Action

<operand>
Expression
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 191

ACTIONS
Action
Action is an abstract class purely used for the purposes of polymorphism. It enables the type of concrete actions
to be considered more generally as that of action.

CompositeAction
Composite action is an abstract class used purely for the purposes of polymorphism. It enables the type of
sequential and parallel actions to be considered more generally as that of composite action.

Figure 16-4 Abstract syntax domain for Actions package

PrimitiveAction
Primitive action is an abstract class used purely for the purposes of polymorphism. It enables the type of write
attribute and create object actions to be considered more generally as that of primitive action.

ParallelAction
Parallel action is a concrete action which contains a set of sub actions. It is the syntax for a semantic domain
entity which describes how sub actions should be executed in parallel.

Associations
type The type of the parallel action.

Expression

Action

Composite
Action

Primitive
Action

type:Classifier

SequentialAction

type:Classifier

ParallelAction

type:Classifier

WriteAttributeAction

type:Class

CreateObjectAction

boundvariable1

1propertycall

1 writeValue

subAction

subAction

[ordered]

*

*

Actions::AbstractSyntax
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 192

ACTIONS
subActions A set of sub actions whose execution is controlled by the parallel action.

SequentialAction
Sequential action is a concrete action which contains an ordered set of sub actions. It is the syntax for a semantic
domain entity which describes how the sub action are executed sequentially.

Associations
type The type of the sequential action.
subActions An ordered set of sub actions whose execution is controlled by the sequential action.

WriteAttributeAction
Write attribute action is a concrete action which describes the syntax for a semantic domain construct which
updates the value of the left operand (propertyCall expression which refers to the attribute) with the value of the
right operand.

Associations
type The type of the write attribute action.
propertycall The first operand of the write attribute action.
writeValue The second operand of the write attribute action.

CreateObjectAction
Create object action is a concrete action which describes the syntax for a semantic domain construct which cre-
ates an instance (object) of the class referenced by the action’s operand.

Associations
type The type of the create object action.
boundvariable The operand of the create object action.

16.2.3 Well-formedness Rules

WriteAttributeAction
[1] The type of propertycall must be property call expression.

context WriteAttributeAction inv:
 self.propertycall.type.isKindOf(PropertyCallExpression)

[2] The type of writeValue must be expression.

context WriteAttributeAction inv:
 self.writeValue.type.isKindOf(Expression)

[3] The first operand of a write attribute action which is a property call expression must refer to an attribute.

context WriteAttributeAction
 self.propertycall.referedProperty.isKindOf(Attribute)

[4] The propertycall’s scope should include the scope of the containing write attribute action.

context WriteAttributeAction inv:
 self.scope->forAll(a | self.propertycall.scope->includes(a))
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 193

ACTIONS
[5] The writeValue’s scope should include the scope of the containing write attribute action.

context WriteAttributeAction inv:
 self.scope->forAll(a | self.writeValue.scope->includes(a))

CreateObjectAction
[1] The operand of a create object action which is a bound variable must refer to a class.

context CreateObjectAction
 self.boundvariable.type.isKindOf(Class)

[2] The boundvariable’s scope should include the scope of the containing create object action.

context WriteAttributeAction inv:
 self.scope->forAll(a | self.boundvariable.scope->includes(a))

16.2.4 Operations
There are no operations.

16.3 SEMANTIC DOMAIN

16.3.1 Derivation
Figure 16-5 on page 195 and figure 16-6 on page 196 show how the semantic domain of the actions package is
stamped out using the composite action evaluation semantic domain template for sequential and parallel action
evaluations, the primitive action evaluation semantic domain template and the action operand evaluation seman-
tic domain template for write attribute action evaluation and create object action evaluation.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 194

ACTIONS
Figure 16-5 Derivation of semantic domain for sequential and parallel actions

CompositeActionEvaluation

ExpressionEvaluation

<ActEvalPrePostValue>
preState postState

1 1

CompositeActionEvaluation

ActionEvaluation

ConcreteActionEval
ActEvalValue
ActEvalPrePostValue

<ConcreteActionEval>
<ActEvalValue>value

1

subActionEval

*

SequentialAction
Evaluation

ActionEvaluation
*

subActionsEval

[ordered]

SemanticDomain

Actions

SequentialActionEvaluation
Value

Snapshot

ParallellActionEvaluation
Value
Snapshot

ParallelAction
Evaluation

subActionsEval
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 195

ACTIONS
Figure 16-6 Derivation of semantic domain for write attribute and create object actions

16.3.2 Model
Figure 16-7 on page 197 shows the semantic domain of the actions package. This definition describes how each
of the abstractions within the abstract syntax (described in section 16.2 on page 189) has a semantic domain eval-
uation. Each of the four concrete action evaluation (parallel, sequential, write attribute and create object evalua-
tion action) have a pre and post state which capture the state of the system before and after the action has
executed. The concrete action evaluations also have a value which they evaluate to upon execution.

SemanticDomain

Actions

CreateObjectActionEvaluation
boundvariable

WriteAttributeActionEvaluation
propertycall

WriteAttributeActionEvaluation
Writevalue

WriteAttributeAction
Evaluation

Value
slot

CreateObjectAction
Evaluation
Object
Snapshot

PrimitiveActionEvaluation

ExpressionEvaluation

<ActEvalPrePostValue>
preState postState

1 1

PrimitiveActionEvaluation

<ConcreteActionEval>
<ActEvalValue>
<ActEvalPrePostValue>

<ConcreteActionEval>

<ActEvalValue>

value

1

ActionEvaluation

Action
Operand <ConcreteActionEval>

<operand>

<ConcreteActionEval>

type:Classifier

ActionEval

<operand>1
ExpressionEval
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 196

ACTIONS
Figure 16-7 Semantic domain for Actions package

ExpressionEvaluation
Expression evaluation is an abstract class purely used for the purposes of polymorphism. It is the plugin point for
static expression evaluation (see Chapter 12) and therefore enables write attribute action evaluations and create
object action evaluations to use static expressions evaluations or further action evaluations as their operand eval-
uations.

ActionEvaluation
Action evaluation is an abstract class purely used for the purposes of polymorphism. It enables the type of con-
crete action evaluations to be considered more generally as that of action evaluation.

CompositeActionEvaluation
Composite action evaluation is an abstract class used purely for the purposes of polymorphism. It enables the
type of sequential and parallel action evaluations to be considered more generally as that of composite action
evaluation.

Expression
Evaluation

Action
Evaluation

Composite
Action

Evaluation

Primitive
Action

Evaluation

value:Value
preState:State
postState:State

SequentialAction
Evaluation

value:Value
preState:State
postState:State

ParallelAction
Evaluation

value:Value
preState:Object
postState:Object

WriteAttributeAction
Evaluation

value:Object
preState:Snapshot
postState:Snapshot

CreateObjectAction
Evaluation

boundvariable1

1 propertycall

1 writeValue

subActionsEval

subActionsEval

[ordered]

*

*

Actions::SemanticDomain
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 197

ACTIONS
PrimitiveActionEvaluation
Primitive action evaluation is an abstract class used purely for the purposes of polymorphism. It enables the type
of write attribute action evaluation and create object action evaluation to be considered more generally as that of
primitive action evaluation.

ParallelActionEvaluation
Parallel action is a concrete action evaluation which contains a set of sub action evaluations. It describes how sub
action evaluations can be executed in parallel.

Associations
value The value of the parallel action evaluation.
subActionsEval A set of sub action evaluations whose evaluation is controlled by the parallel action.
preState The state of the system before the parallel action evaluation executes.
postState The state of the system after the parallel action evaluation executes.

SequentialActionEvaluation
Sequential action evaluation is a concrete action evaluation which contains an ordered set of sub action evalua-
tions. It describes how sub action evaluations can be executed sequentially.

Associations
value The value of the sequential action evaluation.
subActionsEval Set of sub action evaluations whose evaluation is controlled by the sequential action.
preState The state of the system before the sequential action evaluation executes.
postState The state of the system after the sequential action evaluation executes.

WriteAttributeActionEvaluation
Write attribute action evaluation is a concrete action evaluation which describes how an attribute instance (slot) is
updated with a value.

Associations
value The value of the write attribute action evaluation.
propertycall The slot (attribute instance) to update.
writeValue The value to update the slot with.
preState The state of the system before the write attribute action evaluation executes.
postState The state of the system after the write attribute action evaluation executes.

CreateObjectActionEvaluation
Create object action evaluation is a concrete action evaluation which describes how a new object is created.

Associations
value The value of the write attribute action evaluation.
boundvariable A bound variable instance (note: this is redundant but mirrors abstract syntax)
preState The state of the system before the create object action evaluation executes.
postState The state of the system after the create object action evaluation executes.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 198

ACTIONS
16.3.3 Well-formedness Rules

ParallelActionEvaluation
[1] The pre state of at least one subAction is at the same time slice (state and time slice is defined in Chapter 15)
as the pre state of the parallel action.

context ParallelActionEvaluation
not self.subActionsEval->forAll(a | not a.preState.isSameTime(self.preState))

[2] The post state of at least one subAction is at the same time slice as the post state of the parallel action.

context ParallelActionEvaluation
not self.subActionsEval->forAll(a|not a.postState.isSameTime(self.postState))

[3] The pre and post states of subActions lie between the pre and post state of the parallel action.

context ParallelActionEvaluation
self.subActionsEval->forAll((a|a.preState.isSameTime(self.preState) or
 a.preState.isLater(self.preState)) and
 (a.postState.isSameTime(self.postState) or
 a.postState.isEarlier(self.postState)))

SequentialActionEvaluation
[1] All sub action evaluations should execute in sequence.

context SequentialActionEvaluation
self.subActionsEval.zip(self.subAction.tail)->forAll(pair |
 pair->at(1).preState.isLater(pair->at(0).postState))

[2] The pre state of the first subAction is at the same time slice as the pre state of the sequentialAction.

context SequentialActionEvaluation
self.preState.isSameTime(self.subActionsEval->at(0).preState)

[3] The post state of the last subAction is at the same time slice as the post state of the sequentialAction.

context SequentialActionEvaluation
self.postState.isSameTime(self.subActionsEval->last().postState)

WriteAttributeActionEvaluation
[1] The pre and the post state of the write attribute action evaluation must be the same instance.

context WriteAttributeActionEvaluation
self.preState.identity = self.postState.identity

[2] The slot referred to in the propertycall must be owned by the Object in the pre state.

context WriteAttributeActionEvaluation
self.preState.ownedSlot->includes(self.propertycall.referedProperty)

[3] An attribute evaluation results in updating the slot of the object in pre state with the value of the second oper-
and.

context WriteAttributeActionEvaluation
self.postState.ownedSlot->iterate(i s=Set{} |
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 199

ACTIONS
 if i.identity = self.propertycall.referedProperty.identity
 then
 s->union({i})
 else
 s)->forAll(s | s.value = self.writeValue.value)

[4] The value of the write attribute action is the value of the second operand.

context WriteAttributeActionEvaluation
self.value = self.writeValue.value

CreateObjectActionEvaluation
[1] A create object evaluation results in the existence of an object in the post state that did not exist in the pre
state.

context CreateObjectActionEvaluation
self.preState.ownedObject->symmetricDifference(
 self.postState.ownedObject)->size = 1 and
 self.preState.ownedObject->size = self.postState.ownedObject-> size()-1

[2] The value of a create object action evaluation is the new object created.

context CreateObjectActionEvaluation
self.value = self.preState.ownedObject->symmetricDifference
 (self.postState.ownedObject)->asSequence()->at(0)

[3] A unique id for the new object must be created.

context CreateObjectActionEvaluation inv:
self.value.id.filmstrip->size() = 1

16.3.4 Operations
There are no operations.

16.4 SEMANTIC MAPPING

16.4.1 Derivation
The derivation of the semantic mapping of actions is shown in figure 16-8 on page 201. This illustrates how four
stampings of the semantics template are used to form the derivation.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 200

ACTIONS
Figure 16-8 Derivation of the Actions semantic mapping package

16.4.2 Model
The semantic mapping of the actions package is shown in figure 16-9 on page 201. This describes how actions
have evaluations.

Figure 16-9 Semantic mapping for the Actions package

Semantics

<Model
Element> <Value>

of

Semantic
Mapping

Actions

SequentialAction
SequentialActionEvaluation

ParallelAction
ParallelActionEvaluation

CreateObjectAction
CreateObjectActionEvaluation

WriteAttributeAction
WriteAttributeActionEvaluation

ModelElement
Value

Actions::SemanticMapping

ParallelAction ParallelAction
Evaluation

of

Sequential
Action

Sequential
Action

Evaluation

of

CreateObject
Action

CreateObject
Action

Evaluation

of

WriteAttribute
Action

WriteAttribute
Action

Evaluation

of
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 201

ACTIONS
ParallelActionEvaluation
Associations
of The parallel action that the parallel action evaluation is an instance of.

SequentialActionEvaluation
Associations
of The sequential action that the sequential action evaluation is an instance of.

CreateObjectEvaluation
Associations
of The create object action that the create object action evaluation is an instance of.

WriteAttributeEvaluation
Associations
of The write attribute action that write attribute action evaluation is an instance of.

16.4.3 Well-formedness Rules

WriteAttributeActionEvaluation
[1] The propertycall value must conform to the operand type.

context WriteAttributeActionEvaluation inv:
 self.propertycall.value.of.conformsTo(self.of.propertycall.type)

[2] The writeValue value must conform to the operand type.

context WriteAttributeActionEvaluation inv:
 self.writeValue.value.of.conformsTo(self.of.writeValue.type)

CreateObjectActionEvaluation
[1] The new object created must be of the type of the bound variable referenced in the actions syntactical oper-
and.

context createObjectActionEvaluation
self.preState.ownedObject->symmetricDifference(
 self.postState.ownedObject->forAll(obj | obj.type =
self.boundvariable.value)

[2] The boundVar value must conform to the boundvariable’s type.

context CreateObjectActionEvaluation inv:
 self.boundvariable.value.of.conformsTo(self.of.boundvariable.type)

16.4.4 Operations
There are no operations.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 202

ACTIONS
16.5 EXAMPLE SNAPSHOTS

Figure 1-1 on page 157 shows a snapshot of the evolution of the write attribute action shown in figure 16-1 on
page 189. Note that there is only a partial mapping between the elements of abstract syntax and semantic domain
for brevity of presentation. In this snapshot a write attribute action is contained by an operation (operations are
dealt with in detail in Chapter 17). Prior to the write attribute action (its preState) the value of the slot, corre-
sponding to the attribute x, is 5. After the write attribute action has evaluated (its post state) the slot is bound to
the value 10.

Figure 16-10 Snapshot of write attribute action

name = "A"

A:Class
:Operation

:WriteAttributeAction

:BoundVar

varName = "self"

:VariableDeclaration

:Propertycall
Expression

name = "x"

x:Attribute

:Constant

name = "Integer"

:Primitive

source

referedProperty

type

propertycall writeValue

referedVariable

type

:Operation

:WriteAttributeAction
Evaluation

:BoundVarEval

:Propertycall
ExpressionEval :ConstantEval

:Object

:VariableValue

:Slot

10:Primitive
Value

5:Primitive
Value value

preState

:Object

:Slot

postState

:Object
Identity

id

id

value

:Slot
Identity

id

id

of

of

of
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 203

ACTIONS
16.6 CHANGES TO UML 1.4
The submission defines the semantics of two key action concepts in UML 1.4: object creation and send actions
(see Chapter 18 for the latter) and three key concepts from the action semantics submission: sequential, parallel
actions and write actions.

16.7 TEMPLATES

This section describes a set of templates which capture the essence of actions and are generic enough to stamp
out a family of action languages.

16.7.1 Primitive and compound action
Primitive and compound action templates are the basic building blocks for the action definition presented in this
chapter. The role of these two templates is to classify actions as either primitive or compound. Primitive actions
have no sub actions whereas compound actions have a set of sub actions.

Templates
Figure 16-11 on page 204 shows the abstract syntax templates for primitive and composite actions. A concrete
primitive action is a generalized primitive action. A concrete composite action is a generalized composite action.

Figure 16-11 Primitive and composite actions abstract syntax templates
Actions extend expression and hence have scope. A definition of expression and scope is given in chapter 12.

Within the typed Composite Action template, The subactions of the composite action template must include in its
scope the scope of the composite action.

context CompositeAction inv:
 self.subAction->forAll(subScope |
 self.scope->forAll(selfScope | subScope->includes(selfScope)))

Expression

Action

Prim itiveAction

<ConcreteAction> <ActType>
type

1

Prim itiveAction <ConcreteAction>
<ActType>

Expression

Action

CompositeAction

<ConcreteAction> <ActType>
type

1

Com positeAction <ConcreteAction>
<ActType>

subAction

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 204

ACTIONS
Figure 16-12 on page 205 shows the semantic domain templates for primitive and composite action evaluations.
A concrete primitive action evaluation is a generalized primitive action evaluation and has a pre and post state
describing its evaluation. A concrete compound action evaluation is a generalized compound action evaluation
and also has a pre and post state describing its evaluation.

Figure 16-12 Primitive and composite action semantic domain templates

CompositeActionEvaluation

ExpressionEvaluation

<ActEvalPrePostValue>
pre post

1 1

CompositeActionEvaluation

<ConcreteActionEval>
<ActEvalValue>
<ActEvalPrePostValue>

<ConcreteActionEval> <ActEvalValue>

value

1

PrimitiveActionEvaluation

ExpressionEvaluation

<ActEvalPrePostValue>
pre post

1 1

PrimitiveActionEvaluation

<ConcreteActionEval>
<ActEvalValue>
<ActEvalPrePostValue>

<ConcreteActionEval>

subActionEval

*

<ActEvalValue>
value

1

ActionEvaluation

ActionEvaluation
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 205

ACTIONS
16.7.2 Action Operands
Primitive actions have operands that are of type expression which means they can contain further actions or static
expressions (because static expressions generalize expression, see Chapter 12). In this section we describe tem-
plates that add operands to actions.

Templates
Figure 16-13 on page 206 shows the two templates for adding operands to actions. The first template (ActionOp-
erand) is a basic operand template, which adds to an action a single operand, which is an expression. The second
template (TypedActionOperand) augments the first template by adding a constraint on the return type of the oper-
and and hence has an additional parameter operand type.

It should be noted that semantic domain and semantic mapping templates for typed action operands are not
required, since expression values are already checked against type in the ActionOperandMap template (see
below).These template (and the corresponding semantic domain and semantic mapping templates) can be
stamped out multiple times for multiple operands.

Figure 16-13 Abstract syntax template for adding operands to actions

Within the typed Action operand template, an operand’s scope should include the scope of the containing
action.

context <ConcreteAction> inv:
 self.scope->forAll(a | self.<operand>.scope->includes(a))

Also within the typed Action template, an operand’s type should match the type specified in the parameters.
This is expressed using the following constraint:

context <ConcreteAction> inv:
 self.<operand>.type.isKindOf(<operandType>)

Figure 16-14 on page 207 shows the semantic domain templates for Action operands. An action evaluation has
an operand, which is a expression evaluation.

Action
Operand <ConcreteAction>

<operand>

<ConcreteAction>

type:Classifier

Action

<operand>

1

TypedAction
Operand <ConcreteExp>

<operand>
<operandType>

ConcreteAction
operand

Expression

<ConcreteAction>

type:Classifier

Action

<operand>

1
Expression
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 206

ACTIONS
Figure 16-14 Semantic Domain Template for Action Operands

Figure 16-15 on page 207 shows the semantic mapping templates for static expression operands.

Figure 16-15 Semantic Mapping Templates for Action Operands

An Primitive Action’s operand evaluations should be valid in view of its type. This is expressed using the follow-
ing constraint:

context <ConcreteActionEval> inv:
 self.<operand>.value.of.conformsTo(self.of.<operand>.type)

ActionEval
Operand <ConcreteActionEval>

<operand>

<Concrete
ActionEval>

value:Value

ActionEval

<operand> 1

ExpressionEval

ActionOperandMap <ConcreteActionEval>
<operand>

of

1

<ConcreteActionEval>

value:Value

ActionEval

<operand> 1
type:Classifier

Action Expression
Eval
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 207

1 Chapter 17
Operations

This chapter describes the definition of operations. Operations faclitate the abstract specification of state changes
through their pre- and post-conditions. Operations may also reference actions (see Chapter 16) thus supporting
the refinement of abstract specifications of behaviour into executable action expressions.

17.1 POSITION IN ARCHITECTURE

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 208

OPERATIONS
17.1.1 Example
Figure 17-1 on page 209 shows an example of a simple operation, incr(), that increments the variable y provided
that its value is zero.

Figure 17-1 Example operation

y:Integer
incr()
 pre self.y = 0
 post self.y = self@pre.y+1

X

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 209

OPERATIONS
17.2 ABSTRACT SYNTAX

17.2.1 Derivation

Figure 17-2 Derivation of Operations abstract syntax package

17.2.2 Model
Figure 17-3 on page 211 shows the abstract syntax for the operations package derived as illustrated in figure 17-2
on page 210. An operation is contained by a class and has a type, an operation can also have zero or many

BehaviouralFeatureClassifier

<Classifier>Generalisation

general

specialization

1

*

specific

generalization

1

*

isAbstract:Boolean

<Behavioural
C lassifier>

inherited<BehaviouralFeature>

*

type

owning<Classifier>

owned<BehaviouralFeature>1

*

*

member<BehaviouralFeature>

name:Name

<Behavioural
Feature>

*

BehaviouralC lassifier
BehaviouralFeature

1

redefined<BehaviouralFeature>

StaticExp

preCond

postCond

0..1

Parameter

Classifier

1

*

1

owning<Behavioural
Feature>

ownedParameter

type

Operations

AbstractSyntax

Class
Operations

Action

1body

Classifier

1 type

1

type

0..1

ExpressionContext
ExpContext
ExpCategory
rootExp
varName
varType

<Exp
Category>

<ExpContext>
1

<rootExp>

Operation
Action

body
self

self.owningClass

Operation
StaticExp
postCond
self
self.owningClass

Operation
StaticExp

preCond
self

self.owningClass

varName:String

Variable
Declaration

1..*

scope scope

1..*

Operation
StaticExp
postCond
self@pre
self.owningClass
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 210

OPERATIONS
parameters and may have a pre and post condition. The pre and post conditions constrain the state of the system
before and after the execution of the operation. The body of an operation evaluation is described by an action
which is the root of an action tree.

Figure 17-3 Abstract syntax for Operations package

Class
Attributes
isAbstract True if the class is abstract
Associations
inheritedOperation The inherited operations of the classifier.
memberOperation The operations that are members of the namespace of the class.
ownedOperation The operations owned by the classifier.
specialization The specializations of the class.
generalization The generalizations of the class.

Operation
Associations
body The body of the operation.
name The name of the operation.
owningClass The class that owns/contains the operation.
ownedParameter The parameters of the operation.
preCond The pre condition of the operation.
postCond The post condition of the operation.

Operations::AbstractSyntax

ClassGeneralisation

general

specialization

1

*

specific

generalization

1

*

isAbstract:Boolean

Class

inheritedOperation

*

type

owningClass

ownedOperation1

*

*

memberOperation

name:Name

Operation

*

1

redefinedOperation

StaticExp
preCond

postCond

0..1

Parameter

Classifier

1

*

1

owningOperation

ownedParameter

type

Action

1body

Classifier

1 type

1

type

0..1

varName:String

Variable
Declaration

1..*

scope scope

1..*
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 211

OPERATIONS
redefinedOperations The operations that are redefined.
type The type of the operation.

ClassGeneralization
Associations
general The general class.
specific The specific class.

StaticExp
Associations
type The type of the static expression.

Parameter
Associations
owningOperation The operation that owns/contains the parameter.
type The type of the parameter.

Action
Associations
type The type of the action.

17.2.3 Well-formedness Rules

Class
[1] The members of a class must include the owned operations of the class.

context Class inv:
self.memberOperation->includesAll(self.ownedOperation)

[2] Circular inheritance is not permitted.

context Class inv:
not self.allGeneralElements()->includes(self)

[3] Parent element’s operations must be inherited.

context Class inv:
self.inheritedOperation = self.generalElements()->iterate(p s = Set{} |
 s->union(p.memberOperation->reject(x |
 self.memberOperation->exists(x'|
 x'.redefinedOperation->includes(x)))))

[4] Member operations must include the inherited features.

context Class inv:
self.memberOperation->includesAll(self.inheritedOperation)

[5] Member operations may only redefine parent features.

context Class inv:
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 212

OPERATIONS
self.memberOperation->forAll(x |
 (self.generalElements() -> iterate(s = Set{} |
 s->union(g.memberOperation))))->includesAll(x.redefinedOperation)

Operation
[1] Redefined operations must conform.

context Operation inv:
self.redefinedOperation->forAll(f |
 self.type.conformsTo(f.type))

[2] The pre and post condition expressions of an operation must be of type boolean.

context Operation inv:
self.preCond.type = boolean and self.postCond.type = boolean

[3] The scope of the operation’s action must include self.

context Operation inv:
self.body.scope->exists(v | v.varName = self
 and v.type = self.owningClass)

[4] The scope of the operation’s pre condition must include self.

context Operation inv:
self.preCond.scope->exists(v | v.varName = self
 and v.type = self.owningClass)

[5] The scope of the operation’s post condition must include self.

context Operation inv:
self.postCond.scope->exists(v | v.varName = self
 and v.type = self.owningClass)

[6] The scope of the operation’s post condition must include self@pre.

context Operation inv:
self.postCond.scope->exists(v | v.varName = self@pre
 and v.type = self.owningClass)

[7] The type of an operation equals the type of its body action.

context Operation inv:
self.type = self.body.type

17.2.4 Operations

Class
[1] Looks up a operation in a class given a name.

 context Class::lookupOperationforName(x:Name):featureClassifier::
 Operation
 self.memberOperation->select(e|e.name = x).selectElement()
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 213

OPERATIONS
[2] Looks up a name in a class given a operation.

 context Class::lookupNameForOperation(x : Operation): Name
 self.memberOperation->select(e|e = x).selectElement().name

[3] Returns the generalizations of the class.
context Class::generalElements() : Set(Class)
 self.generalization->iterate(p s=Set{} | s->union(Set{p.general}))

[4] Transitively returns all generalizations of the class.
context Class::allGeneralElements(): Set(Class)
 self.generalElements()->iterate(g s=self.generalElements() |
 s->union(g.allGeneralElements()))

Operation
[1] Checks whether the supplied operation is in the same class as the operation.

 context Operation::sameNamespace(x : Operation) : Boolean
 x.slotValue(owningClass).memberOperation->includes(self)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 214

OPERATIONS
17.3 SEMANTIC DOMAIN

17.3.1 Derivation

Figure 17-4 Derivation of Operations semantic domain package

Classifier
Valuevalue

owning<BehaviouralClassifierValue>

owned<BehaviouralFeatureValue>

Parameter
Evaluation

Classifier
Value

1

*

1 owning<BehaviouralFeatureValue>

ownedParameter

value

<Behavioural
Classifier

Value>Identity

StaticExpEval
preCondEval0..1

postCondEval0..1

State

preState postState1 1

BehaviouralFeatureClassifierValue

1

1

*

BehaviouralClassifierValue
BehaviouralFeatureValue

Action
Evaluation

body

1 value

1
<Behavioural

FeatureValue>

postState

preState1

1

Operations

SemanticDomain

Object
OperationEvaluation

value:Value

VariableValue scope

1..*

ExpressionContextValue ExpContextValue
ExpEvalCategory
rootExp
varValue

<ExpEval
Category>

<ExpContext
Eval> 1

<rootExp>

OperationEvaluation
ActionEvaluation

body
self.preState

scope

1..*

OperationEvaluation
StaticExpEval
preCondEval
self.preState

OperationEvaluation
StaticExpEval
postCondEval
self.postState

OperationEvaluation
StaticExpEval
postCondEval
self.preState
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 215

OPERATIONS
17.3.2 Model
The semantic domain package for operation is shown in figure 17-5 on page 216 derived as illustrated in figure
17-4 on page 215. An operation instance has a value and is contained by the identity of an object, an operation
instance may also has a pre and post condition evaluation and must have a pre and post state. The pre condition
evaluation is bound to the environment of the pre state, and the post condition evaluation is bound to the environ-
ment of the post state. An operation instance may also have a set parameter evaluations. The body of an opera-
tion instance is described by action evaluation which is the root of an action evaluation tree.

Figure 17-5 Semantic Domain for Operations package

ObjectIdentity
Associations
ownedOperationEvaluation The operation evaluations owned by the object identity.

OperationEvaluation
Attributes
preCondEval The evaluation of the operation evaluation’s pre condition.
postCondEval The evaluation of the operation evaluation’s post condition.
preState The state before the operation evaluation takes place.
postState The state after the operation evaluation takes place.
value The value of the operation evaluation.
body The operation evaluation’s body evaluation.
Associations

Classifier
Valuevalue

owningObjectIdentity

ownedOperationEvaluation

Parameter
Evaluation

Classifier
Value

1

*

1 owningOperationEvaluation

ownedParameter

value

ObjectIdentity

StaticExpEval
preCondEval0..1

postCondEval0..1

State

preState postState1 1

Operation::SemanticDomain

1

1

*

Action
Evaluation

body

1 value

1
Operation
Evaluation

postState

preState1

1

value:Value

VariableValue scope

1..*

scope

1..*
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 216

OPERATIONS
ownedParameterEvaluation The parameter evaluations of an operation evaluation.

ParameterEvaluation
Attributes
value The value of the parameter evaluation.
Associations
owningOperationEvaluation The operation evaluation owning the parameter.

StaticExpEval
Attributes
value The value of the expression evaluation.

ActionEvaluation
Attributes
preState The state before the action evaluation takes place.
postState The state after the action evaluation takes place.
value The value of the action evaluation.

17.3.3 Well-formedness rules

OperationEvaluation
[1] The post state of an operation evaluation cannot take place before the pre state.

context OperationEvaluation inv:
self.preState.isLater(self.postState)

[2] The pre and post expression evaluation of an operation evaluation both must be true.

context OperationEvaluation inv:
self.preState.value and self.postState.value

[3] The pre and post state of an operation evaluation’s action evaluation should be the same as self.

context OperationEvaluation inv:
self.body.preState.isSameTime(self.preState) and
 self.body.preState.isSameTime(self.postState)

[4] The operation evaluation’s action evaluation should have the operation evaluation’s pre state in scope.

context OperationEvaluation inv:
self.body.scope->exists(v | v.value=self.preState)

[5] The operation evaluation’s pre condition should have the operation evaluation’s pre state in scope.

context OperationEvaluation inv:
self.preCondEval.scope->exists(v | v.value=self.preState)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 217

OPERATIONS
[6] The operation evaluation’s post condition should have the operation evaluation’s post state in scope.

context OperationEvaluation inv:
self.postCondEval.scope->exists(v | v.value=self.postState)

[7] The operation evaluation’s post condition should have the operation’s evaluation’s pre state in scope.

context OperationEvaluation inv:
self.postCondEval.scope->exists(v | v.value=self.preState)

[8] The value of an operation evaluation is the value of its body action evaluation.

context OperationEvaluation inv:
self.value = self.body.value

17.3.4 Operations
There are no operations.

17.4 SEMANTIC MAPPING

17.4.1 Derivation

<Behavioural
Classifer>

<Behavioural
Classifier
Value>

<Behavioural
Feature>

<Behavioural
Feature
Value>

member<BehaviouralFeature>

owning<BehaviouralClassifierValue>

owned<BehaviouralFeatureValue>

of

of

BehaviouralFeatureClassiferSemantics

Operations

SemanticMapping

Class
Operation
ObjectIdentity
OperationEvaluation

BehaviouralClassifier
BehaviouralFeature
BehaviouralClassifierValue
BehaviouralFeatureValue

1

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 218

OPERATIONS
Figure 17-6 Derivation of semantic mapping for Operations package

17.4.2 Model
The semantic mapping for the operations package is shown in figure 17-7 on page 219 derived as illustrated in
figure 17-6 on page 219. An object identity has an operation evaluation for each of its class’s member opera-
tions.

Figure 17-7 Semantic mapping for Operations package

Class
Associations
memberOperation The operations that are members of the namespace of the class.

ObjectIdentity
Associations
of The class the object identity is an instance of.
ownedOperationEvaluation The operation evaluations owned by the object identity.

OperationEvaluation
Associations
of The operation the operation evaluation is an instance of.
owningObjectIdentity The object identity owning the operation evaluation.

17.4.3 Well-formedness rules

ObjectIdentity
[1] The object identity’s operation evaluations must commute with its class’s operation.

context ObjectIdentity inv:

 self.ownedOperationEvaluation->forAll(i |

 self.of.memberOperation->exists(o | i.of = o))

Class Object
Identity

Operation Operation
Evaluation

memberOperation

owningObjectIdentity

ownedOperationEvaluation

of

of

Operations::SemanticMapping

1

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 219

OPERATIONS
17.4.4 Operations
There are no operations.

17.5 EXAMPLE SNAPSHOTS
Figure 17-9 on page 220 shows a snapshot realisation of the operation abstract syntax definition shown in figure
17-8 on page 220.

Figure 17-8 Operation example

Figure 17-9 Partial example snapshot of figure 17-3 on page 211

y:Integer
incr()
 pre self.y = 0
 post self.y = self@pre.y+1

X

name = “X”

:Class

name = “y”

:Attribute

:Integer

name = “incr”

:Operation

:EqualsExp

“0”

:ConstantExp

memberOperation

preCond

right
memberAttribute

type

:PropertyCall
Exp

left

:BoundVar

source

referredVariablescope

“self”

Variable
Declaration

type

“self”

:Variable
Declaration

:EqualsExppostCond

“self@pre”

:Variable
Declaration

type type

scope

scope

:PropertyCall
Exp

:PropertyCall
Exp

left

right

:BoundVar

source

:BoundVar
sourcereferredVariable

referredVariable
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 220

OPERATIONS
Although this snapshot is incomplete in as much as we do not include details about the body of the operation (the
action tree), it does illustrate how pre and post condition expressions have their scope bound to the class respon-
sible for the operation. For pre expressions, this is simply a binding of the class to self. For post expressions,
there is also a binding of the class to self, but in addition there is a binding of the class to self@pre. This enables
an instance of a post conditions to reference values within its respective pre condition instance.

Figure 17-10 on page 221 shows a snapshot realisation of the operation semantic domain definition for the
syntax specification of figure 17-9 on page 220. Again this is missing details of the operations body, however it
is illustrated how the post condition is able to access variable values bound to the pre state (through the semantic
realisation of the syntactic self@pre variable declaration).

Figure 17-10 Partial example snapshot of figure 17-5 on page 216

17.6 CHANGES FROM UML 1.4
The semantics for operations have been defined. Operations may be optionally associated with an action, thus
supporting a the refinement of operations as action expressions.

:Object
Identity

:Operation
Evaluation

ownedOperationEvaluation

:Object :Object

filmstrip@1 filmstrip@2

preState postState

name = “y”

:Slot
name = “y”

:Slot

ownedSlot ownedSlot

:EqualsExpEval :EqualsExpEval

value

postCondEval

scope

:variableValue

scope

value

:variableValue
preCondEval

scope

scope

:PropertyCall
ExpEval

:PropertyCall
ExpEval

:PropertyCall
ExpEval

:ConstantExp
Eval

left rightright left

:Bound
VariableEval

:Bound
VariableEval

:Bound
VariableEval

source source source

referred
Variable

referred
Variable

referred
Variable
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 221

1 Chapter 18
Messaging

This chapter defines an abstract syntax and semantics for messaging. It describes how operations can be invoked
by the sending of a message from an object.

18.1 POSITION IN ARCHITECTURE

The approach we have adopted closely follows that described in (Kleppe01) where objects are augmented with
input and output signal queues. When a send message action occurs a new signal is added to the output queue of
the object owning the send message action. We say nothing about how the signal is then transferred to the input
queue of the target object since this may be realised in a number of ways depending on the target implementation.
It is simply stated that if an operation executes then a signal corresponding to invoking the operation must have
been generated sometime earlier in time and that the signal exists in the input queue of the object containing the

DataTypes Associations Classes

Packages Expressions

Templates QueriesConstraints

Actions

Operations

Behaviour

Messages

UML2::LanguageUnits::Core
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 222

MESSAGING
operation execution prior to the operation execution (the operation execution’s pre state) and no longer in the
input queue after the operation execution (the operation execution’s post state).

18.1.1 Example
Figure 18-1 on page 223 shows an example of a message call (signified by the "^" symbol).

Figure 18-1 Message call example

18.2 ABSTRACT SYNTAX

18.2.1 Derivation

Figure 18-2 Derivation of Messaging Abstract Syntax package

O p 1
(
 s e l f^O p 2
)

O p 2
(
)

X

Container Container
Element

<Container> <Element>

owning<Container>

owned<Element>1

*

Class

SignalOperation
targetOperation

1

Send
Message

Action

ownedSignal1Primitive
Action

originClass

*
member

Operation

AbstractSyntax

Messaging
Signal
Parameter

Classifier
type

1

Parameter

type 1

1 owningSendAction

Reference
Operator

VariableExp

target
1

Expression
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 223

MESSAGING
18.2.2 Model
Figure 18-3 on page 224 shows the definition of the Messaging package abstract syntax. The derivation of this is
illustrated in figure 18-2 on page 223.

Figure 18-3 Abstract Syntax for the Messaging package

Signal
Associations
originClass The class from where the signal originated.
ownedParameter The parameters associated with a signal.
owningSendAction The send message action that initiated the signal.
targetOperation The operation that should be invoked as a result of the signal.

SendMessageAction
Associations
type The type of the send message action.
ownedSignal The signal owned by the send message action.
target The reference operator that links to the target class whose operation needs to be called.

Parameter
Associations
type The type of the parameter.

Class

SignalOperation
targetOperation

ParameterownedParameter

owningSignal

11

Send
Message

Action

ownedSignal1
Primitive
Action

originClass

*memberOperation

Classifier
type

1

Messaging::AbstractSyntax

type 1

1

1 owningSendAction

*

Reference
Operator VariableExp

target1

Expression
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 224

MESSAGING
owningSignal The signal owning the parameter.

ReferenceOperator
ReferenceOperator is an abstract class used purely for the purpose of polymorphism. The target of a SendMes-
sageAction can be a bound variable, a PropertyCallExp or an other SendMessageAction. Using this we can con-
sider the target of a SendMessageAction more generally as a referenceOperator. For example self.a.operation1()
is a SendMessageAction with operation1() as the target operation and self.a (a PropertyCallExp expression) as
the target.

18.2.3 Well-formedness Rules

SendMessageAction
[1] The type of the SendMessageAction is the return type of the target operation

context SendMessageAction inv:
 self.type = self.ownedSignal.targetOperation.type

[2] The target operation to be called must be in scope of the target class.

context SendMessageAction inv:
 self.target.type.memberOperation ->includes
 (self.ownedSignal.targetOperation)

18.2.4 Operations
There are no operations.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 225

MESSAGING
18.3 SEMANTIC DOMAIN

18.3.1 Derivation

Figure 18-4 Derivation of Messaging Semantic Domain package

Object

Signal
Instance

inputQueue outputQueue* *

Operation
Evaluation

ObjectIdentity identity
1

preState postState1 1

Send
Message

Action
Evaluation

ownedSignalInstance1

Primitive
Action

Evaluation

preState

postState 1

1

originObject1

Value

value1

Container Container
Element

<Container> <Element>

owning<Container>

owned<Element>1

*

SemanticDomain

Messaging

ObjectIdentity
OperationEvaluation

SignalInstance
ParameterEvaluation

Parameter
Evaluation

value

1

1 owningActionEvaluation

Reference
OperatorEvalu

ation

VariableExp
Eval

target

1

Expression
Evaluation
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 226

MESSAGING
18.3.2 Model
Figure 18-5 on page 227 shows the definition of Messaging semantic domain package. The derivation of this is
illustrated in figure 18-4 on page 226.

Figure 18-5 Semantic Domain for Messaging package

Object
Associations
identity The identity of the object.
inputQueue The signal instances to be processed by the object.
outputQueue The signal instances originating from the object.

ObjectIdentity
Associations
ownedOperationEvaluation The operation evaluations owned by the object identity.

Object

Signal
Instance

inputQueue outputQueue* *

owningSignalInstance

1 Parameter
Evaluation

ownedParameterEvaluation

Operation
Evaluation

owningObjectIdentity

ownedOperationEvaluation

1

*

ObjectIdentity identity
1

preState postState1 1

Send
Message

Action
Evaluation

ownedSignalInstance1

Primitive
Action

Evaluation

preState

postState 1

1

*

originObject1

Value

value1

Messaging::SemanticDomain

value

1

1 owningActionEvaluation

Reference
Operator

Evaluation

VariableExp
Eval

target

1

Expression
Evaluation
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 227

MESSAGING
OperationEvaluation
Associations
owningObjectIdentity The object identity owning the operation evaluation.
preState The state before the operation executes.
postState The state after the operation executes.

SignalInstance
Associations
originObject The object from where the signal instance originated.
ownedParameterEvaluation The parameter evaluations owned by the signal instance.
owningActionEvaluation The send message action evaluation owning the signal instance.

SendMessageActionEvaluation
Associations
preState The state before the send message action evaluation takes place.
postState The state after the send message action evaluation has taken place.
value The value of the send message action evaluation.
ownedSignalInstance The signal instance owned my the send message action evaluation.
target The reference operator evaluation that links the target object whose operation needs to be called.

Parameter
Associations
value The value of the parameter.

18.3.3 Well-formedness Rules

SendMessageActionEvaluation
[1] My pre and post states must correspond to the owning object of the send message action evaluation.

To be formalised.

[2] The pre state and post state must refer to an object with the same identity and correspond to the identity of my
signal instances origin object.

context SendMessageActionEvaluation inv:
 self.preState.identity = self.postState.identity
 and self.preState.identity =
 self.ownedSignalInstance.originObject.identity

[3] My signal instance must not be included in my pre state object’s output queue, but should be included in my
post state’s output queue.

context SendMessageActionEvaluation inv:
 not(self.preState->includes(ownedSignalInstance)) and
 self.postState->includes(ownedSignalInstance)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 228

MESSAGING
Object
[1] The signal instances in the input queue no longer exist in the output queue of their origin object.

context Object inv:
 self.inputQueue->forAll(i |
 not(i.originObject->outputQueue->includes(i))

18.3.4 Operations
There are no operations.

18.4 SEMANTIC MAPPING

18.4.1 Derivation
There is no derivation.

18.4.2 Model

Figure 18-6 Derivation of Messaging Semantic Mapping package

Semantics ModelElement
Value

<ModelElement> <Value>of

SemanticMapping

Messaging

Class
Object

Class
ObjectIdentity

Message
MessageInstance

Operation
OperationEvaluation

SendMessageAction
SendMessageActionEvaluation

Parameter
ParameterEvaluation

Classifier
Value
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 229

MESSAGING
Figure 18-7 Semantic Mapping for Messaging package

18.4.3 Well-formedness Rules

OperationEvaluation
[1] There must exist in the pre state object’s input queue a signal instance who targets the operation that I am an
instance of. The signal should have been created earlier in time. This signal should not exist in the post state of
my object’s input queue.

context OperationEvaluation inv:
 self.preState.inputQueue->includes(i | i.of.targetOperation = self.of
 and self.preState.isLater(i.owningActionEvaluation.postState)
 and not(self.postState.inputQueue->includes(i)))

[3] My object identity’s class should contain an operation that commutes with me.

context OperationInstance inv:
 self.owningObjectIdentity.of.
 memberOperation->includes(i | self.of = i)

18.4.4 Operations
There are no operations.

Class Object
of

Class Object
Identity

of

Signal Signal
Instance

of

Operation Operation
Evaluation

of

Send
Message

Action

Send
Message

Action
Evaluation

of

Parameter Parameter
Evaluation

of

Classifier Value
of

Messaging::SemanticMapping
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 230

MESSAGING
18.5 EXAMPLE SNAPSHOTS

Figure 18-9 on page 231 shows a snapshot realisation of the example shown in figure 18-8 on page 231.

Figure 18-8 Example message
This describes how a class has two operation (Op1 and Op2) and how the second operation (Op2) is invoked
from the first (Op1).

Figure 18-9 Example snapshot of figure 18-3 on page 224

Figure 18-10 on page 232 shows a snapshot realisation of the messaging semantic domain definition for the syn-
tax specification of figure 18-9 on page 231. The evolution of the system is described such that an object has a
signal in the post state of the send message action (filmstrip@2) that did not exist in the pre state (filmstrip@1).
This state transformation was ultimately caused by the first operation (Op1). The second operation (Op2, which
does nothing) occurs later in time and describes how the same signal exists in the input queue of its object and no
longer exists in the output queue of the origin object (the same object) and that signal does not exist after the
operation has executed.

O p 1
(
 s e l f^O p 2
)

O p 2
(
)

X

:C lass

Op1
:Operation

Op2
:Operation

m em berOperation m em berOperation

ty pe

:S end
Message

A ction

body

“self”

:V ariab le
D eclaration

referredV ariable

:B oundV ar

target

:S ignal

ownedS ignalowningS endA c tion
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 231

MESSAGING
Figure 18-10 Example snapshot of figure 18-5 on page 227

18.6 CHANGES TO UML 1.4
A semantics has been defined for message passing.

:Object
Identity

:Object :Object :Object :Object

identity

identity identity

identity

filmstrip@1 filmstrip@2 filmstrip@3 filmstrip@4

Op1:
Operation
Instance

Op2:
Operation
Instance

ownedOperation ownedOperation

preState preStatepostState postState

:Send
Message

Action
Evaluation

body

:Signal
Instance

ownedSignalInstance

owningActionEvaluation

OutputQueue InputQueue

originObject

preState
postState
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 232

1 Chapter 19
Foundation Templates

19.1 INTRODUCTION

The purpose of this chapter is to describe a set of general purpose templates for language design. Each of the tem-
plates described in this chapter represent a self-contained unit of concepts and properties that capture a specific
aspect of language design. These templates are used to construct the UML specific templates that can be found in
the next chapter.

The templates in this chapter are categorised and ordered as follows:
Structural Templates: Container, TypedElement, Parameterized, Multiplicity.
Naming Templates: Named, Namespace.
Relationship: Relationship, Generalizable, Extendable, Import.
Semantics: Semantics, ParameterizedValue, ParameterizedSemantics.

These templates and categories are not fixed. In the process of building the submission, we have noticed many
other useful language design templates. Our intention is to expand this chapter with new templates as we identify
them and our experience of language definition grows.

19.2 CONTAINER

19.2.1 Summary
A containment relationship, in which one element, the container, conceptually contains another element (the con-
tained element). Containers are one of the most fundamental patterns found in a modelling language. Many lan-
guage elements “contain” other language elements.

19.2.2 Derivation
Not derived from any template.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 233

FOUNDATION TEMPLATES
19.2.3 Definition

<Container>
Associations
owned<Element> The set of owned/contained elements.

<Element>
Associations
owning<Container> The container which owns/contains the element.

19.2.4 Well-formedness Rules

19.2.5 Operations

19.3 TYPEDELEMENT

19.3.1 Summary
This template defines the structure of elements that have a type.

19.3.2 Derivation
Not derived from any template.

C ontainer C ontainer
E lement

<C ontainer> <E lement>

owning<C ontainer>

owned<E lement>1

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 234

FOUNDATION TEMPLATES
19.3.3 Definition

<TypedElement>
Associations
type The type of the typed element.

19.3.4 Well-formedness Rules

19.3.5 Operations

19.4 PARAMETERIZED

19.4.1 Summary
An element which has typed parameters.

19.4.2 Derivation

TypedElement TypedElement
Type

<Type> <TypedElement>
type

1

Parameterized <ParameterizedElement>
<Type>

Namespace Namespace
NamedElement

<ParameterizedElement>
Parameter

TypedElement TypedElement
Type

Parameter
<Type>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 235

FOUNDATION TEMPLATES
19.4.3 Definition

<ParameterizedElement>
Association
memberParameter The members of the parameterized element’s namespace.
ownedParameter The owned parameters of the parameterized element.

Parameter
Associations
type The type of the parameter.

19.4.4 Well-formedness Rules

<ParameterizedElement>
[1] The members of a parameterized element include its owned parameters.

context <ParameterizedElement> inv:
self.memberParameter->includesAll(self.ownedParameter)

[2] A parameterised element cannot have two parameters with the same name.

context <ParameterizedElement> inv:
self.memberParameter->forAll(e1|
 self.memberParameter->forAll(e2|
 e1 <> e2 implies e1.name <> e2.name))

19.4.5 Operations

<ParameterizedElement>
[1] Looks up a parameter in a parameterized element given a name.

Parameterized ParameterizedElement
ParameterType

<Parameterized
Element>

Parameter
<Parameter

Type>

1

*

1

owning
<Parameterized

Element>

ownedParameter

type

* memberParameter
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 236

FOUNDATION TEMPLATES
context <ParameterizedElement>::lookupParameterforName(x : Name): Parameter
self.memberParameter->select(e | e.name = x).selectElement()

[2] Looks up the name in a parameterized element given a parameter.

context <ParameterizedElement>::lookupNameForParameter(n : Parameter):Name
self.memberParameter->select(e | e = x).selectElement().name

Parameter
[1] Checks whether the given parameter is in the same namespace as this namespace

context Parameter::sameNamespace(x : Parameter):Boolean
 x.owning<ParameterizedElement>.memberParameter -> includes(self)

19.5 MULTIPLICITY

19.5.1 Summary
A multiplicity is a set of integer values including the distinguished value "unLimited". A multiplicity is associ-
ated with a range which specifies the range of integer values in the set.

19.5.2 Derivation
Not derived from any template.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 237

FOUNDATION TEMPLATES
19.5.3 Definition

<TypedFeature>
Attributes
multiplicity The multiplicity associated with the typed feature.

Multiplicity
Attributes
isOrdered True if the elements are to be ordered.
range The set of number ranges belonging to the multiplicity.

Range
Attributes
lower The lower value
upper The upper value
isUnlimited True if the range is infinite

Multiplicity

isOrdered : Boolean

Multiplicity

lower : Integer
upper : Integer
isUnlim ited : Boolean

Range

multiplic ity

range

TypedFeature

0..1

*

<TypedElement>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 238

FOUNDATION TEMPLATES
19.5.4 Well-formedness Rules

19.5.5 Operations

19.6 NAMED

19.6.1 Summary
A named element.

19.6.2 Derivation
Not derived from any template.

19.6.3 Definition

<NamedElement>
attribute
name The name of the named element

19.6.4 Well-formedness Rules

19.6.5 Operations

Named
NamedElement

name:Name

<NamedElement>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 239

FOUNDATION TEMPLATES
19.7 NAMESPACE

19.7.1 Summary
A namespace for named elements. A named element is a member of a namespace if it is owned by the namespace
or has been included as a result of import, extension or inheritance. A namespace provides lookup operations that
return a named element for a name and vice versa.

19.7.2 Derivation

19.7.3 Definition

<Namespace>
Attributes
member<NamedElement> The members of the namespace.

Namespace Namespace
NamedElement

Named
NamedElement

Container Container
Element

<NamedElement>
<Namespace>
<NamedElement>

Namespace Nam es pac e
Nam edE lem ent

<Namespace>

1

**m em ber< Nam edE lem ent>

nam e:Nam e

<NamedE lement>

* owning< Nam edE lem ent>

owned< Nam edE lem ent>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 240

FOUNDATION TEMPLATES
Associations
owned<NamedElement> The owned named elements.

<NamedElement>
Attributes
name The name of the named element.
Associations
owningNamespace The namespace owning the named element.

19.7.4 Well-formedness Rules

<Namespace>
[1] The members of a namespace include its owned elements

context <Namespace> inv:
self.member<NamedElement>->includesAll(self.owned<NamedElement>)

[2] A namespace cannot have two named elements with the same name.

context <Namespace> inv:
self.member<NamedElement>->forAll(e1|
 self.member<NamedElement>->forAll(e2|
 e1 <> e2 implies e1.name <> e2.name))

19.7.5 Operations

<Namespace>
[1] Looks up a named element in a namespace given a name

context <Namespace>::lookup<NamedElement>forName(x : Name): <NamedElement>
self.member<NamedElement>->select(e | e.name = x).selectElement()

[2] Looks up the name in a namespace given a named element

context <Namespace>::lookupNameFor<NamedElement>(n : <NamedElement>):Name
self.member<NamedElement>->select(e | e = x).selectElement().name

<NamedElement>
[1] Checks whether the given named element is in the same namespace as this namespace

context <NamedElement>::sameNamespace(x : <NamedElement>):Boolean
x.owning<Namespace>.member<NamedElement> -> includes(self)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 241

FOUNDATION TEMPLATES
19.8 RELATIONSHIP

19.8.1 Summary
Defines a relationship between two elements of the same type.

19.8.2 Derivation
Not derived from any template.

19.8.3 Definition

<Element>
assocoation
<sourcerel> The source elements.
<targetrel> The target elements.

<Element><Rel>
association
<source> The source element.
<target> The target element.

Relationship

Element
Rel
source
target
sourcerel
targetrel

<Element> <Element><Rel>

<source>
1

<target>
1

<sourcerel>
1

<targetrel>
1

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 242

FOUNDATION TEMPLATES
19.8.4 Well-formedness Rules

19.8.5 Operations

19.9 GENERALIZABLE

19.9.1 Summary
A generalization relationship between elements.

19.9.2 Derivation

19.9.3 Definition

Generalizable
Element

Relationship

Element
Rel
source
target
sourcerel
targetrel

<Element>
Generalization
general
specific
specialization
generalization

Generalizable
Element

<Element>Generalization

general
specialization1

*

specific

generalization1

*

isAbstract:Boolean

<Element>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 243

FOUNDATION TEMPLATES
<Element>
Attributes
isAbstract True if the element is abstract.
Associations
specialization The specializations of element.
generalization The generalizations of element.

<Element>Generalization
Associations
general The general element.
specific The specific element.

19.9.4 Well-formedness Rules

<Element>
[1] Circular inheritance is not permitted

context <Element> inv:
not self.allGeneralElements()->includes(self)

19.9.5 Operations

<Element>
[1] Returns the generalizations of the element.

context <Element>::generalElements():Set(<Element>)
self.generalization->iterate(p s=Set{} | s->union(Set{p.general}))

[2] Transitively returns all generalizations of the element.

context <Element>::allGeneralElements():Set(<Element>)
self.generalElements()->iterate(g s=self.generalElements() |
 s->union(g.allGeneralElements()))
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 244

FOUNDATION TEMPLATES
19.10 EXTENDABLE

19.10.1 Summary
An extension relationship between elements.

19.10.2 Derivation

19.10.3 Definition

<Element>
Associations
extended The extended elements.
extending The extending elements.

Relationship

Element
Rel
source
target
sourcerel
targetrel

Extendable
Element

<Element>
Extension
parent
child
extended
extending

E xte nd a b le
E le m e nt

<E le m e nt>E xte ns io n

p a re nt e xte nd ing

1 *

chi ld e xte nd e d

1 *

<E le m e nt>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 245

FOUNDATION TEMPLATES
<Element>Extension
Associations
parent The parent Element.
child The child Element

19.10.4 Well-formedness Rules

<Element>
[1] Circular inheritance is not permitted.

context <Element> inv:
not self.allExtendedElements()->includes(self)

19.10.5 Operations

<Element>
[1] Returns the elements that have been extended.

context <Element>::extendedElements():Set(<Element>)
self.extended -> iterate(p s = Set{} | s->union(Set{p.parent}))

[2] Transitively returns all elements that have been extended.

context <Element>::allExtendedElements():Set(<Element>)
self.extendedElements()->iterate(g s = self.extendedElements() |
 s->union(g.allExtendedElements()))

19.11 IMPORT

19.11.1 Summary
Defines an import relationship for a pair of namespaces.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 246

FOUNDATION TEMPLATES
19.11.2 Derivation

19.11.3 Definition

Im port Nam espace
Nam edE lem ent

Rela tionship

E lem ent
Re l
source
targe t
sourcere l
ta rge tre l

<Nam edE lem ent>
Im port
parent

child
im porter

im ported

Nam espace

<Nam espace>
<Nam edE lem ent>

Nam espace
Nam edE lem ent

<Nam espace>
<Nam ed
E lem ent>

im ported
< Nam edE lem ent>*

*

Import

nam e : Nam e

<Named
E lement>

<Namespace>
owned<Nam edE lem ent>

*owning<Nam espace>

Nam espace
Nam edE lem ent

<Namespace>
Import

im porting im ported* *

1parent child

*

*1

m em ber<Nam edE lem ent>

*

*

inm ported<Nam edE lem ent>

1

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 247

FOUNDATION TEMPLATES
<NamedElement>
Associations
imported<NamedElement> The imported elements.
member<NamedElement> The member elements.

19.11.4 Well-formedness Rules
[1] The members of a namespace include its imported elements

context <Namespace> inv:
 self.member<NamedElement>->includesAll(self.imported<NamedElement>)

[2] Parent namespace named elements are imported.

context <Namespace> inv:
self.importedNamespaces()->forAll(x |
 self.imported<NamedElement>->includesAll(x.member<NamedElement>))

19.11.5 Operations

<Namespace>
[1] Returns the imported namespaces of the namespace.

context <Namespace>::imported<Namespace>():Set(<Namespace>)
self.imported->iterate(p s=Set{} | s->union(Set{p.parent}))

[2] Transitively returns all imported namespaces of the namespace.

context <Namespace>::allImported<Namespace>():Set(<Namespace>)
self.imported<Namespace>()->iterate(g s=self.imported<Namespace>() |
 s->union(g.allImported<Namespace>()))

19.12 SEMANTICS

19.12.1 Summary
An semantic relationship between a value and the element it is a value or instance of.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 248

FOUNDATION TEMPLATES
19.12.2 Model

19.13 PARAMETERIZEDVALUE

19.13.1 Summary
An instance of a parameter.

19.13.2 Definition

Semantics E lem ent
Value

<E lement> <Value>
1

of

ParameterizedValue <ParameterizedElementValue>
<Value>

Container Container
Contained

<ParameterizedElementValue>
<Value>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 249

FOUNDATION TEMPLATES
19.13.3 Definition

<ParameterizedElementValue>
Association
ownedParameterValue The owned parameter values of the parameterized element value.

ParameterValue
Associations
value The value of the parameter value.

19.14 PARAMETERIZEDVALUESEMANTICS

19.14.1 Summary
Defines a semantics for parameterized element. A value of a parameterized element is a parameter value. There
must be a parameter value for every parameter of the parameterized element and vice versa.

ParameterizedValue ParameterizedElementValue
Value

<Parameterized
ElementValue>

.

ParameterValue <Value>
1

1
owning

<Parameterized
ElementValue>

ownedParameterValue

valuie

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 250

FOUNDATION TEMPLATES
19.14.2 Derivation

19.14.3 Definition

19.14.4 Well-formedness rules

<ParameterizedElementValue>
[1] A parameterized element value should contain a parameter value for all parameter’s in the parameterized ele-
ment value’s parameterized element’s namespace.

context <ParameterizedElementValue> inv:
self.of.memberParameter->forAll(c |
 self.ownedParameterValue->exists(d | d.of = c))

[2] For each parameter value owned by a parameterized element value there should be a parameter of the param-
eterized element value’s parameter element’s namespace that the parameterized element value is a value of.

context <ParameterizedElementValue> inv:
self.ownedParameterValue->forAll(c |
 self.of.memberParameter->exists(d | c.of = d))

ParameterizedSemantics
<ParameterizedElement>
<ParameterType>
<ParameterizedElementValue>
<Value>

Parameterized ParameterizedElement
ParameterType

<ParameterizedElementValue>
<Value>

Parameterized
Value ParameterizedElementValue

Value

<ParameterizedElement>
<ParameterType>

ParameterizedSemantics

<Parameterized
ElementValue>

ParameterValue

1

of
<Parameterized

Element>

Parameter
1

of

<ParameterizedElement>
<ParameterType>
<ParameterizedElementValue>
<Value>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 251

1 Chapter 20
UMLTemplates

20.1 INTRODUCTION

This chapter describes the templates used to define UML 2.0. Note, these templates are specifically targeted at
the UML language.

The templates in this chapter are categorised and ordered as follows:
Structural: FeatureClassifier, StructuralFeatureClassifier, BehaviouralFeatureClassifier, Package.
Semantics: StructuralFeatureClassifierValue, StructuralFeatureClassifierSemantics, BehaviouralFeatureClas-
sifierValue, BehaviouralFeatureClassifierSemantics.
Extension: ExtendableNamespace, ExtendablePackage, ExtendableStructuralFeatureClassifier, Extendable-
BehaviouralFeatureClassifier, TemplateInstantiation.

20.2 FEATURECLASSIFIER

Describes the general structure and properties of a classifier and its features.

20.2.1 Derivation

FeatureClassifier Classifier
Feature
Type

Namespace Namespace
NamedElement

<Classifier>
<Feature>

TypedElement TypedElement
Type

Generalizable
Element

<Feature>
<Type>

<Classifier>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 252

UMLTEMPLATES
20.2.2 Definition

<Classifier>
Attributes
isAbstract True if the classifier is abstract
Associations
inherited<Feature> The inherited features of the classifier.
member<Feature> The features that are members of the namespace of the classifier.
owned<Feature> The features owned by the classifier.
specialization The specializations of the classifier.
generalization The generalizations of the classifier.

<Feature>
Attributes
name The name of the feature.
redefined<Feature> The features that are redefined.
type The type of the classifier.
Associations
owning<Classifier> The classifier that owns/contains the feature.

<Classifier>Generalization
Associations
general The general classifier.

FeatureClassifier

<Classifier>Generalisation

general

specialization

1

*

specific

generalization

1

*

isAbstract:Boolean

<Classifier>

inherited<Feature>

*

<Type>
type

owning<Classifier>

owned<Feature>1

*

*

member<Feature>

name:Name

<Feature>

*

Classifier
Feature
Type

1

*

*

redefined<Feature>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 253

UMLTEMPLATES
specific The specific classifier.

20.2.3 Well-formedness Rules

<Classifier>
[1] The members of a classifier must include the owned features of the classifier.

context <Classifier> inv:
self.member<Feature> ->includesAll(self.owned<Feature>)

[2] Circular inheritance is not permitted.

context <Classifier> inv:
not self.allGeneralElements()->includes(self)

[3] Parent element’s features must be inherited.

context <Classifier> inv:
self.inherited<Feature> = self.generalElements()->iterate(p s = Set{} |
 s->union(p.member<Feature>->reject(x |
 self.member<Feature>->exists(x'|
 x'.redefined<Feature>->includes(x)))))

[4] Member features must include the inherited features.

context <Classifier> inv:
self.member<Feature> ->includesAll(self.inherited<Feature>)

[5] Features cannot be owned and inherited.

context Class inv:
self.owned<Feature>->intersection(self.inherited<Feature>) -> isEmpty

[6] Member features may only redefine parent features.

context <Classifier> inv:
self.member<Feature> -> forAll(x |
 (self.generalElements() -> iterate(s = Set{} |
 s->union(g.member<Feature>))))->includesAll(x.redefined<Feature>)

<Feature>
[1] Redefined features must conform.

context <Feature> inv:
self.redefined<Feature>->forAll(f |
 self.type.conformsTo(f.type))

20.2.4 Operations

<Classifier>
[1] Looks up a feature in a classifier given a name.

 context <Classifier>::lookup<Feature>forName(x:Name):featureClassifier::
 <Feature>
 self.member<Feature>->select(e|e.name = x).selectElement()
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 254

UMLTEMPLATES
[2] Looks up a name in a classifier given a feature.

 context <Classifier>::lookupNameFor<Feature>(x : <Feature>): Name
 self.member<Feature>->select(e|e = x).selectElement().name

[3] Returns the generalizations of the classifier.
context <Classifier>::generalElements() : Set(<Classifier>)
 self.generalization->iterate(p s=Set{} | s->union(Set{p.general}))

[4] Transitively returns all generalizations of the classifier.
context <Classifier>::allGeneralElements(): Set(<Classifier>)
 self.generalElements()->iterate(g s=self.generalElements() |
 s->union(g.allGeneralElements()))

<Feature>
[1] Checks whether the supplied feature is in the same classifier as the feature.

 context <Feature>::sameNamespace(x : <Feature>) : Boolean
 x.slotValue(owning<Classifier>).member<Feature>->includes(self)

20.3 STRUCTURALFEATURECLASSIFIER

20.3.1 Summary
Describes the general structure and properties of a classifier and its structural features.

20.3.2 Derivation

StructuralFeatureClassifier

FeatureClassifier Classifier
Feature
Type

<Classifier>
<StructuralFeature>
<Type>

Classifier
StructuralFeature
Type
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 255

UMLTEMPLATES
20.3.3 Definition

<Classifier>
Attributes
isAbstract True if the classifier is abstract
Associations
inherited<Feature> The inherited structural features of the classifier.
member<Feature> The structural features that are members of the namespace of the classifier.
owned<Feature> The structural features owned by the classifier.
specialization The specializations of the classifier.
generalization The generalizations of the classifier.

<StructuralFeature>
Attributes
name The name of the structural feature.
redefined<Feature> The structural features that are redefined.
type The type of the classifier.
Associations
owning<Classifier> The classifier that owns/contains the structural feature.

<Classifier>Generalization
Associations
general The general classifier.
specific The specific classifier.

StructuralFeatureC lassifier

name : Name

<Structural
Feature>

owned<StructuralFeature>

*owning<Class ifier>

Class ifier
StructuralFeature
Type

<Type>

<Classifier>
Generalisation

generalization specialization**

1specific general

1

*

*
1

member<StructuralFeature>

*

inherited<StructuralFeature>

*redefined<StructuralFeature>

isAbstract :
Boolean

<C lassifier>

1

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 256

UMLTEMPLATES
20.3.4 Well-formedness Rules

<Classifier>
[1] The members of a classifier must include the owned structural features of the classifier.

context <Classifier> inv:
self.member<StructuralFeature> ->includesAll(self.owned<StructuralFeature>)

[2] Circular inheritance is not permitted.

context <Classifier> inv:
not self.allGeneralElements()->includes(self)

[3] Parent structural features must be inherited.

context <Classifier> inv:
self.inherited<StructuralFeature> = self.generalElements()->iterate(p
 s = Set{}|s->union(p.member<StructuralFeature>->reject(x |
 self.member<StructuralFeature>->exists(x'|
 x'.redefined<StructuralFeature>->includes(x)))))

[4] The member structural features must include the inherited structural features.

context <Classifier> inv:
self.member<StructuralFeature> ->
 includesAll(self.inherited<StructuralFeature>)

[5] Structural features cannot be owned and inherited.

context Class inv:
self.owned<StructuralFeature>->
 intersection(self.inherited<StructuralFeature>) -> isEmpty

[6] Member structural features must only redefine parent structural features.

context <Classifier> inv:
self.member<StructuralFeature> -> forAll(x |
 (self.generalElements() -> iterate(s = Set{} |
 s->union(g.member<StructuralFeature>))))->includesAll
 (x.redefined<StructuralFeature>)

<StructuralFeature>
[1] Redefined structural features must conform.

context <StructuralFeature> inv:
self.redefined<StructuralFeature>->forAll(f |
 self.type.conformsTo(f.type))

20.3.5 Operations

<Classifier>
[1] Looks up a structural feature in a classifier given a name.

context <Classifier>::lookup<StructuralFeature>forName(x:Name):
 <StructuralFeature>
 self.member<StructuralFeature>->select(e|e.name = x).selectElement()
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 257

UMLTEMPLATES
[2] Looks up a name in a classifier given a structural feature.

context <Classifier>::lookupNameFor<StructuralFeature>(x : <StructuralFeature>):
Name
self.member<StructuralFeature>->select(e|e = x).selectElement().name

[3] Returns the generalizations of the classifier.
context <Classifier>::generalElements() : Set(<Classifier>)
 self.generalization->iterate(p s=Set{} | s->union(Set{p.general}))

[4] Transitively returns all generalizations of the classifier.
context <Classifier>::allGeneralElements(): Set(<Classifier>)
 self.generalElements()->iterate(g s=self.generalElements() |
 s->union(g.allGeneralElements()))

<StructuralFeature>
[1] Checks whether the supplied structural feature is in the same classifier as the structural feature.

 context <StructuralFeature>::sameNamespace(x : <StructuralFeature>) : Boolean
 x.owning<Classifier>.member<StructuralFeature>->includes(self)

20.4 BEHAVIOURALFEATURECLASSIFIER

20.4.1 Summary
Describes the general structure and properties of a classifier and its behavioural features.

20.4.2 Derivation

BehaviouralFeatureClassifier

FeatureClassifier Parameterized

<BehaviouralFeature>
<Type>

Classifier
Feature
Type

Classifier
BehaviouralFeature
Type

ParameterizedElement
Type

<Classifier>
<BehaviouralFeature>
<Type>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 258

UMLTEMPLATES
20.4.3 Definition

<Classifier>
Attributes
isAbstract True if the classifier is abstract
Associations
inherited<BehaviouralFeature> The inherited behavioural features of the classifier.
member<BehaviouralFeature> The behavioural features that are members of the namespace of the classifier.
owned<BehaviouralFeature> The behavioural features owned by the classifier.
specialization The specializations of the classifier.
generalization The generalizations of the classifier.

<BehaviouralFeature>
Attributes
name The name of the behavioural feature.
redefined<BehaviouralFeature> The behavioural features that are redefined.
type The type of the classifier.
Associations
owning<Classifier> The classifier that owns/contains the behavioural feature.

<Classifier>Generalization
Associations

<Classifier>
Generalization

name:Name

Parameter

generalspecific

specializationgeneralization 1 1

**

inherited<BehaviouralFeature>

owning<BehaviouralFeature>

ownedParameter

BehaviouralFeatureClassifier Classifier
BehaviouralFeature
Type

name:Name

<BehaviouralFeature>

isAbstract:Boolean

<Classifier>

owned<BehaviouralFeature>

owning<Classifier>

member<BehaviouralFeature>

*

* *

*

1

memberParameter

*

redefined
<BehaviouralFeature>

*

1

*

1

<Type>
1

type
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 259

UMLTEMPLATES
general The general Classifier.
specific The specific Classifier.

20.4.4 Well-formedness Rules

<Classifier>
[1] The members of a classifier must include the owned behavioural features of the classifier.

context <Classifier> inv:
self.member<BehaviouralFeature> ->includesAll(self.owned<BehaviouralFeature>)

[2] Circular inheritance is not permitted.

context <Classifier> inv:
not self.allGeneralElements()->includes(self)

[3] Parent behavioural features must be inherited.

context <Classifier> inv:
self.inherited<BehaviouralFeature> = self.generalElements()->iterate(p
 s = Set{}|s->union(p.member<BehaviouralFeature>->reject(x |
 self.member<BehaviouralFeature>->exists(x'|
 x'.redefined<BehaviouralFeature>->includes(x)))))

[4] Member behavioural features must include the inherited behavioural features.

context <Classifier> inv:
self.member<BehaviouralFeature>->
 includesAll(self.inherited<BehaviouralFeature>)

[5] Behavioural features cannot be owned and inherited.

context Class inv:
self.owned<BehaviouralFeature>->
 intersection(self.inherited<BehaviouralFeature>) -> isEmpty

[6] Member behavioural features must only redefine parent behavioural features.

context <Classifier> inv:
self.member<BehaviouralFeature> -> forAll(x |
 (self.generalElements() -> iterate(s = Set{} |
 s->union(g.member<BehaviouralFeature>))))-> includesAll
 (x.redefined<BehaviouralFeature>)

<BehaviouralFeature>
[1] Redefined behavioural features must conform.

context <BehaviouralFeature> inv:
self.redefined<BehaviouralFeature>->forAll(f |
 self.type.conformsTo(f.type))

[2] The type of the parameter of the behavioural feature must conform to its parent’s type.

context <BehaviouralFeature> inv:
self.redefined<BehaviouralFeature> -> forAll(f |
 (1).to(self.parameter->size) -> forAll(n |
 self.parameter.at(n).type.conformsTo(f.parameter.at(n).type)))
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 260

UMLTEMPLATES
20.4.5 Operations

<Classifier>
[1] Looks up the behavioural feature in a classifier given a name.

 context <Classifier>::lookup<BehaviouralFeature>forName(x:Name):
 <BehaviouralFeature>
 self.member<BehaviouralFeature>->select(e|e.name = x).selectElement()

[2] Looks up the name in a classifier given a behavioural feature.

 context <Classifier>::lookupNameFor<BehaviouralFeature>(x :
<BehaviouralFeature>): Name
self.member<BehaviouralFeature>->select(e|e = x).selectElement().name

[3] Returns the generalizations of the classifier.
context <Classifier>::generalElements() : Set(<Classifier>)
 self.generalization->iterate(p s=Set{} | s->union(Set{p.general}))

[4] Transitively returns all generalizations of the classifier.
context <Classifier>::allGeneralElements(): Set(<Classifier>)
 self.generalElements()->iterate(g s=self.generalElements() |
 s->union(g.allGeneralElements()))

<BehaviouralFeature>
[1] Checks whether the given behavioural feature is in the same classifier.

 context <BehaviouralFeature>::sameNamespace(x:<BehaviouralFeature>):Boolean
 x.owning<Classifier>.member<BehaviouralFeature>->includes(self)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 261

UMLTEMPLATES
20.5 PACKAGE

20.5.1 Summary
Defines a package template. A package is a large grained module structure that contains named elements..

20.5.2 Derivation

20.5.3 Definition

<Package>
Attributes
member<NamedElement> The named elements that are members of the package namespace.
Associations
owned<NamedElement> The owned named elements.

<NamedElement>
Attributes
name The name of the named element.
Associations
owningPackage The package that owns the named element.

Package

Namespace Namespace
NamedElement

<Package>
<NamedElement>

Package
NamedElement

Package

nam e : Nam e

<NamedE lement>

<Package>
owned<Nam edE lem ent>

*owning<Package>

*

m em ber<Nam edE lem ent>

1

*

Package
NamedE lement
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 262

UMLTEMPLATES
20.5.4 Well-formedness Rules

<Package>
[1] The members of a package must include the owned elements of the package.

context <Package> inv:
self.member<NamedElement> ->includesAll(self.owned<NamedElement>)

[2] No two elements must have the same name in the package.

context <Package> inv:
self.member<NamedElement> -> forAll(e1 |
 self.member<NamedElement> -> forAll(e2 |
 e1 <> e2 implies e1.name <> e2.name))

20.5.5 Operations

<Package>
[1] Looks up the named element in a package given a name.

context <Package>::lookup<NamedElement>forName(x : Name): <NamedElement>
self.member<NamedElement>->select(e | e.name = x).selectElement()

[2] Looks up the name in a package given a named element.

context <Package>::lookupNameFor<NamedElement>(n : <NamedElement>):Name
self.member<NamedElement>->select(e | e = x).selectElement().name

<NamedElement>
[1] Checks whether the supplied named element is in the same package as the named element.

context <NamedElement>::samePackage(x : <NamedElement>):Boolean
x.owning<Package>.member<NamedElement> -> includes(self)

20.6 STRUCTUALFEATURECLASSIFIERVALUE

20.6.1 Summary
Describes the values of classifiers with structural features.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 263

UMLTEMPLATES
20.6.2 Derivation

20.6.3 Definition

<ClassifierValue>
Associations
owned<StructuralFeatureValue> The set of structural feature values owned by the classifier.

<StructuralFeatureValue>
Associations
value The value of the structural feature value.

StructuralFeatureClassifierValue ClassifierValue
StructuralFeatureValue
StructuralFeatureValueType

Container Container
Element

<ClassifierValue>
<StructuralFeatureValue>

StructuralFeatureClassifierValue

<Classifier
Value>

<Value>
value

owning<ClassifierValue>

owned<StructuralFeatureValue>1

*

ClassifierValue
StructuralFeatureValue
Value

1

<Structural
Feature
Value>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 264

UMLTEMPLATES
20.6.4 Well-formedness Rules

20.6.5 Operations

20.7 STRUCTURALFEATURECLASSIFIERSEMANTICS

20.7.1 Summary
Defines the semantics for structural features of a classifier.

20.7.2 Derivation

S tructura lFeatureC lassifie rS emantics

C lassifier
S tructuralFeature
Type
C lassifierV alue
S tructuralFeatureV alue
V alue

S tructural
Feature

C lassifier Class ifier
S truc turalFeature
Type

< Class ifier>
< S truc turalFeature>
< Type>

S tructural
Feature

C lassifier
V alue< Class ifierV alue>

<S truc turalFeatureV alue>
< V alue>

Clas s ifierV alue
S truc turalFeatureV alue
V alue
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 265

UMLTEMPLATES
20.7.3 Definition

<Classifier>
Associations
owned<StructuralFeature> The owned structural features of the classifier.
member<StructuralFeature> The member structural features of the classifier.

<ClassifierValue>
Attributes
of The classifier that this is a value of.

<StructuralFeature>
Attributes
name The name of the structural feature.
Associations
owning<Classifier> The classifier that owns the feature.

<StructuralFeatureValue>
Attributes
of The structural feature that this is a value of.
Associations
owning<ClassifierValue> The owning classifier value.

StructuralFeatureClassifierSemantics

<Classifier>

owning<Classifier>

owned<StructuralFeature>

1

**

member
<Structural
Feature>

owning<ClassifierValue>

owned
<StructuralFeatureValue>

1

*

of

<ClassifierValue>

of

name:Name

<StructuralFeature>

value:<Value>

<StructuralFeatureValue>

Classifier
StructuralFeature
Type
ClassifierValue
StructuralFeatureValue
Value

*

1

1

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 266

UMLTEMPLATES
20.7.4 Well-formedness Rules

<ClassifierValue>
[1] All values of classifier contain values of its structural features.

context <ClassifierValue> inv:
self.of.member<StructuralFeature> -> forAll(c |
 self.owned<StructuralFeatureValue> -> exists(d | d.of = c))

[2] All contained structural feature values must be values of some structural feature in the classifier.

context <ClassifierValue> inv:
self.owned<StructuralFeatureValue> -> forAll(c |
 self.of.member<StructuralFeature> -> exists(d | c.of = d))

<StructuralFeatureValue>
[1] The type of the value of the structural feature value must conform to the type of its structural feature.

context <StructuralFeatureValue> inv:
self.value.of.conformsTo(self.of.type)

20.7.5 Operations

20.8 BEHAVIOURALFEATURECLASSIFIERVALUE

20.8.1 Summary
Describes the values of classifiers with behavioural features.

20.8.2 Derivation

BehaviouralFeatureClassifierValue ClassifierValue
BehaviouralFeatureValue
BehaviouralFeatureValueType

Container Container
Element

<BehaviouralFeatureValue >
ParameterValue
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 267

UMLTEMPLATES
20.8.3 Definition

<BehaviouralFeatureValue>
Associations
ownedParameterValue The owned parameter values.
pre The pre value of the behavioural feature value.
post The pre value of the behavioural feature value.

<ParameterValue>
Associations
value The value of the parameter value.

20.8.4 Well-formedness Rules

20.8.5 Operations

20.9 BEHAVIOURALFEATURECLASSIFIERSEMANTICS

20.9.1 Summary
Defines the semantics for behavioural features of a classifier.

BehaviouralFeatureClassifierValue

<Classifier
Value>

<Value>

post

1

ClassifierValue
BehaviouralFeatureValue
Value

pre <Behavioural
Feature
Value>

Parameter
Value

ownedParameterValue

*

value

1

1

owning<BehaviouralFeatureValue> 1

<Classifier
Value>
Identity

identity

1

history{ordered}
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 268

UMLTEMPLATES
20.9.2 Derivation

20.9.3 Definition

B ehaviouralFeatureC lassifierS emantics

C lassifier
B ehaviouralFeature
Type
C lassifierV alue
B ehaviouralFeatureV alue
V alue

B ehavioural
Feature

C lassifier Class ifier
B ehaviouralFeature
Type

< Class ifier>
< B ehaviouralFeature>
< Type>

B ehaviourall
Feature

C lassifier
V alue< Class ifierV alue>

<B ehaviouralFeatureV alue>
< V alue>

Clas s ifierV alue
B ehaviouralFeatureV alue
V alue

BehaviouralFeatureClassifierSemantics

<Classifier>

owning<Classifier>

owned<BehaviouralFeature>

1

**

member
<Behavioural

Feature>

pre

1

of

<ClassifierValue>
of

name:Name

<BehaviouralFeature> <BehaviouralFeatureValue>

Classifier
BehaviouralFeature
Type
ClassifierValue
BehaviouralFeatureValue
Value

*

1

1

post

1

1

identity

{ordered}history*

*

<Value>

Parameter
Value

*

value1

owning<BehaviouralFeatureValue>

<ClassifierValue>
Identity

1

<Type>

Parameter

*

type1

of

1

owning<BehaviouralFeature> 1
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 269

UMLTEMPLATES
<Classifier>
Associations
owned<BehaviouralFeature> The owned behavioural features of the classifier.
member<BehaviouralFeature> The behavioural features that are members of the classifier namespace.

<ClassifierValue>
Associations
of The classifier that this is a value of.
identity The identity of the classifier value.

<BehaviouralFeature>
Attributes
name The name of the behavioural feature.
Associations
owning<Classifier> The classifier that owns the feature.

<BehaviouralFeatureValue>
Attributes
of The behavioural feature that this is a value of.
Associations
owning<ClassifierValue> The owning classifier value.

20.9.4 Well-formedness Rules

<ClassifierValue>
[1] All values of classifier contain values of its structural features.

context <ClassifierValue> inv:
self.of.member<BehaviouralFeature> -> forAll(c |
 self.owned<BehaviouralFeatureValue> -> exists(d | d.of = c))

[2] All contained structural feature values must be values of some structural feature in the classifier.

context <ClassifierValue> inv:
self.owned<BehaviouralFeatureValue> -> forAll(c |
 self.of.member<BehaviouralFeature> -> exists(d | c.of = d))

<StructuralFeatureValue>
[1] The type of the value of the structural feature value must conform to the type of its structural feature.

context <StructuralFeatureValue> inv:
self.value.of.conformsTo(self.of.type)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 270

UMLTEMPLATES
20.10 EXTENDABLENAMESPACE

20.10.1 Summary
An extension relationship between namespaces. When a namespace extends another namespace, the members of
the parent namespace are extended into the namespace of the child namespace.

20.10.2 Derivation

20.10.3 Definition

ExtendableNamespace

Extendable
Element

Namespace Namespace
NamedElement

Namespace
Namespace
NamedElement

NamedElement

ExtendableNamespace

name : Name

<NamedElement>
<Namespace>

Namespace
NamedElement

extending extended* *

1parent child

*

*

member<Packageable>

extending extended* *

1parent child1

owned<Packageable>
 Extension

*1

1

isRedefined : Boolean

<Namespace>
Extension

isRedefined : Boolean

<NamedElement>
Extension
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 271

UMLTEMPLATES
<Namespace>
Attributes
member<NamedElement> The members of the namespace
Associations
extended The extended namespaces.
extending The extending namespaces.
owned<NamedElement> The owned named elements.

<NamedElement>
Attributes
name The name of the named element.
Associations
owningNamespace The namespace owning the named element.
extended The extended named elements.
extending The extending named elements.

<Namespace>Extension
Attributes
isRedefined True if the extension is redefined.
Associations
parent The parent namespace.
child The child namespace.
owned<NamedElement>Extension The owned named element extensions.

<NamedElement>Extension
Associations
parent The parent named element.
child The child named element.

20.10.4 Well-formedness Rules

<Namespace>
[1] The members of a namespace must include its inherited elements.

context <Namespace> inv:
self.member<NamedElement>.includesAll(self.inherited<NamedElement>)

[2] The members of a namespace must include its owned elements.

context <Namespace> inv:
self.member<NamedElement>.includesAll(self.owned<NamedElement>)

[3] Circular inheritance is not permitted.

context <Namespace> inv:
not self.allExtendedElements()->includes(self)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 272

UMLTEMPLATES
<NamedElement>
[1] Circular inheritance is not permitted

context <NamedElement> inv:
not self.allExtendedElements()->includes(self)

<Namespace>Extension
[1] The members of the parent namespace are extended into the namespace of the child namespace.

context <Namespace>Extension inv:
self.parent.member<NamedElement>->forAll(e |
 self.owned<NamedElement>Extension->exists(e' |
 e'.parent = e and
 self.child.member<NamedElement>->exists(e'' |
 e'.child = e'')))

20.10.5 Operations

<Namespace>
[1] Looks up a named element in a namespace given a name.

context <Namespace>::lookup<NamedElement>forName(x : Name): <NamedElement>
self.member<NamedElement>->select(e | e.name = x).selectElement()

[2] Looks up a name in a namespace given a named element.

context <Namespace>::lookupNameFor<NamedElement>(n : <NamedElement>):Name
self.member<NamedElement>->select(e | e = x).selectElement().name

[3] Returns the namespaces that have been extended.

context <Namespace>::extendedElements():Set(<Namespace>)
self.extended -> iterate(p s = Set{} | s->union(Set{p.parent}))

[4] Transitively returns all namespaces that have been extended.

context Namespace::allExtendingElements():Set(Namespace)
self.extendedElements()->iterate(g s = self.extendedElements() |
 s->union(g.allExtendingElements()))

<NamedElement>
[1] Checks whether the given named element is owned by the same name space as this named element.

context <NamedElement>::sameNamespace(x : <NamedElement>):Boolean
x.owning<Namespace>.member<NamedElement> -> includes(self)

[2] Returns the named elements that have been extended.

context <NamedElement>::extendingElements():Set(<NamedElement>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

[3] Transitively returns all named elements that have extended.

context NamedElement::allExtendingElements():Set(NamedElement)
self.extendingElements()->iterate(g s = self.extendingElements() |
 s->union(g.allExtendingElements()))
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 273

UMLTEMPLATES
20.11 EXTENDABLEPACKAGE

20.11.1 Summary
This templates defines a package that can be extended.

20.11.2 Derivation

20.11.3 Definition

<Package>
Associations
extended The extended elements of the Package.
extending The extending elements of the Package.

ExtendablePackage Package
NamedElement

ExtendableNamespace Namespace
NamedElement

<Package>
<NamedElement>

E xtendableP ackage

nam e : Nam e

<NamedE lement>
<P ackage>

P ac kage
Nam edE lem ent

ex tending
ex tended* *

1parent child

*

*

m em ber< Nam edE lem ent>

ex tending ex tended* *

1parent child1

owned< Nam edE lem ent>
 E x tens ion

*1

1

isRedefined : B oolean

<P ackage>
E xtension

is Redefined : B oolean

<NamedE lemen>
E xtension
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 274

UMLTEMPLATES
owned<NamedElement> The owned named elements.
member<NamedElement> The member named elements belonging to the Package namespace.
inherited<NamedElement> The inherited named elements.

<NamedElement>
Attributes
name The name of the NamedElement
Associations
owningPackage The Package owning this NamedElement.
extended The extended elements of the NamedElement.
extending The extending elements of the NamedElement.

<Package>Extension
Attributes
isRedefined True if the extension is a redefinition.
Associations
parent The parent <Package> in the pair of <Package>s it links.
child The child <Package> of the pair of <Package>s it links.
owned<NamedElement>Extension The set of <Named>Extensions owned.

<NamedElement>Extension
Associations
parent The parent NamedElement.
child The child NamedElement.

20.11.4 Well-formedness Rules

<Package>
[1] The members of the package must include its inherited named elements.

context <Package> inv:
self.member<NamedElement>-> includesAll
 (self.inherited<NamedElement>)

[2] The members of a Package must include the owned named elements of the Package.

context <Package> inv:
self.member<NamedElement>->includesAll(self.owned<NamedElement>)

[3] Circular inheritance is not permitted.

context <Package> inv:
not self.allExtendingElements()->includes(self)

<NamedElement>
[1] Circular inheritance is not permitted.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 275

UMLTEMPLATES
context <NamedElement> inv:
not self.allExtendingElements()->includes(self)

<Package>Extension
[1] Parent’s elements must be extended into the namespace of the child.

context <Package>Extension inv:
self.parent.member<NamedElement>->forAll(e |
 self.owned<NamedElement>Extension->exists(e' |
 e'.parent = e and
 self.child.member<NamedElement>->exists(e'' |
 e'.child = e'')))

[2] If the child doesn’t equal the parent in an owned named element extension then it must be owned by the child.

context <Package>Extension inv:
self.owned<NamedElement>Extension -> forAll(e |
 e.child <> e.parent implies
 self.child.owned<NamedElement> -> includes(e.child))

20.11.5 Operations

<Package>

[1] Looks up the NamedElement in a Package given a name.

context <Package>::lookup<NamedElement>forName(x : Name): <NamedElement>
self.member<NamedElement>->select(e | e.name = x).selectElement()

[2] Looks up the name in a Package given a NamedElement.

context <Package>::lookupNameFor<NamedElement>(n : <NamedElement>):Name
self.member<NamedElement>->select(e | e = x).selectElement().name

[3] Returns the packages it has extended from.

context <Package>::extendingElements():Set(<Package>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

[4] Transitively returns the set of all named elements it has extended from.

context Package::allExtendingElements():Set(<Package>)
self.extendingElements()->iterate(g s = self.extendingElements() |
 s->union(g.allExtendingElements()))

<NamedElement>
[1] Checks whether the given NamedElement is in the same Package.

context <NamedElement>::sameNamespace(x : <NamedElement>):Boolean
x.owning<Package>.member<NamedElement> -> includes(self)

[2] Returns the named elements it has extended from.

context <NamedElement>::extendingElements():Set(<NamedElement>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 276

UMLTEMPLATES
[3] Transitively returns the set of all named elements it has extended from.

context NamedElement::allExtendingElements():Set(NamedElement)
self.extendingElements()->iterate(g s = self.extendingElements() |
 s->union(g.allExtendingElements()))

20.12 EXTENDABLESTRUCTURALFEATURECLASSIFIER

20.12.1 Summary
This template defines the structural features of a classifier that can be extended.

20.12.2 Derivation

ExtendableStructuralFeatureClassifier Classifier
StructuralFeature
Type

ExtendableNamespace Classifier
Feature

<Classifier>
<StructuralFeature>
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 277

UMLTEMPLATES
20.12.3 Definition

<Classifier>
Attributes
member<StructuralFeature> The structural features that are members of the namespace of the Classifier.
inherited<StructuralFeature> The inherited structural features.
Associations
extended The extended classifiers.
extending The extending classifiers.
owned<StructuralFeature> The owned structural features.

<StructuralFeature>
Attributes
name The name of the StructuralFeature.
Associations
owningClassifier The Classifier owning this StructuralFeature.
extended The extended structural features.
extending The extending structural features.

<Classifier>Extension
Attributes
isRedefined True if the extension is redefined.

ExtendableStructuralFeatureClassifier

name : Name

<StructuralFeature>
<Classifier>

Classifier
StructuralFeature
Type

extending
extended* *

1parent child

* *

member<StructuralFeature>

extending extended* *

1parent child1

owned<StructuralFeature
 Extension>

*1

1

isRedefined : Boolean

<Classifier>
Extension

isRedefined : Boolean

<StructuralFeature>
Extension

<Type>
type

1

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 278

UMLTEMPLATES
Associations
parent The parent Classifier.
child The child Classifier.
owned<StructuralFeature>Extension The owned extensions.

<StructuralFeature>Extension
Associations
parent The parent StructuralFeature.
child The child StructuralFeature.

20.12.4 Well-formedness Rules

<Classifier>
[1] The member structural features must include the inherited structural features.

context <Classifier> inv:
self.member<StructuralFeature>-> includesAll
 (self.inherited<StructuralFeature>)

[2] The member structural features of a Classifier must include the owned structural features of the Classifier.

context <Classifier> inv:
self.member<StructuralFeature>->includesAll(self.owned<StructuralFeature>)

[3] Circular inheritance is not permitted.

context <Classifier> inv:
not self.allExtendingElements()->includes(self)

<StructuralFeature>
[1] Circular inheritance is not permitted.

context <StructuralFeature> inv:
not self.allExtendingElements()->includes(self)

<Classifier>Extension
[1] Parent’s structural features must be extended into the namespace of the child.

context <Classifier>Extension inv:
self.parent.member<StructuralFeature>->forAll(e |
 self.owned<StructuralFeature>Extension->exists(e' |
 e'.parent = e and
 self.child.member<StructuralFeature>->exists(e'' |
 e'.child = e'')))

[2] If the child doesn’t equal the parent in an owned structural feature extension then it must be owned by the
child.

context <Classifier>Extension inv:
self.owned<StructuralFeature>Extension -> forAll(e |
 e.child <> e.parent implies
 self.child.owned<StructuralFeature> -> includes(e.child))
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 279

UMLTEMPLATES
<StructuralFeature>Extension
[1] This conformsTo relationship is similar to conformsTo, however, it must check that if the types are classes
then the child *extends* the parent.

context <StructuralFeature>Extension inv:
self.child.type.conformsToExtension(self.parent.type)

[2] If an extension has occurred (as opposed to inheritance) then the type of the child StructuralFeature should be
in the same namespace as the child StructuralFeature's classifier.

context <StructuralFeature>Extension inv:
self.child <> self.parent implies
 self.child.owning<Classifier>.sameNamespace(self.child.type)

20.12.5 Operations

<Classifier>
[1] Looks up the StructuralFeature in a Classifier given a name.

context <Classifier>::lookup<StructuralFeature>forName(x : Name):
<StructuralFeature>
self.member<StructuralFeature>->select(e | e.name = x).selectElement()

[2] Looks up the name in a Classifier given a StructuralFeature.

context <Classifier>::lookupNameFor<StructuralFeature>(n :
<StructuralFeature>):Name
self.member<StructuralFeature>->select(e | e = x).selectElement().name

[3] Returns the set of classifiers it has extended from.

context <Classifier>::extendingElements():Set(<Classifier>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

[4] Transitively returns the set of all classifiers it has extended from.

context Classifier::allExtendingElements():Set(Classifier)
self.extendingElements()->iterate(g s = self.extendingElements() |
 s->union(g.allExtendingElements()))

<StructuralFeature>
[1] Checks whether the given StructuralFeature is in the same Classifier.

context <StructuralFeature>::sameNamespace(x : <StructuralFeature>):Boolean
x.owning<Classifier>.member<StructuralFeature> -> includes(self)

[2] Returns the set of structural features it has extended from.

context <StructuralFeature>::extendingElements():Set(<StructuralFeature>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

[3] Transitively returns the set of all structural features it has extended from.

context StructuralFeature::allExtendingElements():Set(StructuralFeature)
self.extendingElements()->iterate(g s = self.extendingElements() |
 s->union(g.allExtendingElements()))
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 280

UMLTEMPLATES
20.13 EXTENDABLEBEHAVIOURALFEATURECLASSIFIER

20.13.1 Summary
This template defines the behavioural features of a classifier that can be extended.

20.13.2 Derivation

20.13.3 Definition

ExtendableBehaviouralFeatureClassifier C lassifier
BehaviouralFeature
Type

ExtendableNamespace Classifier
Feature

<Classifier>
<BehaviouralFeature>

Parameterized ParameterizedElement
Type

<BehaviouralFeature>
<Type>

ExtendableBehaviouralC lassifier

name : Name

<Behavioural
Feature>

<Classifier>

Classifier
BehaviouralFeature
Type

extending extended* *

1parent child

* *

member<BehaviouralFeature>

extending extended* *

1parent child1

owned<BehaviouralFeature
 Extension>

*1

1

isRedefined : Boolean

<Classifier>
Extension

isRedefined : Boolean

<BehaviouralFeature>
Extension

<Type>

type1

*

name : Name

Parameter

type1

{ordered}

*

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 281

UMLTEMPLATES
<Classifier>
Attributes
member<BehaviouralFeature> The behavioural features that are members of the namespace of the Classifier.
inherited<BehaviouralFeature> The inherited behavioural features.
Associations
extended The extended classifiers.
extendingThe extending classifiers.
owned<BehaviouralFeature> The owned behavioural features.

<BehaviouralFeature>
Attributes
name The name of the BehaviouralFeature.
member<Parameter> The parameters of the behavioural feature’s namespace.
Associations
owningClassifier The Classifier owning this BehaviouralFeature.
owned<Parameter> The owned parameters.
extended The extended behavioural features.
extending The extending behavioural feature.

<Parameter>
Attributes
name The name of the Parameter
Associations
owningBehaviouralFeature The BehaviouralFeature owning this Parameter.

<Classifier>Extension
Attributes
isRedefined True if the extension is redefined.
Associations
parent The parent Classifier.
child The child Classifier.
owned<BehaviouralFeature>Extension The owned behavioural feature extensions.

<BehaviouralFeature>Extension
AssociationsAttributes
parent The parent BehaviouralFeature.
child The child BehaviouralFeature.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 282

UMLTEMPLATES
20.13.4 Well-formedness Rules

<Classifier>
[1] The members of the Classifier must include the inherited elements.

context <Classifier> inv:
self.member<BehaviouralFeature> -> includesAll
 (self.inherited<BehaviouralFeature>)

[2] The members of a Classifier must include the owned elements of the Classifier.

context <Classifier> inv:
self.member<BehaviouralFeature>->includesAll(self.owned<BehaviouralFeature>)

[3] Circular inheritance is not permitted.

context <Classifier> inv:
not self.allExtendingElements()->includes(self)

<BehaviouralFeature>
[1] Circular inheritance is not permitted.

context <BehaviouralFeature> inv:
not self.allExtendingElements()->includes(self)

[2] The parameters of a Behavioural Feature must include its owned parameters.

context <BehaviouralFeature> inv:
self.member<Parameter> ->includesAll(self.owned<Parameter>)

<Classifier>Extension
[1] Parent’s elements must be preserved.

context <Classifier>Extension inv:
self.parent.member<BehaviouralFeature>->forAll(e |
 self.owned<BehaviouralFeature>Extension->exists(e' |
 e'.parent = e and
 self.child.member<BehaviouralFeature>->exists(e'' |
 e'.child = e'')))

[2] If the child doesn’t equal the parent in an owned behavioural feature extension then it must be owned by the
child.

context <Classifier>Extension inv:
self.owned<BehaviouralFeature>Extension -> forAll(e |
 e.child <> e.parent implies
 self.child.owned<BehaviouralFeature> -> includes(e.child))

<BehaviouralFeature>Extension
[1] This conformsTo relationship is similar to conformsTo, however, it must check that if the types are classes
then the child *extends* the parent.

context <BehaviouralFeature>Extension inv:
self.child.type.conformsToExtension(self.parent.type)
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 283

UMLTEMPLATES
[2] If an extension has occurred (as opposed to inheritance) then the type of the child BehaviouralFeature should
be in the same namespace as the child BehaviouralFeature's classifier.

context <BehaviouralFeature>Extension inv:
self.child <> self.parent implies
 self.child.owning<Classifier>.sameNamespace(self.child.type)

20.13.5 Operations

<Classifier>
[1] Looks up the BehaviouralFeature in a Classifier given a name.

context <Classifier>::lookup<BehaviouralFeature>forName(x : Name):
<BehaviouralFeature>
self.member<BehaviouralFeature>->select(e | e.name = x).selectElement()

[2] Looks up the name in a Classifier given a BehaviouralFeature.

context <Classifier>::lookupNameFor<BehaviouralFeature>(n :
<BehaviouralFeature>):Name
self.member<BehaviouralFeature>->select(e | e = x).selectElement().name

[3] Returns the set of classifiers it has extended from.

context <Classifier>::extendingElements():Set(<Classifier>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

[4] Transitively returns the set of all classifiers it has extended from.

context Classifier::allExtendingElements():Set(Classifier)
self.extendingElements()->iterate(g s = self.extendingElements() |
 s->union(g.allExtendingElements()))

<BehaviouralFeature>
[1] Looks up the Parameter in a BehaviouralFeature given a name.

context <BehaviouralFeature>::lookup<Parameter>forName(x : Name): <Parameter>
self.member<Parameter>->select(e | e.name = x).selectElement()

[2] Looks up the name in a Classifier given a Parameter.

context <BehaviouralFeature>::lookupNameFor<Parameter>(n : <Parameter>):Name
self.member<Parameter>->select(e | e = x).selectElement().name

[3] Checks whether the given BehaviouralFeature is in the same Classifier.

context <BehaviouralFeature>::sameNamespace(x : <BehaviouralFeature>):Boolean
x.owning<Classifier>.member<BehaviouralFeature> -> includes(self)

[4] Returns the set of behavioural features it has extended from.

context <BehaviouralFeature>::extendingElements():Set(<BehaviouralFeature>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

[5] Transitively returns the set of all behavioural features it has extended from.

context BehaviouralFeature::allExtendingElements():Set(BehaviouralFeature)
self.extendingElements()->iterate(g s = self.extendingElements() |
 s->union(g.allExtendingElements()))
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 284

UMLTEMPLATES
<Parameter>
[1] Checks whether the given Parameter is in the same BehaviouralFeature.

context <Parameter>::sameNamespace(x : <Parameter>):Boolean
x.<owning<Classifier>.member<Parameter> -> includes(self)

20.14 TEMPLATEINSTANTIATION

20.14.1 Summary
A general template for defining templateable elements.

20.14.2 Derivation
None.

20.14.3 Definition

<Namespace>Template
A namespace template.

Associations
renamingExpression The renaming expressions that are associated with the contents of the namespace tem-
plate.
templateParameter The parameters of the namespace template.

TemplateInstantiation

<Namespace>
Template

Instantiation

value : String

Template
Parameter

Substitution templateParameterSubstitution

Template
Parameter

templateParameter

1

*

<Namespace>
Extension

<Named
Element>
Extension

extension 1

owned<NamedElement>Extension

*

* generated<NamedElement>Extension

Namepace
NamedElement

<Namespace>
TemplatetemplateParameter
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 285

UMLTEMPLATES
<Namespace>TemplateInstantiation
An instantiation relationship.

Associations
templateParameterSubstitution The parameters that are substituted when instantiating the template.
generated<NamedElement>Extension The named element extensions that are generated to realise the instan-
tiation.

20.14.4 Well-formedness Rules

<Namespace>Template
[1] Only one renaming expression per named element in a template.

context <Namespace>Template inv:
self.<namedElement>RenamingExpression -> forAll(r1, r2 |
 r1 <> r2 implies r1.named<NamedElement> <> r2.named<NamedElement>)

[2] Only named elements in the template’s namespace have renaming expressions associated with them.

context <Namespace>Template inv:
self.member<NamedElement>->

 includesAll(self.<namedElement>RenamingExpression.named<NamedElement>)

<Namespace>TemplateInstantiaton
[1] Parameter substitutions parameters must match those owned by the template.

context <Namespace>TemplateInstantiation inv:
self.templateParameterSubstitutions.templateParameter =
self.ownedParameter->asBag

[2] Named element substitutions are generated for each of the renamed named element in the parents namespace.

context <Namespace>TemplateInstantiation inv:
self.generated<namedElement>Extension.parent =
self.extension.parent.<NamedElement>RenamingExpression.named<NamedElement>

[3] Generated named element extensions shadow redefined owned named element extensions.

context <Namespace>TemplateInstantiation inv:
self.extension.owned<NamedElement>Extension->select(e | e.isRedefined) =
self.generated<NamedElement>Extension

[4] The name of the child elements of any generated named element extension is the evaluation of the appropriate
renaming expression.

context <Namespace>TemplateInstantiation inv:
self.generated<NamedElement>Extension->forAll(n |
 n.child.name = self.<namedElement>RenamingExpression->

 select(r | r.named<NamedElement> = n.parent).eval(self)->asSet)

20.14.5 Operations
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 286

1Appendix A
Mapping Package to Class Hierarchies

A.1 INTRODUCTION

This appendix gives the rules characterising the mapping between models expressed as a hierarchy of
packages related through package extension, and models expressed as a hierarchy of classes. These
rules demonstrate that it is possible to produce a class framework suitable to support current approaches
to tool construction from a metamodel defined using package extension and package templates.

A.2 OVERVIEW

Source of mapping
A hierarchy of packages (and template packages) related through package extension, where the contents
of packages are expressed using packages, classes, class generalisation, attributes, associations, query
operations, OCL.

Target of mapping
The subset of the source language including everything but package extension and package templates.

Approach
The eventual goal is to provide a meta-modeled definition of this mapping. If possible, the mapping
should be specified so that it is two-way. For this appendix we present the mapping informally on a case
by case basis. Short explanations are provided for each case.

We need to consider how various modeling elements within a package get treated in two situations:
when there is no renaming on the package extension; when there is renaming on the package exten-
sions. Templates are considered last, as (it turns out) the application of a template is the same as anno-
tating a package extension from that template with renamings generated from the parameters of the
template.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 287

A.3 RULES

Classes, Attributes and Associations – no renaming

[a] B is not changed in Q on LHS, so only P::B is required in RHS.

[b] Q::A has an attribute added on LHS, so class Q::A is required on the RHS. The type of the attribute
in class in Q::A is B, which turns into P::B on RHS (see case (a)).

[c] P::C inherits from P::A on LHS, so depends on P::A. By case (b), A is changed in Q on LHS, requir-
ing Q::A on RHS. So need Q::C on RHS which inherits from Q::A on RHS.

[d] P::D has an attribute of type P::A on LHS, so depends on P::A. By case (b), A is changed in Q on
LHS, so, similar to case (c), class Q::D is required on RHS and includes a constraint to strengthen
the type of attribute a to Q::A.

[e] In a similar way to case (d), association ends of association between P::A and P::D must be rede-
fined in Q on RHS.

With package extension & templates Without

context Q::D inv: a.oclIsKindOf(Q::A)

P

Q

B

b:B

A

A

C a:A

D

aa

d

P

Q

B

b:P::B

A

A

C

C

a:A

D

D

aa

d

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 288

Classes, Attributes, Associations and Query Operations – renaming

[a] A and B get renamed when Q extends P on LHS. Needed matching renamed classes in Q on RHS. A
is renamed to C under both extensions of Q from P, B is renamed to D, under one extension, and E,
under the other.

With package extension & templates Without

context Q::C inv:
b->includesAll(d) and
b->includesAll(e)

context Q::C::x_d(d:Q::D):Q::D
x-body’(d)

context Q::C::x_e(e:Q::E):Q::E
x-body’(e)

context P::A::x(b:A::B):A::B
x-body(b)

P

Q

m:Int

B

b

C/A
E/B
e/A::b
x_e/A::x

C/A
D/B
d/A::b
x_d/A::x

x(b:B):B

A

P

Q

x(b:B):B

A

m:Int

B

b

x_d(d:D):D
x_e(e:E):E

C

d

e

D

E

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 289

[b] The association end, which also gets renamed twice under package extension, is replicated in Q on
RHS, once for each new name. Attribute renamings are treated similarly.

[c] Similarly, the query operation in P::A gets renamed twice on extension to Q. A new operation is
introduced in Q::C on RHS. x-body’(d) is like x-body except that all elements from package P men-
tioned in x-body are replaced by their renamed counterparts in Q, and b is replaced by d.

Constraints – all cases

The constraint on P::A in LHS gets replicated twice in Q::C on RHS, as constraint refers to the association end
that gets replicated. The constraint on P::A on LHS does not carry over to P::A on RHS. This would have the
effect of adding an undesirable constraint on Q::C, that the union of d.m and e.m must be unique integers (as b
includes the union of d and e), whereas what is actually required is that d.m are unique integers and e.m are
unique integers, with the possibility that there may be integers in d.m and e.m which are the same.

With package extension & templates Without

context Q::C inv:
b->includesAll(d) and
b->includesAll(e)

P

Q

A

m:Int

B

b

b.m->asSet()->asBag() = b.m

C/A
E/B
e/A::b

C/A
D/B
d/A::b

P

Q

A

m:Int

B

b

d.m->asSet()->asBag() = d.m
e.m->asSet()->asBag() = e.m

C

d

e

D

E

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 290

In fact it is not quite as simple as this. In a hierarchy that is more than two levels deep, constraints should only
appear at the lowest level where association ends or attributes involved in the constraint have been replicated.

The only time when a constraint will not be replicated is when it does not involve reference to any attributes,
association ends or queries that are renamed by any package extension lower down in the hierarchy which has the
package where the constraint is first introduced as a direct or indirect (by transitive traversal of package exten-
sions) parent.

This mapping demonstrates a distinct advantage of the modelling using package extension. It is possible to
write constraints on classes in packages that get replicated correcetly in the extension of the package. It is not
possible to simulate this using class inheritance, as placing a constraint on the parent class can conflict with the
constraints that need to appear lower down.

Query operations – no renaming

B gets changed (an attribute is added) in Q on LHS, so by rules in previous section, Q::B is required on RHS.
P::A on LHS has a query x that refers to P::B, so, as B is changed in Q, Q::A is required on RHS with a body that
ensures the appropriate result is returned when the argument is of type Q::B, otherwise undefined is returned. x-
body’(d) is like x-body(b), which is the expression defining the query x in P::A on the LHS, except that all ele-

With package extension & templates Without

P::A::x(b) has no body

context
Q::A::x(b:A::B):A::B
if b.oclIsKindOf(B) then
x-body’(b) else
undefined

P

Q

y(b:B):B

A
B

m:Int

B

P

Q

y(b:B):B

A
B

m:Int

B
A

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 291

ments from package P mentioned in x-body(b) are replaced by their renamed counterparts in Q.
P::A::x(b) has no body; if it did this would conflict with the definition in Q::A.

Templates
Templates add to packages is an ability to generate (possibly a large number of) renamings based on the substitu-
tion of (possibly a few) template parameters. To do this, a template is associated with a set of parameters, and
model elements in the template may be associated with naming expressions. Model elements also have a separate
name, which can be used as a useful alias when building the content of the template (e.g. in OCL expressions).
By default, the name of the element is the result of evaluating the naming expression with template parameters
substituted with their own name. All this means that templates can be treated like normal packages when it comes
to a package extension hierarchy, and all the rules above apply.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 292

1Bibliography

[UML 1.4] OMG Unified Modeling Language Specification (version 1.4), 2001. Available from www.omg.org.

[MOF 1.3] Meta Object Facility Specification (version 1.3), 2001. Available from www.omg.org.

[OCL 2.0] Response to the UML 2.0 OCL RFP (version 1.4), April 19, 2002. Available from www.klasse.nl.

[Action Semantics] Action Semantics Specification (version 1.4), 2001. Available from www.omg.org,.

[U2Partners] U2 Partners UML 2.0 Draft Submission (version 0.69), 2002. Available from www.u2-partners.org

[Appukuttan02] B.K. Appukuttan, T. Clark, A. Evans, G. Maskeri, P. Sammut, L. Tratt and J. S. Willans.
A pattern based approach to defining the dynamic infrastructure of UML 2.0. Presented at the 4th fourth
workshop on Rigorous Object Oriented Methods, King's College, March 2002.
[Clark02] A.N.Clark, A.S.Evans, S.Kent. Package Extension and Renaming (<<UML2002>>), Dresden,
LNCS, Springer-Verlag, October 2002.

[Clark01a] A.N.Clark, A.S.Evans, S.Kent. A Reference Implementation for UML. In B.Henderson-Sellers and
F.Barbier (eds) Object Modelling with UML, Special Issue of L'Objet, Vol 7, no 3/2001, pp363-385, 2001.

[Alvarez01a] J-M Alvarez, A.S.Evans and P.Sammut. Mapping between Levels in the Metamodel Architecture.
Proceedings of 4th International Conference on the Unified Modeling Language (<<UML2001>>), Toronto,
LNCS 2185, Springer-Verlag, 2001.

[Alverez01b] J-M Alvarez, A.N.Clark, A.S.Evans. An Action Semantics for MML. Proceedings of 4th Interna-
tional Conference on the Unified Modeling Language (<<UML2001>>), Toronto, LNCS 2185, Springer-Verlag,
2001.

[Clark01b] A.N.Clark, A.S.Evans and S.Kent. The Meta-Modeling Language Calculus: Foundation Semantics
for UML. Proceedings of FASE Workshop, European Conference of Theory and Practice of Software (ETAPS),
Genoa, LNCS, 2001

[Clark01c] A. Clark, A.S.Evans, S. Kent, and P. Sammut. The MMF approach to engineering object-oriented
design languages. In Workshop on Language Descriptions, Tools and Applications, LTDA2001, Genoa, 2001.

[Alverez01c] J-M Alvarez, A.S.Evans and P.Sammut. MML and the Meta-Model Architecture. In Workshop on
Language Descriptions, Tools and Applications, LTDA2001, Genoa, 2001.

[Kleppe01] Anneke Kleppe and Jos Warmer. Unification of Static and Dynamic Semantic in UML. 2001. Avail-
able from www.klasse.nl.

[Reggio01] G.Reggio and E. Astesiano. A Proposal for a Dynamic Core for UML Meta-Modelling with
MML.Technical Report of DISI - Universit di Genova, DISI-TR-01-17, Italy, 2001. Available from
www.disi.unige.it.
[Clark00] A.N.Clark, A. Evans, S. Kent, S. Brodsky, and S. Cook. A feasibility study in rearchitecting UML as a
family of languages using a precise OO meta-modeling approach. Technical report, pUML Group and IBM, Sep-
tember 2000. Available from www.puml.org.

[Clark99] A.N.Clark, A.S.Evans, R.B.France, S.Kent and B.Rumpe. Response to UML 2.0 Request for Informa-
tion, December 1999. Available from www.omg.org.

[Evans99] A.S.Evans and S.Kent. Meta-modelling semantics of UML: the pUML approach. 2nd International
Conference on the Unified Modeling Language. Editors: B.Rumpe and R.B.France, Colorado, LNCS 1723, 1999.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 293

[Warmer99] J. Warmer and A. Kleppe. The Object Constraint Language: precise modeling with UML, Addison
Wesley, 1999.

[D’Souza98] D. D’Souza and A.Wills. Object, Components and Frameworks with UML: The Catalysis
Approach. Addison Wesley, 1998.

[Griffiths97] A.Griffiths. Object-oriented Operations have Two Parts. University of Queensland. Technical
Report 97-20, Australia, 1997.

[Lamport89] A Simple Approach to Specifying Concurrent Systems. Communications of the ACM, 32(1):32-
45, 1989.

[Chandy88] Parallel Program Design: A Foundation. Addison Wesley, 1998.
2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.81 – JUNE 2002 294

	Contents
	Preface
	0.1 Introduction to the Submission
	0.2 Outline of this Submission
	0.3 Submitters and Contributors
	0.4 Acknowledgements
	0.5 Document History
	0.6 Mapping to RFP Requirements
	0.6.1 General Requirements
	0.6.2 Architectural alignment and restructuring
	0.6.3 Extensibility
	0.6.4 Issues to be discussed

	0.7 Tool Validation
	0.8 Compliance

	Approach
	Chapter 1 Introduction
	Chapter 2 Metamodeling Language
	2.1 Classes, Attributes, Query Operations
	2.2 Associations
	2.3 Packages
	2.4 Constraint Language
	2.5 Package Extension & Imports
	2.5.1 Package Extension
	2.5.2 Package Imports

	2.6 Package Templates

	Chapter 3 Language Architecture
	3.1 The Architecture of UML 2
	3.2 MOF
	3.3 Programming in Pictures
	3.4 Backwards Compatibility
	3.5 Metalayers

	Chapter 4 Language Extension and Profiles

	Definitions
	Chapter 5 Reading Guide
	Chapter 6 DataTypes
	6.1 Position in Architecture
	6.1.1 Example

	6.2 Abstract Syntax
	6.2.1 Derivation
	6.2.2 Model
	6.2.3 Type Conformance

	6.3 Semantic Domain
	6.3.1 Derivation
	6.3.2 Model
	6.3.3 Well-formedness rules

	6.4 Semantic Mapping
	6.4.1 Derivation
	6.4.2 Model
	6.4.3 Well-formedness rules

	6.5 Example Snapshots
	6.6 Changes from UML 1.4

	Chapter 7 Classes
	7.1 Position in Architecture
	7.1.1 Example

	7.2 Abstract Syntax
	7.2.1 Derivation
	7.2.2 Model
	7.2.3 Well-formedness Rules
	7.2.4 Operations

	7.3 Semantic Domain
	7.3.1 Derivation
	7.3.2 Model
	7.3.3 Well-formedness Rules

	7.4 Semantic Mapping
	7.4.1 Derivation
	7.4.2 Model
	7.4.3 Well-formedness rules
	7.4.4 Operations

	7.5 Example Snapshots
	7.6 Changes from UML 1.4

	Chapter 8 Associations
	8.1 Position in Architecture
	8.1.1 Example

	8.2 Abstract Syntax
	8.2.1 Derivation
	8.2.2 Model
	8.2.3 Well-formedness Rules
	8.2.4 Operations

	8.3 Semantic Domain
	8.3.1 Derivation
	8.3.2 Model
	8.3.3 Well-formedness Rules
	8.3.4 Operations

	8.4 Semantic Mapping
	8.4.1 Derivation
	8.4.2 Model
	8.4.3 Well-formedness rules
	8.4.4 Operations

	8.5 Example Snapshots
	8.6 Changes from UML 1.4

	Chapter 9 Packages
	9.1 Position in Architecture
	9.1.1 Example

	9.2 Abstract Syntax
	9.2.1 Derivation
	9.2.2 Model
	9.2.3 Well-formedness Rules
	9.2.4 Operations

	9.3 Semantic Domain
	9.3.1 Derivation
	9.3.2 Model
	9.3.3 Well-formedness rules

	9.4 Semantic Mapping
	9.4.1 Derivation
	9.4.2 Model
	9.4.3 Well-formedness rules

	9.5 Example Snapshots
	9.6 Changes to UML 1.4

	Chapter 10 Package Extension
	10.1 Position in Architecture
	10.1.1 Example

	10.2 Abstract Syntax
	10.2.1 Derivation
	10.2.2 Model (Package extension)
	10.2.3 Well-formedness Rules (Package extension)
	10.2.4 Model (Structural features)
	10.2.5 Well-formedness Rules (Structural features)
	10.2.6 Model (Behavioural features)
	10.2.7 Well-formedness Rules (Behavioural features)
	10.2.8 Additional Definitions

	10.3 Semantic Domain
	10.4 Semantic Mapping
	10.5 Example Snapshots
	10.6 Changes to UML 1.4

	Chapter 11 Templates
	11.1 Position in Architecture
	11.1.1 Example

	11.2 Abstract Syntax
	11.2.1 Derivation
	11.2.2 Model
	11.2.3 Well-formedness Rules
	11.2.4 Well-formedness Rules
	11.2.5 Well-formedness Rules

	11.3 Semantic Domain
	11.4 Semantic Mapping
	11.5 Example Snapshots
	11.6 Changes to UML 1.4

	Chapter 12 Static Expressions
	12.1 Position in Architecture
	12.1.1 Example

	12.2 Abstract Syntax
	12.2.1 Derivation
	12.2.2 Model
	12.2.3 Well-formedness rules

	12.3 Semantic Domain
	12.3.1 Derivation
	12.3.2 Model
	12.3.3 Well-formedness rules

	12.4 Semantic Mapping
	12.4.1 Derivation
	12.4.2 Model
	12.4.3 Well-formedness rules

	12.5 Example Snapshots
	12.6 Templates
	12.6.1 Expression
	12.6.2 Expression operands
	12.6.3 Expression context

	12.7 Changes from UML 1.4
	12.8 Relationship to OCL 2.0 Submission

	Chapter 13 Constraints
	13.1 Position in Architecture
	13.1.1 Example

	13.2 Abstract Syntax
	13.2.1 Derivation
	13.2.2 Model
	13.2.3 Well-formedness Rules
	13.2.4 Operations

	13.3 Semantic Domain
	13.3.1 Derivation
	13.3.2 Model
	13.3.3 Well-formedness Rules

	13.4 Semantic Mapping
	13.4.1 Derivation
	13.4.2 Model
	13.4.3 Well-formedness rules

	13.5 Example Snapshots
	13.6 Changes to UML 1.4

	Chapter 14 Queries
	14.1 Position in Architecture
	14.1.1 Example

	14.2 Abstract Syntax
	14.2.1 Derivation
	14.2.2 Model
	14.2.3 Well-formedness Rules
	14.2.4 Operations

	14.3 Semantic Domain
	14.3.1 Derivation
	14.3.2 Model
	14.3.3 Well-formedness Rules

	14.4 Semantic Mapping
	14.4.1 Derivation
	14.4.2 Model
	14.4.3 Well-formedness rules

	14.5 Example Snapshots
	14.6 Changes to UML 1.4

	Chapter 15 Behaviour
	15.1 Position in Architecture
	15.1.1 Example

	15.2 Abstract Syntax
	15.2.1 Model
	15.2.2 Well-formedness Rules
	15.2.3 Operations

	15.3 Semantic Domain
	15.3.1 Derivation
	15.3.2 Model
	15.3.3 Well-formedness Rules
	15.3.4 Operations

	15.4 Semantic Mapping
	15.4.1 Derivation
	15.4.2 Model
	15.4.3 Well-formedness Rules
	15.4.4 Operations

	15.5 Example Snapshots
	15.6 Changes to UML 1.4

	Chapter 16 Actions
	16.1 Position in Architecture
	16.1.1 Example

	16.2 Abstract Syntax
	16.2.1 Derivation
	16.2.2 Model
	16.2.3 Well-formedness Rules
	16.2.4 Operations

	16.3 Semantic Domain
	16.3.1 Derivation
	16.3.2 Model
	16.3.3 Well-formedness Rules
	16.3.4 Operations

	16.4 Semantic Mapping
	16.4.1 Derivation
	16.4.2 Model
	16.4.3 Well-formedness Rules
	16.4.4 Operations

	16.5 Example Snapshots
	16.6 Changes to UML 1.4
	16.7 Templates
	16.7.1 Primitive and compound action
	16.7.2 Action Operands

	Chapter 17 Operations
	17.1 Position in Architecture
	17.1.1 Example

	17.2 Abstract Syntax
	17.2.1 Derivation
	17.2.2 Model
	17.2.3 Well-formedness Rules
	17.2.4 Operations

	17.3 Semantic Domain
	17.3.1 Derivation
	17.3.2 Model
	17.3.3 Well-formedness rules
	17.3.4 Operations

	17.4 Semantic Mapping
	17.4.1 Derivation
	17.4.2 Model
	17.4.3 Well-formedness rules
	17.4.4 Operations

	17.5 Example Snapshots
	17.6 Changes from UML 1.4

	Chapter 18 Messaging
	18.1 Position in Architecture
	18.1.1 Example

	18.2 Abstract Syntax
	18.2.1 Derivation
	18.2.2 Model
	18.2.3 Well-formedness Rules
	18.2.4 Operations

	18.3 Semantic Domain
	18.3.1 Derivation
	18.3.2 Model
	18.3.3 Well-formedness Rules
	18.3.4 Operations

	18.4 Semantic mapping
	18.4.1 Derivation
	18.4.2 Model
	18.4.3 Well-formedness Rules
	18.4.4 Operations

	18.5 Example Snapshots
	18.6 Changes to UML 1.4

	Chapter 19 Foundation Templates
	19.1 Introduction
	19.2 Container
	19.2.1 Summary
	19.2.2 Derivation
	19.2.3 Definition
	19.2.4 Well-formedness Rules
	19.2.5 Operations

	19.3 TypedElement
	19.3.1 Summary
	19.3.2 Derivation
	19.3.3 Definition
	19.3.4 Well-formedness Rules
	19.3.5 Operations

	19.4 Parameterized
	19.4.1 Summary
	19.4.2 Derivation
	19.4.3 Definition
	19.4.4 Well-formedness Rules
	19.4.5 Operations

	19.5 Multiplicity
	19.5.1 Summary
	19.5.2 Derivation
	19.5.3 Definition
	19.5.4 Well-formedness Rules
	19.5.5 Operations

	19.6 Named
	19.6.1 Summary
	19.6.2 Derivation
	19.6.3 Definition
	19.6.4 Well-formedness Rules
	19.6.5 Operations

	19.7 Namespace
	19.7.1 Summary
	19.7.2 Derivation
	19.7.3 Definition
	19.7.4 Well-formedness Rules
	19.7.5 Operations

	19.8 Relationship
	19.8.1 Summary
	19.8.2 Derivation
	19.8.3 Definition
	19.8.4 Well-formedness Rules
	19.8.5 Operations

	19.9 Generalizable
	19.9.1 Summary
	19.9.2 Derivation
	19.9.3 Definition
	19.9.4 Well-formedness Rules
	19.9.5 Operations

	19.10 Extendable
	19.10.1 Summary
	19.10.2 Derivation
	19.10.3 Definition
	19.10.4 Well-formedness Rules
	19.10.5 Operations

	19.11 Import
	19.11.1 Summary
	19.11.2 Derivation
	19.11.3 Definition
	19.11.4 Well-formedness Rules
	19.11.5 Operations

	19.12 Semantics
	19.12.1 Summary
	19.12.2 Model

	19.13 ParameterizedValue
	19.13.1 Summary
	19.13.2 Definition
	19.13.3 Definition

	19.14 ParameterizedValueSemantics
	19.14.1 Summary
	19.14.2 Derivation
	19.14.3 Definition
	19.14.4 Well-formedness rules

	Chapter 20 UMLTemplates
	20.1 Introduction
	20.2 FeatureClassifier
	20.2.1 Derivation
	20.2.2 Definition
	20.2.3 Well-formedness Rules
	20.2.4 Operations

	20.3 StructuralFeatureClassifier
	20.3.1 Summary
	20.3.2 Derivation
	20.3.3 Definition
	20.3.4 Well-formedness Rules
	20.3.5 Operations

	20.4 BehaviouralFeatureClassifier
	20.4.1 Summary
	20.4.2 Derivation
	20.4.3 Definition
	20.4.4 Well-formedness Rules
	20.4.5 Operations

	20.5 Package
	20.5.1 Summary
	20.5.2 Derivation
	20.5.3 Definition
	20.5.4 Well-formedness Rules
	20.5.5 Operations

	20.6 StructualFeatureClassifierValue
	20.6.1 Summary
	20.6.2 Derivation
	20.6.3 Definition
	20.6.4 Well-formedness Rules
	20.6.5 Operations

	20.7 StructuralFeatureClassifierSemantics
	20.7.1 Summary
	20.7.2 Derivation
	20.7.3 Definition
	20.7.4 Well-formedness Rules
	20.7.5 Operations

	20.8 BehaviouralFeatureClassifierValue
	20.8.1 Summary
	20.8.2 Derivation
	20.8.3 Definition
	20.8.4 Well-formedness Rules
	20.8.5 Operations

	20.9 BehaviouralFeatureClassifierSemantics
	20.9.1 Summary
	20.9.2 Derivation
	20.9.3 Definition
	20.9.4 Well-formedness Rules

	20.10 ExtendableNamespace
	20.10.1 Summary
	20.10.2 Derivation
	20.10.3 Definition
	20.10.4 Well-formedness Rules
	20.10.5 Operations

	20.11 ExtendablePackage
	20.11.1 Summary
	20.11.2 Derivation
	20.11.3 Definition
	20.11.4 Well-formedness Rules
	20.11.5 Operations

	20.12 ExtendableStructuralFeatureClassifier
	20.12.1 Summary
	20.12.2 Derivation
	20.12.3 Definition
	20.12.4 Well-formedness Rules
	20.12.5 Operations

	20.13 ExtendableBehaviouralFeatureClassifier
	20.13.1 Summary
	20.13.2 Derivation
	20.13.3 Definition
	20.13.4 Well-formedness Rules
	20.13.5 Operations

	20.14 TemplateInstantiation
	20.14.1 Summary
	20.14.2 Derivation
	20.14.3 Definition
	20.14.4 Well-formedness Rules
	20.14.5 Operations

	Appendix A Mapping Package to Class Hierarchies
	A.1 Introduction
	A.2 Overview
	A.3 Rules

	Bibliography

