Unambiguous UML (2U) Revised Submission to UML 2
Infrastructure RFP (ad/00-09-01)

Convenience document with
errata (ad/2002-06-13) applied

OMG document ad/2002-06-14

www.2uworks.org
Version 0.81 — June 2002

Submitted by
Adaptive

Data Access
Project Technology
Softlab

Siemens

In association with

Dr A. Clark, pUML group & Kings College, London, UK
Dr A. Evans, pUML group & University of York, UK

Dr S. Kent, pUML group & University of Kent, UK

Supported by
Artisan

Cacheon

J P Morgan Chase
Foundatao

Kinetium

SINTEF

Tata Consultancy Services
University of Kent
Kings College London
University of York

Copyright © 2001 Adaptive Ltd

Copyright © 2001 Data Access

Copyright © 2001 Project Technology

Copyright © 2001 Kinetium

Copyright © 2001 Softlab

Copyright © 2001 Siemens

Copyright © 2001 Dr Tony Clark

Copyright © 2001 Dr Andy Evans

Copyright © 2001 Dr Stuart Kent

The companies and individuals listed above hereby grants a royalty-free license to the Object Management
Group, Inc. (OMG) for worldwide distribution of this document or any derivative works thereof within OMG and
to OMG members for evaluation purposes, so long as the OMG reproduces the copyright notices and the below
paragraphs on all distributed copies.

The companies and individuals listed above have granted to the Object Management Group, Inc. (OMG) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this
document and distribute copies of the modified version.

The copyright holders listed above have agreed that no person shall be deemed to have infringed the copyright,
in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

NOTICE: The information contained in this document is subject to change with notice.

The material in this document details a submission to the Object Management Group for evaluation in accord-
ance with the license and notices set forth on this page. This document does not represent a commitment to
implement any portion of this specification by the submitter.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES AND INDIVIDUALS LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The Object Management Group and the companies and individuals listed above shall not be liable for errors con-
tained herein or for incidental or consequential damages in connection with the furnishing, performance or use of
this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through
its designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

This document contains information that is patented which is protected by copyright. All Rights Reserved. No
part of the work covered by copyright hereon may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval sys-
tems--without permission of the copyright owners. All copies of this document must include the copyright and
other information contained on this page.

The copyright owners grant member companies of the OMG permission to make a limited number of copies of
this document (up to fifty copies) for their internal use as part of the OMG evaluation process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as
set forth in subdivision (c) (1) (ii) of the Right in Technical, Data and Computer Software Clause at DFARS
252.227.7013

OMG® is a registered trademark of the Object Management Group, Inc.

Contents

Preface

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Introduction to the Submission
Outline of this Submission
Submitters and Contributors
Acknowledgementscccceeeveeniieniieeieeieeenn.
Document HiStorycccoceevieeiiiiniieiienieeieeee,
Mapping to RFP Requirements
Tool Validationcccceveevierieneeiienienceieeeene

CompliancCe........coeevverieneriiinieieeienece e

APPROACH

Chapter 1:

Introduction

Chapter 2:

Metamodeling Language

2.1
2.2
23
24
2.5
2.6

Classes, Attributes, Query Operations
ASSOCIAtIONS....cuviieeiiiieeiie et

Packagesccoveevieeiieieeieee e

Constraint Language

Package Extension & Imports
Package Templatescccoevverieeiienieeieenieenen.

Chapter 3:

Language Architecture
The Architecture of UML 2

3.1

Contents

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

3.4 Backwards CompatiDIlityccvieeiieiiieiiiiieciieieeete ettt esteeeaeesseessbeensaeenseenseennes 43

R I Y (51 121) S USSR 44
Chapter 4:

Language Extension and Profiles ... 45
DEFINITIONS 48
Chapter 5:

ReadING GUIAEttt e e e e e e e eeennnees 50
Chapter 6:

D E= = 1 Y/ o1 PP 51
6.1 POSItION 1N ATCRITECTUIEoutiiiiiiiieie ettt ettt ettt sb e eebeeees 51
0.2 ADSITACT SYNTAX ...iiuiiiiiiiiiieiieeite ettt ettt et et e sbeebtestteesbeessaeenseenseeanseeseeenseeseeanseenseesnseenseennns 52
6.3 Semantic DOMAINcccuiiiiiiiiiiie ettt et ettt et et b e et e b enee 55
6.4 SemMANtIC MAPPINE ...couviiiiitiiieitteieet ettt ettt ettt st s bt et e bt e be et e saeesbe et e e bt e nbeeaeesaeenee 57
0.5 EXample SNapShOtS......cooiiiiiiiiiieiiee ettt aee e 58
6.6 Changes from UML 1.4.........oii ittt tae e s tee e st e e st e e essaeesseeensaeeenneeeas 59
Chapter 7:

ClaSSES ... 60
7.1 POSItION 1N ATCRIEECTUIEeeiiieieiieiieet ettt ettt ettt sttt et s e e enee 60
7.2 ADSIIACT SYNEAX ..eiutiiiiiiiiiieeiteeie ettt ettt ettt ettt et bt et e bt ettt she ettt be b eaae i 61
7.3 Semantic DOIMAINcccueiuiiiuiiiiiiieteeteei ettt sttt sttt et sbe et st s bt et bt e b et i enee 66
74 SeMANLIC MAPPING....icuiiiiiieiiieeiieitieeteeitteetteeteestteeseesseessseeseessseeseessseesseessseensaensseesseesssesnseenseenses 68
7.5 EXample SNapSOLS......coviiiiiiiiiiiiieee ettt 70
7.6 Changes from UML L4 ..ottt ettt et tee st e e sseeeabeenseesnbeennes 71
Chapter 8:

ASSOCIATIONS ... 72
8.1 POSItION 1N ATCHILECTUIEcuuiiiiiieiieeiieie ettt ettt e ettt e st e e bt e e b e e beesaaeenbeenees 72
LI o1 1 €2 101 AN) 11 . QOO SURRUSRRUSRPPRRN: 73
8.3 Semantic DOMAINcc.uiiiiiiiiiiieite ettt et ettt be e et e bt e et e bt e sate e b e eeee 78
8.4 SemMANLIC MAPPING...c.viruiiriiiiieiiitieteeit ettt ettt et sttt e e eat et e et sb e be et e sbe e beeatesbee bt eaeenbeeaees 81
8.5 EXAMPIE SNAPSNOLS....coiuiiiiiiiieiie ettt ettt e e e eane e ebee e 83

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 4

8.6 Changes fTom UML 1.4ooooiiiiieieiieee ettt et ettt e s beebeessbeessaessbeesseessseenses 84

Chapter 9:

PaCKAgES ... 85
9.1 POSItION 1N ATCRIEECTUIEeeuiiiieiiiitecieeie ettt sttt sbe e 85
LT N o1 o - ot AN L2 D QUSSR 86
0.3 Semantic DOMAINcccueiiiiiiieiie ettt ettt ettt st et e st e e bt e st e e bt e s it e e b e e steeenbeenneeenee 90
0.4 SeMANLIC IMAPPING....eeuiiiiiieiiieeiieetieeteetteetteeteestteebeesseeeateeseeesseenseessseenseessseenseessseenseenssesnseenseennns 93
0.5 EXamMPIE SNaPSNOLS.....oiiiiiiiiiecieece ettt e e e e et e e e e e eaaeeenrae s 95
9.6 Changes to UML 1.4 ..ottt ettt sttt st b e sae e 96

Chapter 10:

Package EXIENSION ..o 97
10.1 PoSItION 1N ATCRIEECIUTE ..ottt ettt sttt s e e 97
10.2 ADSEIACE SYNEAX ...viiiiiiiieiieeiieiie ettt ettt e bt e site e bt e ssbeebeeeaaeesseassseenseesaseenseesnseeseesnseans 98
10.3 Semantic DOMAINcouiiiiiiiiiiiee ettt st ettt et eeas 112
10.4 SemMANIC MAPPINEvviiiiieeiiieeiiieeiieeeiteeeieeesteeesteeessbeeessseeesseeeseeessseaeasseeesssesessseesnsseessseessses 112
10.5 EXamPle SNAPSIOLS. ...ccuiiiiiiiiieiiecie ettt et ettt et e et e et e e e e taesabeebeeenseenseas 112
10.6 Changes t0 UML 1.4oooiiiioiieieeie ettt ettt ettt et e s b e ebaessaeesseessaesnsaesssassseenseas 114

Chapter 11:

TeMPIALES ... 115
11.1 POSItiON iN ATCRIEECIUIEeetieiiiiiieiieieee ettt sttt et b et et e st et e saee e eneas 115
| N o1 o 2 ot AN 0L 2 D QSRS 116
11.3 Semantic DOMAINcccuiiiiiiiiciie ettt ettt e et e e e e e eaaeeetaeeesbaeeesseeessseeessseeesseesnseeennnes 125
11.4 SemMANtIC IMAPPINGccoviiiiiieiiieriieeieeiteeeteeteeeteesteeseteeseessseeseessseesseessseenseessseasseesseessseesseesssesnses 125
11.5 EXample SNapShOts.......cccuiiiiiiiiiieceece ettt e s e e e beeesaeeenaeeennaeennnes 126
11.6 Changes t0 UML 1.4 ..ottt ettt ettt sttt et 127

Chapter 12:

StAtiC EXPre€SSIONSciiiiiiiii et eas 128
12.1 PoOSItION iN ATCRIEECIUTEouiiiiiieiie et ettt ettt beeseeeeaeeas 129
12,2 ADSEIACT SYNEAX ...eiiuiiiiiiiiiieeie ettt ettt ettt et e et e et e steesaeeesbe e teesnbeesseeesseenseessseenseesnseenseas 130
12.3 Semantic DOMAINcouiiiiiiiiiiiie ettt ettt sttt ettt et eees 138
12,4 Semantic MaPPING.......ccoeeiirieiirieneee ettt ettt ettt sb ettt sbe et et be ettt sbe et et enbeeaees 144
12.5 EXamPle SNAPSIOLS. ...ccuiiiiiiiiieiieeie ettt ettt ettt et et e st e e beeenbeeneeas 149

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 5

12,6 TOMPIALESeevieeiieiieeie ettt ettt et et e et e et eebeesabeesbeessaeesbeessseesseensaesssaessaeesseensaessseesseenssennsens 150
12.7 Changes from UML 1.4oii ittt ettt e rtte e et e e s e e s sseeesnaaeesaeeessseeennnas 155
12.8 Relationship to OCL 2.0 SUDMISSIONeeeuvieiiieiiieiiieieeite et eteesteeieesteebeeseaeebeesaeessseenseesaeeas 155

Chapter 13:

(070] 0153 (1= 11 0| = PP PPPPPPR 156
13.1 PoOSItioN in ATCRIEECIUIEouiiiiiiiii ettt ettt et e eeeeaeeas 156
13.2 ADSLIACT SYNEAX ..uviiuiiiiiiiiiieeie ettt ettt ettt ettt e et e esateste e bt e sabeeteeenbeesseeesseenseesnseenseesnsennseas 157
13.3 Semantic DOMAINcouiiiiiiiiiiie ettt ettt ettt et st e bt e eabe s 160
13.4 Semantic MaPPING.......cooueeiirieiertente ettt ettt et sb et et sbe et et s bt ettt sbe et et e b eanes 162
13.5 EXamPIe SNAPSIOLS. ...ccviiiiiiiiieiieeie ettt ettt ettt et e e et eeabeebeeenbeenneas 163
13.6 Changes t0 UML 1.4oooiiieie ettt e et e et e e et e e st eesasaaeesbeeessseeenseessseeennnes 164

Chapter 14:

QUUETTIES ..ottt ettt e e e e e e et e e e e e e e e e s et e e e e e e aeeeeeaannreeeeeaaaeaaann 165
14.1 POSItiON iN ATCRITECIUIEeetieiiieiieiieie ettt sttt ettt sae et s enbeeneas 165
| AN o1 1 2 ot AN 0L 2 D QSRS SRPR 166
14.3 Semantic DOMAINc..eoiuiiiiiiieieeierieeeet ettt sttt sttt et sbe et eatesbe e b eaeenbeenees 170
14.4 SemMANIC IMAPPINGccoviiiiieeiieriieeieeseeeteeieeeteesteeeteeseessseeseessseesseessseesseessseasseesseessseesseesssennses 172
14.5 EXamPle SNaPSROLS...c..coiiiiiiiiiierieeetete ettt 174
14.6 Changes t0 UML 1.4 ..ottt ettt et et e e teesateesbeessaeenbeenseassneenseas 175

Chapter 15:

BERAVIOUN ... 176
15.1 PoOSItION iN ATCRIEECIUIEouiiiiiieiiie ettt et et e e eaeeas 176
15.2 ADSLIACE SYNTAX ..uviieiiiieiiiieeiiee ettt ettt e et e et ee et ee et e e esbaeeesbaeensseeesseesnsseesnsseesnnseesnseeennses 177
15.3 Semantic DOMAINccuiiiiiiiiieiie ettt ettt ettt ettt e bt e et eneeas 178
15.4 Semantic MapPPING.......ccoeeiirieiierienieete ettt ettt ettt sb ettt sbe et et sbe et et sbe et et e b eaees 183
15.5 EXample SNapShots.......cccuiiiiiiiiiiecieece ettt et e et e e e aaeeeanes 186
15.6 Changes t0 UML 1.4oo ittt e et e e e e e e e st e e e aeeeesseeessseeenseesnseeennnes 187

Chapter 16:

ACHIONS ...ttt a e e e e 188
16.1 POSItION iN ATCRITECIUIEeeutieiiieiietieieree ettt sttt ettt et e st et enbeeneas 188
16.2 ADSIIACT SYNTAX c..eiiiiiiiiieiteieeteett ettt ettt ettt sb et b e et saeenbe et et enbeeanes 189
16.3 Semantic DOMAINcc.eeiuiiiiiiiiieiierieeeet ettt ettt sttt et sbe et et sbe et et e b enees 194

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 6

16.4 SemMANIC IMAPPINGccoviiiiieiiieitieeieeseeeteeteeeteesteeseteesseessseeseessseasseesssesseessseasseensesssseesseesssesnses 200

16.5 EXample SNapShOts......cccviiiiiiieiie ettt e st e e e e e et e e e aae e e naeeennes 203
16.6 Changes t0 UML 1.4 ..ottt ettt ettt et e e beesaaeesse e saesnbeessaessseenseas 204
L60.7 TOMPIALESeeviieiiieiieeii et ettt ettt e et e et e et e e teeeaeeesbeessaeesbeessaeesbe e seesssaesaeasseensaessseenseesssennsens 204

Chapter 17:

(@] 011 =1 i o] o 1< TSP SSRRUSPUPIN 208
17.1 POSIION I ATCRIEECLUIEeiutiiiiiiiieiiiie ettt sttt et sb et eaees 208
| AN o1 1 2 ot AN) 0L 2 D QSRS 210
17.3 Semantic DOMAINcccuiiiiiiiiieiie ettt et ettt et e et e e ateeabe e beeeabeenaeesnseeneeas 215
17.4 SemMANIC IMAPPINGeevieiiieeiieiieeteerieeeteeteeeteesteeeateebeessteeseesseeesseesseesnseesseeasseenseesnseeseesnsennsens 218
17.5 EXample SNapShOtS......cccviiiiiiiiiie ettt ettt e st e e be e et eeeaaeeeneeeennes 220
17.6 Changes from UML 1.4co.iiiiiie ettt 221

Chapter 18:

A LSTE 5= To 11 e TR 222
18.1 PoOSItION 1N ATCRIEECIUTEouiiiiiiiie ettt as 222
18.2 ADSLIACT SYNEAX ...viiuiieiiiiiiieiieetiesie ettt ettt ettt e et e e et e eteesteessbeeteeenseesseessseensaesnseenseesnsennseas 223
18.3 Semantic DOMAINccuiiiiiiiiiiiiie ettt sttt ettt 226
18.4 SemANtiC MAPPING ...evveemrirrririetenitente ettt ettt ettt st et e et sb e e bt eatesbeebeeatesbeetesasesbeenteeseenseenees 229
18.5 EXamPIe SNAPSIOLS. ...ccuiiiiiiiiieiieeie ettt ettt ettt e et esabe et e enbeeneeas 231
18.6 Changes t0 UML 1.4ociiiiiiiieieeie ettt ettt sttt e st eebeessbeesbeessaeensaesssassseenseas 232

Chapter 19:

Foundation Templates ... 233
19,1 INEFOAUCTION ..ntiiiiiieii ettt et ettt et et e bt et ea e bt enb e s st e bt enteeaeenbeensesaeenseeneas 233
19.2 COMAINET ...ttt ettt et h e et e s bt e et e e bt e st e e bt e eab e e bt e sateenbeeesbeanbeesbeeenbeenssennsean 233
19.3 TYPEAEICINENL........oiuiiiiiiiiieie ettt et sh e sttt e st e e bt e s st e enbeesabeenbeesnneeneeas 234
19.4 ParameteriZedooueeiiieieeiieieeie ettt et b et ea ettt b et ettt et et naeenees 235
19.5 MUIIPIICIEY 1.ttt ettt ettt ettt et e s e st e e eneeseeenbeeseesseenseeneeseenseeneenseeneas 237
1O.6 NAMEA.......oiiiiiiieiie ettt e e et e e s te e e st e e e taeeeaseeessaeeessaeeesseeeasseeesseeesseessseeessseeennses 239
19,7 INAIMESPACE ... ueeeeuiieeeiiieeiiieeiieeeriteeeitteestteeateeessteeesssaeasseesnsseeassaeessseeeasseesasseessseesnsseessseeessseesnnses 240
LRI] 1 0 0] 111 USSP 242
19.9 GENETAlIZADICeeiiiiieiieeeee ettt e et et e e e e e tb e e e b e e e aaeeenraeenanes 243
LOTOEXLENAADIE ...ttt sh ettt se et et e bttt et et neebe s 245

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 7

L2 I B 01T) o ARSI 246

19,12 SEIMANTICS ...ttt ettt ettt ettt et ettt e bt e et e e e bt e e ab e e bt e sat e e bt e eabe e bt e sateenbeeesteenbeesbeeenbeenseeensean 248
19.13 ParameteriZE€AVAlUCoouiiiiiiiiieieeecte ettt ettt 249
19.14 Parameterized ValueSemAaNTiCScevuieierieriieieeiieteeee ettt ettt ettt et e b eaeas 250
Chapter 20:

UMLTEMPIAES. ... e 252
20.1 INEFOAUCTION .ottt et b et e bt et s et s et sbe et e eb e e bt en b e ebee bt et e sbeeseennes 252
20.2 FeatUrEClasSTEIOT ...ceueiiuiieiiieettete ettt ettt et ettt e sat e et esat e e bt e nbeesabe e bt e enteenneas 252
20.3 Structural FeatureClasSI IeTcccuiiiiiiiiciie ettt e e e s e e e e aaeeeaaeesaveeesnnas 255
20.4 BehaviouralFeatureClasSIflercviiiiiriiriiiieieiee ettt s 258
B (R S o o)< Yo USRS 262
20.6 StructualFeatureClassifierValuecceeiviiiiiiiiiiie e 263
20.7 StructuralFeatureClassiflerSemMantiCs........coueriirieririeriiiieniereee ettt 265
20.8 BehaviouralFeatureClassiflerValueccooiiiiiiiiiiiiiiiiiieeeeee e 267
20.9 BehaviouralFeatureClassiflerSemMantiCs.........ueciuuieeiuieeriieeirieecireeecieeeeieeeeereeeeveeeereeeeeeesveeeeenes 268
20.10 EXtendableNamMESPACE........cccueieiieiieeieeiieeiie et e eite et e siteebeesteeeebeesseessseeseesaseesseesssesnseesssessseenseas 271
20.11 EXtendablePackagec.ceeeuiiiiiiiieiieeciee ettt ettt e ettt e e et e e s saae e sae e enr e e eraeeenaeennnes 274
20.12 ExtendableStructural FeatureClasSifierc..eeecuiieiiiieciie ettt e 277
20.13 ExtendableBehaviouralFeatureClasSifiercueiiiiirieririeiieceecee e 281
20.14 TemplateINSTANTIALIONc.vveiiviieiiieeeiieeetie et e et e eee e eteeesaeeessaeeessaeessaeesssaeeessaeessseessseessseennses 285
Appendix A:

Mapping Package to Class Hierarchies ... 287
AT INEOAUCLION .ttt ettt et a et e e e s et et e st e sbe et e entesseenbeeneenaeenee 287
A2 OVEIVIEW ..eviiiiiiieeiieeeeeiee et e ettt e ettt e e bt e e e teeesataeessseaasseeasseeansseesasseeassseessseeessesesseessseesnseeensseeanns 287
A3 RULES ettt ettt et sh ettt et nae e 288
BIDHOGraphy ... 293

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 8

Preface

0.1 INTRODUCTION TO THE SUBMISSION

This is a response to the UML 2.0 Request for Proposals on Infrastructure (ad/00-09-01). We propose an architec-
ture for the definition of UML 2.0 which supports the layered and extensible definition of UML as a family of
languages, and depends on the use of package extension (composition) and package template mechanisms in the
metamodelling language. This submission defines that architecture and populates it with the definition of a core
foundation for the definition of structural and behavioural modelling constructs for UML. Chapter 3 (“Language
Architecture”) identifies all those parts of the architecture defined in any given version of this document.

Although this is not a submission to the RFP on the Object Constraint Language (OCL), the definition does
include a metamodel for the core of OCL. This is intended to show how OCL can be fitted into our architecture,
and we have made every effort to align the metamodel with that proposed in the submission by Boldsoft et al.,
which the 2U team support. Further alignment may be required in finalisation.

The goal in the revision of UML must, in the end, be to provide better languages and tools to engineers so that
they can build better and safer systems, at less cost. This submission aims to deliver on this goal by providing a
definition that adheres to seven principles:

1. The definition should be unambiguous, so that questions of understanding, use and conformance can be
answered definitively. An unambiguous definition provides a better foundation for provisioning tools.

2. The definition should separate concerns. At one level there should be a clear separation between those
aspects of the definition that deal with representation (syntax) and those that deal with the meaning underlying
representation. At another level, it is important to identify and separate mechanisms that deal with differing
aspects of languages. For example, the mechanism that deals with static information structures (classes)
should be separated from the mechanism that deals with behaviour (actions).

3. On the other hand, the definition should support integrated modelling languages. The separate parts of the
definition should be formed in such a way that they can be easily combined to form useful languages.

4. The definition should be complete: as far as possible, all aspects of a language (including semantics) should
be defined unambiguously. The foundation should be rich enough to support the various modelling paradigms
used in UML.

5. The definition should be layered and extensible to support the construction of new members of the UML fam-
ily. New modelling languages will require new features. It should be possible to introduce new features on top
of existing concepts.

6. The definition should have a consistent and disciplined architecture, so that it can be readily understood
and easily extended. For example it should follow well-defined naming disciplines.

7. The definition should be checked in a tool. The size of the definitions warrants it, to be confident that the def-
inition is correct. At a simple level the use of a tool identifies syntax and type errors. However, tools can also
be used to validate the definition, by validating the definition against candidate elements of syntax and seman-
tics domain. The tool checking done in this submission is summarised in Section 0.7, “Tool Validation,” on
page 19.

These principles are in line with the requirements of the RFP and the broader context of the OMG’s MDA strat-
egy, which has risen in prominence since the RFPs were issued. A response to the specific requirements of the
Requests for Proposals is provided in Section 0.6, “Mapping to RFP Requirements,” on page 16. UML has been
flagged as one of the key technologies in making the MDA strategy a success. To realise MDA we believe that
the definitions of modelling languages in general, and UML in particular, need to be:

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 9

¢ as clear and unambiguous as possible in all aspects (concrete & abstract syntax, semantics), otherwise it
will be harder to build tools and training material, and know that these conform to the standard;

¢ extensible and composable, so that language variants for use in specific application areas can be con-
structed easily, and so that tools can be configured to support these definitions;

¢ supported by tools, which means supporting the exploration and validation of models, which are first class
artefacts in MDA, not just supporting their syntactic representation.

The definition of UML proposed in this submission meets the first two of these requirements. It should be easier
to build tools to support the definition, not least because it has an unambiguous definition of syntax and seman-
tics.

Another key technology for MDA is MOF, which is, after all, the language that should be used to define lan-
guages, and (after its revision to version 2) should also support the definition of transformations between meta-
models, which is critical to the success of MDA. This submission shows how the MOF modelling language can
be defined as a UML family member, using the package extension (composition) and template mechansims. Of
course, those mechanisms (whose metamodel definition is also provided here) are included in that language, so
that MOF can support the extensible and composable definition of languages, as required by MDA. The package
extension and template mechanisms provide one embodiment of an approach to aspect-oriented design; they ena-
ble us to apply this approach in the design of languages.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 10

0.2 OUTLINE OF THIS SUBMISSION

The submission comprises this preface and two parts, each containing a number of chapters.

Preface

An introduction and overview of the document, a description of the
submission team, a change history, a statement indicating how the
various RFP requirements have been met, a summary of the work
done to validate the definition in a tool, and a statement of what it
means to conform to the standard.

Approach

Three chapters:

* An overview of the language used to formulate the defini-
tions, including the language itself which is subset of UML
and, it is proposed, will be at the heart of MOF.

* A description of the overall architecture of the UML family
of languages, and the identification of those languages and
language units that are defined in this document. A guide on
how to read each chapter in the "Definitions" part.

* A description of how the approach supports the extension of
UML and the definition of Profiles.

Definitions

A series of chapters providing the full metamodel definitions of
templates, language units and languages that lays the foundation
for the UML family. The definitions are supported by informal
descriptions of the language components and illustrated with
examples.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002 11

0.3 SUBMITTERS AND CONTRIBUTORS

Submitters

Adaptive

Pete Rivett

pete.rivett@adaptive.com

Data Access

Cory Casanave

cory-c(@enterprise-component.com

Project Technology Steve Mellor steve@projtech.com
Softlab Andreas Elting andreas.eling@soflab.com
Siemens Ilir Kondo ilir kondo@siemens.at
Other Contributors

King’s College and pUML group Tony Clark anclark@dcs.kcl.ac.uk
Kinetium Desmond D’Souza | desmond@kinetium.com
University of York and pUML group | Andy Evans andye@cs.york.ac.uk
University of Kent and pUML group | Stuart Kent sjhk@ukc.ac.uk

Tata Consultancy Services Biju Appukuttan biju@dcs.kcl.ac.uk
funded researchers and Girish Maskari girishmr@cs.york.ac.uk

consultants

BAE Systems funded researchers

Laurence Tratt
James Willans

Paul Sammut

laurie@tratt.net
jwillans@cs.york.ac.uk

pauls@cs.york.ac.uk

0.4 ACKNOWLEDGEMENTS

We would like to thank many others from various organisations for direct input of ideas, review and comments.
Thanks in particular to Steve Cook (IBM) for initiating the feasibility study (Clark et al., 2000), which was an
important step towards realising this work. We would also like to acknowledge funding from Tata Consultancy

Services and BAE Systems.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

12

0.5 DOCUMENT HISTORY

Nature of submission Date

Combined Infrastructure and OCL | August 2001
initial submission

Superstructure initial submission. October 2001

UML 2.0 submission (combined | December 2001
Infrastructure, Superstructure and
OCL) version 0.51.
UML 2.0 submission (combined | January 2002
Infrastructure, Superstructure and
OCL), version 0.61

UML 2.0 submission (combined | April 2002
Infrastructure, Superstructure and
OCL), version 0.75

UML 2.0 submission (combined | April 2002
Infrastructure, Superstructure and
OCL), version 0.76

UML 2.0 revised submission to the | June 2002
Infrastructure RFP, version 0.8
(OMG doc no. ad/2002-06-07)

UML 2.0 revised submission to the | June 2002
Infrastructure RFP, minor errors
corrected, version 0.81 (OMG doc
no. ad/2002-06-14)

This section maintains a history of revisions to this document (summarised in the table above), including the
OMG milestones that the document has been submitted to, and outlines significant changes between each revi-
sion.

Changes in 0.81

* Various typographical and cross-referencing errors have been corrected. One minor change to submitters’ list.

Changes in 0.8

Organisation

e Refocussed document just on Infrastructure RFP. Infrastructure = a core set of templates, language units and
languages to support the definition of both structural and behavioural aspects of UML.

Technical

e Completed "Approach" part, specifically filled in gaps in chapters on "Architecture", "Metamodelling Lan-
guage" and "Language Extension & Profiles".

¢ Updated "Preface" including a rewrite of the mapping to RFP requirements.

¢ Added two new chapters on behaviour and messaging. The former is to define a core semantic model for
behaviour. The messaging chapter describes an abstract transport mechanism for object communication and
its semantics.

¢ Generally tightened up the chapter structures and cross checking of templates, etc.

* All chapters have at least one object diagram representing a metamodel instance, for validation purposes.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 13

* A model of scope and environment has been added.

¢ A mapping from package hierarchy to class hierarchy has been added. These rules show how, in principle, a
package hirearchy based on package extension can be implemented as a class framework in an OOPL.

Changes in 0.76

* Harmonised format of definitions chapters.

¢ Added more instances of the metamodel, represented as object diagrams, for illustration.

Changes in 0.75
Organisation

* Re-designed to conform to a more traditional format for standards documents. Specifically, the first part (pre-
amble) has been reduced to a single Preface. Also, there are now just two other parts: A part describing the
"Approach", and a part detailing the metamodel "Definitions" themselves.

e Detailed descriptions of the metamodels have now been put back in the submission, in revised form (they
were removed in version 0.61, whilst work was being done on reworking and extending the definitions in the
MMT tool).

Technical
¢ Templates and stamped out models now conform more closely to existing UML standards and the work being
carried out by other UML 2.0 submittors.

¢ The coverage of the metamodels is far wider than in any previous version. In particular, it now includes
detailed metamodels for expressions, including OCL, and for actions and operations, including semantic
primitives for dynamic behaviour.

Changes in 0.61

Organisation

¢ Detailed descriptions of the metamodels (language units and languages) and templates have been removed
from the document. Instead (tool generated) web-based documentation for these can be obtained from
www.2uworks.org/documents.html.

¢ Chapters overviewing the language unit metamodels and templates have been added.

Technical

e The metamodels and templates are now completely defined using a tool. The tool can generate web-based
documentation for the models loaded into it.

* The metamodels have been brought in line with the architecture described in this document.

e A definition of (the structural aspects of) OCL has been added. Although not yet fully aligned, it is intended to
bring this into alignment with the OCL submission submitted by Boldsoft et al.

¢ The models of DataTypes and Associations, on the structural side, have been refactored.

e The architecture of the behaviour language units has been worked out, and some of the core parts of this have
been filled in, specifically fundamental additions to classes and packages from structure, and actions.

e The templates have been simplified and redundant templates removed. Terminology used in templates has
been improved.

Changes in 0.51

Organisation

e The document structure has been overhauled. It is now organised into 6 parts: “A: Preamble”, “B: Architec-
ture and Approach”, “C: Infrastructure”, “D: Language Definition and Extension”, “E: Superstructure”, “F:

9% C¢

Backwards Compatibility”, “F: Templates”.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 14

This chapter and a statement of conformance chapter have been included in the part “A: Preamble”. Also
included is a chapter on mapping to RFP requirements (also in ‘“Preamble”), which replaces the “Preface”.
The overview chapter has been replaced by two chapters: “Introduction” and “Submitters and Contributors”

The “Context” chapter has been replaced by a chapter on the architecture of the definition (in Part B). The
“Metamodeling Approach” chapter has been renamed “MOF.LDL - Informal Description”, as it provides an
informal description of the language for defining languages, which is used for all definitions throughout the
submission.

The “Templates” chapter has been reorganised and revised into the part “F: Templates”.

Part C now contains the chapters on “Static Core” and “Dynamic Core”, which have been retitled “Static
Infrastructure” and “Dynamic Infrastructure”.

The parts on “D: Language Definition and Extension” and “F: Backwards Compatibility” have been added as
placeholders.

Technical

The architecture of the definition has been overhauled, to be much clearer about the whole UML family, its
relationship to MOF and the parts contributed by this document.

Templates and packages are currently undergoing major revision, to take into account comments received and
to capture more of what is required. These should start to appear in the next release.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 15

0.6 MAPPING TO RFP REQUIREMENTS

0.6.1 General Requirements

Proposals shall enforce a clear separation of concerns between the specification of the metamodel
semantics and notation, including precise bi-directional mappings between them.

The initial submission clearly separates semantics and (abstract) syntax. Both are metamodeled, and the map-
ping between them is also precisely modeled. In principle, concrete syntax and its mapping to abstract syntax can
be treated in a similar way, though the submission has not done this.

Proposals shall minimize the impact on users of the current UML 1.x, XMI 1.x and MOF 1.x specifica-
tions, and will provide a precise mapping between the current UML 1.x and the UML 2.0 metamodels.
Proposals shall ensure that there is a well-defined upgrade path from the XMI DTD for UML 1.x to the
XMI DTD for UML 2.0. Wherever changes have adversely impacted backward compatibility with previ-
ous specifications, submissions shall provide rationales and change summaries along with their precise
mappings.

The architecture supports the metamodeled definition of mappings between metamodels. The submission does
not provide these mappings in detail, as (a) they should be done when a metamodel for UML 2.0 has been final-
ised and (b) could usefully use the results of the MOF transformations RFP to express them. Upgrade from XMI
1.x to XMI 2.0 can be achived via implementations of these metamodel mappings.

Proposals shall identify language elements to be retired from the language for reasons such as being
vague, gratuitous, too specific, or not used.

It is only possible to make such a list once both superstructure and infrastructure has been fully defined. This
submssion, therefore, refrains from identifying such language elements.

Proposals shall specify an XMI DTD for the UML metamodel.

An XMI DTD (or schema) will be generated from putting the metamodel through the MOF tools. For this, the
metamodel has to be in a certain form (Essential MOF — see MOF 2 submission from IBM et al.). In particular, it
can not use package extension or templates. The rules provided in Appendix A show how a package extension
hiererachy can be converted into a class hierarchy which is suitable input for XMI DTD (or schema) generation
by MOF tools. There are also rules (explained informally in Chapter 3) and defined in the metamodel for package
extension, which allow a package in a package hierarchy to be expanded so that it is no longer dependent on the
hierarchy. These expansions are also in a form suitable for processing by MOF tools, and provide an alternative
source for generating XMI DTD/schema.

0.6.2 Architectural alignment and restructuring

Proposals shall specify the UML metamodel in a manner that is strictly aligned with the MOF meta-
metamodel by conformance to a 4-layer metamodel architectural pattern. Stated otherwise, every UML
metamodel element must be an instance of exactly one MOF meta-metamodel element. If this architec-
tural alignment requires that the MOF meta-metamodel also needs to be changed, then those changes
(including changes to XML and IDL mappings) should be fully documented in the proposal.

The metamodels in this submission are defined using a metamodelling language that is summarised in Chapter
3. The metamodeling language is, effectively, a revised form of the MOF 1.4. language, enhanced with package
extension and package template facilities. The metamodel for the abstract syntax and semantics of this language
is defined in the definitions part of the document. The intention is to ensure that, after finalization, this meta-
model matches exactly with the metamodel define in MOF 2 (see below).

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 16

The metamodel is an expression in the language for which it is a metamodel of, as are all the other metamodels
defined in this submission. Chapter 2 ("Architecture") includes further discussion on the 4-layer metamodel
architecture pattern.

Proposals shall strive to share the same metamodel elements between the UML kernel and the MOF
kernel, so that there is an isomorphic mapping between MOF meta-metamodel kernel elements and
UML metamodel kernel elements.

A new version of MOF is defined in the submission to be a member of the UML family of languages. It shares
all its model elements with those of other members of the family that require similar capabilities. In subsequent
revision or finalization, the metamodel will be refactored to align with the definition of MOF in the MOF 2.0
submission. This will be achieved by refactoring the package templates so that, under the mapping rules
described in Appendix A, the class hierarchy that results from mapping the abstract syntax parts of the meta-
model, matches exactly with that defined in the MOF submission (either its MOF or EMOF form).

Proposals shall restructure the UML metamodel to separate kernel language constructs from the stan-
dard elements that depend on them. The standard elements shall be restructured consistent with the
requirements in 6.5.3.

The architecture described in chapter 2 separates out package templates from language units from languages.
These are further categorized into templates/language units that are UML specific and those that could be used to
support the definition of languages not in the UML family. This submission, on infrastructure, identifies a core
set of language units, with the templates to support their definition. This core, we believe, provides a foundation
for defining most structural and behavioural aspects of UML.

Proposals shall decompose the metamodel into a package structure that supports compliance points
and efficient implementation.

See the compliance statement at the end of this preface for an indication of how the architecture defined in
chapter 3 supports different compliance points. It does so very cleanly.

Appendix A defines a series of mapping rules which provide one route through to implementation: they show
how to convert a package hierarchy to a class hierarchy that can then be processed through MOF tools to build
and implementation of the metamodel. The definition has also been run through a tool which is able to expand a
particular package in the hierarchy so that it is no longer dependent on the hierarchy. The result can also be proc-
essed through MOF tools.

Proposals shall identify all semantic variation points in the metamodel.

Our architecture supports the ability to define families of languages which may vary in their semantics in some
places and be common in others. If a language does not support quite what is required, then infrastructure support
is provided through reusable templates to define an alternative language, or language unit, that can be combined
with existing languages or language units. See Chapter 4 on Language Extension and Profiles for more details.

Proposals may refactor the UML metamodel to improve its structure if they can demonstrate that the
refactoring will make it easier to implement, maintain or extend.

The submission refactors the UML metamodel somewhat. The refactoring is a direct consequence of defining
the semantics in terms of primitives on which the remainder of UML 2.0 is built. This layered approach is easier
to implement, maintain and modify.

Proposals may consider architectural alignment with other specification language standards.
Not applicable.

0.6.3 Extensibility

Proposals shall specify how profiles are defined.
Examining so-called profiles currently being standardised in the OMG, one observes that the following
approach is adopted: define a new metamodel; show how that metamodel maps into UML notation, specialised

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 17

using stereotypes etc. This submission provides two mechanisms — package extension and package templates —
that make it much easier to combine and extend fragments of metamodel to form new members of the UML fam-
ily of languages. This is a accompanied by an architecture which is populated with reusable templates for lan-
guage design and predefined language units. No longer will profiles need to define a new metamodel from
scratch; there is a whole infrastructure on which they can build. Furthermore, as the infrastructure supports the
definition of concrete syntax and semantics, both these aspects of a profile definition can be handled in a similar
way. This is explained further in Chapter 4, which also explains how to mix in a simple definition of stereotypes
and tagged values to support a very lightweight form of extension, which is useful for bespoke, user-defined
extensions of UML notation, but not recommended for the definition of profiles.

Proposals shall specify a first-class extension mechanism that will allow modelers to add their own
metaclasses, which will be instances of MOF meta-metaclasses. This mechanism must be compatible
with profiles and consistent with the 4-layer metamodel architecture described in 6.5.2.

The mechanisms used to construct UML profiles are first class extension mechanisms. That is, they work
directly with the metamodel.

Proposals shall identify model elements whose detailed semantics preclude specialization in a profile. If
proposals need to generalize these model elements, they should propose refactoring consistent with the
architecture and restructuring requirements described in 6.5.2.

Not applicable.

Proposals may support the definition of new kinds of diagrams using profiles.
The infrastructure supports the definition of concrete syntax in metamodels. Thus the mechanisms used to
build profiles can also be used to add new kinds of diagrams in the definition of a profile.

0.6.4 Issues to be discussed

Proposals should provide guidelines to determine what constructs should be defined in the kernel lan-
guage and what constructs should be defined in UML profiles and standard model libraries.
This issue is discussed in Chapter 3 on Architecture.

Proposals should stipulate the mechanisms by which compliance to the specification will be deter-
mined, recognizing that determination of conformance is on a subset of the specification and that not all
parts of a metamodel package are always needed. For example, proposals might submit XMI DTDs to
test the compliance of a tool to the specification in a subset of a metamodel package.

See the section on compliance in this preface.

Proposals should discuss the impact of any changes to the UML metamodel on adopted profiles. In par-
ticular, the impact of any refactoring should be discussed.

The metamodels of many of the existing profiles are not constructed on top of the UML metamodel at all. It
would be advisable to refactor these metamodels to be based on the library of templates and language units defin-
ied in this submission, and, where those are found wanting, incrementally extend that library. Of course it would
also be advisable to bring those profiles (e.g. SPEM) that are based on the UML metamodel, to be based on the
library defined here. Further discussion of our vision of how this infrastructure submission supports the eveolu-
tion of the UML family of languages (including profiles) is provided in Chapter 4, "Language Extension and Pro-
files".

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 18

0.7 TooL VALIDATION

In accordance with our seventh principle, the majority of the metamodels defined in this submission have been
checked in a prototype tool (MetaModelling Tool — MMT, screenshot provided in Figure 0-1).

The tool is actually being developed to support MDA. The features used to support this submission are:

m-ou-f

@= [Tuols

Logd E Instrs

&= [static

o m Jonra,

e Syntoz

L m Ervs

e e

- ﬁSMicExmle
@[] «Snapshot Objacts>
©= [«Snapshot Shapshot s
& Ij «Snapshot Claszess
o +Snopshot Class Irtsh:l_|

]

Classifier

=

D M Jowapha

D MAssociotions phg

D MDriograrm.plige
D M Statiophg
[Astatic phge
Y x6uiphg

D M Tools phg
D MStatio phis
[statio phi
[\Baotinie

D Aprinttest

D MAprinttest jpeg

[7] <Snapshot Classes>

Attt ribute_MomeSpocs

k] L5

e e P L e

MameXAgtribute | |10

String=a

Attribute_

| [7] <Snapshot Objects>c &' [

:;‘L value
Dbject_

:Slot_

RGER®Ex

Figure 0-1 MMT screenshot
What this means is that definitions have been rendered in a human readable textual notation accepted by the tool
which matches, in a fairly transparent way, the graphical definitions presented in this model. All source files are
available from the submission website (www.2uworks.org).

Syntax and type checking of all input, including OCL constraints.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

19

e A prototype implementation of the package extension and templates mechanism. This has been used to
process package extension and template instantiation hierarchies and generate the expanded form of any
package in that hierarchy. The tool is not currently able to automatically generate documentation of these
expansions (this is a resource problem, not an inherent limitation of the tool), but is able to generate some
useful elements of the expansion in text form (e.g. constraints) which have been pasted into this document.

* Construction of instances of the metamodels, and checking that they satisfy all well-formedness con-
strraints on the metamodel. A number of these have been constructed to provide some validation that the
metamodel presented in this document captures the required concepts.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 20

0.8 COMPLIANCE

Overview

The architecture of this submission distinguishes language units from languages, where a language is a particular
combination of language units. Each language unit / language has three components: concrete syntax(es), abstract
syntax, semantics domain, with requisite mappings between them.

Thus a statement of compliance should be clear about which languages and language units the tool or method
supports, where a language is a particular combination of language units. It should also be clear as to what
aspects of a language or language unit definition it supports: concrete syntax and/or abstract syntax and/or
semantics.

XMI for a language or language unit can be thought of as an XML concrete syntax (the interchange syntax) for
a metamodel. MOF XMI tools support the generation and implementation of this syntax for any MOF-compliant
metamodel in a standard way, where ‘implementation’ means the generation of a parser and generator for the
metamodel specific XMI.

A useful way of presenting a compliance statement is to use a table, which lists language units and/or lan-
guages as rows, and aspects of the definition of a language or language unit as columns, one each for asbtract
syntax and semantics, and for each concrete syntax (including XMI). Compliance to a language that is the combi-
nation of a number of language units automatically guarantees compliance to those language units.

Finally, if a new language or language unit is constructed and has not been ratified by the OMG, then one can
not claim it to be a member of the UML family, and complying to that language or language unit can not be a
claim to compliance with UML. On the other hand, it may still be possible to claim compliance to any language
or language unit, that is part of the UML family and which is extended by the new language or language unit.

Test Examples

Compliance should be checked through a representative sample of example models which are expressed using
the language or language unit in question. Some examples will not be well-formed. Some examples will come in
pairs, where the second in the pair will be like the first except for a designated set of changes. The examples may
be provided in a number of formats: as instances of any of the concrete syntaxes defined for that language or lan-
guage unit (including XMI), or as instances of the abstract syntax metamodel. Semantic compliance will also
need example abstract syntax / semantic domain pairs. Some examples have been provided in this submission to
validate the definitions (see chapters in the ‘Definitions’ part of document). This set will need to be expanded
during finalization.

Concrete Syntax (including XMI)

A tool claiming concrete syntactic compliance to a language or language unit must demonstrate its ability to read
in the example in appropriate forms (e.g. if it claims compliance to XMI, then it should be able to read in the
XMI), and provide some way of notifying or enforcing well-formedness. To demonstrate that it can output files
appropriately, it will read in an example from a pair, the designated changes will be perfomed in the tool, and the
example will then be output and checked against the second element of the pair. Some of this process can be auto-
mated.

Abstract Syntax
A tool claiming compliance to abstract syntax should provide a standard API (e.g. JMI or IDL) to its model
repository.

Semantics

A tool claiming semantic compliance must provide an ability (e.g. through XMI or a JMI compliant API) to
access elements ins the semantic domain. It should demonstrate that it is able to determine whether or not a
semantic domain element is well-formed, and whether or not it satisfies an expression of abtract syntax. This
could be tested using a standard set of AS/SD pairs.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 21

Automatic Compliance Testing

Automatic compliance testing will only be possible for tools that support a standard API, which could be, for
example, JMI or IDL generated from the metamodel definition of any aspect of the language or language unit
definition. Then test scripts can be written which automatically feed in examples to the tool and check results. It
may be possible to automate testing for tools that support XMI, but then some specification of how the input and
ouput of XMI is orchestrated will be required.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 22

APPROACH

Chapter 1
Introduction

This document provides a definition of UML 2.0. It has two main parts.

The first part (Approach) includes:
e This Introduction
* A description of the Metamodelling Language in which the definition is unambiguously expressed
e A description of the overall Architecture of the definition, expressed in the metamodelling language

e A description of how the approach supports the Extension of UML, including the definition of UML Pro-
files

The second part (Definitions) provides a series of chapters detailing, explaining and illustrating the definitions.
Chapter 3 (“Language Architecture”) in the Approach part, provides an overview of the content of these chapters.
The metamodel definitions are interspersed with chapters explaining and illustrating parts of the definition
through examples.

A reader who wishes just to understand UML in an informal way, should begin by looking at the example sna-
phots section of the chapters in the Definitions part. A reader who wishes to gain a formal understanding of the
definition, in order to build a tool, for example, should begin by reading the Approach part (at least the Metamod-
elling and Architecture chapters) before the Definitions part.

A metamodelling approach is used for the definition of UML. In essence, this means the definition of syntax
and semantics as object models. The metamodelling language is an object modelling language that is a subset of
UML itself (hence defined in this document). This risks circularity in definition, which can be broken in a
number of ways:

¢ The metamodelling language is small enough and uses commonly enough used concepts that one can be
confident in understanding what it means intuitively. Any questions can usually be answered by looking
closely at the definition of itself in itself.

¢ The metamodelling language is implemented in a tool, which validates the syntax and well-formedness of
definitions, and provides a means to validate the language semantically.

¢ The metamodelling language is defined in another formalism (e.g. mathematical set theory), which may
may be used to increase one’s confidence that it is correct and captures the desired concepts.

The definition of the UML 2.0 infrastructure provided by this document uses the first two devices to break circu-
larity. In particular, a tool implementation of the metamodelling language has been favoured over a mathematical
definition, as not only does it provide a similar level of confidence in the definition, it also provides a useful tool
for validating metamodels, including the definition of itself in itself!

The definition of UML infrastructure is architected in a way that directly supports the notion that UML is a
family of languages, not a single language. Thus Language Units are defined, each focussing on a particular
grouping of language features (e.g. model management and packaging, structural modelling, constraints, various
forms of behavioural modelling, etc.). Language units can be composed to form different Languages. Both lan-
guage units and languages are constructed from language definition templates, which, amongst other advantages,
help to enforce a consistent architecture across the definition. The definition architecture is described in Chapter
3 (“Language Architecture”).

Templates also help in the extension and construction of new language units, which can then, in turn, be com-
posed with existing language units (possibly) to form new languages. This process is explained in Chapter 4

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 25

INTRODUCTION

(“Language Extension and Profiles”), which also provides guidelines for determining the status of these new lan-
guage units and languages, with regard to UML 2. The default is that they are not part of the UML 2 family,
though, of course, languages and language units developed in this way may be standardised as official UML pro-
files using normal OMG procedures.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 26

Chapter 2
Metamodeling Language

This chapter provides an informal description of the language used to define the UML 2 metamodels. The lan-
guage used is itself a member of the UML family of languages, so is defined in itself as part of this document (see
Chapter 3), and is the language for metamodeling employed by OMG’s meta-object facility [Note: Or so it is pro-
posed by this submission].The metamodeling language has the following components:

Classes, attributes, query operations. With associations, provides the means for defining the (unconstrained)
structure of all aspects of a language.

Associations. With classes etc., provides the means for defining the (unconstrained) structure of all aspects of a
language.

Packages, including nesting. Allows related concepts to be grouped into different namespaces. Nesting of name-
spaces is permitted.

A constraint language (OCL). For expressing well-formedness constraints on the structures admitted by the
metamodel.

Package extension and package imports. Provides a means of building packages up incrementally, and a
means for composing packages by merging elements within those packages. Can be used to define languages by
composing separately defined language components. Package imports is just a (very) restricted form of package
extension.

Package templates. Can be used to capture metamodelling patterns in a precise and effective way. Models can
be constructed by instantiating one or more package templates, then merging and (optionally) extending the
result. The package template mechanism is defined as a layer on top of package extension, which supports the
merging or composition of multiple instantiantions from templates, and construction of templates through tem-
plate composition.

Package extension provides a means for separating out different concerns of a metamodel into separate packages,
that can then be merged or weaved together as necessary. Package imports does not include a concept of merging,
which makes it much harder to separate out often overlapping and cross-cutting concerns. Package templates pro-
vides a simple layer on top of package extension which allows common applications of extension from the pack-
age, involving a set of renamings, to be generated from a small number of template parameters.

All six components are described in the remainder of this chapter. Well-know concepts are treated in summary;
package extension and package templates are considered in more detail. A metamodel definition of all compo-
nents is provided in the Definitions part of this document.

2.1 CLASSES, ATTRIBUTES, QUERY OPERATIONS

Classes, attributes and query operations are permitted in the metamodelling language. Visibility annotations on
any of these are not permitted (or should be ignored). Query operations are operations which return a result and

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 27

METAMODELING LANGUAGE

may have arguments. Query operations may be accompanied by an OCL expression whose type is conformant
with the type of the result of the operation.

Classes may be specialised. Attributes and query operations may not be redefined, but additional OCL con-
straints can be used e.g. to strengthen result types.

2.2 ASSOCIATIONS

Binary associations only are included in the metamodelling language. Association classes and qualified associa-
tions are not included. Association specialisation is not permitted.

2.3 PACKAGES

All classes and associations must be defined in the context of a package. Packages may contain other packages,
so a package may contain a mixture of classes, associations and packages. There are no constraints on the types
of associations ends, attributes and parameters/result of queries, with respect to packages. For example, it is not
necessary for the type of an attribute to belong to the same package as the class in which that attribute is con-
tained. This does mean, however, that some cases can be difficult to represent graphically, for example if there is
an association contained in Package P, whose ends refer to classes in package Q.

Similarly a class C may specialise classes from packages which do not contain C.

2.4 CONSTRAINT LANGUAGE

The metamodelling language uses the object constraint language (see submission to the UML 2.0 OCL RFP) to
express invariant constraints on classes, and for expressions that determine the value returned by a query opera-
tion (in such cases the type of the expression must conform to the return type of the query operation). An example
of the latter is provided below:

context Cass::conformsTo(c : C ass): Bool ean
sel f. general El ement s()->i ncl udes(c) or self =c¢

This defines a query operation conformsTo on the class Class, whose result is calculated by evuating the OCL
expression appearing on the second line.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 28

METAMODELING LANGUAGE

2.5 PACKAGE EXTENSION & IMPORTS

We describe package extension and package imports together, as package imports is really just a restricted form
of package extension. The restrictions are so draconian, that, in practice, package extension tends to be used.

2.5.1 Package Extension
Package extension provides two facilities to the metamodeller:

e It can be used to extend a fragment of metamodel as a whole, rather then piecemeal (e.g. class by class).
This supports incremental definition of language fragments, where each increment may add new features
to a number of classes used to define the original fragment.

e It can be used to compose fragments of a metamodel. Here it differs from package imports in the case
where a child package is importing two or more packages. Specifically, it merges elements of the parents to
form the child, wherever there is overlap between the packages being imported.

The package extension mechanism is illustrated by Figure 2-1.

0..1
X Y
- distinguishedY
1| *

A containedY

containedY->incIudes(distinguishedY)%

P

* X 1 Z
Z/Y X 1z
Y/ X X Y — Z
distinguishedZ / X::distinguishedY y i
containedZ / X::containedY
y/Y:x _ %

X.zZ=Z

Q containedZ / Y::z

z

aint

Figure 2-1 Package Extension

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 29

METAMODELING LANGUAGE

Q is a package that extends R and P. Extension between packages is shown by a UML generalisation arrow. The
contents of R and P get included in O, with anything common between the two being merged. Common model
elements are elements of the same kind with the same name. Renaming clauses may be used to annotate a pack-
age extension either to prevent a merge or to force one. In this case, the classes X and Y in R are renamed to Y and
Z, respectively, to force them to be merged with the classes Y and Z in P. Q also contains a fragment a class Z,
with an attribute a, that is also merged with P::Z and R::Y (which is renamed to Z). The unfolding of both pack-

age extensions results in the expansion of Q which is given in Figure 2-2.

Q
x| 5 1 |z
X * 0.1 Z
X Y _
i y L distinguishedz | a:int
Ly :
X.z=2 FE containedZ
containedZ—>incIudes(distinguishedZ)%

Figure 2-2 Package Expansion

As with classes may specialise classes from other packages, so packages may extend packages contained in other

packages.

2.5.2 Package Imports

Package imports is a restricted form of package extension. The restrictions are:

* Nothing can be renamed on import.
» The elements being imported can not be merged in the child with elements obtained via import or

extension from another package, or elements introduced in the child itself.
These restrictions make package imports easier to define, e.g. in a metamodel, than package extension, but at the

severe cost of a considerably weaker notion than package extension.

'VERSION 0.81 — JUNE 2002

2U CONSORTIUM UML 2.0 SUBMISSION

METAMODELING LANGUAGE

2.6 PACKAGE TEMPLATES

Package templates allow a package definition to be parameterised over arguments, thereby supporting the encod-
ing of common patterns which can be bound to particular fragments of metamodel through parameter substitu-
tion. The package template mechanism is illustrated by Figure 2-3.

R B
| X, Y |
Lo
0.1
<xX> <Y>
- distinguished<Y>!
<x>|
contained<Y> | *
1
contained<Y>->includes(distinguished<Y>) %
P
* X 1 Z
X * 1 z
X Y Z
* y y *
X.Z=Z 5
AN .
N containedZ / Y::z
vz
ffffff Q
Z
a:int

Figure 2-3 Package Templates

This is similar to the package extension example of Figure 2-1, except that now package R has been turned into a
package template. The template takes two string arguments (X and Y in the dashed box), and names of elements
in the package are parameterised by these arguments. Not only are the names of classes parameterised, but also
the labels on the association ends, which are referred to in the accompanying constraint.

Instantiation of a template is shown using a generalisation arrow, which must be annotated by a substitution for
the arguments, shown by a dashed box called out from the arrow. Template instantiation works by evaluating the

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 31

METAMODELING LANGUAGE

expressions that provide the names for elements in the template with arguments substituted. The result is then
merged with the target of the instantiation. A template instatiation may be annotated further with one or more
renaming clauses, which override any names calculated from the argument substitutions. In this example there
are no such renamings.

Templates effectively allow a (sometimes large) set of renamings to be calculated from a small number of
arguments. In this example, the five renamings on the extension from R to Q in Figure 2-1 are replaced by a sub-
stitution for two arguments. Not only does this save work for the modeller, it also ensures more accurate use of

the template by forcing a particular set of renamings (which may be overridden in extremis) whenever the tem-
plate is applied.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 32

Chapter 3
Language Architecture

This chapter defines the overall architecture of the definition of UML 2. The definition is organised into a
number of packages related by nesting, imports and package extension. A distinction is made between language
units, and languages composed from these units. Both language units and languages are defined as packages in a
layered fashion. Both languages and language units have the same internal architecture, which separates concrete
syntax from abstract syntax from semantics. The relationship of MOF with UML is clarified. Backwards compat-
ibility with UML 1.4. is defined using “mapping” packages. The relationship of this approach with the 4-layer
model for language definition is explained.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 33

LANGUAGE ARCHITECTURE

3.1 THE ARCHITECTURE OF UML 2

Foundation
Templates
A
UML2
T
Templates
A
1]
LanguageUnits N
Core
A A
A
Languages
MOF
| Core

Figure 3-1 Overall Architecture

The overall architecture of the definition UML 2 is given by Figure 3-1.

Family of Languages

UML2 is defined to be a family of languages not a single language. This reflects the history of use of UML,
where modellers tend to use only a subset of the language (and sometimes a specialised subset) for particular pur-

poses.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

34

LANGUAGE ARCHITECTURE

Languages and Language Units

UML2::LanguageUnits::Core ‘
DataTypes Associations Classes
] =
Packages Expressions
Templates Behaviour Constraints Queries
Actions
—
Operations
]
Messages

UML2::Languages

1

MOF

Core

Figure 3-2 Languages and Language Units

To support the definition of different family members, the architecture supports the definition of language units
and languages. Language units allow related features of UML to be grouped into separate fragments; fragments
may be common to many languages in the family. Language units can be composed, using package extension, to

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 35

LANGUAGE ARCHITECTURE

form complete languages. Package imports is not sufficient in many cases to compose language units, as lan-
guage units may overlap in content. Package extension allows language units to be merged. The mechanism may
also be used to incrementally extend language units.

The distinction between language units and languages is somewhat fuzzy. Although many language units will
be mini-languages in their own right, it is expected that they only become practically useful when combined with
other units to form a language. Thus the languages are combinations of language units that the designer of the
language family has deemed fit for a particular purpose.

There is a core set of language units (a statement of what we mean by core is given below), from which a core
language and the MOF modelling language are derived. An overview of the language units and languages
defined for UML2 is provided by Figure 3-2. They are detailed and explained in the Definitions part of this docu-
ment.

Core
A subset of the language units have been wrapped in a package called Core. This section explains what is meant
by "core".

Given the definition of a language syntax (such as UML) there are often a number of design choices to be
made regarding the semantic model. It is usual to apply the following principles to the design of a semantic
domain: every syntax element denotes exactly one configuration of semantic elements; no configuration of
semantic elements can be the denotation of more than one syntactic element.

A consequence of the semantic domain design principles is that the semantic domain should not contain equiv-
alences; i.e. all semantic elements denote distinct concepts. However, for practical reasons it can be useful to
define equivalence relationships over a semantic domain: if the domain is used to define a data repository; in
order to support an inter-operable tool suite; or, just for conceptual clarity. To meet such practical considerations
it is useful to define new semantic elements that represent configurations of existing semantic elements; the new
elements do not represent an extension to the expressiveness of the domain, they are provided for convenience.

Given a language definition L it is possible to identify one or more core languages. A core language C of L
consists of models of syntax and semantics and a mapping between them such that the extensions added to C to
produce L do not extend the expressiveness of C.

The core of UML is defined to a set of language units which together will be expressive enough to support
predicted structural and behavioural modelling needs. Together they provide a semantic domain including
objects, snapshots and filmstrips, and a syntax domain containing just those features needed to denote elements
of the core semantic domain. The core represents the essential features of the UML infrastructure. The UML
superstructure does not represent an extension to infrastructure expressiveness and can therefore (in principle) be
translated to elements of the core. It is expected that any language in the UML family will, in principle, be trans-
lateable into this core. If it turns out that the core needs to be extended to support a proposed new family member,
then that will require a revision to the UML core — this should be a consideration whenever a new profile for
UML is proposed.

Templates

Package templates are used to capture cross-cutting architectural patterns, and which support the imposition of a
uniform and consistent architecture across definitions. The latter is essential for the composition of language
units to work correctly. They also ensure more complete definitions by enabling reuse: important structures and
constraints are captured once in a template and reused many times over in stamping out definitions of language
units. In this way, one is able to reap the rewards from effort invested in a template.

Two groupings of templates have been identifed. Templates which may be regarded as fundamental to lan-
guage definition per se, capturing concepts such as namespace and typing, and templates which are more specific
to UML, using, for example, UML-specific terminology. The UML-specific templates are constructed from the
fundamental templates. An overview of the templates used to construct the UML is provided by Figure 3-3,
which shows the templates used to build the abstract syntax, Figures 3-4 & 3-5, which shows the templates used
to build the semantics, and Figure 3-6 which shows the templates for defining package extension and templates.
They are detailed and explained in Definitions part of this document.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 36

LANGUAGE ARCHITECTURE

Generalizable | r

Container

NamedEIement |

Contaner
| Contained _

__W_A

—_———

TypedElement —Ty;ed—agne—m
Jyee

Package Package” |
[NamedElement _ |

| <Namespace>
_____ <NamedEIement>
Namespace maTn.gpg;e_ F———
~ | NamedElement Parameter
------- <Type>
N e T Parameterized ([5, am (—:Eriz_edlgarr;nt?|
_\“; - |iFeature> _! :T)ﬁel -
| <Classifier> _'_ ya
I - — L Ay
| <Parameter|zedEIement>
L _Pa_ra nEter i_<Feature>
<Type>
FeatureClassifier | Classifier |
Feature
Lyee
[<Classfer> !
| <StructuralFeature> |
|_Type>
StructuralFeatureClassifier | Classifier |
| StructuralFeature
Jype |
r <Classifier> |<_BeEV|aral_Fe£1re>|
<BehaviouralFeature> | |_ <Type> |
| <Type>| | T T T T T
e <_ kages ehaviouralFeatureClassifier Classifier
| BehaviouralFeature
e |

Figure 3-3 Templates (abstract syntax)

'VERSION 0.81 — JUNE 2002

37

2U CONSORTIUM UML 2.0 SUBMISSION

LANGUAGE ARCHITECTURE

Structural
Feature r——
Classifier Classifier

e

i StructuralFeatu rT

_—

Structural
Feature
Classifier
Value

g L
ClassifierValue

|Va|ue

| <Classifier>] M

| <StructuralFeature
<Type>J"~--~~-..

- T <Value>

—_—— — — —

Structural
Feature
Classifier
Semantics

ClassifierValue>
| <StructuralFeatureValue

| Classifier

| StructuralFeature

 Type

I ClassifierValue
| StructuralF eatureValue

|Va|ue

Container Container |
1 Element

IStructura\IFeatureVaIue| - —I J

J

L
\,
\
\
\
\
\

.
| <ClassifierValue> |
tructuralFeatureValue>

LSStructurs

S

Figure 3-4 Templates (structural semantics)

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

38

LANGUAGE ARCHITECTURE

" <ParameterizedElementValue> | Contai R
| <Value> | ontainer | Container |
T T TR | Contained
A T
JA
P torized| S — — Parameterized
arameterize i TN -
!ParameterlzedEIement | Value | ParameterizedElementValue |
I_ParameterType | " \alue
—_—— = —I — — []_ 1
o T T T e 1
e | <ParameterizedElementValue>
r <ParameterizedEIement>] —_— = _<Va|ue:|
F <ParameterType> | S
Parameterized | [2 — — — — — — — — \
— e — = = — 7 . <ParameterizedElement> | = =l = —
| <BehaviouralFeature> Semantics | <ParameterType> I<BehawouralFeatureVaIue>
o _<Tﬂ>ei| |<ParameterizedEIementVaIue> | '<Value>
<Value> | i
_——— — — — — ¢
| <BehaviouralFeature>—|____, | _———— i |
<Type> <BehaviouralFeatureValue >
| <BehaviouralFeatureValue> | ParameterValue
| <value> | - 1
- Behavioural
Behavioural Feature
FeatL.J.re r - _l Classifier r——*————n
Classifier ICIaSSIﬁer Value ClassifierValue
| BehaviouralFeature | BehaviouraIFeatureValuel
|Type | I Value
___‘___ L
—‘7 I<CIassiﬁerVaIue> |
—_— 1 |<BehaviouralFeatureVaIue> |
""""""""""""""" <Value>
| <Classifer-| | | | <Value |
| <BehaviouralFeature> - — — — — -
| <Type> l |- ——————— 1
________________ IClassifier |
- — - BehaviouralFeature
BehaviouralFeatureClassifierSemantics | Type |

| ClassifierValue |
| BehaviouralFeatureValue |
| Value |

—_— e —

Figure 3-5 Templates (behavioural semantics)

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

39

LANGUAGE ARCHITECTURE

Namespace |_Naﬁe?pa_ce_ 7 Extendable - — —
I_Element

(NamedElement | —_—

| Namespace |
M/l_Nam edElement |

r—— —— -
|EamesEme__J

ExtendableNamespace | | Namespace | | — — — — —

| NamedElement |

A N N
'_<Package> 1
... <NamedElement> |
| <Classifier> 1
| Packane 1 -] <StructuralFeature> |
ExtendablePackage | Package | _ _ _ _ _ _ a
INamedEIement_,
ExtendableStructural | Classifier |
FeatureClassifier | |strycturalFeature |
| Type |
\\\ Parameterized I—P;'a;et_eraxﬁle_me;t_i
|Ciassifier= | Jvee]
| <BehaviouralFeature> | r
I “<BehaviouralFeature> |
e
ExtendableBehaviouralFeatureClassifier | Classifier |
| BehaviouralFeature b———
e |

Figure 3-6 Templates (package extension & templates)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

40

LANGUAGE ARCHITECTURE

Syntax and Semantics

*‘ *‘
Concrete
Cs Syntax
X
AS
]
Semantics
Domain
— —1
Abstract | Semantics
Syntax

Figure 3-7 Syntax and Semantics

The internal architecture of languages and language units is given by Figure 3-7. A language definition comprises
any number of concrete syntaxes, an abstract syntax and a semantics domain. The abstract syntax is a model of
the valid expressions of the language, abstracted away from from any particular concrete rendition of those
expressions. There may be many concrete syntaxes for one abstract syntax. For example, XMI defines how a
UML model may be rendered as XML, a concrete syntax. A class diagram is concrete syntax for models con-
structed from classes and associations.

Semantics concerns the definition of what it means for an example or instance of behaviour to satisfy the spec-
ification of that behaviour, as characterised by an expression of the language under consideration. For example,
the semantics of a Java program can be given by stating the rules by which an execution trace satisfies an expres-
sion of Java. Because a Java program is deterministic, one might also give the semantics in a slightly different
way, that is given a valid starting state, what is the execution trace that is then generated. In the architecture
examples of behaviour are defined in the semantics domain. Semantics is then defined to be a mapping between
semantics domain and abstract syntax.

Note that semantics in this sense should be distinguished from static semantics, which are the rules which dic-
tate whether or not an expression of the language is well-formed. Static semantics rules are those employed by
tools such as type checkers, and correspond to OCL constraints over the concrete and abstract syntax parts of a
language (unit) metamodel.

3.2 MOF

One of the languages in the UML family is the language used in the Meta Object Facility (MOF) for metamodel-
ling. This is defined as a member of the UML family of languages to be the composition of the core language
units concerned with structural modelling, including the object constraint language. The construction has already

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 41

LANGUAGE ARCHITECTURE

been given by Figure 3-2. Figure 3-8 illustrates the relationship between this language and other parts of MOF,
though these are outside the scope of UML.

UML2::Languages
MOF
CSXAS Concrete
Syntax
Semantics
Domain
]
Abstract ’
—— Semantics
Syntax
A
B 7
! N
JavaAS C
] < MOF | | |
N T
ML Ry
MI |]
T~ \ Core
\\\\\“ :
XMI

Figure 3-8 UML and MOF

Here dashed arrows indicate a package dependency (something inside the source package is dependent on some-
thing inside the target package), not package imports, and presumes that JMI (XMI) are models characterising
transformations between JavaAS (XML) and UML2::Languages::MOF::AbstractSyntax, in a way that does not

intefere with either side of the mapping. If this is not possible, then the dashed arrows would need to be replaced
by package extension relationships.

3.3 PROGRAMMING IN PICTURES

Although not explicitly called out in the UML 2 RFP, there is a large community of UML users who tailor UML
so that it can be used to provide diagrammatic views of object-oriented programs in specific programming lan-
gauges. This can be accomodated by defining a programming language specific UML language, which brings
together and specialises the required UML language units. The definition for Java is illustrated in 3-9 on page 43.
This captures most current uses of UML profiles for programming languages, which only require UML views of
Java programs, not execution traces. For this reason a semantics domain has not been included in the Java profile.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

42

LANGUAGE ARCHITECTURE

However, the profile must include a definition of the mapping from abstract syntax in the profile to the abstract
syntax of Java. Of course the definition of Java is outside the scope of UML.

UML2

LanguageUnits

P
y

Java ‘

‘ Concrete
AS Syntax
X
Java
“ ASXJavaAS \

Abstract A — Abstract
Syntax T Csyntax

Figure 3-9 Java profile

3.4 BACKWARDS COMPATIBILITY

The differences between UML 1.4 and UML 2 can be defined by modelling the mapping between packages in
UML 1.4. and packages in the new version of UML, as illustrated by Figure 3-10 on page 44. Not only should
this approach formally define the differences between the two versions, it also provides a specification for tools
that will automate the transition.

[Note: The details of this mapping should be deferred until it is known what the UML 2 metamodel has been
agreed by the OMG. It is not technically difficult to write (it can be expressed as an object model with OCL con-
straints), just laborious. It might be more appropriate to construct it using MOF technology for transformations;
however, that might be in place too late.]

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 43

LANGUAGE ARCHITECTURE

UMLBackwards

UML1.4

7
/

/
/

/
.. X UML1.4

UML2 \

Figure 3-10 Backwards compatibility

3.5 METALAYERS

In this submission, a metamodel (which is just a model expressed in a particular language) is used to capture and
define the relationship between two metalayers: the relationship between models of a particular language, and
instances of the models of that language. The abstract syntax metamodel defines the collection models that can be
expressed in the language, and the semantics domain metamodel defines the collection of instances of models for
that language. The semantics metamodel defines the relationship between the two. This means that a repository
generated from the metamodels used in this submission, could store both models and instances of those models,
and, if all the well-formedness rules were implemented as checks on the repository, one could check which
instances were valid instances of the models.

Of course, a metamodel is itself a model of the language used to express metamodels, and one of those models
can be a definition of the metamodelling language itself. This fact allows metamodels to be cast as instances of
that model, which can be useful e.g. to check the well-formedness of metamodels, and can be used to support
reflection. However, this is enteriing the domain of MOF and is really beyond the scope of a UML submission.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 44

Chapter 4
Language Extension and Profiles

The package extension and package template mechanisms support the definition of a new language based on the
UML metamodel, as follows.

¢ Identify appropriate language units. It may be that the new language can be formed through the composi-
tion of the existing language units. In which case, defining the language is a matter of having the new lan-
guage extend each of the chosen language units.

¢ Specialise existing language units. The language may require some specialisation of language units before
they are composed. For example, it may have stronger well-formedness constraints, or specialist forms of
certain model elements. In this case, those units should be extended, and the extended versions composed
with any other units required to form the language.

¢ Create new language units. If there are elements of the language which can not be supplied by existing lan-
guage units, then it will be necessary to construct new language units. These could be created from scratch,
or existing templates used to generate the new unit. The application of templates will depend on the rich-
ness and flexibility of the template library. In extremis it may be necessary to define new templates.
The following two questions remain to be answered:

* s anew language unit or language constructed in this way a member of the UML family?
¢ (Can these techniques be used to support so-called "lightweight" extension, or is something else required?

The answer to the first question is closely related to what is meant by "compliance" to the UML standard. In this
submission, we propose that a statement of compliance should be clear about which languages and language units
the tool or method supports, where a language is a particular combination of language units. It should also be
clear as to what aspects of a language or language unit definition it supports: concrete syntax and/or abstract syn-
tax and/or semantics. Thus if a new language or language unit is constructed and has not been ratified by the
OMG, then one can not claim it to be a member of the UML family, and complying to that language or language
unit can not be a claim to compliance with UML. On the other hand, it may still be possible to claim compliance
to any language or language unit, that is part of the UML family and which is extended by the new language or
language unit.

In answer to the second question, the position taken by this submission is that for significant extensions of
UML, such as many of the profiles currently being standardised within the OMG, the extension should be made
directly to the metamodel as described above. Indeed, we note that these so-called profiles are accompanied by
new metamodels, often not even based on the UML metamodel, and that the lightweight extension mechanism in
UML 1.4. is really only used to tailor the concrete syntax of UML to provide a concrete syntax for these meta-
models: there is a mapping from the new metamodel to a specialised UML concrete syntax. If concrete syntax is
also defined as a metamodel (a vision of this submission, but not directly tackled by the submission), then the
metamodel extension process described above can be used to specialise the concrete syntax in a profile, in con-
junction with the abstract syntax, for which new metamodels are already being constructed. Note that the special-
ised concrete syntax could be, for example, the insertion of the label <<Y>> in the symbol corresponding to
model element X, where Y extends X in the metamodel for the profile. Indeed a metamodel template could be
written to make such a definition easy.

When a profile is standardised, not only will the new language be standardised, but also any additional tem-
plates and language units required to support that profile. Also, issues might be raised against existing units and
templates, and an impact analysis can be conducted on the existing supported languages to ascertain the best way

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 45

LANGUAGE EXTENSION AND PROFILES

to handle any issue. In this way, the set of modelling languages, language units and templates supported by the
OMG can be evolved and expanded in an incremental fashion, avoiding major revisions such as we have now.

The degree to which a tool supports the manipulation of the metamodel, is really a question about the degree to
which it supports MOF, not UML. Nevertheless, this submission does already provide a lightweight extension
mechanism. The package extension and template mechanisms defined in the submission can be used for applica-
tion modelling (standard UML modelling) as well as for metamodelling. They provide a way of capturing stand-
ard modelling patterns, and reusing those patterns. Thus it would be possible to establish a library of modelling
patterns or templates for (re)use in a particular domain or domains, which, in many cases, would obviate the need
to extend the language, using mechanisms such as stereotypes.

Finally, there is a use of stereotypes for which full-blown metamodelling is too heavyweight, and for which
the template mechanism is inappropriate. This is when stereotypes are treated as pure syntactic annotations,
which have no meaning for the UML modelling tool, but might have significant meaning for other tools that
process the output (XMI) from the UML modelling tool. Indeed, the support that most existing modelling tools
provide for UML stereotypes is of this form. If this is deemed important, then the facility can be provided simply
by allowing every modelling element that can be sterotyped to have an optional attribute of type string called
"stereotype".

If tagged values are also required, then the more sophisticated model can be provided by applying the template
in Figure 4-1 as appropriate.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 46

LANGUAGE EXTENSION AND PROFILES

Stereotype Context, |
| Element |
L ____2
<Element> <Context>
element/\1 stereoTypeable<Element> : Set(<Element>)
<element>Stereotype\|/ *
Stereotype application 1 | Stereotype field | TaggedField
Application | = stereotype | name:String * | name:String
field | 1
value | TaggedValue
* value:String

--stereotypes can only be applied to designated el enents
cont ext <Context> inv:
st er eoTypeabl e<El enent >-
>i ncl udesAl | (<el ement >St er eot ype. application. el ement ->asSet())

--there is only one value per field in a stereotype application
--and values are only of fields defined for the stereotype
context StereotypeApplication inv:

val ue. fiel d->asSet()->asBag() = value.field and

value.field = stereotype.field and

--field nanes are unique
context Stereotype inv:
field. nane->asSet()->asBag() = field. nane

Figure 4-1 Stereotype Template

This template defines a stereotype to be something with a name that can be associated with named tagged fields.
The application of a stereotype supplies values for the tagged fields. Tagged fields can only have strings as val-
ues, though this could be relaxed if necessary.

An application of this template would be to substitute Context by Package and Element by Class, and then
Context by Package and Element by Association. Merging the results would mean that a package could define
separate stereotypes to be applied to classes and associations respectively, where definitions would need to be
provided for queries stereotypeableClass and stereotypableAssociation. For example, stereotypeableClass could
be defined to return all those classes in the package or any packages nested in the package (a package defines
stereotypes that can be used on any classes within its scope).

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 47

DEFINITIONS

Chapter 5
Reading Guide

The definitions part comprises a series of chapters describing the language units, which is followed by definitions
of languages and definitions of templates. This is interspersed with chapters giving informal introductions to the
languages and language units being defined. Each language unit/language/template is described in a separate
chapter which has the following format:

Position in architecture
Abstract syntax
Deivation from templates
Expansion of metamodel itself
class diagram
well-formedness rules in OCL
query operations defined in OCL
Semantic domain
Deivation from templates
Expansion of metamodel itself
class diagram
well-formedness rules in OCL
query operations defined in OCL
Semantic mapping (between abstract syntax and semantic domain)
Deivation from templates
Expansion of metamodel itself
class diagram
well-formedness rules in OCL
query operations defined in OCL

In diagrams, we have generally omitted to declare the full path names of packages — to do so is cumbersome. The
"position in Architecture" section clarfies the location of packages representing language units and languages.
Templates are either from Foundation::Templates or from UML:: Templates.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 50

Chapter 6
DataTypes

The DataTypes package defines the primitive data types supported by UML (such Integers and Strings) and col-
lection types (Sets, Sequences and Bags).

6.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core |
/1 1 1
DataTypes Associations Classes
Packages Expressions
1 T
1 1 1 1
Templates Behaviour Constraints Queries
1
Actions
—
Operations
— 1
Messages
6.1.1 Example

Data types are typically used for declaring the types of attributes. For example, the following diagram shows a
class with three attributes of type Boolean, Seq (String) and Seq(Set(Real)):

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 51

DATATYPES

AClass

x : Integer
y : Seq(String)
z : Seq(Set(Real))

Values of types are described by the basic values and collection values defined in the semantic domain package.
For example, values of the type Integer are the set of all integer values (1,2,3,..), whilst values of the type Seq(T)
are the set of all ordered values of type T. An object of the class AClass (shown above) might have the following
values for its attributes:

x:AClass

x=1
y = Seq("2U","Works")
z = Seq(Set(1.1,1.2),Set(1.3,1.4))

6.2 ABSTRACT SYNTAX

6.2.1 Derivation

This package is derived from no other packages or templates.

6.2.2 Model

The model in Figure 6-1 on page 53 shows the datatypes that can occur in a UML model. The basic type is the
UML Classifier, which includes all subtypes of Classifier from the UML infrastructure.

BagType

A bag type is an unordered collection type which describes a multiset of elements where each element may occur
multiple times in the bag. Part of a bag type is the declaration of the type of its elements.

CollectionType

A collection type describes a list of elements of a particular given type. Collection types are Set, Sequence and
Bag types. Part of every collection type is the declaration of the type of its elements, i.e. a collection type is
parameterized with an element type. Note that there is no restriction on the element type of a collection type.
This means in particular that a collection type may be parameterized with other collection types allowing nested
collections.

Associations
elementType The type of the elements in a collection. All elements in a collection must conform to this type.

EnumerationL.iteral
An enumeration literal.

Associations

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 52

DATATYPES

elementType The type of the enumeration literal.

EnumerationType

An enumeration type describes a collection of enumeration literals, each of which may be of a different type.
Associations
enumerationLiteral The set of enumeration literals belonging to the enumeration type.

Primitive
A primitive is a basic data type, such as a boolean, string, integer or real. A primitive has a name, which is its
type, e.g. (“Integer”).

SeqType

A seq type is an ordered collection type which describes a list of elements where each element may occur multi-
ple times in the sequence. Part of a seq type is the declaration of the type of its elements.

SetType

A set type is an unordered collection type which describes a set of elements where each distinct element occurs
only once in the set. Part of a set type is the declaration of the type of its elements.

DataTypes::AbstractSyntax

Classifier 1 elementType
1 elementType
DataType
N
Primiti Enumeration
rmrve Collection Type
name : String Type
Enumeration

BagType SeqType SetType Literal
name : String

Figure 6-1 Abstract syntax for the DataTypes package

6.2.3 Type Conformance

The rules for checking the conformance of types are given below. Each type must define a method, con-
formsTo(t), which returns true if the type conforms to another type, ¢.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 53

DATATYPES

BagType
[1] A bag type conforms to a classifier if the classifier is a bag type and their element types conform.

cont ext BagType
conformsTo(c : Cassifier) : Bool ean
if c.isKindO(BagType) then
sel f. el ement Type. confornsTo(c. el enent Type)
el se
fal se
endi f

EnumerationType

[1] An enumeration type conforms to a classifier if the classifier is an enumeration type and each of its enumera-
tion literals conforms to a corresponding enumeration literal belonging to the classifier.

context EnunerationType
conformsTo(c : Classifier) : Bool ean
if c.isKindO (EnunerationType) then
c.enunerationLiteral ->forAll (e |
sel f.enunerationLiteral ->exists(e’ |
e’ . el ement Type. confornsTo(e. el enent Type)
el se
fal se
endi f

Primitive
[1] A primitive conforms to a classifier if the classifier is a primitive and has the same name. An integer may also
conform to a real.

context Prinmitive
conformsTo(c : Classifier) : Bool ean
if c.isKindOX(Primtive) then
sel f.name = c.nane or self.name = "Integer" and c.nane = "Real "
el se
fal se
endi f

SeqType
[1] A seq type conforms to a classifier if the classifier is a seq type and their element types conform.

cont ext SeqType
conformsTo(c : Classifier) : Bool ean
if c.isKindO(SeqType) then
sel f. el ement Type. confornsTo(c. el enent Type)
el se fal se
endi f

SetType

[1] A set type conforms to a classifier if the classifier is a set type and their element types conform.

cont ext Set Type
conformsTo(c : Classifier) : Bool ean

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 54

DATATYPES

if c.isKindO(SetType) then

sel f. el enent Type. confornmsTo(c. el enent Type)
el se fal se
endi f

6.3 SEMANTIC DOMAIN

The model in Figure 6-2 on page 56 describes the values that form the semantic domain of the UML types pack-
age. The basic type is the class Value, which includes all values of the elements described in the abstract syntax
package. There is a special sub-class of the class Value called UndefinedValue, which is used to represent the
undefined value for any type in the abstract syntax.

6.3.1 Derivation

This package is not derived from any other packages or templates.

6.3.2 Model

BagTypeValue

A bag type value is a collection value. It contains a set of elements, where more than one element may have the
same value. Bag type values are unordered.

CollectionTypeValue

A collection type value contains a collection of elements.
Associations
elements The elements in a collection.

Element

An element representing a component of a collection. An element has a value. An element identifies the position
of a element in a sequence by its indexNo. It also provides a count of the number of identical elements in a bag.

EnumerationTypeValue

An enumeration type value is a collection of enumeration literal values.
Associations

enumerationLiteralValue The set of enumeration literal values.

EnumerationLiteralValue
An enumeration literal value.
Associations

value The value of the enumeration literal value.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 55

DATATYPES

SeqTypeValue

A seq type value is a collection value. It contains a set of elements, where more than one element may have the
same value. Sequence type values are ordered.

DataTypes::SemanticDomain
Value value
A 1 value
Undefined DataType Element EnquT:eraItlon
Value Value indexNo : Integer ltera
Value
A .
* element
Prmiive Collection
alue TypeValue
A
Enumeration
BagType SeqType SetType Type
Value Value Value Value

Figure 6-2 Semantic domain for the DataTypes package

SetTypeValue

A set type value is a collection value. It contains a set of elements, where each distinct element occurs only once
in the set. Set type values are unordered.

6.3.3 Well-formedness rules

SeqTypeValue
[1] All elements belonging to a sequence have unique index numbers

context SeqTypeVal ue
self.element -> forAll(el, e2 | el <> e2 inplies
el.indexNo <> e2.indexNo)

SetTypeValue
[1] All elements belonging to a set have unique values

cont ext Set TypeVal ue
self.element -> forAll(el, e2 | el <> e2 inplies
el.val ue <> e2.val ue)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 56

DATATYPES

6.4 SEMANTIC MAPPING

Each type has a counterpart value. A value is a valid "value" of the type if its well-formedness rules are satisfied.
For example, a set type value is a valid value of a set type if its elements are valid values of the set type’s element

type.

6.4.1 Derivation

The semantic mapping package extends the abstract syntax and semantic domain packages of the types package
with associations between semantic domain and abstract syntax elements. These associations are derived from

the Semantics template as shown in 6-3.

Semantics Element
Value
1
<Element> <Value>
of
SetType
BagType

BagTypeValue

SeqType

SetTypeValue

SeqTypeValue

DataTypes

Primitive
PrimitiveValue

EnumerationType
EnumerationTypeValue

SemanticMapping

Figure 6-3 Derivation of semantic mapping package

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

57

DATATYPES

6.4.2 Model
DataTypes::SemanticMapping

! BagType
BagType Value

of

! SeqType
SeqType Value

of

! SetType
SetType Value

of

1 Primiti
Primitive rmiive

Value
of
1
Enumeration EnumerationType

Type of Value

Figure 6-4 Semantic mapping for the DataTypes package

6.4.3 Well-formedness rules

CollectionTypeValue
[1] The elements of a collection type value must be values of the element type of the collection type.

context Coll ectionTypeVal ue
self.element -> forAll (e | e.value.of = self.of.elenentType)

EnumerationLiteralValue
[1] The value of an enumeration literal value must be a value of the element type of the enumeration literal.

cont ext Enunerati onLiteral Val ue
sel f.of . el ement Type = sel f. val ue. of

EnumerationTypeValue
[1] There is an enumeration literal value for every enumeration literal belonging to the enumeration type.

cont ext Enunerati onTypeVal ue
sel f.of.enunerationLiteral = self.enunerationLiteral Val ue. of

6.5 EXAMPLE SNAPSHOTS

Figure 6-5 on page 59 shows a snapshot with a set type whose element type is an Integer, and a set type value
containing two primitive values that is a valid value of the set type. Note, as shown here, each element value must
be unique.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 58

DATATYPES

: Primitive

name = "Integer"

elementType >

of

S : SetType

of

SetTy_QeValue

of 1:Primitive 2:Primitive
\/ Value Value
value > value >
:Element : Element
index = 1 index = 2
element> element
S:

Figure 6-5 Snapshot of a set type

6.6 CHANGES FROM UML 1.4

The class Instance has been renamed to Value as the term "instance" was found to be generally confusing. Collec-
tion types have been added to provide support for OCL collections. The abstract association between the classes
Instance and Classifier has been replaced by a uni-directional "of" association from elements in the semantic

domain to elements in the abstract syntax.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

59

Chapter 7
Classes

This package defines the abstract syntax and semantics of the static features of classes (operations and queries are
dealt with in later chapters). Classes describe the possible states of the system in terms of objects. An object is a
value or instance of a class. The structure of each class is described in terms of a set of attributes. An attribute has
a type, which specifies the values that can be assigned to its class’s objects. Classes also support the notion of
generalization: the ability to reuse structural definitions from one class (the parent, or super-class) in another (the
child, or sub-class).

7.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core ‘
DataTypes Associations Classes
] =
Packages Expressions
Templates Behaviour Constraints Queries
Actions
— 1
Operations
!
Messages

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 60

CLASSES

7.1.1 Example

x : Real

B

y : Integer

Figure 7-1 Classes example

An example of a pair of classes is shown in figure 7-1 on page 61. In this model, class A has an attribute x which
is of type Real while class B has an attribute y which is of type Integer. Class B specializes class A.

7.2 ABSTRACT SYNTAX

7.2.1 Derivation

Figure 7-2 on page 62 shows the derivation of the Classes abstract syntax package using the structural feature-
classifier and multiplicity templates. A class is a namespace for its structural features (its members). The mem-
bers of a class’s namespace include its owned and inherited structural features. Classes are generalizable. A
generalisation relationship results in all members of the parent namespace being inherited by the child. Attributes
are structural features and have a name and a type. Attributes have an optional multiplicity. A multiplicity is a set
of integer values including the distinguished value "unLimited" and defines the range of values that can be
assigned to an attribute.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 61

CLASSES

StructuralFeatureClassifier

Classifier

<Type>

type

StructuralFeature)
Type

<Classifier>

1

* member<StructuralFeature

*

isAbstract:
Boolean

*

! owned<StructuralFeature>

<Structural
Feature>

*

owning<Classifier>

* inherited<StructuralFeature>

general

specialization|

specific

*

* * | generalization

<C

lassifier>

Generalization

name : Name

redefined<StructuralFeature> *

Multiplicity

<TypedFeature>

0.1 multiplicity

Multiplicity

isOrdered : Boolean

*

* range

Range

lower : Integer
upper : Integer
isUnlimited : Boolean

[Class
| Attribute
i Classifier

Classes ‘

AbstractSyntax

Property

N

Attribute

member
Property

Figure 7-2 Derivation of Classes abstract syntax package

7.2.2 Model

Figure 7-3 on page 63 shows the abstract syntax of the classes package. A class is a namespace for its attributes
(its members). The members of a class’s namespace include its owned and inherited attributes. Classes may spe-
cialize other classes, in which case, all members of the parent classes namespace are inherited by the child
classes. Attributes have a name and a type. Attributes can also be redefined in a generalization relationship.
Redefinition allows the name of an attribute to be changed by the redefining attribute but the types of the atrib-
utes must conform. Attributes also have an optional multiplicity. A multiplicity is a set of integer values including
the distinguished value "unLimited" that specifies whether an attribute is multi-valued and what the range of its

values can be.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

62

CLASSES

Classes::AbstractSyntax

type
Classifier

Property

member |

Property
memberAttribute

- * Itiplicit T
Class Attribute multiplicity Multiplicity

N

isAbstract:Boolean isOrdered : Boolean

ownedAttribute name : Name 0..1

owningClass
inheritedAttribute

range

general 11 specific redefinedAttribute

Range

Bpecialization| * * [generalization

lower : Integer
Class upper : Integer
Generalization isUnlimited : Boolean

Figure 7-3 Abstract syntax for Classes package

Attribute

Attributes define the type of the values that can be stored in the objects of a class. Attributes have a name, a type,
and an optional multiplicity. If an attribute has a multiplicity, the attribute’s type is defined to be a set (or a
sequence if the multiplicity is ordered). Attributes may redefine their parent classes’ attributes. A redefined
attribute may have a different name to the attribute it redefines, but their types must be conformant. An attribute
is a property, which means that they can be referenced through a property call expression (see Expressions chap-
ter).

Attributes

name The name of the attribute.

Associations

multiplicity Specifies the range of values of the attribute.
owningClass The class that owns the attribute.
redefinedAttribute The attribute that the attribute redefines.
type The type of the attribute.

Class

A class describes the structure of its values in terms of attributes. Classes permit the reuse of their parent classes’
features through specialization. A class inherits its parents member attributes into its namespace provided that
they have not been redefined.

Associations

generalization All generalization relationships that generalize the class. The generalization relationship navi-
gates to the class that is the more general (parent) class.

ownedAttribute The attributes owned by the class.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 63

CLASSES

memberAttribute The attributes that can be viewed as being in its namespace of the class, including its owned,
inherited and imported attributes.

memberProperty The properties that can be viewed as being in its namespace of the class - this must include
all member attributes as well as queries (see Chapter 14)

inheritedAttribute The attributes inherited from the class’s parents.
isAbstract True if the class is abstract

specialization All specialization relationships that specialize the class. The specialization relationship navi-
gates to the class that is the more specific (child) class.

ClassGeneralization
A generalization relationship between classes.
Associations
general The class that is the more general (parent) class in the relationship.
specialization The class that is the more specific (child) class in the relationship.

Multiplicity
Specifies the number of elements that may be assigned to a value of an attribute.
Attributes
isOrdered True if the elements are ordered.
Associations

range The set of number ranges belonging to the multiplicity.

7.2.3 Well-formedness Rules

Attribute

[1] An attribute’s type must conform to the type of its redefined attributes.

context Attribute inv:
sel f.redefinedAttribute->forAll (f |
sel f.type. confornmsTo(f.type))

[2] If an attribute has a multiplicity, its type must be of the appropriate collection type.

context Attribute inv:

if self.multiplicity <> null then

if self.multiplicity.isOdered then

sel f.type.isKindOf (Core:: Dat aTypes: : Set Type)
el se
sel f.type.isKindOf (Core:: DataTypes: : SeqType)

endi f

endi f

Class
[1] Circular inheritance is not permitted.

context Cass inv:
not self.all General El enent s()->i ncl udes(sel f)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 64

CLASSES

[2] The member attributes of a class include its owned and inherited attributes.

context C ass inv:
sel f. menber Attri but e->i ncl udesAl | (sel f.ownedAttribute ->
uni on(sel f.inheritedAttribute))

[3] Attributes cannot be owned and inherited.

context O ass inv:
sel f.ownedAttribute->intersection(self.inheritedAttribute) -> isEnpty

[4] A class cannot have two attributes with the same name.

context Cass inv:
sel f.menmber Attribute->forAll (el]
sel f. menber Attri bute->forAll (e2]
el <> e2 inplies el. name <> e2. nane))

[5] The inherited members of a class are the attributes of its parents classes that aren’t redefined.

context C ass inv:
self.inheritedAttribute = self.general El enents()->iterate(p s = Set{} |
s->uni on(p. menber Attri bute->reject(c |
sel f. menber Attribute -> exists(c' |
c' .redefinedAttributes->includes(c)))))

[6] A class’s attributes may only redefine its parent classes attributes.

context Cass inv:
sel f. menber Attribute -> forAll(a |
sel f.general El ements()-> collect(g | g.nmenberAttributes) ->
i ncl udesAl | (a.redefinedAttribute))

[7] The member properties of a class include all its member attributes.

context C ass inv:
sel f. menber Property->i ncl udesAl | (sel f. nenberAttri bute)

7.2.4 Operations

Class
[1] A class conforms to another class if it specializes the class or is the same class.

context Cass::confornmsTo(c : C ass): Bool ean
sel f. general El ement s()->i ncludes(c) or self =c¢

[2] Returns the parents of a class.

context C ass::general El ements(): Set (d ass)
sel f.generalization->terate(p s=Set{} | s->union(Set{p.general}))

[3] Transitively returns all parents of a class.

context Cass::all General El enents(): Set (d ass)
sel f.general El ements()->iterate(g s=sel f.general El enents() |
s->uni on(g. al | General El enents()))

[4] Looks up an attribute in a class when given a name.

context O ass::|ookupAttributeforNane(x : Name): Attribute

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 65

CLASSES

sel f. menber Attri bute->select(e|] e.name = x).sel ectEl enent ()

[5] Looks up an attribute’s name when given the attribute.

context O ass::| ookupNameForAttribute(x : Attribute): Name
sel f. menber Attri bute->select(ele = x).selectEl enent().nane

7.3 SEMANTIC DOMAIN

7.3.1 Derivation

Figure 7-4 on page 66 shows the derivation of the Classes semantic domain package from the structural feature
classifier value template. A classifier value is a value of a classifier and contains a set of static structural feature

values.
ToTTIT ST TS
StructuralFeatureClassifierValue | ClassifierValue i
! StructuralFeatureValue)
1 ivalwe]
<Value>
value
<Classifier | ©Wning<ClassifierValue> * <Structural
Value> Feature
1 owned<StructuralFeatureValue> Value>
'Object |
Slot
Value
Classes ‘
SemanticDomain ‘
Object Proper‘ty
owned | Evaluation
PropertyEval A

Figure 7-4 Derivation of Classes semantic domain package

7.3.2 Model

The semantic domain of the classes package is shown in 7-5 on page 67. It defines the fundamental concepts that
are necessary to express the static meaning of classes. An object is a value or instance of a class. The state of an

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

66

CLASSES

object is described by its slots. A slot is a value of an attribute. It contains a reference to a value, which is the
value that is assigned to the slot.

Classes::SemanticDomain

Value

value

Property
Evaluation

owned .
PropertyEval

1 "
Object o Slot
owning owned
Object Slot

Figure 7-5 Semantic domain for the Classes package

Object
Objects are containers of slots.
Associations

ownedSlot The slots owned by the object.
ownedPropertyEval The property evaluations (including slots) that are owned by the object.

Slot

Slots represent the data values of an object. A slot is a property evaluation, which means that it can be accessed
through a property call evaluation (see Expressions chapter).

Associations

value The value of the slot.

7.3.3 Well-formedness Rules

Object
[1] The owned property evaluations of an object includes all its slots..

context Object inv:
sel f. ownedPr opert yEval - >i ncl udesAl | (sel f. ownedSl ot)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 67

CLASSES

7.4 SEMANTIC MAPPING

7.4.1 Derivation

The structural feature semantics template is used to derive the semantic mapping for the classes package as
shown in figure 7-6 on page 68. This template ensures that each element in the semantic domain is mapped to
their appropriate abstract syntax element and that the necessary constraints on their relationships are also gener-

ated.

Figure 7-6 Derivation of the Classes semantic mapping package

7.4.2 Model

‘ =
StructuralFeatureClassifierSemantics | ! Classifier,
| StructuralFeature,
| Classifiervalue,
| StructuralFeatureValue
1 ' Classifi
. <Classifier
<Classifier>
Value>
of
<Structural 1 * | <Structural
<—— Feature
Feature>
of Value>
Class
Attribute
Object
Classes Slot
SemanticMapping ‘

The semantics mapping package of the classes package is shown in Figure 7-7 on page 68. It defines the relation-
ship that holds between classes and attributes and their values: objects and slots. An object is a value of a class.
The meaning of a class is defined by the set of objects that are its valid values. The state of an object is described
by its slots. A slot is a value of an attribute. For an object to be a valid value of a class then it must contain slots
for each of the attributes in the namespace of the class and vice versa. Furthermore, the value of a slot must be a

value of the type of its attribute.

Classes::SemanticMapping

Class

1

Attribute

of

Object

of

Slot

Figure 7-7 Semantic mapping for the Classes package

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

68

CLASSES

7.4.3 Well-formedness rules

Object
[1] An object should contain a slot for all attributes in the object’s class’s namespace.

context Cbject inv:
sel f.of . menmber Attribute->forAll (c |
sel f. ownedS| ot->exists(d | d.of = c))

[2] For each slot owned by an object there should be an attribute of the object’s class’s namespace that the slot is
a value of.

context Qbject inv:
sel f.ownedSl ot->forAll (c |
sel f.of . menber Attri bute->exists(d | c.of = d))

[3] For each property evaluation owned by an object there should be a property of the object’s class’s namespace
that the property evaluation is a value of.

context bject inv:
sel f. ownedPropertyEval uati on->forAll (pv |
sel f. of . menber Property->exists(p | pv.of = p))

[4] Objects cannot be instances (values) of abstract classes.

context Cbject inv:
not self.of.isAbstract

Slot

[1] The value of a slot should be a value of the type that conforms to the slot’s attribute.

context Slot inv:
sel f.val ue. of . confornsTo(sel f.of.type)

[2] The values of a slot should match the multiplicity of the slot’s attribute.

context Slot inv:
if self.of .multiplicity <> null then
self.of .multiplicity.range->exists(nr
sel f.val ue. el enent->coll ect(e | e.value)->size >= nmr.|ower and
(nr.isUnlimted or
(not nr.isUnlimted and
sel f.val ue. el enent->collect(e | e.value)->size <= nr.upper)))
el se
true
endi f

7.4.4 Operations

Object

[1] Returns true if the object is an instance of the class or one of its parents.

context Cbject::isKindO(x:d ass)
sel f. of . conf ornsTo(x)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 69

CLASSES

7.5 EXAMPLE SNAPSHOTS

The model in figure 7-8 on page 70 is instantiated and the resulting snapshot shown in 7-9 on page 70. Class B is

a specialization of class A and therefore attribute x is inherited into the namespace of class B.

A

x : Real
B

y : Integer

Figure 7-8 Example classes

parent
specialization

: Primitive

g :Class

Generalizatio

n

generalization

name = "Real"

A : Class member]| X : Attribute /\
Attribute
. |owningClass o type
name = "A name = "x
owned

Attribute pember /inherited

ttribure Attribute

: Primitive

child
B : Class [owningClass y : Attribute
member _t%
name = "B" Attributef nome = ny

name = "Integer"

Figure 7-9 Snapshot of Figure 7-8 on page 70

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

70

CLASSES

Figure 7-10 on page 71 shows what happens when the attribute y redefines the attribute x. In this case, x is no
longer required to be inherited by the class B. The redefinition is permitted becuase the type of attribute y (Inte-

ger) conforms to the type of attribute x (Real).

A :Class member| x : Attribute | ———_| :Primitive
Attribute
f type
name = "A" owningClass name = "x" vP name = "Real"
parent owned redefined
Attribute Attribute
specialization
g :Class
Generalization
generalization owned
Attribute
child /—\
A :Class [owningClass y : Attribute : Primitive
member &
name = "A" Attributef name = nyn name = "Integer"

Figure 7-10 Snapshot of y redefines x

Figure 7-11 on page 71 shows an object that is a valid instance of class B from figure 7-9 on page 70. It has a two
slots, one for attribute x which has the instance of a real type as its value, and one for the slot of the inherited
attribute y. It is important to note that the inheritence has been flattened out and the slots corresponding to inher-

ited attributes also become owned slots of the object.

10.00 : Primitive

Value
of of
A :Class member] x : Attribute /—\ : Primitive
Attribute
i type
name = "A" QwningClass name = "x" P name = "Real"
owned
parent Attribute pember /nherited
- . ttribuge Attribute
specialization
g :Class

Generalization

generalization
child

s1: Slot

owneélot

owned
ttribute

ownedélot

s2 : Slot

of

10 : Primitive
Value

\—/value

Figure 7-11 Snapshot with Object of Class B

7.6 CHANGES FROM UML 1.4

Redefinable features are not a part of UML 1.4.
AttributeLink has been replaced by Slot.

) of B :Class [owningClass y : Attribute : Primitive
o : Object _/ member _‘&
name = "B" Attribute f oo = ny name = "Integer"

of

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

71

Chapter 8
Associations

This package defines the abstract syntax and semantics of associations. Associations describe static relationships
between classes. The meaning of an association is defined in terms of links between objects. Associations have
association ends that specify the types of objects that they link and the number of links that can exist between
specific objects. Associations are also generalizable: thus permitting the reuse of the features of one association
(the parent, or super-class) in another (the child, or sub-class).

In this chapter, an alternative (and equivalent) semantics for associations is described via a translation from
navigable association ends to pairs of attributes or queries.

8.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core ‘
DataTypes Associations Classes
—] =
Packages Expressions
Templates Behaviour Constraints Queries
Actions
Operations
]

Messages

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 72

ASSOCIATIONS

8.1.1 Example

toA

toB

Figure 8-1 An example of an assocation between two classes

Figure 8-1 on page 73 shows an example of an association. It describes two classes A and B with a bidrectional
navigable association between them. This association has a one to many multiplicity .

8.2 ABSTRACT SYNTAX

8.2.1 Derivation

Figure 8-2 on page 73 shows how the associations abstract syntax package is derived from the StructuralFeature-
Classifier and Multiplicity templates. An association is a classifier. It is a namespace for its structural features and
is generalisable. An association end is a structural feature and supports redefinition. An association end may have

an (optional) multiplicity.

StructuralFeatureClassifier

Classifier

Type

Multiplicity

StructuralFeature

TypedFeature

Feature>

name : Name

generalizatin| * * | specializatin

<Classifier>
Generalisation

type
<Type>
1
* member<StructuralFeature> cgirctural
<Classifier>
1
isAbstract: J owned<StructuralFeature>
Boolean
owning<Classifier>
* inherited<StructuralFeature>|
specific 11 general

S

redefined<StructuralFeature>

<TypedFeature>

0.1 multiplicity

Multiplicity

isOrdered : Boolean

* J/ range

Range

lower : Integer
upper : Integer
isUnlimited : Boolean

Association

AssociationEnd
Class

Assocws ‘

AbstractSyntax ‘

AssociationEnd

Figure 8-2 Derivation of Associations abstract syntax package

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

73

ASSOCIATIONS

8.2.2 Model

Figure 8-3 on page 74 shows the abstract syntax of the associations package. An association is a namespace for
its association ends. An association may have two or more association ends. An association end has a name, a
type, which is the class it is connected to, and a multiplicity, which specifies how many objects an object of the
class at the other end of the association end can be linked to.

Navigable ends are specializations of association ends. An equivalence mapping is defined from navigable
association ends to properties. A property is the abstract superclass of an attribute and a query. This enables a
navigable association end to be viewed as either an attribute or query of a class at the opposite end of the associ-
ation - a common interpretation used by many modellers.

Member association ends are those association ends that belong to the association’s namespace and include its
owned association ends and its inherited association ends. An association has a set of generalizations that relate it
to its parent associations, and set of specializations that relate it to its child associations.

Associations::AbstractSyntax
type
Class 1
* memberAssociationEnd
Association AssociationEnd
2. Lo
islici Multiplicit
isAbstract : ; ownedAssociationEnd|name : Name multiplicit p Yy
Boolean) o isOrdered : Bool
owningAssociation 2. 0..1 |!sOrdered : Boolean
* inheritedAssociationEnd
specific 11 general 2" ZF redefinedAssociationEnd
| range *
generalisation * * | specialisation .
NavigableEnd Range
Association | |
Generalisation ower : Integer
upper : Integer
property . isUnlimited : Boolean
Property

Figure 8-3 Abstract syntax for Associations package

Association

An association connects two or more classes and specifies a relationship between objects of these classes. Asso-
ciations permit the reuse of their parent associations features through specialization. An association inherits its
parents member association ends into its namespace provided that they are not redefined.

Associations

generalization All generalization relationships that generalize the association. The generalization relationship
navigates to the association that is the more general (parent) association.

ownedAssociationEnd The association ends owned by the association.

memberAssociationEnd The association ends that can be viewed as being in its namespace of the association,
including its owned, inherited and imported association ends.

inheritedAssociationEnd The association ends inherited from the association’s parents.

isAbstract True if the association is abstract.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 74

ASSOCIATIONS

specialization All specialization relationships that specialize the association. The specialization relationship
navigates to the association that is the more specific (child) association.

AssociationGeneralization
A generalization relationship between associations. When an association specializes another association, its par-
ents association ends are inherited into the child’s namespace.

Associations

general The association that is the more general (parent) association in the relationship.

specialization The association that is the more specific (child) association in the relationship.

AssociationEnd

An association end connects an association to a class. Its multiplicity defines the number of objects at the other
ends of the association that an object of the class can be linked to. An association end can be redefined, in which
case the redefining association end may have a different name to the redefined association end. However, their
types must be conformant.

Attributes
name The name of the association end.
Associations

multiplicity The number of objects of the classes at the other ends of the association that an object of its class
can be linked to.

redefinedAssociationEnd The association ends that the association end redefines.

type The type of the association end, i.e. the class which the association end connects to.

Multiplicity
Specifies the number of objects that an object of a class at the other at the other end of the association can be
linked to.

Attributes
isOrdered True if the objects are to be ordered.

Associations

range The set of number ranges belonging to the multiplicity.

NavigableEnd

An association end that is navigable from any of the classes at the others ends of the association. A navigable end
is associated with properties (attributes or a queries) that belong to the classes at the other ends of the association.
Each property has the same name, multiplicity and element type as the navigable end. Classes at the other ends of
the association can thus navigate to objects of the navigable end’s type through these properties.

Associations

property The attributes or queries that enable classes at the other end of the association to navigate to objects
of the navigable end’s type.

Property

An abstract superclass for attributes and queries.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 75

ASSOCIATIONS

8.2.3 Well-formedness Rules

Association

[1] Circular inheritance is not permitted.

context Association inv:
not self.all General El ement s() ->i ncl udes(sel f)

[2] The members of an association include its owned and inherited association ends.

context Association inv:
sel f. menber Associ ati onEnd- >i ncl udesAl | (sel f. ownedAssoci ati onEnd ->
uni on(sel f.inheritedAssoci ati onEnd))

[3] Association ends cannot be owned and inherited.

context Association inv:
sel f. ownedAssoci ati onEnd- >i nt ersecti on(sel f.inheritedAssoci ati onEnd) ->

i SEnpty

[4] The inherited members of an association are the association ends of its parents association ends that are not

redefined.

context Association inv:
sel f.inheritedAssociati onEnd = self.general El enents()->iterate(p s = Set{} |
s->uni on(p. nenber Associ ati onEnd->rej ect (¢ |
sel f. menber Associ ati onEnd -> exists(c' |
c' . redefi nedAssoci ati onEnd->i ncl udes(c)))))

[5] An association’s association ends may only redefine its parent classes association ends.

context Association inv:
sel f. menber Associ ati onEnd -> forAll(a |
sel f.general El ements()-> collect(g | g.nmenberAssoci ati onEnd) ->
i ncl udesAl | (a. redefi nedAssoci ati onEnd))

AssociationEnd
[1] An association end’s type must conform to the type of its redefined association ends.

cont ext Associ ationEnd inv:
sel f.redefi nedAssoci ati onEnd->forAl | (f |
sel f.type. confornsTo(f.type))

[2] An association end’s multiplicity must conform to the multiplicity of its redefined parent association ends.

cont ext Associ ationEnd inv:
sel f.redefi nedAssoci ati onEnd->forAl | (f |
sel f.confornmsTo(f))

Class

[1] A class’s association ends must include a reference to the class.

context C ass inv:
sel f.associationEnd -> exists(l | |.type = self)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

76

ASSOCIATIONS

NavigableEnd

[1] A navigable end is associated with properties (attributes or queries) belonging to all classes at the other ends
of the association through which values of the navigable end’s type can be navigated to.

cont ext Navi gabl eEnd i nv:
sel f. property. owni ngCl ass =
sel f. otherEnd().type

[2] The properties of a navigable end have the same element type, multiplicity and name as the navigable end.

cont ext Navi gabl eEnd i nv:
sel f.property->forAl (p |
p.type. el enent Type = sel f.type and
p.multiplicity = self.multiplicity and
p. nare = sel f. name)

8.2.4 Operations

AssociationEnd

[1] Returns the opposite ends of the association end.

cont ext Associ ati onEnd: : ot herEnd() : Set (Associ ati onEnd)
sel f. owni ngAssoci ati on. nenber Associ ati onEnd->reject(y | y = self)

Association
[1] Returns the parents of an association.

cont ext Association::general El enents(): Set (Associ ation)
self.generalization->iterate(p s=Set{} | s->union(Set{p.general}))

[2] Transitively returns all parents of an association.

context Association::all General El enents(): Set (Associ ati on)
sel f.general El ements()->iterate(g s=sel f.general El enents() |
s->uni on(g. al | General El enents()))

[3] Looks up an association end in a association when given a name.

cont ext Associ ation:: | ookupAssoci ati onEndf or Name(x : Nane): Associ ati onEnd
sel f. menber Associ ati onEnd- >sel ect (e|] e.name = x). sel ect El enent ()

[4] Looks up an association end’s name when given the association.

cont ext Associ ation:: | ookupNameFor Associ ati onEnd(x : Associ ati onEnd) : Nare
sel f. menber Associ ati onEnd- >sel ect (el e = x).selectEl ement().nane

Class
[1] Returns the associations attached to the class.

context C ass::associations(): Set(Association)
sel f.associ ati onEnd->col |l ect (x | X.owni ngAssoci ati on)

[2] Returns the opposite association ends attached to the class.

context C ass::oppositeAssoci ati onEnds(): Set (Associ ati onEnd)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 77

ASSOCIATIONS

sel f.associations()->terate(x s = Set{} |
s->uni on(X. nenber Associ ati onEnd->reject(y | y.type = self))

Multiplicity
[1] Returns true if a multiplicity conforms to another multiplicity.

context Multiplicity::confornmsTo(x : Multiplicity): Bool ean
TBD.

8.3 SEMANTIC DOMAIN

8.3.1 Derivation

Figure 8-4 on page 78 shows the derivation of the Associations semantic domain package from the structural fea-
ture classifier value template. A classifier value is a value of a classifier and contains a set of static structural fea-

ture values.

StructuralFeatureClassifierValue | |CIassifierVaIue 1
|StructuraIFeatureVaIue |—
1 WValue
<Value>
value
<Classifier | owning<ClassifierValue> * <Structural
Value> Feature
1 owned<StructuralFeatureValug> Value>
A
Link
LinkEnd
Object

Associations |

SemanticDomain |

Figure 8-4 Derivation of Classes semantic domain package

8.3.2 Model

The semantic domain of the associations package is shown in 8-5 on page 79. A link is a value of an association.
A link relates objects of the classes connected by the association. A link contains link ends. A link end is a value
of an association end. A navigable link end is a link end whose value can be navigated to from a property evalua-
tion (a slot or query evaluation) belonging to the objects at the other end of the link.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 78

ASSOCIATIONS

Associations::SemanticDomain

Object
| value
owningLink
Link o
0..1
ownedLinkEnd | « *
LinkEnd
Property Navigable
Evaluation LinkEnd

propertyEvaluation

Figure 8-5 Semantic domain for the Associations package

Link
Links contain link ends.
Associations

ownedLinkEnd The link ends owned by the object.

LinkEnd

Link ends represent the values of an link.

Associations
value The value of the link end.

NavigableLinkEnd

Navigable link ends represent the values of a link that can be navigated to from a property evaluation (slot or
query) belonging to an object at the opposite end of the link.

Associations

value The value of the navigable link end.

Object

An object.
Associations

linkEnd The linkends that the object is attached to.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

79

ASSOCIATIONS

8.3.3 Well-formedness Rules

NavigableLinkEnd

[1] A navigable link end is associated with property evaluations (slots or query evaluations) belonging to all
objects at the other ends of the link through which the navigable link end’s value can be navigated to.

cont ext Navi gabl eLi nkEnd i nv:
sel f. propertyEval uati on. owni nglbj ect =
sel f. ot her End() . val ue

[2] The property evaluations of a navigable link end include the navigable link end’s value.

cont ext Navi gabl eLi nkEnd i nv:
sel f. propertyEval uation->forAl (p |
p. val ue. el ement . val ue- >i ncl udes(sel f. val ue))

Object
[1] An object’s link ends must include a reference to the object.

context hject inv:
self.linkEnd -> exists(l | |.value = self)

8.3.4 Operations

LinkEnd
[1] Returns the opposite ends of the link end.

cont ext LinkEnd::otherEnd() : Set(LinkEnd)
sel f. owni ngLi nk. ownedLi nkEnd->reject(y | y = self)

Object
[1] Returns the links that are attached to the object.
context Object::links() : Set(Link)

sel f.LinkEnd -> collect(x | x.owningLink)
[2] Returns the opposite link ends to the object.

context bj ect::oppositelLi nkEnds() : Set (LinkEnd)
self.links()->iterate(x s = Set{} |s -> union(x.ownedLi nkEnd- >
reject(y | y.value = self)))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 80

ASSOCIATIONS

8.4 SEMANTIC MAPPING

8.4.1 Derivation

The template used to stamp out the semantic mapping for the associations package is shown in figure 8-6 on
page 81. This ensures that each element in the semantic domain is mapped to their appropriate abstract syntax
element and that the necessary constraints on their relationships are stamped out.

| Classifier
| StructuralFeature

|
StructuralFeatureSemantics !
| ClassifierValue i
|

1

| StructuralFeatureValue

A __
- <Classifier
<Classifier> Value>
of
1 <Structural
<Structural Feature
Feature>
of Value>

Association }
! AssociationEnd |
|
|
|
|

-
|
|

- | Link

Associations LinkEnd

|
- -

SemanticMapping

Figure 8-6 Derivation of the Associations semantic mapping package

8.4.2 Model

The semantics mapping package of the associations package is shown in Figure 8-7 on page 81. A link is a value
of an association. A link end is a value of an association end. A link must contain link ends for each of the
attributes owned by its association and vice versa. The value of a link end must be a value of the type of its asso-
ciation end.

Associations::SemanticMapping

1 *
Association Link
of
Association|
ssociation LinkEnd
End of

Figure 8-7 Semantic mapping for the Associations package

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 81

ASSOCIATIONS

8.4.3 Well-formedness rules

Link
[1] A link should contain a link end for all association ends in the link’s association’s namespace.

context Link inv:
sel f. of . menber Associ ati onEnd->forAl | (c |
sel f. ownedLi nkEnd- >exi sts(d | d.of = c))

[2] For each link end owned by a link there should be an association end of the link’s association’s namespace
that the link end is a value of.

context Link inv:
sel f. ownedLi nkEnd->forAl |l (c |
sel f. of . menber Associ ati onEnd->exi sts(d | c.of = d))

[3] Links cannot be values of abstract associations.

context Link inv:
not self.of.isAbstract

LinkEnd

[1] The value of a link end should be a value of the type that conforms to the link end’s association end’s type.

context LinkEnd inv:
sel f.val ue. of . confornsTo(sel f.of.type)

NavigableLinkEnd

[1] The property evaluations of a navigable link end must commute with its navigable end’s properties.

cont ext Navi gabl eLi nkEnd i nv:
sel f.of . property = self.propertyEval uati on. of - >asSet

Object

[1] The number of objects at the opposite link ends of the object must conform to the opposite association ends
multiplicity.

context bject inv:
sel f. of . opposi t eAssoci ati onEnds()->forAl |l (ae |
ae.multiplicity.range->exists(nr |
sel f. sel ect edLi nkEnds(ae) - >si ze >= nr.|lower and
(m.isUnlinmted or
(not nr.isUnlimted and
sel f. sel ect edLi nkEnds(ae) - >si ze <= nr. upper))))

8.4.4 Operations
[1] Returns the set of link ends given an association end.

context bject::sel ectedLi nkEnds(ae : Associ ati onEnd) : Set (Li nkEnd)
sel f. opposi telLi nkEnds()->sel ect(x | x.of = ae)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 82

ASSOCIATIONS

8.5 EXAMPLE SNAPSHOTS

Figure 8-9 on page 83 is a snapshot of the association of figure 8-8 on page 83. The navigable association ends of
the association are associated with two attributes that the opposite ends of the association can be navigated

through.

toA

toB

Figure 8-8 Association example

A : Class

/m

Attribute

X : Attribute

r1:Range

owningClass

name = "A"

name = "toB"

owned

ael:

NavigableEnd

name = "toA"

memberAssociationEnd owneadAssodiationEn
owning pciation

lower = 1
upper = 1
unLimited = true

> range

m1 : Multiplicity

isOrdered = false

a : Association

st1 : SetType

multipligity

wning

o]
memberAssociationEnd> <owneAssoc a

st2 : SetType

multiplisjty

ae2:

NavigableEnd

name = "toB"

owned
type elgme

B : Class

m2 : Multiplicity

isOrdered = false

> range

owningClass
member

name = "B"

ntType ttribute

y : Attribute

r2 : Range

Attribute

Figure 8-9 Snapshot of Figure 8-8 on page 83

name = "toA"

lower = 1
upper = 1
unLimited = false

Figure 8-10 on page 84 shows an example of a link and pair of navigable link ends that satisfy the properties of
the above association. Note that each link end is associated with a slot through which an object can navigate to
the objects at the opposite end of the link. Because the both association ends multiplicities are unordered, the
appropriate slot values will be sets as opposed to sequences.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

83

ASSOCIATIONS

x_: Attribute of type value
property] (sl1: Slot
name = "toB"
st:SetType stv1:SetType
Attr bute Attn ute w
owningglass
A - Class of value
name = "A"
elelnentType

navigableEn

type<

NawgabIeEnd

of

el :Element

igablgLink End

name = "toA"

Assogi t|onEnd> <ownedAssomat|onEnd
owningAssociatiion

<,/

11 : Navigable
LinkEnd

oynedLinkEnd

=

owningLinlk
a : Association I: Link
of
owningAssociatiion
ember > <
AssbciationEnd ownedAssociationEnd oNnedLinkEnd
ae2: element]]
NavigableEnd 2 : Navigable
LinkEnd
name = "toB" of
nayigablsLink End
navigableEn e2 :Element
typ
elefhentType value
B : Class
02 : Object
name = "B" of value
owninyClass
d member
owhe
Attripute .
Attribute st2:SetTvpe stv2:SetType
sleoellye Value
y : Attribute J (
property
name = "toA" of type value

Figure 8-10 Snapshot of Association Values

8.6 CHANGES FROM UML 1.4

Navigable link ends have been added and an explicit recognition that association ends can be interpreted as
attributes or queries has been made.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 84

Chapter 9
Packages

This package defines the abstract syntax and semantics of packages. Packages are namespaces for the elements
they contain. Packages can also import elements into their namespace. This definition will be extended in Chap-
ter 10, “Package Extension,” on page 93 with package extension mechanisms that will enable packages to be
composed and reused in more sophisticated ways.

9.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core ‘
DataTypes Associations Classes
= =
Packages Expressions
Templates Behaviour Constraints Queries
Actions
— 1
Operations
]
Messages

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 85

PACKAGES

9.1.1 Example

<<import>>

Figure 9-1 An example of using Packages

An example of the use of packages is shown in figure 9-1 on page 86. A package R contains two classes C and D.
The package P containing a package Q is imported by R.

9.2 ABSTRACT SYNTAX

9.2.1 Derivation

Figure 9-2 on page 86 gives an overview of the templates used to stamp out using the Packages package. A Pack-
age is a namespace for named elements. A package may also import named elements from other packages. The
named elements defined in the core are: classes, packages, associations and datatypes.

AbstractSyntax

Figure 9-2 Derivation of Packages

Package Package Import Namespace
NamedElement NamedElement
* member<NamedElement>|
<NamedElement> member Named
* <Name
<Package> owned<NamedElementy ame : Name <Namespace> | <NamedEIemen*t> Element>
owning<Package> * imported
imported * | importing <NamedElement>
) parent
Package child
Package
<Namespace>
Package Import
Class
Package
A o e N e _| Package
Association Package I Class
Primitive
Package
Package Lo e -
Primitive Package
i Package
PaCkageé\ /l/ Association

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

86

PACKAGES

9.2.2 Model

Figures 9-3 on page 87 show the abstract syntax of the Packages package. A package is a namespace for its
classes, associations, packages and primitive datatypes. A package has owned elements, member elements and
imported elements. Owned elements and imported elements are members of the namespace of a package.

A package imports all elements in the namespace of its imported packages into its own namespace. A package
also imports all elements belonging to its containing package.

Packages::AbstractSyntax |

Package
Import
o child 1 1| parent memberAssociation * L
Primitive Association
importedAssociation _x
name : Name ownedAssociation + |name : Name

impgrting

* * * imported| .

ownedPrimitive memberP rimitive * s x| x| owningPackage
importedPrimitive . Package
name : Name
owningPackage 1 1 owningPackage
1 * mportedClags
ownedClass memberClass
wnedPackage memberPackdge

Class
importedPackage

name : Name

Figure 9-3 Abstract Syntax for Packages package

Package

A package is used to group related elements, and provides a namespace for those elements. Packages are also
namespaces for their sub-packages.

Attributes

name The name of the package.

Associations

ownedAssociation The associations that are owned by the package.
importedAssociation The associations imported by the package.
memberAssociation The associations that are in the namespace of the package.
ownedClass The classes that are owned by the package.

importedClass The classes imported by the package.

memberClass The classes that are in the namespace of the package.
ownedPrimitive The primitive datatypes that are owned by the package.
memberPrimitive The primitive datatypes that are in the namespace of the package.
importedPrimitive The primitives imported by the package.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 87

PACKAGES

ownedPackage The packages that are owned by the package.
importedPackage The sub-packages imported by the package.

memberPackage The packages that are in the namespace of the package.

9.2.3 Well-formedness Rules

Package

[1] No two associations in a package’s namespace may have the same name.

cont ext Package inv
sel f. menber Associ ation -> forAll (el |
sel f. menber Associ ation -> forAll (e2 |
el <> e2 inplies el.nane <> e2.nane))

[2] No two classes in a package’s namespace may have the same name.

cont ext Package inv
sel f.menberd ass -> forAll (el |
sel f.menmberClass -> forAll (e2 |
el <> e2 inplies el.nane <> e2.nane))

[3] No two primitive datatypes in a package’s namespace may have the same name.

cont ext Package inv
self.memberPrimtive -> forAll (el |
self.memberPrimtive -> forAll(e2 |
el <> e2 inplies el.nane <> e2.nane))

[4] No two packages in a package’s namespace may have the same name.

cont ext Package inv
sel f. menber Package -> forAll (el |
sel f. menber Package -> forAll (e2 |
el <> e2 inplies el. name <> e2. nane))

[5] Imported and owned associations, classes, primitives and packages belong to the namespace of the package.

cont ext Package inv

sel f. menmber Associ ation -> includesAll (self.inportedAssociation ->
uni on(sel f. ownedAssoci ation)) and

sel f. menmberd ass -> includesAll (self.inportedd ass->uni on(sel f.ownedC ass))
and

sel f.menmberPrimtive -> includesAll (self.inportedPrimtive->
uni on(sel f.ownedPrinmtive)) and

sel f. menmber Package -> includesAll (self.inportedPackage->
uni on(sel f. ownedPackage))

[6] Imported associations, classes, primitives and packages cannot be owned and vice versa.

cont ext Package inv
sel f.inportedAssociation -> intersection(self.ownedAssociation) -> i sEnpty and
self.inportedC ass -> intersection(self.ownedd ass) -> i sEnpty and
self.inportedPrimtive -> intersection(self.ownedPrinmitive) -> isEnpty and
sel f.inportedPackage -> intersection(sel f.ownedPackage) -> i sEnpty

[7] Parent packages associations are imported.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 88

PACKAGES

cont ext Package inv:
sel f.inportedNamespaces()->forAll (x |
sel f.i nportedAssoci ati on->i ncl udesAl | (x. menber Associ ati on))

[8] Parent packages classes are imported.

cont ext Package inv:
sel f.inportedNamespaces()->forAll (x |
sel f.inportedd ass->i ncl udesAl | (x. menber d ass))

[9] Parent packages primitives are imported.

cont ext Package inv:
sel f.inportedNamespaces()->forAll(x |
self.inportedPrimtive->includesAll (x.nenberPrinitive))

[10] Parent packages packages are imported.

cont ext Package inv:
sel f.inportedNamespaces()->forAll(x |
sel f. i nport edPackage- >i ncl udesAl | (x. menber Package))

[11] A package imports its owning package’s associations.

cont ext Package inv
sel f. owni ngPackage <> self inplies
sel f. menber d ass->i ncl udesAl | (sel f. owni ngPackage. menber Associ ati on)

[12] A package imports its owning package’s classes.

cont ext Package inv
sel f. owni ngPackage <> self inplies

sel f. menber d ass->i ncl udesAl | (sel f. owni ngPackage. nenber d ass)
[13] A package imports its owning package’s packages.

cont ext Package inv
sel f. owni ngPackage <> self inplies
sel f. menber Package- >i ncl udesAl | (sel f. owni ngPackage. nenber Package)

[14] A package imports its owning package’s primitives.

cont ext Package inv
sel f. owni ngPackage <> self inplies
sel f. menber d ass->i ncl udesAl | (sel f. owni hgPackage. nenberPrimtive)

9.2.4 Operations

Package
[1] Looks up an association in a package when given a name.

cont ext Package: : | ookupAssoci ati onforNanme(x : Nane): Associ ati on
sel f. menber Associ ati on->sel ect(e| e.nane = x).sel ectEl enent ()

[2] Looks up an association’s name when given the association.

cont ext Package: : | ookupNanmeFor Associ ati on(x : Associ ation): Nanme
sel f. menber Associ ati on->sel ect(e|e = x).selectEl enent().nane

[3] Looks up a class in a package when given a name.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

PACKAGES

cont ext Package: : | ookupC assforNane(x : Name): d ass
sel f. menber Cl ass->sel ect(e| e.name = x).sel ectEl enent ()

[4] Looks up a class’s name when given the class.

cont ext Package: : | ookupNanmeFor Cl ass(x : C ass): Nane
sel f. menber Cl ass->select(e|e = x).sel ectEl ement (). nane

[5] Looks up a primitive in a package when given a name.

cont ext Package: : | ookupPrimitiveforNanme(x : Nane):Primtive
sel f.menberPrimtive->select(e|] e.name = x).sel ectEl enent ()

[6] Looks up a primitive’s name when given the primitive.

cont ext Package: : | ookupNameForPrimtive(x : Prinmtive): Name
sel f.menberPrimtive->select(ele = x).selectEl enent().nane

[7] Looks up a package in a package when given a name.

cont ext Package: : | ookupPackagef or Nane(x : Nane): Package
sel f. menber Package- >sel ect (e| e.name = x). sel ect El enent ()

[8] Looks up a package’s name when given the package.

cont ext Package: : | ookupNaneFor Package(x : Package): Nane
sel f. menber Package- >sel ect (e|]e = x). sel ect El enent (). nane

[9] Returns the imported packages of the package.

cont ext Package: :i nportedPackage(): Set (Package)
self.inported->iterate(p s=Set{} | s->union(Set{p.parent}))

[10] Transitively returns all imported packages of the package.

cont ext Package:: alll nportedPackage(): Set (Package)
sel f.inportedPackage()->iterate(g s=self.inportedPackage() |
s->uni on(g. al | | mport edPackage()))

9.3 SEMANTIC DOMAIN

9.3.1 Derivation

The values in the packages package are derived from the PackageValue template shown in figure. A Package-

Value is a container of named element values with identity.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

90

PACKAGES

PackageValue | PackageValue
| NamedElementValue

<Package
Value>

owning
<PackageValue>

* | owned<Value>

<NamedElement |identity <E,I\leammeen(:
Value>Identity
1 Value>

Snapshot
Snapshot Object
Snapshot

Snapshot

Link

Packages ‘

SemanticDomain ‘

Figure 9-4 Derivation of Packages Semantic Domain Package

9.3.2 Model

The semantic domain of the Packages package is shown in 9-5 on page 92. A Snapshot is a value of a Package
and describes a particular instantiation of the elements in the Package at a specific point in time. A Snapshot
therefore contains objects, links, primitive values and snapshots. Objects, links and snapshots all have unique
identities within a snapshot, whilst primitive values do not.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 91

PACKAGES

Packages::SemanticDomain ‘

ownedPrimitiveValue L
Primitive

N Value
owningSnapshot 1 1 owningSnapshot

Snapshot owningSnapshot

ownedSnapshot | identity :
Snapshotldentity

’ ownedObject
1 owningSnapshot

Object

identity :
Objectldentity

Link

ownedLink | identity :
Linkldentity

Figure 9-5 Semantic Domain for the Packages package

Snapshot
Snapshots are containers of objects, links, primitive values and snapshots.
Associations

ownedObject The objects owned by the snapshot.
ownedLink The links owned by the snapshot.
ownedPrimitiveValue The primitive values owned by the snapshot.

ownedSnapshotThe snapshots owned by the snapshot.

9.3.3 Well-formedness rules

[1] No two objects in a snapshot’s valuespace may have the same identity.

cont ext Snapshot inv
sel f. ownedChject -> forAll (el |
sel f. ownedhject -> forAll (e2 |
el <> e2 inplies el.identity <> e2.identity))

[2] No two links in snapshot’s valuespace may have the same identity.

cont ext Snapshot inv
sel f.ownedLink -> forAll (el |
sel f.ownedLink -> forAll (e2 |
el <> e2 inplies el.identity <> e2.identity))

[3] No two snapshots in snapshot’s valuespace may have the same identity.

cont ext Snapshot inv
sel f. ownedSnapshot -> forAll (el |
sel f. ownedSnapshot -> forAll (e2 |
el <> e2 inplies el.identity <> e2.identity))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

92

PACKAGES

9.4 SEMANTIC MAPPING

9.4.1 Derivation

The template used to stamp out the semantic mapping for the packages package is shown in figure 9-6 on
page 93. Each element in the semantic domain is mapped to the appropriate abstract syntax element and the nec-
essary constraints on their relationships are stamped out.

| Package

| PackageValue

| Packageable

| NamedElementValue

PackageSemantics

<Package

<Package> Value>

of

1 <Named
Element
of Value>

<NamedElement
>

Package
} Snapshot
| Package Class

| Snapshot Object

! Association
| Link Package
‘ Snapshot
Package
Snapshot

Classes

SemanticMapping

Figure 9-6 Derivation of the Packages SemanticMapping Package

9.4.2 Model

The semantics mapping package of the packages package is shown in Figure 9-7 on page 94. It defines the rela-
tionship that holds between packages, named elements and their values. A Snapshot is a value of a Package. An
Object is a value of an Class. A Link is a value of an Association and a primitive value is a value of a primitive

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 93

PACKAGES

data type. The objects contained by a snapshot must be values of the classes owned by the snapshot’s package,
and similarly for the other values..

Packages::SemanticMapping
1
Package Snapshot
of
1
Class Object
of
1
Association Link
of
1 .
L Primitive
Primitive
of Value

Figure 9-7 Semantic Mapping for the Packages package

9.4.3 Well-formedness rules

Snapshot

[1] For each object owned by a snapshot there should be a class of the snapshot’s package’s namespace that the
object is a value of.

cont ext Snapshot inv:
sel f. ownedObj ect->forAll (c |
sel f. of . mrenber d ass->exists(d | c.of = d))

[2] For each link owned by a snapshot there should be an association of the snapshot’s package’s namespace that
the link is a value of.

cont ext Snapshot inv:
sel f. ownedLi nk->forAl'l (c |
sel f. of . menber Associ ati on->exi sts(d | c.of = d))

[3] For each primitive value owned by a snapshot there should be a primitive of the snapshot’s package’s name-
space that the primitive value is a value of.

cont ext Snapshot inv:
sel f.ownedPrimtiveVal ue->forAll(c |
sel f.of .menberPrimtive->exists(d | c.of = d))

[4] For each snapshot owned by a snapshot there should be a package of the snapshot’s package’s namespace that
the snapshot is a value of.

cont ext Snapshot inv:
sel f. ownedSnapshot->forAll (c |
sel f. of . mrenber Package- >exi sts(d | c.of = d))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 94

PACKAGES

9.5 EXAMPLE SNAPSHOTS

Figure 9-9 on page 95 illustrates a snapshot corresponding to the model shown in 9-8 on page 95. Note how the
package import results in an import relationship between package R and the contents of package P (i.e. R imports

P::Q into its namespace).

<<import>>

Figure 9-8 Example packages

P: Q:
— member -
Package Package| Package
won OwningPackage A
name = "P name =
ned
parent Package imported
importing Package
:Package
Import
imported
) owned
child, Class
TN RN co
- : Class
—g—PaCka e member| —

name = "R" & name = "C"

owmggPackage uneq
Class

membe

D : Class

name = "D"

Figure 9-9 Snapshot of example shown in fig. 9-8 on page 95

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

95

PACKAGES

9.6 CHANGES TO UML 1.4

Packages have values (snapshots). Snapshots are an extremely useful abstraction for modelling system level
states. They will be extended in later chapters to deal with dynamic aspects (filmstrips).

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 96

Chapter 10
Package Extension

This package defines an extended abstract syntax and semantics for packages that permits their use as a powerful
"aspect-oriented" extension mechanism. In their most basic form, packages are namespaces for the elements they
contain. In the definition presented in this chapter, packages can additionally extend other packages, extending,
renaming and merging their elements. The ability to reuse large-grained language components through package
extension is a fundamental part of this submission.

10.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core ‘
DataTypes Associations Classes
— —
Packages Expressions
Templates Behaviour Constraints Queries
Actions
— 1
Operations
— 1
Messages

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 97

PACKAGE EXTENSION

10.1.1 Example

Figure 10-1 on page 98 illustrates the use of package extension to merge and extend the contents of two packages
P and Q. Because the class A in Q is redefined during extension, the end result (shown in grey) is to merge the
contents of the two classes A and B into a single class A in R.

P Q

X y

L

Figure 10-1 Example of package extension

10.2 ABSTRACT SYNTAX

10.2.1 Derivation

Figure 10-2 on page 99 gives an overview of the templates used to stamp out the extensions part of the Packages
package. Templates are used to generate extension relationships between all namespace and feature elements in
the core, including packages, classes, associations, association ends, attributes and operations.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 98

PACKAGE EXTENSION

Figure 10-2 Extension Templates

Pack}g{w:

AbstractSyntax |

Extendable
Extendable Structural
Behavioural Extendable Feature
Classifier Classifier Package Classifier Classifier
. Package
BehaviouralFeature StructuralFeature
NamedElement
Type Type

The ExtendablePackage template (see Figure 10-3 on page 100) describes the notion of package extension.
When a package extends another package, the elements in the parent package’s namespace are extended into the
namespace of the child package. For example, an element may be a class or an association. Extending a package
will result in the classes and association in the namespace of the parent package/s being extended into the child
package’s namespace. Note that the definition is deliberately abstract about how this is implemented: for example
an element may be inherited or copied - the choice of mechanism is entirely up to the implementor. However, in
the case where an element is redefined, it must copied down (see [Clark02]). A redefined extension represents an
explicit substitution of one element by another.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

99

PACKAGE EXTENSION

ExtendablePackage Package B
NamedElement
* member<NamedElement{ <NamedElement>
<Package>
* | name : Name
parent 11 child parent 11 child
extending . . : -
* extendied extending extended
owned<NamedElement>
<Package> Extension <NamedElemen>
Extension & Extension
1 *
isRedefined : Boolean isRedefined : Boolean
Package
Package
Package
Association
Package
Class

Packages |

AbstractSyntax |

Figure 10-3 Derivation of Packages from extendable package templates

The ExtendableStructuralFeatureClassifier template (see Figure 10-4 on page 101) defines the semantics of clas-
sifier and structural feature extension. When a classifier extends another classifier, the structural features in the
parent classifier/s namespace are extended into the namespace of the child classifier. For example, extending a
class will result in the class’s attributes being extended into the namespace of the extending class. In addition, a
structural feature that is extended into a namespace must be conformant with the structural feature it extends, for
example their types must be conformant. If a redefinition has occurred, the child structural feature’s type must
also belong to the same namespace as the child class.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 100

PACKAGE EXTENSION

ExtendableStructuralFeatureClassifier

Classifier

1

Type

StructuralFeature

<Type>

type

member<StructuralFeature>

<Classifier> [

<StructuralFeature>

| name : Name

parent 11 child parent 11 child
extending .
* oo extended extending | * * extended
owned<StructuralFeature
<Classifier> Extension> <StructuralFeature>
Extension f . Extension
isRedefined : Boolean isRedefined : Boolean
Class Class
Query Constraint
Association Class
AssociationEnd Attribute
Packages |
AbstractSyntax |

Figure 10-4 Derivation of Packages from ExtendableStructuralFeatureClassifier template

The ExtendableBehaviouralFeature template (see Figure 10-5 on page 102) describes the general extension rela-
tionship between classifiers and their behavioural features. A classifier can extend another classifier with the
result that the parent’s behavioural features are extended into the namespace of the child classifier. It is also
required that an extended behavioural feature’s type and parameters conform to the type and parameters of its

parent behavioural feature. If a renaming or redefinition has occurred, the child behavioural feature’s types must

belong to the same namespace as the behavioural feature.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

101

PACKAGE EXTENSION

ExtendableBehaviouralClassifier

Classifier
BehaviouralFeature

Type

1 type
<Type>
1 type
‘ <Behavioural
. member<BehaviouralFeature: Feature>
<Classifier>
*| name : Name
parent 11 child parent 11 child
extending o extended extending [* * extended
owned<BehaviouralFeature
<Classifier> Extension> | <BehaviouralFeature>
Extension f . Extension -
isRedefined : Boolean isRedefined : Boolean *
, (ordered)l Parameter
. |name : Name
Class
Operation
Packages |
AbstractSyntax |

Figure 10-5 Derivation of Packages from ExtendableBehaviouralFeature template

10.2.2 Model (Package extension)

Figures 10-6 on page 103 to Figure 10-8 on page 110 show the abstract syntax of the extensions part of the Pack-
ages package. As shown in Figures 10-6 on page 103 packages that extend packages will include extended
classes, associations and sub-packages as a part of their namespace. Extensions can be redefined, which means
that no restriction is placed on the names of the child elements in the relationship.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

102

PACKAGE EXTENSION

Packages::AbstractSyntax

Association

ownedAssociationExtension Extension

* isRedefined : Boolean

extending * * extended

parent 1 1 child

memberAssociation Association

name : Name

0 .

Package extending parent
; Package
ownedPackage Extension g
. N 1
Extension isRedefined : 4 |name: Name
B Boolean *
extended child > « memberClass

Class

T ’ memberPackage

name : Name

parent 11 child
extending oo extended
ownedClassExtension Class
B Extension

isRedefined : Boolean

Figure 10-6 Abstract syntax for Packages package

Package

A package.
Associations
memberAssociation The associations that are included in the namespace of the package.
memberClass The classes that are included in the namespace of the package.
memberPackage The packages that are included in the namespace of the package.

PackageExtension

An extension relationship between packages. When a package extends another package, the parent packages ele-
ments are included in the namespace of the child package. A package extension has a set of renamings that are
applied to any elements copied from the parent package to the child package.

Associations

child The child package.

ownedAssociationExtension The association extensions that extend associations in the parent packages name-

space.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 103

PACKAGE EXTENSION

ownedClassExtension The class extensions that extend classes in the parent packages namespace.
ownedPackageExtension The package extensions that extend packages in the parent packages namespace.
parent The parent package.

renaming The renamings that apply to elements extended from the parent package’s namespace.

10.2.3 Well-formedness Rules (Package extension)

PackageExtension

[1] The associations in the namespace of the parent package must be included in the namespace of the child and
they must be related by an association extension.

cont ext PackageExtension inv:
sel f. parent. menber Associ ation->forAll (e |
sel f. ownedAssoci at i onExt ensi on- >exi sts(e' |
e' .parent = e and
sel f.child. menber Associ ati on->exi sts(e'"' |
e .child =¢e")))

[2] If the child association does not equal the parent association in an ownedAssociationExtension then it must be
owned by the child package.

cont ext PackageExtension inv:
sel f. ownedAssoci ati onExtension -> forAll (e |
e.child <> e.parent inplies
sel f.chil d. ownedAssoci ation -> includes(e.child))

[3] The classes in the namespace of the parent package must be included in the namespace of the child and they
must be related by a class extension.

cont ext PackageExtension inv:
sel f. parent. menberd ass->forAll (e |
sel f. ownedd assExt ensi on->exi sts(e' |
e'.parent = e and
sel f.child. nenber Cl ass->exi sts(e'"' |
e .child =¢€")))

[4] If the child class does not equal the parent class in an ownedClassExtension then it must be owned by the
child package.

cont ext PackageExt ension inv:
sel f. ownedC assExtension -> forAll (e |
e.child <> e.parent inplies
sel f.child.ownedC ass -> includes(e.child))

[5] The packages in the namespace of the parent package must be included in the namespace of the child and they
must be related by a package extension.

cont ext PackageExtension inv:
sel f. parent. menber Package->forAll (e |
sel f. ownedPackageExt ensi on- >exi sts(e' |
e' .parent = e and
sel f.chil d. menber Package- >exi sts(e'"' |
e'.child =¢€'")))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 104

PACKAGE EXTENSION

[6] If the child package does not equal the parent package in an ownedPackageExtension then it must be owned
by the child package.

cont ext PackageExtension inv:
sel f . ownedPackageExt ension -> forAll (e |
e.child <> e.parent inplies
sel f. chil d. owmmedPackage -> includes(e.child))

[7] The child package must have the same name as the parent, unless it is redefined..

cont ext PackageExtension inv:
not self.isRedefined inplies child.name = parent. nanme

10.2.4 Model (Structural features)

As shown in Figures 10-7 on page 106 classes that extend classes will include (extended) attributes, constraints
and queries as a part of their namespace. Associations that extend associations include (extended) association
ends. Again, extensions can be redefined, which means that no restriction is placed on the names of the child ele-
ments in the relationship.

AssociationExtension
An extension relationship between associations. An association extension has a set of renamings that are applied
to extended association ends.

Associations

child The child association.

ownedAssociationEndExtension The association end extensions that extend association ends in the parent
associations namespace.

parent The parent association.

renaming The renamings that apply to association ends extended from the parent association.

AssociationEndExtension

An extension relationship between association ends.
Associations
child The child association end.

parent The parent association end.

AttributeExtension

An extension relationship between attributes.
Associations
child The child attribute.
parent The parent attribute.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 105

PACKAGE EXTENSION

Packages::AbstractSyntax
— owned Association
AssociationEnd Assocuatannd Extension
Extension Extension
4 isRedefined : Boolean
isRedefined : Boolean *
Query extending parent
Extension E— Query
* T e —— extending * * extended
isRedefined : Boolean name : Name
N
1
- @
extended child parent 11 child
. . L Association
ownedQueryExtension memberQuery AssociationEnd .
name : Name
name : Name
member
Class X N AssociationEbd
Extension ass
> isRedefined : Boolean name : Name
memberConstraint *
Constraint
* ownedAttributeExtension * memberAttribute
name : Name
Attribute extending parent .
R Attribute
Extension
* 11— parent 11 child
isRedefined : Boolean name : Name
* 1
& extending *ox extended
extended child
Constraint
ownedConstraintExtension Extension
* |isRedefined : Boolean

Figure 10-7 Abstract syntax for the Package package

ClassExtension

An extension relationship between classes. A class extension has a set of renamings that are applied to any ele-
ments copied from the parent class to the child class.

Associations

child The child class.

ownedAttributeExtension The attribute extensions that extend attributes in the parent classes namespace.
ownedConstraintExtension The constraint extensions that extend constraints in the parent classes namespace.
ownedQueryExtension The query extensions that extend queries in the parent classes namespace.

parent The parent class.

renaming The renamings that apply to any element copied from the parent class.

ConstraintExtension

An extension relationship between constraints.
Associations
child The child constraint.

parent The parent constraint.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 106

PACKAGE EXTENSION

QueryExtension

An extension relationship between queries.
Associations
child The child query.
parent The parent query.

10.2.5 Well-formedness Rules (Structural features)

AssociationExtension

[1] The association ends in the namespace of the parent association must be included in the namespace of the
child association and they must be related by an association end extension.

cont ext Associ ati onExt ensi on inv:
sel f. parent. menber Associ ati onEnd->forAl |l (e |
sel f. ownedAssoci at i onEndExt ensi on- >exi sts(e' |
e'.parent = e and
sel f.chil d. menber Associ ati onEnd- >exi sts(e'"' |
e .child =¢e")))

[2] If the child association end doesn’t equal the parent association end in an ownedAssociationEndExtension
then it must be owned by the child association.

cont ext Associ ati onExtension inv:
sel f. ownedAssoci ati onEndExt ension -> forAll (e |
e.child <> e.parent inplies
sel f.chil d. ownedAssoci ati onEnd -> incl udes(e.child))

[3] The child association must have the same name as the parent association, unless it is redefined.

cont ext Associ ati onExtension inv:
not self.isRedefined inplies child.name = parent. nanme

AssociationEndExtension
[1] The child association end’s type in an association end extension must conform to the parent association end’s
type.
context Associ ati onEndExt ensi on i nv:
sel f.child.type. confornsToExt ensi on(sel f.parent.type)
[2] The child association end’s multiplicity in an association end extension must conform to the parent associa-
tion end’s multiplicity.
cont ext Associ ati onEndExt ensi on inv:
self.child.multiplicity.confornsToExtension(self.parent.multiplicity)

[3] If the child association end in an association end extension has been extended into another namespace (i.e. the
child does not equal the parent) then the child’s type must belong to the same namespace as the child’s class.

context AttributeExtension inv:
self.child <> self.parent inplies
sel f. chil d. owni ngCl ass. saneNanmespace(sel f.child. type)

[4] The child association end must have the same name as the parent association end, unless it is redefined..

cont ext Associ ati onEndExt ensi on inv:
not self.isRedefined inplies child.name = parent. nanme

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 107

PACKAGE EXTENSION

AttributeExtension
[1] The child attribute’s type in an attribute extension must conform the parent attribute’s type.

context AttributeExtension inv:
sel f.child.type. confornsToExt ensi on(sel f.parent.type)

[2] The child attribute’s multiplicity in an attribute extension must conform the parent attribute’s multiplicity.

context AttributeExtension inv:
self.parent.multiplicity <> null inplies
self.child.multiplicity.confornsToExtension(self.parent.multiplicity)

[3] If the child attribute in an attribute extension has been extended into another namespace (i.e. the child does
not equal the parent) then the child’s type must belong to the same namespace as the child’s class.

context AttributeExtension inv:
self.child <> self.parent inplies
sel f. chil d. owni ngCl ass. sanmeNanespace(sel f.child.type)

[4] The child attribute must have the same name as the parent attribute, unless it is redefined..

context AttributeExtension inv:
not self.isRedefined inplies child.name = parent. nane

ClassExtension

[1] The attributes in the namespace of the parent class must be included in the namespace of the child class and
they must be related by an attribute extension.

cont ext Cl assExtension inv:
sel f.parent. menberAttribute->forAll (e |
sel f. ownedAttri but eExt ensi on->exi sts(e' |
e' .parent = e and
sel f.child. menber Attri bute->exists(e'"' |
e .child =¢€")))

[2] If the child attribute does not equal the parent attribute in an ownedAttributeExtension then it must be owned
by the child class.

context Cl assExtension inv:
sel f.ownedAttri buteExtension -> forAll (e |
e.child <> e.parent inplies
sel f.child. ownedAttri bute -> includes(e.child))

[3] The constraints in the namespace of the parent class must be included in the namespace of the child class and
they must be related by a constraint extension.

cont ext C assExtension inv:
sel f. parent. menber Constraint->forAll (e |
sel f. ownedConst r ai nt Ext ensi on- >exi sts(e' |
e'.parent = e and
sel f.chil d. nenber Constraint->exists(e'" |
e .child =¢e")))

[4] If the child constraint does not equal the parent constraint in an ownedConstraintExtension then it must be
owned by the child class.

context Cl assExtension inv:
sel f. ownedConstrai nt Extension -> forAll (e |
e.child <> e.parent inplies
sel f.child. ownedConstraint -> includes(e.child))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 108

PACKAGE EXTENSION

[5] The queries in the namespace of the parent class must be included in the namespace of the child class and they
must be related by a query extension.

context Cl assExtension inv:
sel f. parent. menber Query->forAl (e |
sel f. ownedQueyExt ensi on- >exi sts(e' |
e' .parent = e and
sel f.child. menber Query->exi sts(e'"' |
e .child =¢e")))

[6] If the child query doesn’t equal the parent query in an ownedQueryExtension then it must be owned by the
child class.

context C assExtension inv:
sel f. ownedQueryExtension -> forAll (e |
e.child <> e.parent inplies
sel f.child. ownedQuery -> includes(e.child))

ConstraintExtension

[1] The child constraint’s type in an constraint extension must conform to the parent constraint’s type.

cont ext Constrai nt Ext ensi on inv:
sel f.child.type. confornsToExt ensi on(sel f. parent.type)

[2] The child constraint’s expression in an constraint extension must conform to the parent constraint’s expres-
sion.

cont ext Constrai nt Extension inv:
sel f.chil d. expressi on. confornsToExt ensi on(sel f. parent. expressi on)

[3] If the child constraint in an constraint extension has been extended into another namespace (i.e. the child does
not equal the parent) then the child’s type must be in the same namespace as the child’s class.

cont ext Constrai nt Extension inv:
self.child <> self.parent inplies
sel f. chil d. owni ngCl ass. saneNanmespace(sel f.child. type)

[4] The child constraint must have the same name as the parent constraint, unless it is redefined..

context AttributeExtension inv:
not self.isRedefined inplies child.name = parent.nanme

QueryExtension

[1] The child query’s type in an query extension must conform to the parent query’s type.

cont ext QueryExtension inv:
sel f.child.type. confornsToExt ensi on(sel f.parent.type)

[2] The child query’s expression in an query extension must conform to the parent query’s expression.

cont ext QueryExtension inv:
sel f.chil d. expressi on. conf or ne TOExt ensi on(sel f. parent. expressi on)

[3] The child query must have the same name as the parent query, unless it is redefined..

cont ext QueryExtension inv:
not self.isRedefined inplies child.name = parent. nane

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 109

PACKAGE EXTENSION

[4] If the child query in a query extension has been extended into another namespace (i.e. the child does not equal
the parent) then the child’s type must belong to the same namespace as the child’s class.

cont ext QueryExtension inv:
self.child <> self.parent inplies
sel f. chil d. owni ngCl ass. saneNanmespace(sel f.child. type)

10.2.6 Model (Behavioural features)

As shown in Figures 10-8 on page 110 classes that extend classes will include operations as a part of their name-
space. Extensions can be redefined, which means that no restriction is placed on the names of the child elements
in the relationship.

Packages::AbstractSyntax

Class extending parent
f |
Extension Class
1
isRedefined : Boolean name : Name
extended child

memberOperation

Operation

name : Name

parent 1 child
extending o extended
Operation
Extension

isRedefined : Boolean

Figure 10-8 Abstract Syntax for the Packages package

OperationExtension

An extension relationship between operations.
Associations
child The child operation.
parent The parent operation.

10.2.7 Well-formedness Rules (Behavioural features)

ClassExtension

[1] The operations in the namespace of the parent class must be included in the namespace of the child class and
they must be related by an operation extension.

context C assExtension inv:
sel f. parent. nmenber Qperation->forAll (e |

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 110

PACKAGE EXTENSION

sel f. ownedQOper at i onExt ensi on- >exi sts(e' |
e' .parent = e and
sel f.chil d. menber Oper ati on->exi sts(e'"' |
e .child =¢e")))

[2] If the child operation doesn’t equal the parent operation in an ownedOperationExtension then it must be
owned by the child class.

context Cl assExtension inv:
sel f. ownedQper ati onExtension -> forAll (e |
e.child <> e.parent inplies
sel f.child. ownedOperation -> includes(e.child))

OperationExtension
[1] The child operation’s type in an operation extension must conform to the parent operation’s type.

cont ext OperationExtension inv:
sel f.child.type. confornsToExt ensi on(sel f.parent.type)

[2] The child operation’s parameter types must be an extension of the parent parent’s parameter types.

cont ext QOperationExtension inv:
sel f. parent.paranmeter -> forA |l (f |
1..(self.child. parameter->size) -> forAl(n |
sel f.child. parameter.at(n).type. confornsToExt ensi on(
f.paraneter.at(n).type)))

[3] If the child operation in an operation extension has been extended into another namespace (i.e. the child does
not equal the parent) then the child’s types must be in the same namespace as the child’s class.

cont ext QOperationExtension inv:
self.child <> self.parent inplies
sel f. chil d. owni ngC ass. saneNanespace(sel f.child.type) and
self.child. parameter -> forAll (f |
sel f. chil d. owni ngCl ass. saneNanespace(f)

[4] The child operation must have the same name as the parent operation, unless it is redefined..

cont ext Operati onExtension inv:
not self.isRedefined inplies child.name = parent. nane

10.2.8 Additional Definitions

A number of additional definitions are required to support the extension mechanism. Firstly, the conformsToEx-
tension() operation must be defined on the data types. The most important is for a class:

Class
[1] A class conforms to another class if its is extended.

context O ass::conformsToExtension(c : Cass) : Bool ean
sel f. al | Ext endedEl ermrent s() - >i ncl udes(c)

and similarly for the other datatypes.

Secondly, conformance rules for multiplicities needs to be defined:

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 111

PACKAGE EXTENSION

Multiplicity
[1] A multiplicity conforms to another multiplicity if their ranges are conformant.

context Multiplicity::confornsToExtension(m: Miltiplicity) : Bool ean
TBD

Finally, conformance rules for expressions needs to be defined:

Expression
[1] An expression conforms to another expression if they are conformant extensions.

cont ext Expression::confornmsToExt ensi on(m : Expression) : Bool ean
TBD

This will be defined recursively, considering each kind of expression in turn. The aim is to check that the expres-
sion conforms to the expression passed as argument, and that the sub-expressions, where present, also conform,
and so on.

10.3 SEMANTIC DOMAIN

No additional semantics.

10.4 SEMANTIC MAPPING

No additional semantics.

10.5 EXAMPLE SNAPSHOTS

Fugure 10-10 on page 113 shows the example package extension model shown in figure 10-9 on page 113 as a
snapshot. Note that the redefinition of class B in package Q, permits it to have a different name, i.e. A. Because
two classes with the same name are extending into package R, they must be merged to be well-formed. The result
is to also merge their contents (i.e. attributes).

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 112

PACKAGE EXTENSION

A/B

Figure 10-9 Example of package extension

memberAttribute memberAttribute .
x1 : Attribute y1 : Attribute
QPackage P:Package
name = "x" name = "y"
parent ownedClas: parent parent ownedClass parent
A: Class B : Class
mempefClass
name = "A" name = "B"
e1: Package e2 : Package
parent Extension Extension parent
ael : Attribute | onedattributeExtension ledAttributeExtension e : Attribute
Extension child child ownedClassExtegsion Extension
\ ce:Class oknédClassExtensi ce : Class r
isRedefined = false Extension Extension isRedefined = false
R:Package
isRedefined = false isRedefined = true child
child
X2 : Attribute - Attri
— memberClags ownedClass : Attribute
child . member
name = "x" child . name = "y"
Attribute y
A2 : Class
member
owned Pitdbute name = "A" Actvrrvinb;eﬁe
Attribute

Figure 10-10 Snapshot of Figure 10-9 on page 113

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

113

PACKAGE EXTENSION

10.6 CHANGES TO UML 1.4

Package extension is new to UML 2.0.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 114

Chapter 11
Templates

A package template is an extendable package with substitutable parameter variables. In this chapter, the defini-
tion of packages and package extension is extended to support package templates. A description of class tem-
plates and association templates is also given to illustrate the generic nature of the template used in the definition.

11.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core ‘
DataTypes Associations Classes
— | —
Packages Expressions
Templates Behaviour Constraints Queries
Actions
— 1
Operations
]
Messages

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 115

TEMPLATES

11.1.1 Example

As shown below a package template is a namespace for named elements, whose names can be placeholders for
parameters passed by the package template. Package template instantiation is an extension relationship between a

Figure 11-1 Example package template

package template and package, in which substitutions can be made for the parameters. In this example, the value
Y is substituted for X, resulting in the class <X> being copied and renamed to "Y" in the package Q.

11.2 ABSTRACT SYNTAX

11.2.1 Derivation

Figure 11-2 on page 117 shows the templates used to derive the abstract syntax and well-formedness rules for
package templates. A template is a namespace for name elements which may have a renaming expression
attached to them. For example, a package template may attach a renaming expression "<X>" to a class. A Tem-
platelnstantiation defines an instantiation relationship that generates named element extensions with the appro-
priate name substitutions.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 116

TEMPLATES

Renameable

Namespace
NamedElement

Templatelnstantiation

<Named
named<
Element>
name : Name 1

NamedElement>

<NamedElement>

PackageTemplate

ClassTemplate

<Nam
Eleme
Extens

Namepace
NamedElement

ed owned<NamedElement>Extension <Namespace>
nt> ;

) * Extension
on

*

generated<NamedElement>Extension

extension | 1

Renaming
Expression <Namespace>
Template Template
. Parar.ne‘ter Instantiation
Substitution templateParameterSubstitution
value : String *
<Namespace> templateParameter
1
\I/ <Namespace>
Template templateParameter Template
Parameter N

Package [Query ‘\\\
PackageTemplate | ClassTemplate ™. \\\
Class ACH&T™ e

PackageTemplate
Association

ClassTemplate
Attribute

- s -
- A§'s'6’ciationT/e,m'6'Iate ’Templates

AssociationEnd

ClassTemplate P
Constraint

\/

7
e

AbstractSyntax |

Package Class
Package ... “| Query
_| Package Class
Action
.../ Class
Operation
. JClass T ~...| Association
. Attribute AssociationEnd
N
,\‘\
| Class
Constraint

Figure 11-2 Derivation of the Templates Package

11.2.2 Model

Figure 11-3 on page 117 extends a RenamingExpression so that it can describe a simple renaming expression lan-
guage (similar to that used in this submission), including parameterised values, e.g. "<X>" and concatenated val-

ues, e.g. "owned<X>"

Renaming 1
Expression ths

eval(...) : Name 1
lhs

A

Constant

value : String

Template

Parameter

Concatenation

name : String

Figure 11-3 Renaming Expressions

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

117

TEMPLATES

Figure 11-4 on page 118 shows the abstract syntax of the templates package that describes package templates. A
PackageTemplate is a Package and therefore can be extended as described in the Package Extension chapter. A
PackageTemplate owns a set of template parameters and a set of renaming expressions.

Templates::AbstractSyntax

*

generated Association
=

ownedAssociationExtension

Association Extension
Extension *
. ownedClassExtension
. Class
|> Extension
generated *
Class ownedPackageExtension
Extension | Package Package
Extension X Extension
* generatedPackageExtension extension’\ 1
Package Association Class Package
Template
Template Instantiation name : Name name : Name name : Name
Parameter templateParameterSubstitution | | /]\
Substitution |~ « hild /]\ 1 /]\ 1 1
chi namedAssociation namedClass namedPackage
value : |Name Package é | |
1
templateParameter Association Class Package
\l/ 1 1\/ parent Renaming Renaming Renaming
templateParameter] * | Expression 1 Expression
Template p! Package P Expression (Y
Parameter Template /'\ * *

Figure 11-4 Templates Abstract Syntax package (package templates)

PackageTemplate

A package template.

Associations

renamingExpression The renaming expressions that are associated with the contents of the package template.

templateParameter The parameters of the package template.

PackageTemplatelnstantiation

An instantiation relationship between a package template and a package.

Associations

child The package that results from the instantiation.

parent The package template.
templateParameterSubstitution The parameters that are substituted when instantiating the template.

generatedAssociationExtension The association extensions that are generated to realise the instantiation.

generatedClassExtension The class extensions that are generated to realise the instantiation.

generatedPackageExtension The package extensions that are generated to realise the instantiation

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

118

TEMPLATES

TemplateParameter

A template parameter. A subclass of RenamingExpression.

TemplateParameterSubstitution

The substitution that is made for a template parameter.
Attributes
value The value that is being substituted.
Associations

templateParameter The parameter that is being substituted for.

11.2.3 Well-formedness Rules

A number of rules are necessary to ensure that a PackageTemplatelnstantiation is well-formed. The most impor-
tant of these are as follows. Firstly, a PackageTemplateInstantiation must guarantee to rename all parameters in
its parent TemplatePackage. Secondly, redefined association, class and package extensions must be generated for
each of the substitutions that take place in the instantiation.

PackageTemplate
[1] Only one renaming expression per association in a template.

cont ext PackageTenpl ate inv:
sel f . associ ati onRenani ngExpression -> forAl(rl, r2 |
rl <> r2 inplies rl. namedAssoci ati on <> r2. namedAssoci ati on)

[2] Only associations in the template’s namespace have renaming expressions associated with them.

cont ext PackageTenpl ate inv:
sel f. menmber Associ ati on->
i ncl udesAl | (sel f.associ ati onRenam ngExpr essi on. nanedAssoci ati on)

[3] Only one renaming expression per class in a template.

cont ext PackageTenpl ate inv:
sel f. cl assRenam ngExpression -> forAll(rl, r2 |
ri <>r2 inplies rl. namedd ass <> r2. nanmedd ass)

[4] Only classes in the template’s namespace have renaming expressions associated with them.

cont ext PackageTenpl ate inv:
sel f. menber d ass->
i ncl udesAl | (sel f. cl assRenam ngExpr essi on. namedC ass)

[5] Only one renaming expression per package in a template.

cont ext PackageTenpl ate inv:
sel f. packageRenani ngExpression -> forAll (rl, r2 |
rl <> r2 inplies rl. nanmedPackage <> r2. nanmedPackage)

[6] Only packages in the template’s namespace have renaming expressions associated with them.

cont ext PackageTenpl ate inv:
sel f. menber Package- >
i ncl udesAl | (sel f. packageRenam ngExpressi on. nanedd ass)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 119

TEMPLATES

PackageTemplatelnstantiaton
[1] Parameter substitutions parameters must match those owned by the template.

cont ext PackageTenpl atel nstantiation inv:
sel f.tenpl at ePar anet er Substituti ons.tenpl at eParaneter =
sel f. ownedPar anet er - >asBag

[2] Association substitutions are generated for each of the renamed associations in the parents namespace.

cont ext PackageTenpl atel nstantiation inv:
sel f. gener at edAssoci ati onExt ensi on. parent =
sel f. ext ensi on. parent. associ at i onRenam ngExpr essi on. nanedAssoci ati on

[3] Generated association extensions shadow redefined owned associations extensions.

cont ext PackageTenpl atel nstantiation inv:
sel f. ext ensi on. ownedAssoci at i onExt ensi on->sel ect(e | e.isRedefined) =
sel f. gener at edAssoci at i onExt ensi on

[4] The name of the child elements of any generated named element extension is the evaluation of the appropriate
renaming expression.

cont ext PackageTenpl atel nstantiation inv:
sel f. gener at edAssoci ati onExt ensi on->forAll (n |
n.chil d. nane = sel f.associ ati onRenam ngExpr essi on- >
select(r | r.namedAssociation = n.parent).eval (sel f)->asSet)

[5] Class substitutions are generated for each of the renamed classes in the parents namespace.

cont ext PackageTenpl atel nstantiation inv:
sel f. gener at edd assExt ensi on. parent =
sel f. ext ensi on. parent. cl assRenam ngExpr essi on. nanedd ass

[6] Generated class extensions shadow redefined owned class extensions.

cont ext PackageTenpl atel nstantiation inv:
sel f. ext ensi on. ownedC assExt ensi on->select(e | e.isRedefined) =
sel f. gener at edd assExt ensi on

[7] The name of the child elements of any generated named element extension is the evaluation of the appropriate
renaming expression.

cont ext PackageTenpl atel nstantiation inv:
sel f. generat edd assExtensi on->forAll (n |
n.chil d. nane = sel f. cl assRenan ngExpr essi on- >
select(r | r.namedd ass = n.parent).eval (sel f)->asSet)

[8] Package substitutions are generated for each of the renamed packages in the parents namespace.

cont ext PackageTenpl atel nstanti ati on inv:
sel f. gener at edPackageExt ensi on. parent =
sel f. ext ensi on. parent. packageRenam ngExpr essi on. namedPackage

[9] Generated package extensions shadow redefined owned package extensions.

cont ext PackageTenpl atel nstantiation inv:
sel f. ext ensi on. ownedPackageExt ensi on- >sel ect (e | e.isRedefined) =
sel f. gener at edPackageExt ensi on

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 120

TEMPLATES

[10] The name of the child elements of any generated package extension is the evaluation of the appropriate
renaming expression.

cont ext PackageTenpl atel nstantiation inv:
sel f. gener at edPackageExt ensi on->forAll (n |
n. chil d. nane = sel f. packageRenanm ngExpr essi on- >
select(r | r.namedPackage = n.parent).eval (sel f)->asSet)

Figure 11-5 on page 121 shows the abstract syntax of the templates package that describes class templates. A
ClassTemplate is a Class and therefore can be extended as described in the Package Extension chapter. A Tem-
plateClass owns a set of template parameters and a set of renaming expressions.

Templates::AbstractSyntax

* Attribute ownedAttributeExtension
Extension
generated *
Attribute
Extension] ownedConstraintExtension
.| Constraint
|> Extension
gerferated *
Cor)straint ownedQueryExtension
Extension Query Class
Extension | Extension
* generatedQueryExtension extension/}\ 1
Class])
Template Attribute Constraint Query
Instantiation
name : Name name : Name name : Name
Template templateParameterSubstitution
Parameter /]\] 4\] /]\]
Substitution * child namedAttribute namedConstraint namedQuery
value : Name Class é l] |
T 1
templateParameter Attribute Constraint Query
\l/ 1 1\[/ parent Renaming Renaming Renaming
templateP t *| Expression Expression Expression
Template emplateParameter Class pressio pressio P
Parameter Template A . .

ClassTemplate

A class template.

Associations

renamingExpression The renaming expressions that are associated with the contents of the class template.

Figure 11-5 Templates Abstract Syntax package (class templates)

templateParameter The parameters of the class template.

ClassTemplatelnstantiation

An instantiation relationship between a class template and a class.

Associations

child The package that results from the instantiation.
parent The package template.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

121

TEMPLATES

templateParameterSubstitution The parameters that are substituted when instantiating the template.
generatedAttributeExtension The attribute extensions that are generated to realise the instantiation.
generatedConstraintExtension The constraint extensions that are generated to realise the instantiation.

generatedQueryExtension The constraint extensions that are generated to realise the instantiation.

11.2.4 Well-formedness Rules

A number of rules are necessary to ensure that a ClassTemplatelnstantiation is well-formed. These are similar to
those defined for PackageTemplatelnstantiation. A ClassTemplatelnstantiation must guarantee to rename all
parameters in its parent ClassTemplate. Secondly, redefined attribute, constraint and query extensions must be
generated for each of the substitutions that take place in the instantiation.

ClassTemplate
[1] Only one renaming expression per attribute in a template.

context C assTenplate inv:
sel f.attri but eRenam ngExpression -> forAl(rl, r2 |
ri <>r2inplies rl.namedAttribute <> r2. namedAttri bute)

[2] Only attributes in the template’s namespace have renaming expressions associated with them.

context O assTenpl ate inv:
sel f. menber Attri bute->
i ncl udesAl | (sel f.attributeRenamnm ngExpressi on. nanedAttri bute)

[3] Only one renaming expression per constraint in a template.

context O assTenplate inv:
sel f. constrai nt Renam ngExpression -> forAll(rl1, r2 |
rli <> r2 inplies ril. namedConstraint <> r2.nanedConstraint)

[4] Only attributes in the template’s namespace have renaming expressions associated with them.

context O assTenplate inv:
sel f. menber Constrai nt - >
i ncl udesAl | (sel f.constrai nt Renam ngExpr essi on. nanmedConst r ai nt)

[5] Only one renaming expression per query in a template.

context O assTenplate inv:
sel f. queryRenam ngExpression -> forAll(rl, r2 |
ri <>r2 inplies rl.nanedQuery <> r2. nanedQuery)

[6] Only packages in the template’s namespace have renaming expressions associated with them.

context C assTenplate inv:
sel f. menber Query- >
i ncl udesAl | (sel f. queryRenam ngExpr essi on. namredQuery)

ClassTemplatelnstantiaton
[1] Parameter substitutions parameters must match those owned by the template.

context C assTenpl atelnstantiation inv:
sel f.tenpl at ePar anmet er Substitutions.tenpl at eParaneter =
sel f. ownedPar anet er - >asBag

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 122

TEMPLATES

[2] Attribute substitutions are generated for each of the renamed classes in the parents namespace.

context C assTenpl atelnstantiation inv:
sel f. generatedAttri buteExtension. parent =
sel f.extension. parent. attri but eRenam ngExpressi on. nanmedAttri bute

[3] Generated attribute extensions shadow redefined owned attribute extensions.

context C assTenpl atel nstantiation inv:
sel f. ext ensi on. ownedAt t ri but eExt ensi on->sel ect (e | e.isRedefined) =
sel f. generat edAttri but eExt ensi on

[4] The name of the child elements of any generated named element extension is the evaluation of the appropriate
renaming expression.

context O assTenpl atel nstantiation inv:
sel f.generatedAttri buteExtension->forAl(n |
n.chil d. nane = sel f.attri buteRenam ngExpressi on->
select(r | r.namedAttribute = n.parent).eval (self)->asSet)

[5] Constraint substitutions are generated for each of the renamed constraints in the parents namespace.

context O assTenpl atel nstantiation inv:
sel f. gener at edConst rai nt Ext ensi on. parent =
sel f. ext ensi on. parent. constrai nt Renam ngExpr essi on. nanedConst r ai nt

[6] Generated constraint extensions shadow redefined owned constraint extensions.

context C assTenpl atelnstantiation inv:
sel f. ext ensi on. ownedConst r ai nt Ext ensi on- >sel ect (e | e.isRedefined) =
sel f. gener at edConst r ai nt Ext ensi on

[7] The name of the child elements of any generated named element extension is the evaluation of the appropriate
renaming expression.

context C assTenpl atel nstantiation inv:
sel f. gener at edConst rai nt Ext ensi on->forAll (n |
n.chil d. nane = sel f. constrai nt Renanmi ngExpr essi on- >
select(r | r.namedConstraint = n.parent).eval (sel f)->asSet)

[8] Query substitutions are generated for each of the renamed queries in the parents namespace.

context O assTenpl atel nstantiation inv:
sel f. gener at edQuer yExt ensi on. parent =
sel f. ext ensi on. parent . quer yRenamni ngExpr essi on. nanmedQuery

[9] Generated query extensions shadow redefined owned query extensions.

context O assTenpl atel nstantiation inv:
sel f. ext ensi on. ownedQuer yExt ensi on->sel ect (e | e.isRedefined) =
sel f. gener at edQuer yExt ensi on

[10] The name of the child elements of any generated named element extension is the evaluation of the appropri-
ate renaming expression.

context C assTenpl atelnstantiation inv:
sel f. gener at edQuer yExt ensi on->forAl |l (n |
n.chil d. name = sel f. queryRenam ngExpr essi on->
select(r | r.namedQuery = n.parent).eval (sel f)->asSet)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 123

TEMPLATES

Figure 11-6 on page 124 shows the abstract syntax of the templates package that describes association templates.
An AssociationTemplate is an Association and therefore can be extended as described in the AssociationEx-
tension chapter. An AssociationTemplate owns a set of template parameters and a set of renaming expressions.

Templates::AbstractSyntax

Association

ownedPackageExtension

Association

End

Extension | *

*

generatedPackageExtension

Extension

extensio 1

*

Template
Parameter
Substitution

value : Name

templateParameter
\/1

Template
Parameter

\l/ templateParameterSubstitution

Association
Template
Instantiation

Association é

child

Association
End

name : Name

[

namedAssociation

1

templateParameter|

*

Association

% o End
1\ parent Renaming
Association Expression

Template

AssociationTemplate

A package template.
Associations

Figure 11-6 Templates Abstract Syntax package (association templates)

renamingExpression The renaming expressions that are associated with the namespace of the association tem-

plate.

templateParameter The parameters of the association template.

AssociationTemplatelnstantiation

An instantiation relationship between an association template and an association

Associations

child The association that results from the instantiation.

parent The association template.

templateParameterSubstitution The parameters that are substituted when instantiating the template.

generatedAssociationEndExtension The association end extensions that are generated to realise the instantia-

tion.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

124

TEMPLATES

11.2.5 Well-formedness Rules

AssociationTemplate
[1] Only one renaming expression per association end in a template.

context Associ ationTenpl ate inv:
sel f.associ ati onEndRenam ngExpression -> forAl(rl, r2 |
ri <>r2 inplies rl. namedAssoci ati onEnd <> r 2. nanedAssoci at i onEnd)

[2] Only association ends in the template’s namespace have renaming expressions associated with them.

context AssociationTenplate inv:
sel f. menber Associ ati onEnd- >
i ncl udesAl | (sel f.associ ati onEndRenani ngExpr essi on. nanedAssoci at i onEnd)

AssociationTemplatelnstantiaton
[1] Parameter substitutions parameters must match those owned by the template.

context AssociationTenpl atelnstantiation inv:
sel f.tenpl at ePar anet er Substitutions.tenpl at eParaneter =
sel f . ownedPar anet er - >asBag

[2] Association end substitutions are generated for each of the renamed association end in the parents namespace.

context Associ ati onE=Tenpl atel nstantiation inv:
sel f. gener at edAssoci at i onEndExt ensi on. parent =
sel f. ext ensi on. parent. associ ati onEndRenam ngExpr essi on. nanmedAssoci at i onEnd

[3] Generated association eend xtensions shadow redefined owned association end extensions.

context AssociationTenpl atelnstantiation inv:
sel f. ext ensi on. ownedAssoci at i onEndExt ensi on->sel ect (e | e.isRedefined) =
sel f. gener at edAssoci ati onEndExt ensi on

[4] The name of the child elements of any generated named element extension is the evaluation of the appropriate
renaming expression.

cont ext Associ ationTenpl atel nstantiation inv:
sel f. gener at edAssoci ati onEndExt ensi on->forAl'l (n |
n.chil d. name = sel f.associ ati onEndRenam ngExpr essi on- >
select(r | r.namedAssoci ati onEnd = n. parent). eval (sel f)->asSet)
select(r | r.namedC ass = n.parent).eval (sel f)->asSet)

11.3 SEMANTIC DOMAIN

No additional semantics.

11.4 SEMANTIC MAPPING

No additional semantics.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 125

TEMPLATES

11.5 EXAMPLE SNAPSHOTS

The snapshot in figure 11-8 on page 126 illustrates the example in Figure 11-7 on page 126. Note that instantiat-
ing the package template results in a generated class extension between the parameterised class in the template
package P and the class B in package Q.

Template

parent / pare

i :Package
Template
Instantiation

child

extension

<X>

name : String

A\

Figure 11-7 Example template

pe : Package
Extension

ownedClassExtension

pPackage | ———

classRenamingExpression

x.Class

parent

parameter

t1 : Template
Parameter

name = "X'

template
Parameter

templateParameter
Substitution

ce : Class
Extension

s : Template
Parameter

Substitution

name ="Y"

isRedefined = true

(child

y:Class

name ="Y"

Figure 11-8 Snapshot illustrating figure 11-7 on page 126

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

126

TEMPLATES

11.6 CHANGES TO UML 1.4

UML 1.4 already provides support for templates but did not define their semantics.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 127

Chapter 12
Static Expressions

This package defines the abstract syntax and semantics of expressions. This chapter is mostly concerned with
static expressions, which describe how computations take place which do not change the state of the system, and
are used as a basis for describing constraints and queries (Chapters 13 and 14). Expressions that describe compu-
tations that do change the state of the system are called actions - these are covered in Chapter 16. The templates
that are introduced towards the end of this chapter however are generic enough to be used for both static expres-
sions and actions.

An expression has a return type, and its evaluations have values which must conform to that type. An expres-
sion may also have a number of operands, which are themselves expressions. The return type of an expression
and its operand expressions may or may not need to be constrained, depending upon the actual expression. The
operands can be thought of as sub-expressions of the originating expression. The operand expressions may have
their own operands or sub-expressions, and in this way a hierarchy or expression tree may be formed. An expres-
sion also has a scope, which consists of one or more variable declarations - these declare the variables that may
be referred to in any sub-expressions of the originating expression. The scope variable declarations are propa-
gated down the expression hierarchy; ultimately bound variables at the leaves of the expression tree must point to
a variable declaration that is within scope. Similarly an expression evaluation has an environment consisting of
variable values, which provides the context for the evaluation, and a bound variable evaluation must similarly be
within its environment.

This chapter presents the static expressions that lie at the core of the Object Constraint Language (OCL 2.0),
an expression language incorporated into UML that is used to describe computations in object models. A com-
plete definition of OCL is outside of the scope of this document - this can be found in the OCL 2.0 submission
document [OCL 2.0]. The generic expression templates that allow a family of expression languages to be
stamped out are introduced at the end of the chapter.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 128

STATIC EXPRESSIONS

12.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core

—

1 1 1
DataTypes Associations Classes
— | — f
Packages Expressions
1 T
1 1 1 1
Templates Behaviour Constraints Queries

Actions

— 1

Operations

_I%

Messages

12.1.1 Example

A typical expression may look like the following:
bank. hasMoney and bank. hasSt af f

This expression has two boolean sub-expressions "bank.hasMoney" and "bank.hasStaff", which are evaluated;
the logical and operator is then applied to the two results, yielding an overall boolean value for the expression.
This is a very simple expression, but shows that expressions can have sub-expressions, and when evaluated they

yield a result of specified type.

This expression could either be used to form the basis of a constraint (that a bank must have both money and
staff) or a query (a means of enquiring whether a bank has both money and staff). Thus every expression must
have a context to show how its evaluation is used.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

129

STATIC EXPRESSIONS

12.2 ABSTRACT SYNTAX

12.2.1 Derivation

Figure 12-1 on page 130 shows the derivation of the static expressions abstract syntax package using the abstract
syntax templates described in sections 12.6.1 and 12.6.2.

Note that the type attribute inherited from expression is overridden for not, and, equals, greater than and
includes expressions to be boolean.

W‘ ConcreteExp

ExpCategor
<Concrete <Exp .
> —I> Expression
Exp> Category> s
scope \l/ 1.*
" type \|/ 1
Variable type L

varName:String 1

Typed
Expression Expression ConcreteExp
Operand ConcreteExp Operand
ExpCategory ExpCategory
operand operand
operandType
<Concrete | “operand>| <gxp <Concrete | <operand>| <py;
Exp> 1| Category> Exp> 1| Category>
T NotExpl |
Fauaistxp (I StticExp; | JincludesExp |
atotxe o AndExp | | StaticExp |
I StaticExp | NotExp
EqualsExp! | StaticExp
StaticExp i EqualsExp | operand
right Lo StaticExp | Boolean
GreaterThanExp J AndExp
StaticExp —m— _____StalcExp J\’ ndVar ‘} StaticExp
left T e ! StaticExp | IBeft |
- oolean
GreaterThanExp 1
StaticExp ! AndExp
right StaticExp
right
IfExp
StaticExp Boolean
thenExpression StaticExpressions ‘ IfExp
IfExp StaticExp
StaticExp AbstractSyntax ;‘(’)’;‘I’g;]”
elseExpression
IncludesExp IncludesExp
: StaticExp
StaticEx| P
ebmen‘: NotExp GreaéerThan StatExp i:owcef i
. X| ollectionType
IterateExp type:Boolean p
StaticExp type:Boolean |(erqteExp
body AndExp VariableExp StaticExp
source
PropertyCallExp type:Boolean IncludesExp A CollectionType
VariableExp i type:Booloan
source ype:
EqualsExp ‘ Bound ‘ Property
type:Boolean Variable CallExp
referred referred
iterator _ Variable \/ 1 1\/ Property
ConstantExp 1] Variable
lterateExp) Property
name:String 1 Declaration
result

Figure 12-1 Derivation of Static Expressions abstract syntax Package

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 130

STATIC EXPRESSIONS

12.2.2 Model

Figure 12-2 on page 131 shows the stamped out abstract syntax of the static expressions package. A static expres-
sion is an expression whose evaluation does not change the state of the system. An expression can either be a
static expression or an action (an expression whose evaluation changes the state of the system). An expression
has a type that its evaluation must conform to, and a scope which consists of one or more variable declarations -
these are variables that may be referred to in any sub-expressions (operand expressions) of that expression. Vari-
able expressions are static expressions that contain a bound variable that is a reference to a variable declaration
that has been introduced to its scope by another expression higher in the expression tree. Property call expres-
sions return the value of a property (e.g. an attribute, query or association end) in relation to a particular source
variable. An iterate expression evaluates a sub-expression for each element in a collection, and returns a value
dependent upon that computation. An if expression returns one of two alternative values dependent upon the
evaluation of a condition expression. A constant expression is a named expression that evaluates to an immutable
value. Not, and, equals, greater than and includes expressions all return boolean values dependent upon the val-
ues of their operands.

Many of the descriptions of the modelling constructs in this and subsequent sections in this chapter are based
upon those in the OCL 2.0 submission [OCL 2.0].

StaticExpressions::AbstractSyntax ‘

type
StaticExp —— Expression] Classifier
type /\ 1
ConstantExp
name:String
scope |, 1..*
1 | operand NotExp referred Variable
type:Boolean Bound Variable| paclaration
Variable 1 :
1 | left AndExp varName:String
)] iterat 1 It
1 | right type:Boolean VariableExp <1 ererer T rese
1| left source 1
: EqualsExp PropertyCall
1 | right type:Boolean Exp
1| left GreaterThanExp
1| right type:Boolean referred
1 | condition Property) 1
1 thenExpresslion IfExp Property
1 | elseExpression
1| source IncludesExp
1| element type:Boolean
1 source
1| body | lterateExp
Figure 12-2 Abstract syntax for Static Expressions package
AndExp

An and expression is an expression that evaluates to the logical and of its two operand values.
Associations

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 131

STATIC EXPRESSIONS

left The left hand operand.
right The right hand operand.
type The return type of the expression (boolean).

BoundVariable

A bound variable is an expression that is a reference to variable declaration that is within scope (i.e. a variable
that has been declared by another expression higher in the expression tree). Every expression has a variable "self"
within its scope, which points to the object that owns the feature (such as a constraint or query) that provides the
context for the evaluation.

Associations

referredVariable The variable declaration that the bound variable acts as a pointer to. This variable declaration
must be within the scope of the bound variable.

ConstantExp
A constant is an expression that has a name and whose evaluation points to an immutable value.
Attributes

name The name of the constant.

EqualsExp

An equals expression is an expression that evaluates to the logical result of the equality test of its two operand
values.

Associations

left The left hand operand.

right The right hand operand.

type The return type of the expression (boolean).

Expression

Expression is the abstract superclass for all expressions including static expressions and actions (see Chapter 16).
An expression has a type which its evaluation must conform to, and a scope (one or more variable declarations
that may be referred to in any operand sub-expressions).

Associations
type The return type of the expression.

scope The set of variable declarations that may be referred to within any operand sub-expressions.

GreaterThanExp

A greater than expression is an expression that evaluates to the logical result of testing whether its /ef¢ operand
value is greater than its right operand value.

Associations

left The left hand operand.

right The right hand operand.

type The return type of the expression (boolean).

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 132

STATIC EXPRESSIONS

IfExp

An if expression evaluates to the value of one of two alternative expressions, depending on the evaluation of the
condition expression. Both the then and the else expressions are mandatory since the if expression must guarantee
to result in a value.

Associations

condition The logical expression whose evaluation determines whether the value of the then expression (if the
condition evaluates to true) or the else expression (if the condition evaluates to false) gets returned as the
value of the if expression.

thenExpression The expression whose value is returned by the if expression if the condition expression evalu-
ates to true.

elseExpression The expression whose value is returned by the if expression if the condition expression evalu-
ates to false.

IncludesExp

An includes expression is an expression that evaluates to the logical result of testing whether its element operand
value is a member of the collection returned by the source operand.

Associations

source The expression that returns a collection that the value of element is tested against.

element The expression whose value is tested to be within the collection returned by the source expression.
type The return type of the expression (boolean).

IterateExp

An iterate expression is an expression which evaluates its body expression for each element in the collection
returned by the source expression, and returns a result whose value depends upon the computation.

Associations

source An expression that returns a collection - the body expression is then evaluated for each element in that
collection.

body The expression that is evaluated for each member of the collection returned by the source expression.

iterator The variable that is bound to each element in the source collection whilst evaluating the body expres-
sion.

result The variable that represents the result returned by the evaluation of the iterate expression.

NotExp

A not expression is an expression that evaluates to the logical not of its operand value.
Associations
operand The boolean operand expression.
type The return type of the expression (boolean).

PropertyCallExp

A property call expression is an expression that refers to a property (e.g. an attribute, query or association end) of
a particular source element, and which evaluates to the value of that property.

Associations

source The expression includes some bound variable whose value is used as the context for the referred prop-
erty.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 133

STATIC EXPRESSIONS

referredProperty The property whose value is returned by the property call expression. Properties include
attributes, queries and association ends.

StaticExp

A static expression is an expression that does not change the state of the system (in contrast with an action). All
the expressions described in this chapter are static expressions. Any static expression may be used to form the
basis of a query (see Chapter 14) providing its type matches the query type, and any static expression that returns
a boolean value may form the basis of a constraint (see Chapter 13) or an operation pre-condition or post-condi-
tion (see Chapter 17).

VariableDeclaration
A variable declaration binds a name to a type. Certain expressions, notably iferate expressions, introduce variable
declarations which can be referred to in expressions where the variable is in scope (i.e. expressions lower down in
the expression tree). In addition, every expression has a variable "self" within its scope, which points to the object
whose class ultimately owns the expression - this is introduced by the context of the root expression in an expres-
sion tree (e.g. a constraint, query or operation). It is important to note that a variable declaration is not itself an
expression.

Attributes

varName The name of the variable.

Associations

type The type of the variable.

VariableExp

A variable expression is an expression that contains a bound variable. A variable expression may be a property
call expression or a bound variable itself.

12.2.3 Well-formedness rules

AndExp

[1] The scope of the left hand operand of an and expression must include all the variable declarations within the
scope of the and expression.

context AndExp inv:
self.left.scope -> includesAll (self.scope)

[2] The scope of the right hand operand of an and expression must include all the variable declarations within the
scope of the and expression.

cont ext AndExp inv:
sel f.right.scope -> includesAll (self.scope)

[3] The left hand operand of an and expression must have a boolean return type.

cont ext AndExp inv:
self.left.type.isKi ndOf (Bool ean)

[4] The right hand operand of an and expression must have a boolean return type.

cont ext AndExp i nv:
sel f.right.type.isKi ndOf (Bool ean)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 134

STATIC EXPRESSIONS

BoundVariable
[1] The referred variable declaration of a bound variable must be within scope.

cont ext BoundVariabl e inv:
sel f.scope -> includes(self.referredVari abl e)

[2] The return type of a bound variable must match the type of the referred variable declaration.

cont ext BoundVari abl e inv:
self.type = self.referredVari abl e. type

EqualsExp

[1] The scope of the left hand operand of an equals expression must include all the variable declarations within
the scope of the equals expression.

cont ext Equal sExp inv:
self.left.scope -> includesAll (self.scope)

[2] The scope of the right hand operand of an equals expression must include all the variable declarations within
the scope of the equals expression.

cont ext Equal sExp inv:
sel f.right.scope -> includesAll (self.scope)

[3] The left and right hand operands of an equals expression must match.

cont ext Equal sExp inv:
self.left.type = self.right.type

Expression
[1] An expression cannot have two variable declarations with the same name within its scope.

cont ext Expression inv:
sel f.scope -> forAll (vl |
sel f.scope -> forAll (v2 |
vl <> v2 inplies vl. varNane <> v2.varNane))

GreaterThanExp

[1] The scope of the left hand operand of a greater than expression must include all the variable declarations
within the scope of the greater than expression.

context GreaterThanExp inv:
self.left.scope -> includesAll (self.scope)

[2] The scope of the right hand operand of a greater than expression must include all the variable declarations
within the scope of the greater than expression.

context G eaterThanExp inv:
sel f.right.scope -> includesAll (self.scope)

[3] The left and right hand operands of a greater than expression must match.

context GreaterThanExp inv:
self.left.type = self.right.type

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 135

STATIC EXPRESSIONS

IfExp

[1] The scope of the condition expression of an if expression must include all the variable declarations within the
scope of the if expression.

context |fExp inv:
sel f.condition.scope -> includesAll (self.scope)

[2] The scope of the then expression of an if expression must include all the variable declarations within the

scope of the if expression.
context IfExp inv:
sel f.thenExpression. scope -> includesAll (sel f.scope)

[3] The scope of the else expression of an if expression must include all the variable declarations within the scope

of the if expression.
context |fExp inv:

sel f. el seExpression. scope -> includesAll (sel f.scope)

[4] The condition expression of an if expression must have a boolean return type.
context |fExp inv:

sel f.condition.type.isKi ndO (Bool ean)

context |fExp inv:
self.type =

[5] The return type of an if expression must match the types of both the then and else expressions.

sel f.t henExpressi on.type and
sel f.type = sel f. el seExpressi on.type

IncludesExp
[1] The scope of the source expression of an includes expression must include all the variable declarations within
the scope of the includes expression.

context |ncludesExp inv:
sel f.source. scope -> includesAll (self.scope)
[2] The scope of the element expression of an includes expression must include all the variable declarations
within the scope of the includes expression.

context | ncludesExp inv:
sel f. el ement.scope -> includesAll (self.scope)

[3] The type of the source expression of an includes expression must be a collection type.

context | ncludesExp inv:
sel f.source.type.isKindO (Col |l ecti onType)

[4] The type of the element expression in an includes expression must match the element type of the source col-
lection.

context |ncludesExp inv:
sel f. el ement.type.isKindO (sel f.source.type. el enent Type)

IterateExp

[1] The scope of the source expression of an iterate expression must include all the variable declarations within
the scope of the iterate expression.
context lterateExp inv:

sel f.source. scope -> includesAll (self.scope)

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

136

STATIC EXPRESSIONS

[2] The scope of the body expression of an iferate expression must include all the variable declarations within the
scope of the iferate expression.

context lterateExp inv:
sel f. body. scope -> includesAll (self.scope)

[3] The scope of the body expression of an iterate expression must include the iterator and result variable decla-
rations.

context lterateExp inv:
sel f. body. scope -> includes(self.iterator) and
sel f. body. scope -> includes(self.result)

[4] The type of the source expression of an iferate expression must be a collection type.

context lterateExp inv:
sel f.source. type.isKi ndO (Col | ecti onType)

[5] The type of the iterator variable in an iterate expression must match the element type of the source collection.

context lterateExp inv:
self.iterator.type.isKindO (self.source.type. el ement Type)

[6] The return type of an iterate expression must match the type of the result variable.

context lterateExp inv:
self.type = self.result.type

NotExp

[1] The scope of the operand expression of a not expression must include all the variable declarations within the
scope of the not expression.

cont ext Not Exp inv:
sel f. operand. scope -> includesAll (self.scope)

[2] The operand expression of a not expression must have a boolean return type.

cont ext Not Exp inv:
sel f. operand. type. i sKi ndOf (Bool ean)

PropertyCallExp

[1] The referred property of a property call expression must be one of the member properties of the return type of
the source expression.

context PropertyCall Exp inv:
sel f.source. type. nenberProperty -> includes(self.referredProperty)

[2] The return type of a property call expression must match the type of the referred property.

context PropertyCall Exp inv:
sel f.type = self.referredProperty.type

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 137

STATIC EXPRESSIONS

12.3 SEMANTIC DOMAIN

12.3.1 Derivation

Fig 12-3 on page 138 shows the derivation of the static expressions semantic domain package using the semantic
domain templates described in sections 12.6.1 and 12.6.2.

ExpressionValue ‘ ConcreteExpEval Expression
| ExpEvalCategory OperandValue ConcreteExpEval
. ExpEvalCategory
<Concrete <ExpEval Express,on operand
ExpEval> Category> Evaluation
‘ ‘ <Concrete | <operand>| <EypFval
ExpEval> 1| Category>
env \[/ 1.* value \|/ 1
Variable value Value
Value | | 7T |
1 ! NotExpEval
! StaticExpEval FAr oo om .
3 operand ! GregterThanExpEvaI I
it —— {——| StaticExpEval !
! AndExpEval ! I right |
! StaticExpEval -———{ N
| left | ! IfExpEval !
,,,,,,,,,,,,,,,,, i {——| StaticExpEval !
! NotExpEval | ! AndExpEval | condition I
I P] ! . [ttt |
L StaticExpEval | ! StaticExpEval MiExoEval
. | right I IfExpEval i
! AndExpEval 1 i ———! StaticExpEval !
! StaticExpEval| | | Eg?at!sgxpgva: LthenExpression ____ |
O aticExpEval b——+ ~ __Z T T
i EqualsExpEval] | L left | IfExpEval
! StaticExpEval | SCoToo oot E— StatlcExpEv§l
CooooooooooTT | EqualsExpEval | LelseExpression |
| GreaterThanExpEval | ! StaticExpEval - Fronoooo—oo-
! StaticExpEval | 3 right | | IncludesExpEval i
CIITTooTIIooIooT [— — StaticExpEval !
! IfExpEval | I GreaterThanExpEval ! source |
! i I StaticExpEval [—
‘:::::::S:t’;nilC:E:X:p:E:V:a’lJ i P left | IncludesExpEval !
I IncludesExpEval | Commmmm e {———! StaticExpEval !
! StaticExpEval | i i | element I
L_____Stalickx pEval | StaticExpressions [element |
T MerateBxpEval] | Py
b8 StaticExpEval | SemanticDomain I iitrlggxpEval
| ConstantExpEval| | e ——
| StaticExpEval | - | lterateExpEval i
e StaticExpEval t———! StaticExpEval ;
BoundVariableEval | ! body !
e N AN [I letocd A
! StaticExpEval | N R ——— :
L | PropertyCallExpEval |
i PropertnglIExpEval [Variable ————! VariableExpEval !
I StaticExpEval | ExpEval isource !
N

Bound Property
VariableEval CallExp
referred referred
iterator 1\/ Variable 1|/ Property
Iterate 1 Variable Property
ExpEval 1 Value Evaluation

result

Figure 12-3 Derivation of Static Expressions semantic domain Package

12.3.2 Model

Fig. 12-4 on page 139 shows the stamped out semantic domain of the static expressions package. It defines the
concepts that are necessary to express the meaning of static expressions. A static expression evaluation is one that
does not change the state of the system (as opposed to an action evaluation).

An expression evaluation is an instance of an expression, and has a value and an environment, which consists
of one or more variable values that may be used as the context of any operand sub-expression evaluations. A var-

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 138

STATIC EXPRESSIONS

iable value points to some value which is used as the basis for any variable expression evaluation. Property call
expression evaluations return a property evaluation (which may be a slot, query or link end evaluation) in relation
to a particular source variable value. Each of the other concrete expressions described in section 12.2 have an
equivalent concrete expression evaluation - fuller descriptions for these are given in section 12.2.2 than are given

below.

StaticExpressions::SemanticDomain

Static Expression value
ExpEval Evaluation 1
Constant
ExpEval
env
1 | operand Not referred
ExpEval Bound Variable
i e VariableEval 1
eft
And -
- Variable i
1 | right iterator
ExpEval ExpEval <
! I?ﬁ Equals souree PropertyCall
1 | right ExpEval ExpEval
! Iéﬂ GreaterThan
1 | right ExpEval
referred
1 | condition Property\/ 1
1 | thenExpression If Property
1 | elseExpression ExpEval Evaluation
1 source Includes
1 | element ExpEval
1 source
1 [body lterate
ExpEval
Figure 12-4 Semantic domain for Static Expressions package
AndExpEval

An and expression evaluation is an evaluation of an and expression.

Associations

left The evaluation of the left hand operand.

right The evaluation of the right hand operand.

BoundVariableEval
A bound variable evaluation is an evaluation of a bound variable. It points to a variable value which in turn points

to a value that acts as the reference for a property call expression evaluation.

Associations

referredVariable Points to the variable value that in turns points to the reference value.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

STATIC EXPRESSIONS

ConstantExpEval

A constant expression evaluation is an evaluation of a constant expression. It is a reference to some immutable
value.

EqualsExpEval

An equals expression evaluation is an evaluation of an equals expression.
Associations
left The evaluation of the left hand operand.
right The evaluation of the right hand operand.

ExpressionEvaluation

Expression evaluation is the abstract superclass for all expression evaluations including static expression evalua-
tion and action evaluations (see Chapter 16. An expression evaluation has a value and an environment, which
consists of one or more variable values that may be used as the context of any operand sub-expression evalua-
tions.

Associations
value The value of the expression evaluation.

env The set of variable values that form the environment.

GreaterThanExpEval
A greater than expression evaluation is an evaluation of a greater than expression.
Associations

left The evaluation of the left hand operand.
right The evaluation of the right hand operand.

IfExpEval
An if expression evaluation is an evaluation of in if expression.
Associations

condition The logical expression evaluation that determines whether the value of the then expression (if the
condition is true) or the else expression (if the condition is false) gets returned as the value of the if expression
evaluation.

thenExpression The expression evaluation that is returned by the if expression evaluation if the condition is
true.

elseExpression The expression evaluation that is returned by the if expression evaluation if the condition is
false.

IncludesExpEval
An includes expression evaluation is an evaluation of an includes expression.
Associations
source The expression evaluation that returns a collection that the element is tested against.

element The expression evaluation that is tested to be within the collection returned by the source.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 140

STATIC EXPRESSIONS

IterateExpEval

An iterate expression evaluation is an evaluation of an iterate expression which evaluates its body expression for
each element in the collection returned by the source expression, and returns a result whose value depends upon
the computation.

Associations

source An expression evaluation that returns a collection - there is a body expression evaluation and iterator
variable value for each element in that collection.

body The expression evaluations that are associated with each member of the collection returned by the
source.

iterator The variable values that are bound to each element in the source collection and which are used in the
body expression evaluations.

result The variable value that represents the result of the iterate expression evaluation.

NotExpEval

A not expression evaluation is an evaluation of a not expression.
Associations
operand The evaluation of the operand expression.

PropertyCallExpEval
A property call expression evaluation is an evaluation of a property call expression. It refers to a property evalua-
tion (e.g. a slot, query or link end evaluation).
Associations
source The expression evaluation that includes some bound variable value that is used as the context for the
referred property.

referredProperty The property evaluation that is returned by the property call expression. Property evaluations
include slot values, query evaluations and link end evaluations.

StaticExpEval

A static expression evaluation is an expression evaluation that does not change the state of the system. All
expression evaluations described in this chapter are static expression evaluations. Static expression evaluations
may form the basis of evaluations of queries, constraints and operation pre-conditions and post-conditions.

VariableExpEval

A variable expression evaluation is an evaluation of a variable expression. A variable expression evaluation may
be a property call expression evaluation or a bound variable evaluation.

VariableValue

A variable value is an instance of a variable declaration, and is a reference to some value which provides the con-
text for property call expression evaluations. It is important to note that a variable value is not an expression eval-
uation.

Associations
value The value of the variable.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 141

STATIC EXPRESSIONS

12.3.3 Well-formedness rules

AndExpEval

[1] The environment of the left hand operand of an and expression evaluation must include all the variable values
within the environment of the and expression evaluation.

cont ext AndExpEval inv:
self.left.env -> includesAll (self.env)

[2] The environment of the right hand operand of an and expression evaluation must include all the variable val-
ues within the environment of the and expression evaluation.

cont ext AndExpEval inv:
self.right.env -> includesAll (self.env)

BoundVariableEval
[1] The referred variable value of a bound variable evaluation must be within that evaluation’s environment.

cont ext BoundVari abl eEval inv:
self.env -> includes(self.referredVariable)

[2] The value of a bound variable evaluation must be the same as its referred variable’s value.

cont ext BoundVari abl eEval inv:
self.value = self.referredVari abl e. val ue

EqualsExpEval

[1] The environment of the left hand operand of an equals expression evaluation must include all the variable val-
ues within the environment of the equals expression evaluation.

cont ext Equal sExpEval inv:
self.left.env -> includesAll (self.env)

[2] The environment of the right hand operand of an equals expression evaluation must include all the variable
values within the environment of the equals expression evaluation.

cont ext Equal sExpEval inv:
self.right.env -> includesAll (self.env)

GreaterThanExpEval

[1] The environment of the left hand operand of a greater than expression evaluation must include all the variable
values within the environment of the greater than expression evaluation.

cont ext GreaterThanExpEval inv:
self.left.env -> includesAll (self.env)

[2] The environment of the right hand operand of a greater than expression evaluation must include all the varia-
ble values within the environment of the greater than expression evaluation.

context G eaterThanExpEval inv:
self.right.env -> includesAll (self.env)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 142

STATIC EXPRESSIONS

IfExpEval

[1] The environment of the condition expression evaluation of an if expression evaluation must include all the
variable values within the environment of the if expression evaluation.

context |fExpEval inv:
self.condition.env -> includesAll(self.env)

[2] The environment of the then expression evaluation of an if expression evaluation must include all the variable
values within the environment of the if expression evaluation.

context |fExpEval inv:
sel f.thenExpression.env -> includesAll (sel f.env)

[3] The environment of the else expression evaluation of an if expression evaluation must include all the variable
values within the environment of the if expression evaluation.

context |fExpEval inv:
sel f. el seExpressi on.env -> includesAll (self.env)

IncludesExpEval

[1] The environment of the source expression evaluation of an includes expression evaluation must include all the
variable values within the environment of the includes expression evaluation.

context |ncludesExpEval inv:
sel f.source.env -> includesAll (self.env)

[2] The environment of the element expression evaluation of an includes expression evaluation must include all
the variable values within the environment of the includes expression evaluation.

context | ncludesExpEval inv:
sel f.element.env -> includesAll (self.env)

IterateExpEval

[1] The environment of the source expression evaluation of an iterate expression evaluation must include all the
variable values within the environment of the iterate expression evaluation.

context IterateExpEval inv:
sel f.source.env -> includesAll (self.env)

[2] The environment of the body expression evaluation of an iterate expression evaluation must include all the
variable values within the environment of the iterate expression evaluation.

context |terateExpEval inv:
sel f. body. env -> includesAll (self.env)

[3] The environment of the body expression evaluation of an iterate expression evaluation must include the itera-
tor and result variable values.

context I|terateExpEval inv:
sel f.body. env -> includes(self.iterator) and
sel f. body. env -> includes(self.result)

NotExpEval

[1] The environment of the operand of a not expression evaluation must include all the variable values within the
environment of the not expression evaluation.

cont ext Not ExpEval inv:

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 143

STATIC EXPRESSIONS

sel f. operand. env -> includesAll (self.env)

PropertyCallExpEval

[1] The environment of the source expression evaluation of an property call expression evaluation must include
all the variable values within the environment of the property call expression evaluation.

context PropertyCall ExpEval inv:
sel f.source.env -> includesAll (self.env)

[2] The referred property evaluation of a property call expression evaluation must be one of the owned property
evaluations of the value of the source expression evaluation.

context PropertyCall ExpEval inv:
sel f.source. val ue. ownedPropertyEval -> includes(self.referredProperty)

[3] The value of a property call expression evaluation must be the same as its referred property’s value.

context PropertyCall ExpEval inv:
sel f.value = self.referredProperty. val ue

12.4 SEMANTIC MAPPING

12.4.1 Derivation

Fig 12-5 on page 145 shows the derivation of the static expressions semantic domain package using the semantic
mapping templates described in sections 12.6.1 and 12.6.2. These templates ensure that each expression evalua-
tion in the semantic domain is mapped to the appropriate expression in the abstract syntax, and that operand eval-
uations are mapped to the corresponding operand expressions.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 144

STATIC EXPRESSIONS

ExpressionSemantics [E:foﬁf:;eftééiﬁ *****
! ConcreteExpEval
Expression of Expression
1 Evaluation
of
<ConcreteExp> <Concrete
1 ExpEval>
Variable of .
Decl . VariableValue
eclaration 1

!'IncludesExp |
| IncludesExpEval |

| lterateExp I
| IterateExpEval I

I ConstantExp |
| ConstantExpEval |

I BoundVariablel |
| BoundVariableEval |

| PropertyCallExp |

| PropertyCallExpEval |

StaticExpressions

ExpressionOperand
Semantics | ConcreteExpEval |
loperand_ |
I NoExpEval| |
S operand| | GreaterThanExpEval |
I AndExpEval| | L J
b Lt | [fExpEval :
R AndExpEval | Londion_________ J
I L = ‘;
T EqualsExpEval | i thenExpression |
S ‘;
R EqualsExpEval || LelseExpression !
L rght] includesExpEval |
" GreaterThanExpEval | | L — ;
| lefti | oo oEsSEo ST 1

|
,,,,,,,,,,,,,,,,, a

SemanticDomain

Figure 12-5 Derivation of Static Expressions semantic mapping package

12.4.2 Model

The semantic mappings package for expressions is shown in 12-6 on page 146. It defines the relationship that
holds between expressions and their evaluations. An expression evaluation is an instance of an expression, and
the meaning of an expression is defined by the set of all possible evaluations that can be assigned to the expres-
sion. In addition, a variable value is an instance of a variable declaration (which is not an expression). For an
expression evaluation to be a valid instance of an expression, its value must conform to the type of that expres-
sion, and any operand values must also conform to the operand types in that expression.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

145

STATIC EXPRESSIONS

StaticExpressions::SemanticMapping
SS(ZC :f Ef;?:ﬁivca/ EIIp :) f ExpI éval
o L Verable ndudes 11| ncludes |
foale || jerale
bt L2 e Constant || Contant |
d L2 Exotval Boundveriable |7 | Boundveriable |
Fquale L2 Saale ProperyCall || ProperyGall |

Figure 12-6 Semantic Mapping for the Static Expressions Package

12.4.3 Well-formedness rules

AndExpEval

[1] An and expression evaluation’s left hand operand commutes with the corresponding expression’s left hand
operand.

cont ext AndExpEval inv:
self.left.of = self.of.left

[2] An and expression evaluation’s right hand operand commutes with the corresponding expression’s right hand
operand.

cont ext AndExpEval inv:
self.right.of = self.of.right

BoundVariableEval

[1] A bound variable evaluation’s referred variable value commutes with the corresponding bound variable’s
referred variable declaration.

cont ext BoundVari abl eEval inv:
self.referredVari able.of = self.of.referredVari abl e

EqualsExpEval

[1] An equals expression evaluation’s left hand operand commutes with the corresponding expression’s left hand
operand.

cont ext Equal sExpEval inv:
self.left.of = self.of.left

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 146

STATIC EXPRESSIONS

[2] An equals expression evaluation’s right hand operand commutes with the corresponding expression’s right
hand operand.

cont ext Equal sExpEval inv:
self.right.of = self.of.right

ExpressionEvaluation
[1] The value of an expression evaluation should conform to its expression’s type.

cont ext Expressi onEval uation inv:
sel f.val ue. of . confornsTo(sel f. of.type)

[2] An expression evaluation should have a variable value within its environment for every variable declaration
within the scope of the corresponding expression.

cont ext ExpressionEval uation inv:
sel f.of.scope -> forAl (v |
self.env -> exists(vv | vv.of=v))

[3] For each variable value within the environment of an expression evaluation, there should be a variable decla-
ration within the scope of the corresponding expression.

cont ext ExpressionEval uation inv:
self.env -> forAll (vv |
sel f.of . scope -> exists(v | vv.of=v))

GreaterThanExpEval

[1] A greater than expression evaluation’s left hand operand commutes with the corresponding expression’s left
hand operand.

cont ext G eater ThanExpEval inv:
self.left.of = self.of.left

[2] A greater than expression evaluation’s right hand operand commutes with the corresponding expression’s
right hand operand.

cont ext GreaterThanExpEval inv:
self.right.of = self.of.right

IfExpEval

[1] An if expression evaluation’s condition operand commutes with the corresponding expression’s condition
operand.

context |fExpEval inv:
self.condition.of = self.of.condition

[2] An if expression evaluation’s then operand commutes with the corresponding expression’s then operand.

context |fExpEval inv:
sel f.thenExpressi on. of = self.of.thenExpression

[3] An if expression evaluation’s else operand commutes with the corresponding expression’s else operand.

context |fExpEval inv:
sel f. el seExpression. of = sel f. of. el seExpression

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 147

STATIC EXPRESSIONS

IncludesExpEval

[1] An includes expression evaluation’s source operand commutes with the corresponding expression’s source
operand.

context | ncludesExpEval inv:
sel f.source. of = self.of.source

[2] An includes expression evaluation’s element operand commutes with the corresponding expression’s element
operand.

cont ext I ncludesExpEval inv:
sel f.elenment.of = self.of.elenment

IterateExpEval

[1] An iterate expression evaluation’s source operand commutes with the corresponding expression’s source
operand.

context |terateExpEval inv:
sel f.source. of = self.of.source

[2] An iterate expression evaluation’s body operand commutes with the corresponding expression’s body oper-
and.

context |terateExpEval inv:
sel f. body. of = self. of. body

[3] An iferate expression evaluation’s iterator variable value commutes with the corresponding expression’s iter-
ator variable declaration.

context I|terateExpEval inv:
self.iterator.of = self.of.iterator

[4] An iterate expression evaluation’s result variable value commutes with the corresponding expression’s result
variable declaration.

context |terateExpEval inv:
self.result.of = self.of.result

NotExpEval

[1] A not expression evaluation’s operand commutes with the corresponding expression’s operand.

cont ext Not ExpEval inv:
sel f. operand. of = self.of.operand

PropertyCallExpEval

[1] A property call expression evaluation’s source operand commutes with the corresponding expression’s source
operand.

context PropertyCall ExpEval inv:
sel f.source. of = self.of.source

[2] A property call expression evaluation’s referred property evaluation commutes with the corresponding
expression’s referred property.

context PropertyCall ExpEval inv:
self.referredProperty. of = self.of.referredProperty

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 148

STATIC EXPRESSIONS

VariableValue
[1] The value of a variable value should conform to its variable declaration’s type.

context Variabl eVal ue inv:
sel f.val ue. of . confornsTo(sel f.of.type)

12.5 EXAMPLE SNAPSHOTS

Figure 12-8 on page 150 shows a partial snaphot of the constraint shown in figure 12-7 on page 149. This snap-
shot is concerned largely with showing the relationship between expressions (and their evaluations) in an expres-
sion tree, how the variables within scope and environment are propagated. As a result, the constraint itself is
omitted for brevity - an alternative partial view of the same snapshot can be found in the constraints chapter
(Chapter 13), where the relationship between a constraint and its body expression is depicted.

A

x : Integer

context A inv:
self.x=10

Figure 12-7 Example class and constraint

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 149

STATIC EXPRESSIONS

A: Class //—\
type -:Object value
name = "A" of
member member owned
Property Attribute owned Property
Slot Eval
referred | x : Attribute fof////\ referred
Property -Slot Property
name = "x"
of
. :EqualsExp
‘EqualsExp 1a's
Eval
scope ﬁ
X ype value
:Variable env
Declaration | gcopd : Primitive :Primiti
Leclaration pe LPrimitive of :Primitive)
varName = Value env Variable refdrred
name = "Boolean" Value Varjable
of env
env
scope
left right right left
:Property : ConstantExp | :Constant PropertyCall
CallExp o ExpEval ExpEval
name =
source type type source
vp value value
:Bound - Primiti -Primiti :Bound
o type : Primitive | :Primitive value -2ound
ariable NG Value VariableEval
\/ name = "Integer" _/
value

type

Figure 12-8 Snapshot of Static Expression semantic mapping package

12.6 TEMPLATES

This section introduces a set of generic templates which capture the essence of expressions, and can be used to
stamp out a family of expression languages. These were used in Sections 12.2 to 12.4 to stamp out the core of
OCL 2.0.

12.6.1 Expression

Expressions have a type and a scope (a set of variable declarations), and their evaluations have a value and an
environment (a set of variable values), which provides the context for the evaluation.

Figure 12-9 on page 151 shows the abstract syntax for expressions. An expression has a type - this may be fur-
ther constrained for a stamped out concrete expression (for example, an and expression has a boolean type). An
expression also has a scope, which consists of one or more variable declarations - these declare the variables that
may be referred to in any sub-expressions of the originating expression. A variable declaration also has a type,

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 150

STATIC EXPRESSIONS

and a name by which it is referred. Expressions are grouped into categories (static expressions and actions), and
each concrete expression belongs to a particular category.

Expression ConcreteExp |
ExpCategory
<Concrete .
<EXx > Expression
Exp> pCategory: pressio
scope 1.%
type \|/ 1
Variable type i
Declaration Classifier
varName:String !

Figure 12-9 Expression (abstract syntax) template

An expression cannot have two variable declarations with the same name within its scope. This is expressed
using the following constraint:

cont ext Expression inv:
sel f.scope -> forAll (vl |
sel f.scope -> forAll (v2 |
vl <> v2 inplies vl.varNane <> v2.varNange))

Figure 12-10 on page 151 shows the semantic domain for expressions. An expression evaluation has a value
(for example, an and expression evaluation must return a Boolean value), and is bound to a set of variable values,
which represents the environment or context for the evaluation. A variable value is in effect a pointer to a value.
Expression evaluations are grouped into categories (static expression evaluations and action evaluations), and
each concrete expression evaluation belongs to a particular category.

ExpressionValue ConcreteExpEval

ExpEvalCategory

<Concrete <ExpEval Expression
ExpEval> Category> Evaluation

Figure 12-10 Expression value (semantic domain) template

Figure 12-11 on page 152 shows the semantic mapping for expressions, which associates expression evalua-
tions with expressions, and variable values with variable declarations. The meaning of an expression is defined
by the set of valid evaluations, and the meaning of a variable declaration is defined by the set of valid variable
values. It should be noted that this template is stamped out from the basic semantics template, but its derivation is
not explicitly shown here.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 151

STATIC EXPRESSIONS

! ConcreteExp

|
|
| ConcreteExpEval |

ExpressionSemantics

. of Expression
Expression .
1 Evaluation
of <Concrete
<ConcreteExp>
1 ExpEval>
Variable of .
. VariableValue
Declaration 1

Figure 12-11 FExpression semantics template

The value of an expression evaluation should be valid in view of its type:

cont ext ExpressionEval uation inv:
sel f.val ue. of . confornsTo(sel f.of.type)

An expression evaluation should have a variable value within its environment for every variable declaration
within the scope of its corresponding expression:

cont ext Expressi onEval uation inv:
sel f.of.scope -> forAll (v |
self.env -> exists(vv | vv.of=v))

For each variable value within the environment of an expression evaluation, there should be a variable declara-
tion within the scope of its corresponding expression:

cont ext Expressi onEval uation inv:
self.env -> forAll(vv |
sel f.of . scope -> exists(v | vv.of=v))

The value of a variable value should conform to its variable declaration’s type:

context Variabl eVal ue inv:
sel f.val ue. of . confornsTo(sel f.of.type)

12.6.2 Expression operands

Expressions have operands upon which they act, which are themselves expressions. The type of those operand
expressions must sometimes be constrained (for example the operands of a logical expression such as and or not
must have a boolean return type). The variable declarations that are within the scope of an expression gets propa-
gated down to its operand (sub-)expressions, and similarly for the variable values within the environment of an
expression evaluation. In this section, templates are introduced that allow one or more operands to be added to
expressions, along with corresponding semantic domain and semantic mapping templates. Each template adds a
single operand - the templates can be stamped out multiple times for multiple operands.

Figure 12-12 on page 153 shows the two abstract syntax templates for expression operands. The upper tem-
plate is a basic operand template, which adds to an expression a single operand, which is itself an expression. The
lower template augments the first by adding a constraint on the return type of the operand.

It should be noted that semantic domain and semantic mapping templates for typed expression operands are
not required, since expression values are already checked against type in the expression operand semantics tem-
plate (see below).

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 152

STATIC EXPRESSIONS

ExpressionOperand ConcreteExp
ExpCategory
operand

<Concrete <operand> <Exp

Exp> 1| Category>
I <ConcreteExp> }
| <ExpCategory> ————-
| <operand>
. ConcreteEx
TypedExpressionOperand ExpCategors
operand
operandType
<Concrete <operand> <Exp
Exp> 1| Category>

Figure 12-12 Expression operand (abstract syntax) templates

A crucial aspect of expressions is that their scope is propagated down to their operand sub-expressions; i.e.
whatever variable declarations are within the scope of an expression are also within the scope of that expression’s
operand sub-expressions. This is expressed using the following constraint:

cont ext <Concret eExp> inv:
sel f . <operand>. scope -> includesAll (sel f.scope)

In addition, within the typed expression operand template, an operand’s type should match the type specified
in the parameters:

cont ext <Concret eExp> inv:
sel f. <operand>. type. i sKi ndOf (<oper andType>)

Figure 12-13 on page 153 shows the semantic domain template for expression operands. An expression evalu-
ation has an operand, which is itself an expression evaluation.

ExpressionOperandValue ConcreteExpEval
ExpEvalCategory
operand

<Concrete <operand>| <FxpFyal
ExpEval> 1| Category>

Figure 12-13 Expression operand value (semantic domain) template
As with expression scope, the environment of an expression evaluation is propagated down to its operand sub-
expression evaluations:

cont ext <Concret eExpEval > inv:
sel f. <operand>. env -> includesAll (self.env)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 153

STATIC EXPRESSIONS

Figure 12-14 on page 154 shows the semantic mapping template for expression operands. The template con-
tains no classes, as it simply adds a constraint to the model that would be stamped out from the abstract syntax
and semantic domain templates.

ExpressionOperand

Semantics | [GoncreteExpEval

| operand [

Figure 12-14 Expression operand semantics template

An expression evaluation’s operands commute with the corresponding expression’s operands:

cont ext <Concr et eExpEval > i nv:
sel f. <operand>. of = self. of. <operand>

12.6.3 Expression context

Expressions cannot exist in isolation - they must always relate to some context, such as a class constraint or
query, or an operation pre- or post-condition. It is the responsibility of the expression context to introduce one or
more variable declarations (such as "self" or any parameters) to the scope of their root expression. These variable
declarations are then propagated down the expression hierarchy as described in expression operands section (sec-
tion 12.6.2). Similarly, instances of these expression context elements introduce corresponding variable values to
the scope of their root expression evaluation. These templates introduce a single variable to the scope; for multi-
ple variables, the templates can be stamped out more than once.

The templates in this section are not actually used to stamp out expressions themselves, and hence they are not
used in this chapter. Instead they are used to stamp out any context for expressions such are constraints, queries
and operations.

Figure 12-15 on page 154 shows the abstract syntax template for an expression context.

ExpContext
ExpressionContext ExpCategory
rootExp
varName
varType

<rootExp> <Exp
Category>

<ExpContext>

-

Figure 12-15 Expression Context (Abstract Syntax) Template

An expression context introduces one or more variable declarations into the scope of its root expression using
the following constraint:

cont ext <ExpContext> inv:
sel f. <root Exp>. scope -> exists(v | v.varNanme=<varNane> and v.type=<var Type>)

Figure 12-16 on page 155 shows the semantic domain template for an expression context.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 154

STATIC EXPRESSIONS

ExpContextValue
ExpEvalCategory
rootExp

varValue

ExpressionContextValue

<ExpContext | <rootExp> | <FypFval
Eval> Category>

N

Figure 12-16 Expression context (semantic domain) template
An expression context evaluation introduces one or more variable values into the scope of its root expression
evaluation:
cont ext <ExpCont ext Eval > inv:
sel f. <root Exp>. scope -> exists(v | v.val ue=<varVal ue>)

No semantic mapping template is required for expression context, as variable values and variable declarations
are already matched up via the expression semantic mapping constraints in section 12.6.1.

12.7 CHANGES FROM UML 1.4

UML 1.4 defines expressions as strings. This submission aims to provide a fuller definition that is com-
patible with the OCL 2.0 submission.

12.8 RELATIONSHIP TO OCL 2.0 SUBMISSION

e The goal of this submission has not been to match the inheritance hierarchy of the OCL 2.0 submission
exactly (there is no loop expression for example), but the flattened OCL 2.0 model, as templates are used in
place of abstract classes unless polymorphism is required.

* There are no separate property call expressions for individual properties (there is no attribute call expression
for example) - instead the abstract property class is used as a plug-in point.

* There is only one generic iterate expression rather than the iterate expression and iterator expression for sim-
plicity in the OCL 2.0 submission.

* Namespaces (a key part of the OCL 2.0 semantic domain) are not covered in this chapter as they are described
in Chapter 7. Similarly action expressions are covered in Chapter 16.

e A variable declaration is not an expression, as this would mean it could be substituted anywhere an expression
is expected - only certain expressions (such as iterator expressions) can introduce variable declarations.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 155

Chapter 13

Constraints

This chapter describes the definition of constraints on classes. A constraint is an invariant that must hold true for
all instances (values) of a class. The properties of a constraint are described by an expression that is evaluated in

the context of each instance.

13.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core

S

DataTypes Associations Classes
— | —
Packages Expressions
Templates Behaviour Constraints Queries

Actions

— 1

Operations

— 1

Messages

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

156

CONSTRAINTS

13.1.1 Example

Figure 13-1 on page 157 shows an example of a simple constraint on a class A. It states that the attribute x in A

must always be equal to 10 for all instances of A.

"x Equals 10" A
context A inv.
self.x = 10 X : Integer

Figure 13-1 An example of a constraint on a class

13.2 ABSTRACT SYNTAX

13.2.1 Derivation

Figure 13-2 on page 157 describes how the constraints abstract syntax package is derived from the StructuralFea-
tureClassifier and ExpressionContext templates. A constraint is a structural feature. A constraint is associated

with a static expression and has a type (which should be a boolean).

StructuralFeatureClassifier | Classifier
StructuralFeature
Type
type
<Type>
1

* member<StructuralFeature> <Structural
. Feature>

1
owned<StructuralFeature> | oo . Name *

<Classifier>

owning<Classifier>

* inherited<StructuralFeature>

*

general T 19 specific redefined<StructuralFeature>

specialization| * * |generalization

<Classifier>
Generalization

- ass_i Constraints |

| Constraint
L Boolean |

AbstractSyntax |

ExpContext
ExpressionContext [|ExpCategory
rootExp
varName
varType
<ExpContext>
1 <rootExp>
<Exp
Category>
\\\

™| constraint
| StaticExp

expression

"self"

IEzlf.owningClass

Figure 13-2 Derivation of Constraints abstract syntax package.

- - — T
I
I
|

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

157

CONSTRAINTS

13.2.2 Model

Figure 13-3 on page 158 shows the abstract syntax for the constraints package. Classes are namespaces for con-
straints. Constraints have a name, an expression and a type. A generalisation relationship results in all constraints
of the parent class being inherited by the child class (unless they are redefined).

Constraints::AbstractSyntax
Class ' memberConstraint H
Constraint
isAbstract:Boolean *
1 ownedConstraint |name : Name *
= type : Boolean
owningClass *
* inheritedConstraint
Y R N -
specific general
redefinedConstraint
generalization | * * | specialization 1 expression
Class Static
Generalization Exp

Figure 13-3 Abstract syntax for the Constraints package.

Class

A class is a namespace for its constraints.
Attributes
isAbstract Describes whether or not the class is abstract.
Associations
generalization The generalizations of the class.
inheritedConstraint The constraints inherited by the class.
memberConstraint The set of all constraints in the namespace of the class.
ownedConstraint The constraints owned by the class.
specializations The specialisations of the class.

Constraint
A constraint is an invariant property of a class that holds true for all values of the class. A constraint has an static
expression that describes the properties of the constraint.

Attributes

name The name of the constraint.

Associations

expression The expression that describes the properties of the constraint.

owningClass The class that owns the constraint.

redefinedConstraint The constraints that have been redefined by the constraint.

type The type of the constraint.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 158

CONSTRAINTS

ClassGeneralization

A generalization relationship between classes.
Associations
general The class that is the more general (parent) class in the relationship.

specific The class that is the more specific (child) class in the relationship.

StaticExpression
An abstract static expression. This class is specialised in Chapter 12 with concrete expressions.

13.2.3 Well-formedness Rules

Class
[1] The members of a class include its owned and inherited constraints.

context O ass inv:
sel f. menber Constrai nt->i ncl udesAl | (sel f. ownedConstrai nt ->
uni on(sel f.inheritedConstraint))

[2] Constraints cannot be owned and inherited.

context Cass inv:
sel f. ownedConstrai nt->i ntersection(self.inheritedConstraint) -> isEnpty

[3] A class cannot have two constraints with the same name.

context Cass inv:
sel f. menber Constrai nt->forAll (el
sel f. menber Constrai nt->forAll (e2]
el <> e2 inplies el. nane <> e2.nane))

[4] The inherited members of a class are the constraints of its parents classes that aren’t redefined.

context C ass inv:
self.inheritedConstraint = self.general El ements()->iterate(p s = Set{} |
s->uni on(p. menber Constraint->reject(c |
sel f. menber Constraint -> exists(c' |
c' . redefinedConstraint->includes(c)))))

[5] A class’s constraints may only redefine its parent classes constraints.

context Cl ass inv:
sel f. menberConstraint -> forAl (a |
sel f.general El ements()-> collect(g | g.nmenberConstraint) ->
i ncl udesAl | (a. redefinedConstraint))

Constraint
[1] A constraint introduces the variable declaration "self" into its scope.

context Constraint inv:
sel f. expression.scope -> exists(v | v.varNane="self" and
v.type=sel f. owni ngd ass)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 159

CONSTRAINTS

13.2.4 Operations

Class
[1] Looks up a constraint in a class when given a name.

context O ass::|ookupConstraintforNanme(x : Nane): Constraint
sel f. menber Constraint->select(e|] e.name = x).sel ectEl enment ()

[2] Looks up a constraint’s name when given the constraint.

context O ass:: | ookupNanmeFor Constraint(x : Constraint): Nane
sel f. menber Constrai nt->select(el]e = x).sel ect El enent (). nane

13.3 SEMANTIC DOMAIN

13.3.1 Derivation

Figure 13-4 on page 160 shows how the Constraints semantic domain package is derived from the StructuralFea-
tureClasifierValue and ExpressionContextValue templates. A constraint evaluation is structural feature value and
has an expression evaluation that is evaluated in the context of its owning object.

T T T T — — — - ExpContextValue 1
StructuralFeatureClassifierValue | [Classifiervalue | |ExpressionContextValue | ExpEvalCategor |
{ StructuralFeatureValue | gory
[Value | rootExp |
T = — — — varValue |
<Value> —— — 7 — —
value <Exg$aoI:text
1 <rootExp>
<Classifier | owning<ClassifierValue> * <Structural <ExpEval
Value> 'i/ee;turf Category>
owned<StructuralFeatureValue> alue
r Objectl’ """"" Constraints | \\\\\\\ ‘| ConstraintEvaluation
| ConstraintEvaluation |StaticExpVEva|
_ Value SemanticDomain | expreval |

| self.owningObject

Figure 13-4 Derivation of Constraints semantic domain package

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 160

CONSTRAINTS

13.3.2 Model

Figure 13-5 on page 161 shows the semantic domain of the constraints package. A constraint evaluation
describes the result of evaluating a static expression. The result must be true in the context of the constraint eval-
uation’s owning object (the object that is bound to the variable "self™).

Constraints::SemanticDomain

value

Value
ZF 1
ownedConstrain{
; . Evaluation Constraint
Object @ :
)) Evaluation
owningObject *
expressionEvaluation 1
StaticExp
Evaluation

Figure 13-5 Semantic domain for the Constraints package

ConstraintEvaluation

Constraint evaluations describe the result of evaluating an expression belonging to a constraint.
Associations
expressionEvaluation A constraint’s expression evaluation.
owningObject The object that is the context of the constraint evaluation.

value The result of the constraint evaluation.

13.3.3 Well-formedness Rules

ConstraintEvaluation
[1] A constraint evaluation introduces the value of its context into the environment of its expression evaluation.

cont ext Constraint Eval uation inv:
sel f. expressi onEval uation.env -> exists(v |
v. val ue=sel f. owni ngQbj ect)

[2] A constraint evaluation’s value should be the same as its expression evaluation’s value.

cont ext Constraint Eval uation inv:
sel f.val ue = sel f.expressi onEval uati on. val ue

[3] A constraint evaluation’s value should evaluate to true.

cont ext Constraint Eval uation inv:
sel f.value = true

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 161

CONSTRAINTS

13.4 SEMANTIC MAPPING

13.4.1 Derivation

Figure 13-6 on page 162 illustrates the derivation of the Constraints semantic mapping package using the Struc-
turalFeatureClassifierSemantics template.

StructuralFeatureClassifierSemantics Classifier
StructuralFeature

ClassifierValue
StructuralFeatureValue

<Classifier
Value>

<Classifier>

of

1 <Structural
Feature
of Value>

<Structural
Feature>

A Class

Constraint

Object
ConstraintEvaluation

Constraints ‘

SemanticMapping ‘

Figure 13-6 Derivation of Constraints semantic mapping package

13.4.2 Model

The semantic mapping for the Constraints package is shown in figure 13-7 on page 162. An expression evalua-
tion is a value of an expression and must contain a variable value that binds the variable "self". An object must
contain a constraint evaluation for each of its class’s constraints and vice versa.

Constraints::SemanticMapping

of

Class Object

of Constraint

Evaluation

Constraint

Figure 13-7 Semantic mapping for Constraints package

ConstraintEvaluation

Associations
of The constraint of which the constraint evaluation is a value.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 162

CONSTRAINTS

13.4.3 Well-formedness rules

ConstraintEvaluation
[1] A constraint evaluation will bind the variable value "self" to its owning object.

cont ext Constrai nt Eval uati on inv:
sel f. expressi onEval uation.env -> forAll (v |
v. of . varNanme="sel f" inplies v.val ue=sel f. owni nglbj ect)

[2] An expression evaluation’s expression commutes with its constraint’s expression.

cont ext Constrai nt Eval uation inv:
sel f. expressi onEval uati on. of = sel f. of.expression

[3] The value of a constraint evaluation should be a value of the type that conforms to its constraint’s type.

cont ext Constraint Eval uation inv:
sel f.val ue. of . confornsTo(sel f.of.type)

Object
[1] An object should contain a constraint evaluation for all constraints in the object’s class’s namespace.

context bject inv:
sel f. of . menber Constraint->forAll (c |
sel f. ownedConst rai nt Eval uati on->exi sts(d | d.of = ¢))

[2] For each constraint evaluation owned by an object there should be an constraint of the object’s class’s name-
space that the constraint evaluation is a value of.

context bject inv:
sel f. ownedConstrai nt Eval uati on->forAll (c |
sel f. of . menber Constrai nt->exists(d | c.of = d))

13.5 EXAMPLE SNAPSHOTS

Figure 13-9 on page 164 shows a partial snapshot of the evaluation of the constraint shown in figure 13-8 on
page 163. The complete evaluation of the expression is omitted for brevity. A constraint is satisfied if it evaluates
to true in the context of an instance of its class. Note how the scope of the equals evaluation expression binds the
constrained object to the variable "self".

A

x : Integer

"x Equals 10"
context A inv:
self.x = 10

Figure 13-8 Example class and constraint

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 163

CONSTRAINTS

of

type A :Class |

:Object

name = "A"
owningClass owningObject
member owned owned
Constraint Constraint ConstraintEvaluatigh
: Constraint Mf—\ :Constraint
Evaluation
name =
"xEquals10"
expression
expression Evaluation
of
:EqualsExp
:EqualsExp
Eval
scope
type env
:Variable
Declaration +Primitive | :Primitive Variable
varName = "self" name = "Boolean” \\/ Value Value

of

Figure 13-9 Snapshot of Constraints semantic mapping package

13.6 CHANGES TO UML 1.4

value

In UML 1.4, constraint is a concrete class that can be applied to any model element. The machinery involved in
evaluating a constraint for any model element is unacceptably vague in UML 1.4 given the importance of con-
straints in the definition of UML itself. In this submission, templates for defining and evaluating expressions can
be used to generate context specific constraints on any type of element. However, class constraints are considered
sufficient for the infrastructure submission due to the fact that they are the most widely used constraint in UML.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

164

Chapter 14
Queries

This chapter describes the definition of queries. A query is a static operation that returns a result in the context of
an instance of a class. The properties of a query are described by an expression.

14.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core ‘
DataTypes Associations Classes
— | —
Packages Expressions
Templates Behaviour Constraints Queries
Actions
— 1
Operations
1
Messages

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 165

QUERIES

14.1.1 Example
Figure 14-1 on page 166 shows an example of a simple query on a class A. It returns the value of the attribute x
plus the value of the passed parameter variable y.

A

X : Integer

context A::getX+Y(y:Integer):Integer
selfx +y

Figure 14-1 An example of a query on a class

14.2 ABSTRACT SYNTAX

Figure 14-2 on page 166 describes how the queries abstract syntax package is derived from the StructuralFeature-
Classifier, ExpressionContext and Parameterized templates. A query is a structural feature. A query is also a
parameterized element and is associated with a static expression.

14.2.1 Derivation

ExpContext
StructuralF eatureClassifier ‘ Classifier ExpressionContext ExpCategory
StructuralFeature [rootExp
type Type varName
<Type> varType
1 <ExpContext>
member<StructualFeature>| <Structural
Feature>
. 1 owned<StructualFeature> name : Name 1 <rootExp>
<Classifier>
owning<Classifier> <Exp
inherited<StructualFeature> Category>
general 11 specific redefined<Feature> *
specialization| * * [generalization
<Classifier>
Generalization
[Gess ——__ _
‘ Query ‘ Query ‘
Classiﬁer‘ StaticExp
Queries ‘ expression
‘ "self"
ﬂe\f.owningClass ‘
AbstractSyntax ‘ - T
memberProperty . —_———— — —
Property Parameterized ParameterizedElement |
ParameterType
erametervee |
<Parameterized
. Element>
owning
Query Class <Parameterized 1
Element>
ownedParameter [= memberParameter|
— ‘ Parameter
Queryl |
Class\ﬁer‘
I 1 J/ type
<Parameter

Type>

Figure 14-2 Derivation of Queries abstract syntax package.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

166

QUERIES

14.2.2 Model

Figure 14-3 on page 167 shows the abstract syntax for the queries package. Classes are namespaces for queries.
Queries have a name, a type, an expression and a set of parameters. A generalisation relationship results in all
queries of the parent class being inherited by the child class (unless they are redefined).

Queries::AbstractSyntax

Parameter ., ownedParameter
type \|/ 1 name : Name memberParameter
type *

Classifier

1
Zr memberProperty Property | <l—

*

* 1 owningQuery

Class memberQue
v Query
isAbstract:Boolean .
1 ownedQuery name : Name
owningClass *
inheritedQuery
) 11 /§ *
specific general
redefinedQuery
generalization | = * | specialization 1 expression
Class Static
Generalization Exp

Figure 14-3 Abstract syntax for the Queries package.

Class

A class is a namespace for its queries.
Attributes
isAbstract Describes whether or not the class is abstract.
Associations
generalization The generalizations of the class.
inheritedQuery The queries inherited by the class.
memberQuery The set of all queries in the namespace of the class.
ownedQuery The queries owned by the class.
specialization The specializations of the class.

memberProperty The properties that are a member of the class.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 167

QUERIES

Query

A query is a static operation that returns a value in the context of an instance of a class. A query has a static
expression that describes the result of the query. A query is a property, and can therefore be accessed through a
property call expression (see Chapter 12).

Attributes

name The name of the query.

Associations

expression The expression that describes the result of the query.
memberParameter The parameters in the namespace of the query.
ownedParameter The parameters owned by the query.
owningClass The class that owns the query.

redefinedQuery The queries that have been redefined by the query.
type The return type of the query.

ClassGeneralization

A generalization relationship between classes.
Associations
general The class that is the more general (parent) class in the relationship.
specific The class that is the more specific (child) class in the relationship.

StaticExpression
An abstract static expression. This class is specialised in Chapter 12 with concrete expressions.

14.2.3 Well-formedness Rules

Class

[1] The member queries of a class include its owned and inherited queries.

context C ass inv:
sel f. menber Query->i ncl udesAl | (sel f. ownedQuery ->
uni on(sel f.inheritedQuery))

[2] Queries cannot be owned and inherited.

context C ass inv:
sel f. ownedQuery->intersection(self.inheritedQuery) -> isEnpty

[3] A class cannot have two queries with the same name.

context C ass inv:
sel f. menber Query->forAll (el
sel f. menber Query->forAll (e2|
el <> e2 inplies el.nane <> e2.nane))

[4] The inherited members of a class are the queries of its parents classes that are not redefined.

context O ass inv:
sel f.inheritedQuery = self.general El enents()->iterate(p s = Set{} |

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 168

QUERIES

s->uni on(p. menber Query->reject(c |
sel f. menber Query -> exists(c' |
c' . redefinedQuery->i ncludes(c)))))

[5] A class’s queries may only redefine its parent classes queries.

context C ass inv:
sel f. menber Query -> forAll (a |
sel f.general El ements()-> collect(g | g.menberQery) ->
i ncl udesAl | (a. redefi nedQuery))

[6] A class’s member properties include its member queries.

context C ass inv:
sel f. menber Property -> includesAll (nenber Query)

Query
[1] A query’s type must conform to the type of its redefined queries.

context Query inv:
sel f.redefinedQuery->forA |l (f |
sel f.type.conformsTo(f.type))

[2] The members of a query include its owned parameters

context Query inv:
sel f. menber Par amet er - >i ncl udesAl | (sel f. ownedPar anet er)

[3] A query cannot have two parameters with the same name.

context Query inv:
sel f. menber Paramet er->for Al | (el]
sel f. menber Paramet er->for Al | (e2]
el <> e2 inplies el. name <> e2. nane))

[4] A query introduces the variable declaration "self" into its scope.

context Query inv:
sel f. expression.scope -> exists(v | v.varNane="self" and
v.type=sel f. owni ngd ass)

[5] A query introduces variable declarations for each of its parameters into its scope.

context Query inv:
sel f.paraneter -> forAll(p |
sel f. expression.scope -> exists(v | v.varNane=p. nane and

v.type=p.type))

14.2.4 Operations

Class
[1] Looks up a query in a class when given a name.

context C ass:: | ookupQueryforName(x : Nane): Query
sel f. menber Query->sel ect(e| e.nane = x).sel ect El enent ()

[2] Looks up a query’s name when given the query.

context C ass:: | ookupNarmeFor Query(x : Query): Nane

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 169

QUERIES

sel f. menber Query->select(ele = x).sel ectEl enment().nane

Query
[1] Looks up a parameter in a query when given a name.

context Query:: | ookupParaneterforNane(x : Nane): Paraneter
sel f. menber Par anmet er - >sel ect (e|] e.name = x). sel ect El enent ()

[2] Looks up a parameter’s name when given the parameter.

context Query:: | ookupNanmeForParaneter(x : Parameter): Nanme
sel f. menber Par anmet er- >sel ect (el e = x).sel ectEl enent().nane

14.3 SEMANTIC DOMAIN

14.3.1 Derivation

Figure 14-4 on page 170 describes how the Queries semantic domain package is derived from the Expression-
ContextValue template. A query evaluation is an expression evaluation that is evaluated in the context of an
object.

ExpressionContextValue || ExpContextValue P terizedVal -_—————
ExpEvalCategory arameterize alue | ParameterizedElementValue I_
rootExp lvalue
varvalue <Parameterized |'— — — — — — — -

ElementValue>
<ExpContext
Eval> owning
<Parameterized 1
ElementValue>
1 <rootExp>
ownedParameterValue *
<ExpEval
1
Category>
gory ParameterValue <Value>
value
- — —
| QueryEvaluation - - - -
StaticExpVEval QueryEvaluation |
exprEval |Va|ue
self.contextJ Constraints | [_|

SemanticDomain |

Propen‘y ownedPropertyEval

Evaluation .

Query ownedQueryEval 1

Object

Evaluation N context

Figure 14-4 Derivation of Queries semantic domain package

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 170

QUERIES

14.3.2 Model

Figure 14-5 on page 171 shows the semantic domain of the queries package. A query evaluation describes the
result of evaluating a static expression. The result is calculated in the context of the query evaluation’s context
(the object that is bound to the variable "self") and its bound parameter values.

Constraints::SemanticDomain ‘

ownedPropertyEval i
> PropertyEvaluation
1 ownedQueryEval Quel *
Object Evaluart)i/on
context owning
QueryEvaluation
expressionEvaluation 1 ownedParameterValue 1
Stat/cE?(p ParameterValue
Evaluation
value ‘
Value

Figure 14-5 Semantic domain for the Queries package

QueryEvaluation

Query evaluations describe the result of evaluating an expression belonging to a query. A query evaluation is a
property evaluation, which means it can be referenced through a property call evaluation (see Chapter 12).

Associations

context The object that is the context of the query evaluation.

expressionEvaluation A query’s expression evaluation.

ownedParameterValue The parameter values owned by the query evaluation.

Object

Associations

ownedPropertyEval The property evaluations owned by the object.

ownedQueryEval The query evaluations owned by the object.

ParameterValue
Associations

owningQueryEvaluation The query evaluation owning the parameter.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002 171

QUERIES

14.3.3 Well-formedness Rules

QueryEvaluation
[1] A query evaluation introduces the value of its context into the environment of its expression evaluation.

cont ext QueryEval uation inv:
sel f. expressi onEval uati on.env -> exists(v |
v. val ue=sel f. cont ext)

[2] A query evaluation introduces the value of its parameters into the environment of its expression evaluation.

cont ext QueryEval uation inv:
sel f. ownedParaneterValue -> forAll (p |
sel f. expressi onEval uati on. scope -> exists(v |
v. val ue=p. val ue))

14.4 SEMANTIC MAPPING

14.4.1 Derivation

Figure 14-6 on page 172 illustrates the derivation of the Queries semantic mapping package using the Semantics
template. An expression evaluation is an instance of an expression and must contain a variable value that binds
the variable "self".

l <ParameterizedElement>

Semantics Element ParameterizedSemantics | <ParameterType>
| Value <ParameterizedElementValue>
—_ |<Va|ue>
g S S —
. Of .
of <Parameterized <Parameterized
<Element> <Value> Element> ElementValue>
1 1
of
Parameter ParameterValue
1
. D
| Query
QueryEvalvaton! —™m— /™ U~a
_——— Queries | { Query 1
| Classifier |

SemanticMapping |

QueryEvaluation |
|Va|ue

Figure 14-6 Derivation of Queries semantic mapping package

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

172

QUERIES

14.4.2 Model

The semantic mapping for the Queries package is shown in figure 14-7 on page 173. A query evaluation is a
value of a query. A parameter value is a value of a parameter.

Queries::SemanticMapping

of
Que
Query ry
1 Evaluation
of
Parameter
Parameter
1 Value

Figure 14-7 Semantic mapping for Queries package

QueryEvaluation
Associations
of The query of which the query evaluation is a value.

ParameterValue
Associations
of The parameter of which the parameter value is a value.

14.4.3 Well-formedness rules

Object

[1] For each property evaluation owned by an object there should be a property of the object’s class’s namespace
that the property is a value of.

context bject inv:
sel f. ownedPropertyEval uati on->forAl |l (pv |
sel f. of . menber Property->exists(p | pv.of = p))

QueryEvaluation
[1] Ensures that the variable value bound to self is the context of the query evaluation.

cont ext QueryEval uation inv:
sel f. expressi onEval uation.env -> forAll (v |
v. of . var Nanme="sel f" inplies v.val ue=sel f.context)

[2] Ensures that the variables values bound to parameter names are the parameter values of the query evaluation.

cont ext QueryEval uation inv:
sel f. paraneterValue -> forAl (p |
sel f. expressi onEval uation.env -> forAll (v |
v. of . var Nane=p. of . nanme i nplies v.val ue=p. val ue)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 173

QUERIES

[3] The query evaluation’s expression evaluation commutes with its query’s expression.

cont ext QueryEval uation inv:
sel f. expressi onEval uati on. of = sel f.of.expression
[4] A query evaluation should contain a parameter value for all parameter’s in the query evaluation’s query’s
namespace.
context QueryEval uation inv:
sel f. of . menber Paraneter->forAll (c |
sel f. ownedPar anet er Val ue- >exi sts(d | d.of = ¢))
[5] For each parameter value owned by a query evaluation there should be a parameter of the query evaluation’s
query’s namespace that the parameterized element value is a value of.

cont ext QueryEval uation inv:
sel f. ownedPar anet er Val ue->forAl |l (c |
sel f. of . menber Paranet er->exi sts(d | c.of = d))

14.5 EXAMPLE SNAPSHOTS

Figure 14-9 on page 175 shows a partial snapshot of the evaluation of the query shown in figure 14-8 on
page 174. The complete evaluation of the expression is omitted for brevity. A query evaluation’s evaluation
expression returns a value in the context of an instance of its class and a collection of bound parameter variables.

A

x : Integer

context A::getX+Y (y:Integer):Integer
self.x +y

Figure 14-8 Example class and query

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 174

QUERIES

A :Class . |
:Object
name = "A" of
type value
owningClass context
member owned
of member Query Query
Y:Parameter _ Query of//—\ :Query :Parameter
Evaluation
- — owne Value
name = "y" name = Paramegter
"getX+Y"
owned .
Parameter expression
expression Evaluation
of
:AddExp :AddExpEval

scope

value env

Variable

Declaration :Primitive Variable

Value Valu

varName = "self"

of

type type

: Primitive

:Variable Variable

Declaration name = "Integer" _/ ‘PrimitiveValue Value

varName = "y"

Figure 14-9 Snapshot of Queries semantic mapping package

14.6 CHANGES TO UML 1.4

UML 1.4 defines a query as an operation with isQuery set to true. However, the semantics of queries are static,

and not operational, and therefore it makes sense to define them as a stand-alone static concept.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

175

Chapter 15
Behaviour

The definition described so far has been concerned with characterising the static components of UML. In this
chapter we describe the behaviour package which deals with supporting the modelling of systems which evolve
over time. This is achieved by enabling the instances of model elements to have multiple states at different points
in time. These states are related by the ordering in which they occur and a mechanism that manages this order-
ing. The definition presented here lays a foundation for the definition of actions (Chapter 16) and operations
(Chapter 17).

15.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core ‘
DataTypes Associations Classes
— | —
Packages Expressions
Templates Behaviour Constraints Queries
Actions
— 7
Operations
]
Messages

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 176

BEHAVIOUR

15.1.1 Example

Reactor Normal Reactor overheat Reactor Safe

15.2 ABSTRACT SYNTAX

Figure 15-1 on page 177 shows the abstract syntax for the Behaviour package. A package has member packages
and member classes, and classes have member attributes.

15.2.1 Model
Behaviour::AbstractSyntax ‘
memberPackage Package
* memberClass
Class
* memberAttribute
Attribute
Figure 15-1 Abstract Syntax for Behaviour package
Package
Associations

memberPackage The member packages.
memberClass The member classes.

Class
Associations
memberAttributes The member attributes.

15.2.2 Well-formedness Rules

There are no well-formedness rules.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

177

BEHAVIOUR

15.2.3 Operations

There are no operations.

15.3 SEMANTIC DOMAIN

15.3.1 Derivation

. mmmmmmmmmm e,
Container | Container
! Element
owning<Container>
x
<Container> @ <Element>

1

BehaviouralValue ‘

<Value>
Identity

Snapshof

identity

<Value>

[ordered]

filmstrip

Behaviour

Snapsho!f

-~ &

SemanticDomain

Figure 15-2 Derivation of Behaviour Semantic Domain package

15.3.2 Model

Figure 15-3 on page 179 shows the semantic domain for the Behaviour packages derived as illustrated in figure
15-2 on page 178. A snapshot has an identity, and the identity has a set of snapshots ordered in a filmstrip. An
object has an identity, and the identity has a set of objects ordered in a filmstrip. Similarly, a slot has an identity,
and the identity has a set of slots ordered in a filmstrip. An identity can be considered as persisting through time,
whereas the elements ordered by the identity’s filmstrip (i.e. snapshots,objects and slots) are the same element at

different periods of time.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

BEHAVIOUR

A snapshot contains snapshots and objects, and an object contain slots. A snapshot, object and slot are general-
ised from State. A State can be considered as the state of an element at a particular time frame.

Behaviour::SemanticDomain |
owningSnapshot
ownedSnapshot 1
Snapshot | !)
Ide‘;t't Snapshot J—
1ty identity
1 owningSnapshot
[ordered]
filmstrip
ownedObject
Object ! .
Idejnt't Object < State
1ty identity
1 owningObject
[ordered]
filmstrip
ownedSlot
Slot
Identit Slot S
entity identity
1
[ordered]
filmstrip

Figure 15-3 Semantic Domain for Behaviour package

Snapshot
Associations
identity The identity of the snapshot.
ownedSnapshot The snapshots owned by the snapshot.
ownedObject The objects owned by the snapshot.
owningSnapshot The snapshot owning the snapshot.

Snapshotldentity
Associations
filmstrip An ordered set of snapshots.

Object
Associations
identity The identity of the object.
ownedSlot The slots owned by the object.
owningSnapshot The snapshot owning the object.

Objectidentity
Associations
filmstrip An ordered set of objects.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 179

BEHAVIOUR

Slot
Associations
identity The identity of the slot.
owningObject The object owning the slot.

Slotldentity
Associations
filmstrip An ordered set of slots.

15.3.3 Well-formedness Rules

Snapshotldentity
[1] The identity of the snapshot commutes with its filmstrips.

cont ext Snapshotldentity inv:
self.filmstrip->forAll(v | v.identity = self)

[2] Each snapshot in the filmstrip must be unique.

cont ext Snapshotldentity inv:
self.flimstrip->forAll(el | self.filnmstrip->forAl(e2 | el <> e2))

Objectidentity

[1] The identity of the object commutes with its filmstrips.

context Cbjectldentity inv:
self.filmstrip -> forAl(v | v.identity = self)

[2] Each object in the filmstrip must be unique.

context Qbjectldentity inv:
self.flinmstrip->forAll(el | self.filnmstrip->forAll(e2 | el <> e2))

Slotldentity
[1] The identity of the slot commutes with its filmstrips.

context Slotldentity inv:
self.filmstrip -> forAl(v | v.identity = self)

[2] Each slot in the filmstrip must be unique.

context Slotldentity inv:
self.flimstrip->forAll(el | self.filmstrip->forAl(e2 | el <> e2))

15.3.4 Operations

Absolute ordering of states is maintained by the filmstrip of the root snapshot identity. This contains a number of
operations which enable the comparison of the temporal occurrence of two states (snapshots, objects or slots).
Each state has an operation, such as isLater, which given a state checks to see where that state occurs. This is
achieved by navigating to the root snapshot’s identity and calling the namesake operation, such as isLater, with
the state and self. Each state also has an operation (isState) which checks to see if two states are in fact the same
state. This is used by the root snapshot identity in determining where states occur within its filmstrip.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 180

BEHAVIOUR

Snapshotldentity
[1] Given two states determines whether the first state occurs before the second.

context Snapshotldentity::isEarlier(sl: State, s2: State): Bool ean
statel: State
state2: State
filmstrip->forAll(s | if(s.isState(sl)) statel = s
if(s.isState(s2)) state2 = s)
filmstrip.getlndex(statel) < filmstrip.getlndex(state2)

[2] Given two states determines whether the first state occurs after the second.

context Snapshotldentity::isLater(sl: State, s2: State): Bool ean
statel: State
state2: State
filnmstrip->forAll(s | if(s.isState(sl)) statel s
if(s.isState(s2)) state2 s)
filnstrip.getlndex(statel) > filnstrip.getlndex(state2)

[3] Given two state determines whether the first state occurs at the same time as the second.

context Snapshotldentity::isSaneTi ne(sl: State, s2: State): Bool ean
statel: State
state2: State
filmstrip->forAll(s | if(s.isState(sl)) statel = s
if(s.isState(s2)) state2 = s)
filmstrip.getlndex(statel) = filnmstrip.getlndex(state?2)

Snapshot

[1] Checks to see if the snapshot, or any of its owned objects or snapshots, are the same as a given state.

context Snapshot::isState(s: State): Bool ean
flag: Bool ean

flag : = fal se

if(self = 5s)
true

el se
sel f. ownedSnapshot->forAll (i | if(i.isState(s)) flag := true)
sel f.ownedhject->forAll (i | if(i.isState(s)) flag := true)
flag

end

[2] Checks to see if a state occurs before this snapshot.

context Snapshot::isEarlier(s: State): Bool ean
i f (owni ngSnapshot <>sel f)
owni ngSnapshot . i sLater(s)
el se
owni ngSnapshotldentity(s, self)
end

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

181

BEHAVIOUR

[3] Checks to see if a state occurs after this snapshot.

cont ext Snapshot::islLater(s: State): Bool ean
i f (owni ngSnapshot <>sel f)
owni ngSnapshot . i sLater(s)
el se
owni ngSnapshot I dentity(s, sel f)
end

[4] Checks to see if a state occurs at the same time as this snapshot.

cont ext Snapshot::isSaneTi me(s: State): Bool ean
i f (owni ngSnapshot <>sel f)
owni ngSnapshot . i sLater(s)
el se
owni ngSnapshot I dentity(s, self)
end

Object
[1] Checks to see if the object, or its slots, are the same as a given state.

context Cbject::isState(s: State): Bool ean
flag: Bool ean
flag := fal se
if(self =s)
true
el se

sel f.ownedSl ot->forAll (i | if(i.isState(s)) flag :

flag
end

[2] Checks to see if a state occurs before this object.

context Cbject::isEarlier(s:State): Bool ean
owni ngSnapshot . i sEarlier(s)

[3] Checks to see if a state occurs after this snapshot.

context Cbject::islLater(s: State): Bool ean
owni ngSnapshot . i sLater(s)

[4] Checks to see if a state occurs at the same time as this snapshot.
context Cbject::isSaneTi me(s: State): Bool ean
owni ngSnapshot . i sSaneTi ne(s)

Slot

[1] Checks to see if the slot is the same as a given state.

context Cbject::isState(s: State): Bool ean
self =s

[2] Checks to see if a state occurs before this object.

context Slot::isEarlier(s:State): Bool ean
owni ngSnapshot . i sEarlier(s)

[3] Checks to see if a state occurs after this snapshot.

context Slot::islLater(s: State): Bool ean
owni ngSnapshot . i sLater(s)

true)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

182

BEHAVIOUR

[4] Checks to see if a state occurs at the same time as this snapshot.

context Slot::isSaneTi ne(s: State): Bool ean
owni ngSnapshot . i sSameTi me(s)

15.4 SEMANTIC MAPPING

15.4.1 Derivation

BehaviouralSemantics TEement " L
\Value :
<Value>
Identity
1 identity
of
of [ordered]
<Element> <— <Value>
filmstrip

| Package |

Snapshot !
[Class |

Object !
R ——
| Attribute 1
! Slot !

Behaviour ‘
SemanticMapping ‘

Figure 15-4 Derivation of Behaviour Semantic Mapping package

15.4.2 Model

Figure 15-5 on page 184 shows the Semantic Mapping for the Behaviour packages derived as illustrated in figure
15-4 on page 183. An instance of a package is an snapshot identity and a snapshot. The snapshot identity
uniquely identifies a particular package instance and the snapshot describes the evolution of a particular package
instance over time. An instance of a class is an object identity and a slot identity. An instance of an attribute is a
slot identity and a slot.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 183

BEHAVIOUR

Behaviour::SemanticMapping

Snapshot
Identity

of

of
Package Snapshot

Object
Identity

of

of
Class K Object

Slot
Identity

of

of
Attribute Slot

Figure 15-5 Semantic Mapping for Behaviour package

Snapshot
Associations
identity The identity of the snapshot.

of The package the snapshot is an instance of.

Snapshotldentity
Associations
filmstrip An ordered set of snapshot.
of The package the snapshot identity is an instance of.

Object
Associations
identity The identity of the object.
of The class the object is an instance of.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

184

BEHAVIOUR

Objectidentity
Associations
filmstrip An ordered set of objects.

of The class the object identity is an instance of.

Slot
Associations
identity The identity of the slot.
of The attribute the slot is an instance of.

Slotldentity
Associations
filmstrip An ordered set of slots.
of The attribute the slot identity is an instance of.

15.4.3 Well-formedness Rules

Snapshot

[1] For each object owned by a snapshot there should be a class of the snapshot’s package’s namespace that the
object is a value of.

cont ext Snapshot inv:

sel f. ownedoj ect->forAl (c |
sel f. of . menber d ass->exists(d | c.of = d))

[2] For each snapshot owned by a snapshot there should be a package of the snapshot’s package’s namespace that
the snapshot is a value of.

cont ext Snapshot inv:
sel f. ownedSnapshot ->forAll (c |

sel f. of . menmber Package- >exi sts(d | c.of = d))
[3] A snapshot should have a member object for each of its package’s classes.

cont ext Snapshot inv:
sel f. of . mrenber d ass->forAll (c |

sel f. ownedoj ect->exists(d | d.of =c¢))
[4] A snapshot should have a member object for each of its package’s classes.

cont ext Snapshot inv:

sel f. of . menber Package->forAl | (c |
sel f. ownedSnapshit->exists(d | d.of = c))

Object

[1] For each slot owned by an object there should be an attribute of the object’s class’s namespace that the slot is
a value of.

context Object inv:

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 185

BEHAVIOUR

sel f. ownedhj ect->forAl (c |
sel f. of . menber C ass->exists(d | c.of = d))
[3] An object should have a member slot for each of its classes’s attributes.

context Object inv:

sel f.of . menber Attribute->forAll (c |
sel f. ownedSl ot ->exists(d | d.of = c¢))

Snapshotldentity

[1] All snapshots in the filmstrip should be of the same package as me.

cont ext Snapshotldentity inv:
self.filmstrip->forAll(el | el.of = of)

Objectidentity

[1] All objects in the filmstrip should be of the same class as me.
context Cbjectldentity inv:
self.filmstrip->forAll(el | el.of = of)

Slotldentity

[1] All slots in the filmstrip should be of the same attribute as me.

cont ext Snapshotldentity inv:
self.filmstrip->forAll(el | el.of = of)

15.4.4 Operations

There are no operations

15.5 EXAMPLE SNAPSHOTS

Figure 15-7 on page 187 exemplifies how the definition introduced in this chapter enables the modelling of
dynamic systems using the example shown in figure 15-6 on page 186.

Reactor Normal Reactor overheat Reactor Safe

Figure 15-6 Example of state changes

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 186

BEHAVIOUR

:Snapsh identity
of Sld:ntsityOt
system: /F\
Package identit;
filmstrip@1 filmstrip@
memberClass
owningSnapshot owningSnapshot owningSnapshot
reactor:
Class
ownedObject ownedObject
of N \t\ .
normal: overhea. — | safe.
Object Object Object

filmstrip@1 filmstrip@3

identity

-Obiect identity

Identity

Figure 15-7 Example snapshot of figure 15-5 on page 184
This example models the evolution of an object through three states (normal, overheat and safe), the state change

at the object level also forces a state change at the snapshot level. Collectively we can consider a model of a sin-
gle state change as a time slice of the systems evolution. Time slices are related via the respective identities of
model element instances.

15.6 CHANGES TO UML 1.4

UML 1.4 does not have a model of behaviour. This chapter has provided a model that can be used as a foundation
for understanding the semantics of UML’s behavioural features.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 187

Chapter 16
Actions

This package defines the abstract syntax and semantics of actions. Actions describe state changing computations
of the system, and are used in the body of operations (Chapter 17). This chapter is broadly split into two parts.
The first part defines a small, but rich, action language. The second part defines the templates used to stamp out
the action language.

16.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core ‘
DataTypes Associations Classes
— | —
Packages Expressions
Templates Behaviour Constraints Queries
Actions
— 1
Operations
— 1
Messages

The definition described in this chapter ultimately aims to precisely define a core subset of the actions described
in the action semantic proposal (ActionSemantics). To this end, it is not the intention to replace that proposal but
to show how that definition can be derived using a template based approach. A characteristic of stamping out def-

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 188

ACTIONS

initions using templates, is that some concepts can be left undefined while others are well defined. In the case of
the action definition presented here, the abstract syntax is non-normative and can be quickly substituted for any
syntactical construct (therefore supporting families of action languages). The essence of the definition lies in its
treatment of the semantic domain.

16.1.1 Example

Figure 16-1 on page 189 gives an example of a simple action that assigns the value 10 to the variable x.

X

x: Integer
op1
(

)

x:=10

Figure 16-1 Action example

16.2 ABSTRACT SYNTAX

16.2.1 Derivation

Figure 16-2 on page 190 and figure 16-3 on page 191 show how the abstract syntax of the actions package is
stamped out using the composite action abstract syntax template shown in figure 16-11 on page 204 for sequen-
tial and parallel actions, and the typed action operand abstract syntax template shown in figure 16-13 on page 206
for write attribute action and create object action.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 189

ACTIONS

Figure 16-2 Derivation of the abstract syntax for sequential and parallel actions

Expression

i

Action

i

CompositeAction

I

subAction

*

. . I
CompositeAction ‘ ! ConcreteAction i
| ActType |
I

type

<ConcreteAction>

<ActType>

A A

[SequentalAction Paraiiciacton |
! Classifier _(_:I_a_s_si_ﬁ e .
Actions ‘
AbstractSyntax ‘
subAction . subAction
Action
[ordered] = *
SequentialAction
ParallelAction

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

190

ACTIONS

PrimitiveAction ‘ <ConcreteAction> | TypedAction
<ActType> Operand :ggg::arﬁ;iExw N

A

N

Expression

<operand>

Action

PrimitiveAction —
type:Classifier
i ?
<ConcreteAction> <ActType> <ConcreteAction>
WriteAttributeAction WriteAttributeAction
Classifier propertycall
PropertyCallExpression CreateObjectAction
—— boundvariable
CreateObjectAction WriteAttributeAction Boundvar
Class writeValue
Expression
Actions
AbstractSyntax

Figure 16-3 Derivation of the abstract syntax for create object and write attribute actions

16.2.2 Model

Figure 16-4 on page 192 shows the abstract syntax of the actions package. The action language consists of two
primitive and two compound actions. The first primitive action is write attribute action which updates the value
of an attribute. The two operands of a write attribute action are of type expression (expression is the superclass of
both static expressions and actions) and can therefore be either further actions or static expressions, the first oper-
and is constrained to be of type property call expression which must point to an attribute (see section 16.2.3 on
page 193). The second primitive action is create object action which instantiates a class. The operand of a create
object action can also be of type expression, however this is constrained to be a bound variable which binds a
class (see section 16.2.3 on page 193). The first compound action is parallel action which has a number of sub
actions (which can be either composite or primitive actions). The second compound action is sequential action
which has a number of sub actions (which again can be either composite or primitive actions).

Expression

Expression is an abstract class purely used for the purposes of polymorphism. It is the plugin point for static
expressions (see Chapter 12) and therefore enables write attribute and create object actions to use static expres-
sions or further actions as their operands.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 191

ACTIONS

Action

Action is an abstract class purely used for the purposes of polymorphism. It enables the type of concrete actions
to be considered more generally as that of action.

CompositeAction

Composite action is an abstract class used purely for the purposes of polymorphism. It enables the type of
sequential and parallel actions to be considered more generally as that of composite action.

Actions::AbstractSyntax
1 boundvariable
. 1 propertycall
Expression
1 writeValue
subAction _*
[ordered]_* Action
subAction
Composite Primitive
Action Action
SequentialAction WriteAttributeAction
type:Classifier type:Classifier
ParallelAction CreateObjectAction
type:Classifier type:Class

Figure 16-4 Abstract syntax domain for Actions package

PrimitiveAction

Primitive action is an abstract class used purely for the purposes of polymorphism. It enables the type of write
attribute and create object actions to be considered more generally as that of primitive action.

ParallelAction
Parallel action is a concrete action which contains a set of sub actions. It is the syntax for a semantic domain
entity which describes how sub actions should be executed in parallel.

Associations
type The type of the parallel action.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 192

ACTIONS

subActions A set of sub actions whose execution is controlled by the parallel action.

SequentialAction

Sequential action is a concrete action which contains an ordered set of sub actions. It is the syntax for a semantic
domain entity which describes how the sub action are executed sequentially.

Associations

type The type of the sequential action.

subActions An ordered set of sub actions whose execution is controlled by the sequential action.

WriteAttributeAction

Write attribute action is a concrete action which describes the syntax for a semantic domain construct which
updates the value of the left operand (propertyCall expression which refers to the attribute) with the value of the
right operand.

Associations

type The type of the write attribute action.

propertycall The first operand of the write attribute action.

writeValue The second operand of the write attribute action.

CreateObjectAction

Create object action is a concrete action which describes the syntax for a semantic domain construct which cre-
ates an instance (object) of the class referenced by the action’s operand.

Associations

type The type of the create object action.

boundvariable The operand of the create object action.

16.2.3 Well-formedness Rules

WriteAttributeAction
[1] The type of propertycall must be property call expression.

context WiteAttributeAction inv:
sel f. propertycall.type.isKindOf (PropertyCal | Expression)

[2] The type of writeValue must be expression.

context WiteAttributeAction inv:
sel f.witeVal ue.type.isKi ndOf (Expressi on)

[3] The first operand of a write attribute action which is a property call expression must refer to an attribute.

context WiteAttributeAction
sel f.propertycall.referedProperty.isKindOf (Attri bute)

[4] The propertycall’s scope should include the scope of the containing write attribute action.

context WiteAttributeAction inv:
sel f.scope->forAll (a | self.propertycall.scope->includes(a))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 193

ACTIONS

[5] The writeValue’s scope should include the scope of the containing write attribute action.

context WiteAttributeAction inv:
sel f.scope->forAll(a | self.witeVal ue.scope->includes(a))

CreateObjectAction

[1] The operand of a create object action which is a bound variable must refer to a class.

cont ext CreateCbjectAction
sel f. boundvari abl e. type. i sKi ndOf (C ass)

[2] The boundvariable’s scope should include the scope of the containing create object action.

context WiteAttributeAction inv:
sel f.scope->forAll (a | self.boundvari abl e. scope->i ncludes(a))

16.2.4 Operations

There are no operations.

16.3 SEMANTIC DOMAIN

16.3.1 Derivation

Figure 16-5 on page 195 and figure 16-6 on page 196 show how the semantic domain of the actions package is
stamped out using the composite action evaluation semantic domain template for sequential and parallel action
evaluations, the primitive action evaluation semantic domain template and the action operand evaluation seman-

tic domain template for write attribute action evaluation and create object action evaluation.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

194

ACTIONS

CompositeActionEvaluation ‘

ConcreteActionEval
ActEvalValue —

subActionEval

ExpressionEvaluation ‘

1

*

ActionEvaluation

1

4{ CompositeActionEvaluation ‘

T

ActEvalPrePostValue

value | <ActEvalValue>

<ConcreteActionEval>

reState

"ﬂ

1

postState
<ActEvalPrePostValue> H

1

JA

SequentialActionEvaluation

Value —]
Snapshot

Actions ‘

ParallellActionEvaluation
—1 Value
Snapshot

SemanticDomain ‘

subActionsEval

ActionEvaluation
[ordered] =

subActionsEval

SequentialAction

Evaluation

ParallelAction
Evaluation

Figure 16-5 Derivation of semantic domain for sequential and parallel actions

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

195

ACTIONS

PrimitiveActionEvaluation ‘

<ConcreteActionEval>
<ActEvalValue>

<ActEvalPrePostValue>

ExpressionEvaluation

f

ActionEvaluation

7

Action

Operand

PrimitiveActionEvaluation

<ActEvalValue>

i

value

<ConcreteActionEval>

preState postState

ﬂ <ActEvalPrePostValue>

-

1

WriteAttributeAction
Evaluation

Value

slot

CreateObjectAction
Evaluation

Object

Snapshot

<operand>

<ConcreteActionEval> |

1
ExpressionEval

<operand>

ActionEval

type:Cla

ssifier

i

<ConcreteActionEval> —

WriteAttributeActionEvaluation

propertycall

WriteAttributeActionEvaluation

CreateObjectActionEvaluation
boundvariable

Actions

SemanticDomain

Figure 16-6 Derivation of semantic domain for write attribute and create object actions

16.3.2 Model

Figure 16-7 on page 197 shows the semantic domain of the actions package. This definition describes how each
of the abstractions within the abstract syntax (described in section 16.2 on page 189) has a semantic domain eval-
uation. Each of the four concrete action evaluation (parallel, sequential, write attribute and create object evalua-
tion action) have a pre and post state which capture the state of the system before and after the action has

executed. The concrete action evaluations also have a value which they evaluate to upon execution.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

196

ACTIONS

Actions::SemanticDomain

Expression
Evaluation

1 boundvariable

1 propertycall

1 writeValue

i

subActionsEval |

[ordered] *
%

subActionsEval

Action

Evaluation

P

Composite Primitive
Action Action

Evaluation Evaluation

SequentialAction WriteAttributeAction
Evaluation Evaluation

value:Value value:Value
preState:State preState:Object
postState:State postState:Object

ParallelAction CreateObjectAction
Evaluation Evaluation
value:Value value:Object

preState:State
postState:State

preState:Snapshot
postState:Snapshot

Figure 16-7 Semantic domain for Actions package

ExpressionEvaluation

Expression evaluation is an abstract class purely used for the purposes of polymorphism. It is the plugin point for
static expression evaluation (see Chapter 12) and therefore enables write attribute action evaluations and create
object action evaluations to use static expressions evaluations or further action evaluations as their operand eval-
uations.

ActionEvaluation

Action evaluation is an abstract class purely used for the purposes of polymorphism. It enables the type of con-
crete action evaluations to be considered more generally as that of action evaluation.

CompositeActionEvaluation

Composite action evaluation is an abstract class used purely for the purposes of polymorphism. It enables the
type of sequential and parallel action evaluations to be considered more generally as that of composite action
evaluation.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 197

ACTIONS

PrimitiveActionEvaluation

Primitive action evaluation is an abstract class used purely for the purposes of polymorphism. It enables the type
of write attribute action evaluation and create object action evaluation to be considered more generally as that of

primitive action evaluation.

ParallelActionEvaluation

Parallel action is a concrete action evaluation which contains a set of sub action evaluations. It describes how sub
action evaluations can be executed in parallel.

Associations

value The value of the parallel action evaluation.

subActionsEval A set of sub action evaluations whose evaluation is controlled by the parallel action.
preState The state of the system before the parallel action evaluation executes.

postState The state of the system after the parallel action evaluation executes.

SequentialActionEvaluation

Sequential action evaluation is a concrete action evaluation which contains an ordered set of sub action evalua-
tions. It describes how sub action evaluations can be executed sequentially.

Associations

value The value of the sequential action evaluation.

subActionsEval Set of sub action evaluations whose evaluation is controlled by the sequential action.
preState The state of the system before the sequential action evaluation executes.

postState The state of the system after the sequential action evaluation executes.

WriteAttributeActionEvaluation

Write attribute action evaluation is a concrete action evaluation which describes how an attribute instance (slot) is
updated with a value.

Associations

value The value of the write attribute action evaluation.

propertycall The slot (attribute instance) to update.

writeValue The value to update the slot with.

preState The state of the system before the write attribute action evaluation executes.
postState The state of the system after the write attribute action evaluation executes.

CreateObjectActionEvaluation
Create object action evaluation is a concrete action evaluation which describes how a new object is created.

Associations

value The value of the write attribute action evaluation.

boundvariable A bound variable instance (note: this is redundant but mirrors abstract syntax)
preState The state of the system before the create object action evaluation executes.
postState The state of the system after the create object action evaluation executes.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 198

ACTIONS

16.3.3 Well-formedness Rules

ParallelActionEvaluation

[1] The pre state of at least one subAction is at the same time slice (state and time slice is defined in Chapter 15)
as the pre state of the parallel action.

context Parallel Acti onEval uation
not self.subActionsEval->forAll(a | not a.preState.isSaneTi ne(self.preState))

[2] The post state of at least one subAction is at the same time slice as the post state of the parallel action.

context Parallel Acti onEval uation
not self.subActionsEval ->forAll (a] not a.postState.isSanmeTi ne(self.postState))

[3] The pre and post states of subActions lie between the pre and post state of the parallel action.

context Parallel Acti onEval uation
sel f.subActionsEval ->forAll ((aJa.preState.isSaneTi ne(sel f.preState) or
a.preState.islLater(self.preState)) and
(a.postState.isSanmeTi ne(sel f. postState) or
a.postState.isEarlier(self.postState)))

SequentialActionEvaluation
[1] All sub action evaluations should execute in sequence.

cont ext Sequenti al ActionEval uation
sel f. subActi onsEval . zi p(sel f.subAction.tail)->forAl (pair |
pair->at(1).preState.isLater(pair->at(0).postState))
[2] The pre state of the first subAction is at the same time slice as the pre state of the sequential Action.
cont ext Sequenti al Acti onEval uati on
sel f.preState.isSaneTi ne(sel f.subActi onsEval ->at (0). preState)
[3] The post state of the last subAction is at the same time slice as the post state of the sequential Action.

cont ext Sequenti al ActionEval uati on
sel f. postState.isSaneTi me(sel f.subActionsEval ->l ast (). post State)

WriteAttributeActionEvaluation
[1] The pre and the post state of the write attribute action evaluation must be the same instance.

context WiteAttributeActi onEval uation
self.preState.identity = self.postState.identity
[2] The slot referred to in the propertycall must be owned by the Object in the pre state.
context WiteAttributeActi onEval uation
sel f. preSt at e. ownedSl ot - >i ncl udes(sel f. propertycal | .referedProperty)
[3] An attribute evaluation results in updating the slot of the object in pre state with the value of the second oper-
and.

context WiteAttributeActionEval uati on
sel f. postState. ownedSlot->iterate(i s=Set{} |

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 199

ACTIONS

if i.identity = self.propertycall.referedProperty.identity
t hen
s->union({i})
el se

s)->forAll (s | s.value = self.witeVal ue.val ue)

[4] The value of the write attribute action is the value of the second operand.

context WiteAttributeActionEval uation
sel f.value = self.witeVal ue. val ue

CreateObjectActionEvaluation

[1] A create object evaluation results in the existence of an object in the post state that did not exist in the pre
state.

cont ext CreateObjectActionEval uation
sel f. preState. ownedObj ect->symetricDi fference(
sel f. post St at e. ownedbj ect) ->size = 1 and
sel f. preState. ownedObj ect->si ze = sel f. post St at e. ownedOhj ect-> size()-1

[2] The value of a create object action evaluation is the new object created.

cont ext CreateObjectActionEval uati on
sel f.value = self.preState. ownedhj ect->symetrichi fference
(sel f. post St at e. ownedhj ect) - >asSequence() - >at (0)

[3] A unique id for the new object must be created.

cont ext CreateCbjectActi onEval uation inv:
self.value.id.filnstrip->size() =1

16.3.4 Operations

There are no operations.

16.4 SEMANTIC MAPPING

16.4.1 Derivation

The derivation of the semantic mapping of actions is shown in figure 16-8 on page 201. This illustrates how four
stampings of the semantics template are used to form the derivation.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 200

ACTIONS

Semantics | ModelElement |
Value |
f
<Model °
< >
Element> Value

T 1§

ParallelAction
ParallelActionEvaluation

SequentialAction
SequentialActionEvaluation

CreateObjectAction
CreateObjectActionEvaluation

WriteAttributeAction
WriteAttributeActionEvaluation

Actions

Semantic
Mapping

Figure 16-8 Derivation of the Actions semantic mapping package

16.4.2 Model

The semantic mapping of the actions package is shown in figure 16-9 on page 201. This describes how actions
have evaluations.

Actions::SemanticMapping
o ParallelActi
ParallelAction arallelAction
Evaluation
i of Sequential
o Action
Evaluation
CreateObject | °f CreateObject
ActionJ Action
Evaluation
WriteAttribute | ©f WriteAttribute
Action Action
Evaluation

Figure 16-9 Semantic mapping for the Actions package

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 201

ACTIONS

ParallelActionEvaluation

Associations
of The parallel action that the parallel action evaluation is an instance of.

SequentialActionEvaluation

Associations
of The sequential action that the sequential action evaluation is an instance of.

CreateObjectEvaluation

Associations
of The create object action that the create object action evaluation is an instance of.

WriteAttributeEvaluation

Associations
of The write attribute action that write attribute action evaluation is an instance of.

16.4.3 Well-formedness Rules

WriteAttributeActionEvaluation
[1] The propertycall value must conform to the operand type.

context WiteAttributeActi onEval uation inv:
sel f. propertycal | . val ue. of . confornmsTo(sel f. of. propertycall.type)

[2] The writeValue value must conform to the operand type.

context WiteAttributeActi onEval uation inv:
sel f.witeVal ue. val ue. of . confornsTo(sel f.of.witeVal ue.type)

CreateObjectActionEvaluation

[1] The new object created must be of the type of the bound variable referenced in the actions syntactical oper-
and.

cont ext createObjectActi onEval uation
sel f. preState. ownedObj ect->symetricDifference(
sel f. post St at e. ownedhj ect->forAll (obj | obj.type =
sel f. boundvari abl e. val ue)

[2] The boundVar value must conform to the boundvariable’s type.

cont ext CreateObjectActionEval uation inv:
sel f. boundvari abl e. val ue. of . conf or nsTo(sel f. of . boundvari abl e. t ype)

16.4.4 Operations

There are no operations.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 202

ACTIONS

16.5 EXAMPLE SNAPSHOTS

Figure 1-1 on page 157 shows a snapshot of the evolution of the write attribute action shown in figure 16-1 on
page 189. Note that there is only a partial mapping between the elements of abstract syntax and semantic domain
for brevity of presentation. In this snapshot a write attribute action is contained by an operation (operations are
dealt with in detail in Chapter 17). Prior to the write attribute action (its preState) the value of the slot, corre-
sponding to the attribute x, is 5. After the write attribute action has evaluated (its post state) the slot is bound to

the value 10.

name ="A"

of

:Operation of

type >

)

X:Attribute

name = "x"

WiriteAttributeAction

referedProperty
propertycall writeValue

:Propertycall
:Constant
Expression
SOUI’CG<
:BoundVar type
:Primitive

referedVariable >

:VariableDeclaration

varName = "self"

name = "Integer"

:Object
Identit
preState d
:Object :Operation
5:Primitive :WriteAttributeAction | | .
Value value Slot Evaluation Object
/ > postState \>
] id Properiycal :ConstantEval :Slot
:Slot ExpressionEval
Identit
C
:BoundVarEval
10:Primitive | value
< Value

:VariableValue

Figure 16-10 Snapshot of write attribute action

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

203

ACTIONS

16.6 CHANGES TO UML 1.4

The submission defines the semantics of two key action concepts in UML 1.4: object creation and send actions
(see Chapter 18 for the latter) and three key concepts from the action semantics submission: sequential, parallel
actions and write actions.

16.7 TEMPLATES

This section describes a set of templates which capture the essence of actions and are generic enough to stamp
out a family of action languages.

16.7.1 Primitive and compound action

Primitive and compound action templates are the basic building blocks for the action definition presented in this
chapter. The role of these two templates is to classify actions as either primitive or compound. Primitive actions
have no sub actions whereas compound actions have a set of sub actions.

Templates

Figure 16-11 on page 204 shows the abstract syntax templates for primitive and composite actions. A concrete
primitive action is a generalized primitive action. A concrete composite action is a generalized composite action.

PrimitiveAction <ConcreteAction> CompositeAction ‘ <ConcreteAction>
<ActType> [<ActType>
Expression Expression
. subAction
Action Action
PrimitiveAction CompositeAction
) type type
<ConcreteAction> <ActType> <ConcreteAction> <ActType>
1 1

Figure 16-11 Primitive and composite actions abstract syntax templates

Actions extend expression and hence have scope. A definition of expression and scope is given in chapter 12.

Within the typed Composite Action template, The subactions of the composite action template must include in its
scope the scope of the composite action.

cont ext ConpositeAction inv:
sel f.subAction->forAl | (subScope |
sel f.scope->forAll (sel fScope | subScope->i ncl udes(sel f Scope)))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 204

ACTIONS

Figure 16-12 on page 205 shows the semantic domain templates for primitive and composite action evaluations.
A concrete primitive action evaluation is a generalized primitive action evaluation and has a pre and post state
describing its evaluation. A concrete compound action evaluation is a generalized compound action evaluation
and also has a pre and post state describing its evaluation.

. . . <ConcreteActionEval>
CompositeActionEvaluation ‘ <ActEvalValue>
<ActEvalPrePostValue>
ExpressionEvaluation ‘
subActionEval .)
ActionEvaluation
CompositeActionEvaluation
Z} value
<ConcreteActionEval> 4| <ActEvalValue>
pre post
<ActEvalPrePostValue>
ﬂ %

- : : <ConcreteActionEval>
PrimitiveActionEvaluation <ActEvalValue>
<ActEvalPrePostValue>
ExpressionEvaluation ‘
ActionEvaluation

1

PrimitiveActionEvaluation

% value,

<ConcreteActionEval> <ActEvalValue>

pre post

ﬂ <ActEvalPrePostValue>

1

Figure 16-12 Primitive and composite action semantic domain templates

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 205

ACTIONS

16.7.2 Action Operands

Primitive actions have operands that are of type expression which means they can contain further actions or static
expressions (because static expressions generalize expression, see Chapter 12). In this section we describe tem-
plates that add operands to actions.

Templates

Figure 16-13 on page 206 shows the two templates for adding operands to actions. The first template (ActionOp-
erand) is a basic operand template, which adds to an action a single operand, which is an expression. The second
template (TypedActionOperand) augments the first template by adding a constraint on the return type of the oper-
and and hence has an additional parameter operand type.

It should be noted that semantic domain and semantic mapping templates for typed action operands are not
required, since expression values are already checked against type in the ActionOperandMap template (see
below).These template (and the corresponding semantic domain and semantic mapping templates) can be
stamped out multiple times for multiple operands.

-~ ———~——————— 1
|

‘ ConcreteAction |
Action operand || TypedAction
Operand <ConcreteExp>
Operand <ConcreteAction> P <operand> P L
<operand> <operandType>
. 1 . 1
Expression Expression
<operand> <operand>
Action Action
type:Classifier type:Classifier
<ConcreteAction> <ConcreteAction>

Figure 16-13 Abstract syntax template for adding operands to actions

Within the typed Action operand template, an operand’s scope should include the scope of the containing
action.

cont ext <ConcreteAction> inv:
sel f.scope->forAll (a | self.<operand>. scope->includes(a))

Also within the typed Action template, an operand’s type should match the type specified in the parameters.
This is expressed using the following constraint:

cont ext <ConcreteAction> inv:
sel f. <operand>. type. i sKi ndOf (<oper andType>)

Figure 16-14 on page 207 shows the semantic domain templates for Action operands. An action evaluation has
an operand, which is a expression evaluation.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 206

ACTIONS

ActionEval
Operand

<ConcreteActionEval>
<operand>

ActionEval

value:Value

—= ExpressionEval

]

<Concrete
ActionEval>

<operand>/|\ 1

Figure 16-14 Semantic Domain Template for Action Operands

Figure 16-15 on page 207 shows the semantic mapping templates for static expression operands.

ActionOperandMap

Action

of

<ConcreteActionEval>
<operand>

ActionEval

type:Classifier

Expression

Eval

value:Value

i

<operand>'|' 1

<ConcreteActionEval>

Figure 16-15 Semantic Mapping Templates for Action Operands

An Primitive Action’s operand evaluations should be valid in view of its type. This is expressed using the follow-

ing constraint:

cont ext <ConcreteActi onEval > inv:

sel f. <oper and>. val ue. of . confornsTo(sel f. of . <operand>. type)

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

207

Chapter 17
Operations

This chapter describes the definition of operations. Operations faclitate the abstract specification of state changes
through their pre- and post-conditions. Operations may also reference actions (see Chapter 16) thus supporting
the refinement of abstract specifications of behaviour into executable action expressions.

17.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core ‘
DataTypes Associations Classes
] =
Packages Expressions
Templates Behaviour Constraints Queries
Actions
=
Operations
— 1
Messages

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 208

OPERATIONS

17.1.1 Example

Figure 17-1 on page 209 shows an example of a simple operation, incr(), that increments the variable y provided
that its value is zero.

y:Integer
incr()
pre self.y =0
post self.y = self@pre.y+1

Figure 17-1 Example operation

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 209

OPERATIONS

17.2 ABSTRACT SYNTAX

17.2.1 Derivation

| BehaviouralClassifier \—
haviouralFeature |

BehaviouralFeatureClassifier

1
Ee

Classifier
type
171 type
A N preCond 0..1
<Behavioural <Behavioural)
Classifier> owning<Classifier> " Feature> StaticExp
- >
isAbstract:Boolean] name:Name postCond 0..1
1 owned<BehaviouralFeature>
. owning<Behavioural
Feature>
inherited<BehaviouralFeature> o Parameter
. 1 ownedParameter
member<BehaviouralFeature> 1 \L type
K 1 o
Classifier
general |1 1 specific type
redefined<BehaviouralFeature>
specialization | * = generalization body 1
Variable
<Classifier>Generalisation Action scope | _Declaration Scope
varName:String 1.%
1..%
- ExpContext A
ExpressionContext ExpCategory
rootExp
varName
varType
<rootExp> <E
X
<ExpContext> P
1| Category>
T "~ Operation | Fpe;tic; T
Action StaticExp
‘ body ‘ 7777777777777777777777 J postCond ‘
self self ‘
‘ self.owningClass ‘self.owningclass _— — — ‘
L [S JCIass.
—_—— — - £perat|0ns J
‘ Operation‘ ‘Operation ‘ _—
‘ StaticExp StaticExp
preCond ‘ 7777777777777777777777 J postCond ‘
‘ self‘ self@pre ‘
self.owningClass ‘ self.owningClass
\ | L
Opgrations ‘
AbstractSyntax ‘

Figure 17-2 Derivation of Operations abstract syntax package

17.2.2 Model

Figure 17-3 on page 211 shows the abstract syntax for the operations package derived as illustrated in figure 17-2
on page 210. An operation is contained by a class and has a type, an operation can also have zero or many

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 210

OPERATIONS

parameters and may have a pre and post condition. The pre and post conditions constrain the state of the system
before and after the execution of the operation. The body of an operation evaluation is described by an action

which is the root of an action tree.

Operations::AbstractSyntax

Class

isAbstract:Boolean

1

general |1

specialization | *

1

*

ClassGeneralisation

scope

Classifier
type
1 Ttype
preCond 0..1
owningClass N Operation StaticExp
> name:Name postCond 0..1
1 ownedOperation
owningOperation «
inheritedOperation @ | Parameter
* 1 ownedParameter
memberOperation 1. type
P’ 1 -
Classifier
specific type
redefinedOperation
generalization body 1
Variable
Action scope | Declaration
varName:String

1.*

1.*

Class
Attributes

Figure 17-3 Abstract syntax for Operations package

isAbstract True if the class is abstract

Associations

inheritedOperation The inherited operations of the classifier.

memberOperation The operations that are members of the namespace of the class.

ownedOperation The operations owned by the classifier.

specialization The specializations of the class.

generalization The generalizations of the class.

Operation
Associations

body The body of the operation.
name The name of the operation.
owningClass The class that owns/contains the operation.
ownedParameter The parameters of the operation.
preCond The pre condition of the operation.
postCond The post condition of the operation.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

211

OPERATIONS

redefinedOperations The operations that are redefined.
type The type of the operation.

ClassGeneralization
Associations
general The general class.
specific The specific class.

StaticExp
Associations
type The type of the static expression.

Parameter
Associations
owningOperation The operation that owns/contains the parameter.
type The type of the parameter.

Action
Associations
type The type of the action.

17.2.3 Well-formedness Rules

Class
[1] The members of a class must include the owned operations of the class.

context Cass inv:
sel f. menber Oper ati on->i ncl udesAl | (sel f. ownedQper ati on)

[2] Circular inheritance is not permitted.

context Cass inv:
not self.all General El enent s()->i ncl udes(sel f)

[3] Parent element’s operations must be inherited.

context C ass inv:
self.inheritedOperation = self.general El enents()->iterate(p s = Set{} |
s->uni on(p. menber Cper ati on->rej ect (x |
sel f. menber Oper ati on- >exi st s(x' |
x"' . redefinedOperation->includes(x)))))

[4] Member operations must include the inherited features.

context C ass inv:
sel f. menmber Oper ati on->i ncl udesAl | (sel f.inheritedQOperation)

[5] Member operations may only redefine parent features.

context C ass inv:

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 212

OPERATIONS

sel f. menber Operation->forAll (x |
(self.general El ements() -> iterate(s = Set{} |
s->uni on(g. mermber Operation))))->i ncl udesAl | (x.redefi nedOperati on)

Operation
[1] Redefined operations must conform.

context Operation inv:
sel f.redefi nedOperation->forAll (f |
sel f.type. confornsTo(f.type))

[2] The pre and post condition expressions of an operation must be of type boolean.

context Operation inv:
sel f. preCond.type = bool ean and sel f. post Cond. type = bool ean

[3] The scope of the operation’s action must include self.

context Cperation inv:
sel f. body. scope->exi sts(v | v.varNane = self
and v.type = sel f.owni ngd ass)

[4] The scope of the operation’s pre condition must include self.

context Cperation inv:
sel f. preCond. scope->exi sts(v | v.varNane = self
and v.type = sel f.owni ngd ass)

[5] The scope of the operation’s post condition must include self.

context Qperation inv:
sel f. post Cond. scope->exi sts(v | v.varNane = self
and v.type = sel f.owni ngd ass)

[6] The scope of the operation’s post condition must include self@pre.

context Qperation inv:
sel f. post Cond. scope->exi sts(v | v.varNane = self@re
and v.type = sel f.owni ngd ass)

[7] The type of an operation equals the type of its body action.

context Operation inv:
sel f.type = sel f. body. type

17.2.4 Operations

Class
[1] Looks up a operation in a class given a name.

context O ass:: | ookupOperationforNanme(x: Nanme): featureC assifier::
Operation
sel f. menber Oper ati on- >sel ect (e| e.nane = x). sel ect El enent ()

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 213

OPERATIONS

[2] Looks up a name in a class given a operation.

context C ass:: | ookupNarmeFor Qperation(x : Operation): Name
sel f. menber Operati on->sel ect(ele = x).selectEl ement().nane

[3] Returns the generalizations of the class.
context C ass::general El enents() : Set(d ass)
sel f.generalization->terate(p s=Set{} | s->union(Set{p.general}))

[4] Transitively returns all generalizations of the class.
context C ass::all General El enents(): Set(d ass)
sel f.general El ements()->iterate(g s=sel f.general El enents() |
s->uni on(g. al | General El ements()))

Operation
[1] Checks whether the supplied operation is in the same class as the operation.

context Qperation::sanmeNanespace(x : Operation) : Bool ean
X. sl ot Val ue(owni ngCd ass) . nenber Qper at i on->i ncl udes(sel f)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

214

OPERATIONS

17.3 SEMANTIC DOMAIN

17.3.1 Derivation

BehaviouralFeatureClassifierValue

BehaviouralClassifierValue

BehaviouralFeatureValue

<Behavioural
Classifier
Value>Identity

1 owning<BehaviouralClassifierValue>

owned<BehaviouralFeatureValue> *

scope | VariableValue | scope
1.* | value:Value 1.*
1 preState .
State 1 Action
postState Evaluation
preState 1 1 postState body 1
<Behavioural 1value
> e
FeatureValue 1 Classifier
value Value

owning<BehaviouralFeatureValue>

OperationEvaluation

StaticExpEval

" ownedParameter
.1 preCondEval -
o1 p Parameter 1 Classifier
StaticExpEval | 9.1 postCondEval Evaluation value Value
K ExpContextValue
ExpressionContextValue ExpEvalCategory
rootExp
varValue
<ExpContext | <TOOEXP> | <EypFyal
Eval> 41| Category>
OperationEvaluation OperationEvaluation
ActionEvaluation StaticExpEval
body postCondEval
self.preState self.preState
Object

postCondEval
self.postState

self.preState

OperationEvaluation
StaticExpEval
preCondEval

Operations ‘

SemanticDomain

OperationEvaluation

Figure 17-4 Derivation of Operations semantic domain package

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

215

OPERATIONS

17.3.2 Model

The semantic domain package for operation is shown in figure 17-5 on page 216 derived as illustrated in figure
17-4 on page 215. An operation instance has a value and is contained by the identity of an object, an operation
instance may also has a pre and post condition evaluation and must have a pre and post state. The pre condition
evaluation is bound to the environment of the pre state, and the post condition evaluation is bound to the environ-
ment of the post state. An operation instance may also have a set parameter evaluations. The body of an opera-
tion instance is described by action evaluation which is the root of an action evaluation tree.

Operation::SemanticDomain
scope | VariableValue | scope
1.* | value:Value 1.*
1 preState]
State 1 Action
)) ! postState | Eyglyation
Objectldentity
preState 1 1 postState body 1
1 owningObjectldentity
: 1|, value
ownedOperationEvaluation * Operatlpn
Evaluation 1 Classifier
value Value
1 owningOperationEvaluation
* ownedParameter
reCondEval e
0.1 p Parameter 1 Classifier
StaticExpEval | .1 postCondEval Evaluation value Value

Figure 17-5 Semantic Domain for Operations package

Objectidentity
Associations

ownedOperationEvaluation The operation evaluations owned by the object identity.

OperationEvaluation
Attributes
preCondEval The evaluation of the operation evaluation’s pre condition.
postCondEval The evaluation of the operation evaluation’s post condition.
preState The state before the operation evaluation takes place.
postState The state after the operation evaluation takes place.
value The value of the operation evaluation.
body The operation evaluation’s body evaluation.
Associations

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 216

OPERATIONS

ownedParameterEvaluation The parameter evaluations of an operation evaluation.

ParameterEvaluation
Attributes
value The value of the parameter evaluation.
Associations

owningOperationEvaluation The operation evaluation owning the parameter.

StaticExpEval
Attributes

value The value of the expression evaluation.

ActionEvaluation
Attributes
preState The state before the action evaluation takes place.
postState The state after the action evaluation takes place.

value The value of the action evaluation.

17.3.3 Well-formedness rules

OperationEvaluation
[1] The post state of an operation evaluation cannot take place before the pre state.

cont ext OperationEval uation inv:
sel f.preState.isLater(self. postState)

[2] The pre and post expression evaluation of an operation evaluation both must be true.

context OperationEval uation inv:
sel f.preState.val ue and sel f. post St at e. val ue

[3] The pre and post state of an operation evaluation’s action evaluation should be the same as self.

context OperationEval uation inv:
sel f. body. preState.isSaneTi ne(sel f.preState) and
sel f. body. preState.isSameTi ne(sel f. post State)

[4] The operation evaluation’s action evaluation should have the operation evaluation’s pre state in scope.

context OperationEval uation inv:
sel f. body. scope->exi sts(v | v.value=self.preState)

[5] The operation evaluation’s pre condition should have the operation evaluation’s pre state in scope.

cont ext OperationEval uation inv:
sel f. preCondEval . scope->exi sts(v | v.value=self.preState)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

217

OPERATIONS

[6] The operation evaluation’s post condition should have the operation evaluation’s post state in scope.

cont ext OperationEval uation inv:
sel f. post CondEval . scope->exi sts(v | v.val ue=sel f. post State)

[7] The operation evaluation’s post condition should have the operation’s evaluation’s pre state in scope.

context OperationEval uation inv:
sel f. post CondEval . scope->exi sts(v | v.value=self.preState)

[8] The value of an operation evaluation is the value of its body action evaluation.

context OperationEval uation inv:
sel f.val ue = sel f.body. val ue

17.3.4 Operations

There are no operations.

17.4 SEMANTIC MAPPING

17.4.1 Derivation

BehaviouralFeatureClassiferSemantics BehaviouralClassifier
BehaviouralFeature L

BehaviouralClassifierValue
BehaviouralFeatureValue

of <Behavioural

<Behavioural
Classifer>

Classifier
Value>

owning<BehaviouralClassifierValue>

ber<Behavi IFeat * owned<BehaviouralFeatureValue>
member<BehaviouralFeature>

of <Behavioural
Feature
Value>

<Behavioural
Feature>

Class

Operation
Objectldentity
OperationEvaluation

Operations ‘

SemanticMapping ‘

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

218

OPERATIONS

Figure 17-6 Derivation of semantic mapping for Operations package

17.4.2 Model

The semantic mapping for the operations package is shown in figure 17-7 on page 219 derived as illustrated in
figure 17-6 on page 219. An object identity has an operation evaluation for each of its class’s member opera-

tions.
Operations::SemanticMapping ‘
of .
Object
Class Identity
1 owningObjectldentity
. . ownedOperationEvaluation
memberOperation
of ;
. Operation
Operation Evaluation
Figure 17-7 Semantic mapping for Operations package
Class
Associations

memberOperation The operations that are members of the namespace of the class.

Objectidentity
Associations
of The class the object identity is an instance of.

ownedOperationEvaluation The operation evaluations owned by the object identity.

OperationEvaluation
Associations
of The operation the operation evaluation is an instance of.
owningObjectldentity The object identity owning the operation evaluation.

17.4.3 Well-formedness rules

Objectidentity

[1] The object identity’s operation evaluations must commute with its class’s operation.

context Cbjectldentity inv:
sel f. ownedQper ati onEval uati on->forAll (i |
sel f. of . mrenber Operati on->exists(o | i.of = 0))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

219

OPERATIONS

17.4.4 Operations

There are no operations.

17.5 EXAMPLE SNAPSHOTS

Figure 17-9 on page 220 shows a snapshot realisation of the operation abstract syntax definition shown in figure
17-8 on page 220.

X
y:Integer
incr()
pre self.y =0
post self.y = self@pre.y+1

Figure 17-8 Operation example

Variable
Declaration
“self’

scope referredVariable
type/ memberOperation :Operation
:Class /—\ name = “incr oreCond | EQUAISEXp
name = “X”

type

type

memberAttribute
left right
:Attribute
-PropertvCall :ConstantEx
name ="y” -Lropertytall
Exp “0”
source
:Integer
:BoundVar
et source
(&)
L
postCond :EqualsExp T Eexrtg cal :BoundVar
‘Variable
Declaration :PropertyCall
“self@pre” right Exp ™~___4 :BoundVar
referredVariable source
:Variable
Declaration
“self’

referredVariable

Figure 17-9 Partial example snapshot of figure 17-3 on page 211

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

220

OPERATIONS

Although this snapshot is incomplete in as much as we do not include details about the body of the operation (the
action tree), it does illustrate how pre and post condition expressions have their scope bound to the class respon-
sible for the operation. For pre expressions, this is simply a binding of the class to self. For post expressions,
there is also a binding of the class to self, but in addition there is a binding of the class to self@pre. This enables
an instance of a post conditions to reference values within its respective pre condition instance.

Figure 17-10 on page 221 shows a snapshot realisation of the operation semantic domain definition for the
syntax specification of figure 17-9 on page 220. Again this is missing details of the operations body, however it
is illustrated how the post condition is able to access variable values bound to the pre state (through the semantic
realisation of the syntactic self(@pre variable declaration).

:Object
Identity
fimstrip@1 filmstrip@?2
s :Object value
value —j—'Ob ect
postState
preState ownedOperationEvaluation cope
:Operation
Evaluation
ownedSlot ownedSlot
:Slot :Slot
name ="y” name = "y”
referred
Variable /| :variableValue preCondEval postCondEval .
y :variableValue
. :EqualsExpEval
:EqualsExpEval referred
eferred Variable
Variable
left right righ left
:PropertyCall :ConstantExp :PropertyCall :PropertyCall
ExpEval Eval ExpEval ExpEval
(SOUI’CB (source < source
:Bound :Bound :Bound
VariableEval VariableEval VariableEval

Figure 17-10 Partial example snapshot of figure 17-5 on page 216

17.6 CHANGES FROM UML 1.4

The semantics for operations have been defined. Operations may be optionally associated with an action, thus
supporting a the refinement of operations as action expressions.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 221

Chapter 18
Messaging

This chapter defines an abstract syntax and semantics for messaging. It describes how operations can be invoked
by the sending of a message from an object.

18.1 POSITION IN ARCHITECTURE

UML2::LanguageUnits::Core
DataTypes Associations Classes
— | —
Packages Expressions
Templates Behaviour Constraints Queries
Actions
— 7

Operations
Messages

The approach we have adopted closely follows that described in (KleppeO1) where objects are augmented with
input and output signal queues. When a send message action occurs a new signal is added to the output queue of
the object owning the send message action. We say nothing about how the signal is then transferred to the input
queue of the target object since this may be realised in a number of ways depending on the target implementation.
It is simply stated that if an operation executes then a signal corresponding to invoking the operation must have
been generated sometime earlier in time and that the signal exists in the input queue of the object containing the

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 222

MESSAGING

operation execution prior to the operation execution (the operation execution’s pre state) and no longer in the
input queue after the operation execution (the operation execution’s post state).

18.1.1 Example

Figure 18-1 on page 223 shows an example of a message call (signified by the """ symbol).

X
Op1
(
selffrOp2
)
Op2
(
)

Figure 18-1 Message call example

18.2 ABSTRACT SYNTAX

18.2.1 Derivation

Container i_&)—r{t;ﬁé; _____
| Element
owning<Container>
<Container> @ <Element>
1 owned<Element>
[Signal |
Messaging | Parameter |
AbstractSyntax ‘
originClass
Class
member
* Operation
1
Operation Signal
targetOperation
Expression
Primitive 1 | ownedSignal
Action
1 | owningSendAction
. type Send Reference
Classifier Message 1 Operator
1 Action P
target
type 1
Parameter VariableExp
Figure 18-2 Derivation of Messaging Abstract Syntax package

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

223

MESSAGING

18.2.2 Model

Figure 18-3 on page 224 shows the definition of the Messaging package abstract syntax. The derivation of this is
illustrated in figure 18-2 on page 223.

Messaging::AbstractSyntax

originClass
Class
1
memberOperation, |, *
1
. . 1 ownedParameter
Operation <——— Signal = Parameter
targetOperation owningSignal *
1| ownedSignal
Primitive
Action
1 | owningSendAction type 1
Expression Send type N
Message Classifier
Z% Action 1
1 target
Reference VariableExp
Operator

Figure 18-3 Abstract Syntax for the Messaging package

Signal
Associations
originClass The class from where the signal originated.
ownedParameter The parameters associated with a signal.
owningSendAction The send message action that initiated the signal.

targetOperation The operation that should be invoked as a result of the signal.

SendMessageAction
Associations
type The type of the send message action.
ownedSignal The signal owned by the send message action.
target The reference operator that links to the target class whose operation needs to be called.

Parameter
Associations
type The type of the parameter.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 224

MESSAGING

owningSignal The signal owning the parameter.

ReferenceOperator

ReferenceOperator is an abstract class used purely for the purpose of polymorphism. The target of a SendMes-
sageAction can be a bound variable, a PropertyCallExp or an other SendMessageAction. Using this we can con-
sider the target of a SendMessageAction more generally as a referenceOperator. For example self.a.operation1()
is a SendMessageAction with operationl() as the target operation and self.a (a PropertyCallExp expression) as
the target.

18.2.3 Well-formedness Rules

SendMessageAction

[1] The type of the SendMessageAction is the return type of the target operation

cont ext SendMessageAction inv:
sel f.type = sel f.ownedSi gnal . target Operati on. type

[2] The target operation to be called must be in scope of the target class.

cont ext SendMessageAction inv:
sel f.target.type. menber Operati on ->i ncl udes
(sel f.ownedSi gnal . target Operati on)

18.2.4 Operations

There are no operations.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 225

MESSAGING

18.3 SEMANTIC DOMAIN

18.3.1 Derivation

Container

<Container> <@

.. 7
| Container
|Element
owning<Container>
<Element>
1 owned<Element>

Signallnstance

| ParameterEvaluation
—_

Messaging

SemanticDomain

Operation
Evaluation
preState 1 1 postState
Objectldentity | 'dentity 1 originObject
reState 1 .
P Object
postState 1
inputQueue * * | outputQueue
Signal
Instance
Expression
1 ownedSignallnstance Evaluation
1 owningActionEvaluation
Send
M:sgage > Reference
Primitive ction 1 OperatorEvalu
! <+—1 Evaluation ation
Action target
Evaluation
1 value
Parameter e VariableEx
Evaluati Value p
valuation Eval

Figure 18-4 Derivation of Messaging Semantic Domain package

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

226

MESSAGING

18.3.2 Model

Figure 18-5 on page 227 shows the definition of Messaging semantic domain package. The derivation of this is
illustrated in figure 18-4 on page 226.

Messaging::SemanticDomain

Operation
Evaluation

ownedOperationEvaluation

1 owningObjectldentity
preState 11 postState
Objectidentity | identity 1 originObject
reState 1 .
P Object
postState 1
inputQueue |« * | outputQueue
Signal
Instance 1 ownedParameterEvaluation Parameter
<& o Evaluation
owningSignallnstance
Expression 1 ownedSignallnstance
Evaluation
1 owningActionEvaluation
Send .
Primitive
Message —> Action
Reference [Action :
1) Evaluation
Operator Evaluation
Evaluation target
Zﬁ 1 value
. value
VariableExp Value
Eval 1

Figure 18-5 Semantic Domain for Messaging package

Object
Associations
identity The identity of the object.
inputQueue The signal instances to be processed by the object.
outputQueue The signal instances originating from the object.

Objectidentity
Associations

ownedOperationEvaluation The operation evaluations owned by the object identity.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 227

MESSAGING

OperationEvaluation
Associations
owningObjectldentity The object identity owning the operation evaluation.
preState The state before the operation executes.

postState The state after the operation executes.

Signallnstance
Associations
originObject The object from where the signal instance originated.
ownedParameterEvaluation The parameter evaluations owned by the signal instance.

owningActionEvaluation The send message action evaluation owning the signal instance.

SendMessageActionEvaluation
Associations
preState The state before the send message action evaluation takes place.
postState The state after the send message action evaluation has taken place.
value The value of the send message action evaluation.
ownedSignallnstance The signal instance owned my the send message action evaluation.

target The reference operator evaluation that links the target object whose operation needs to be called.

Parameter
Associations

value The value of the parameter.

18.3.3 Well-formedness Rules

SendMessageActionEvaluation

[1] My pre and post states must correspond to the owning object of the send message action evaluation.

To be formalised.

[2] The pre state and post state must refer to an object with the same identity and correspond to the identity of my
signal instances origin object.

cont ext SendMessageActi onEval uation inv:
self.preState.identity = self.postState.identity
and self.preState.identity =
sel f. ownedSi gnal | nst ance. ori gi nQbj ect.identity

[3] My signal instance must not be included in my pre state object’s output queue, but should be included in my
post state’s output queue.

cont ext SendMessageActi onEval uation inv:
not (sel f. preSt at e- >i ncl udes(ownedSi gnal I nst ance)) and
sel f. post St at e- >i ncl udes(ownedSi gnal | nst ance)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 228

MESSAGING

Object

[1] The signal instances in the input queue no longer exist in the output queue of their origin object.

context Qbject inv:

sel f. i nput Queue-

StorAll (i |

not (i . ori gi nObj ect - >out put Queue->i ncl udes(i))

18.3.4 Operations

There are no operations.

18.4 SEMANTIC MAPPING

18.4.1 Derivation

There is no derivation.

18.4.2 Model

Semantics

Figure 18-6 Derivation of Messaging Semantic Mapping package

.
1 Value |
<ModelElement> of <Value>
Operation | (_JI_a_s_s _____ i
OperationEvaluation I Object !
SendMessageAction | ae;s_s““"“I
SendMessageActionEvaluation | Objectldentity |
Parameter gril\ﬁeisisiaigieﬁﬁﬁﬁl
ParameterEvaluation | Messagelnstance E
[Classifier |
I Value !
Messaging ‘
SemanticMapping ‘

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

229

MESSAGING

Messaging::SemanticMapping
of
Class Object
of i
Object
Class Identity
Sianal of Signal
[¢] Instance
of i
. Operation
Operation Evaluation
Send
Send of Message
Mess_age Action
Action Evaluation
Parameter i parameter
Evaluation
of
Classifier Value

Figure 18-7 Semantic Mapping for Messaging package

18.4.3 Well-formedness Rules

OperationEvaluation

[1] There must exist in the pre state object’s input queue a signal instance who targets the operation that [am an
instance of. The signal should have been created earlier in time. This signal should not exist in the post state of
my object’s input queue.

context QperationEval uation inv:
sel f. preState.inputQeue->includes(i | i.of.targetOperation = self.of
and sel f.preState.islLater(i.owni ngActionEval uati on. post State)
and not (sel f. post State. i nput Queue->i ncl udes(i)))

[3] My object identity’s class should contain an operation that commutes with me.

cont ext Operationlnstance inv:
sel f. owni ngObj ectl dentity. of.
menber Oper ati on->i ncludes(i | self.of = 1)

18.4.4 Operations

There are no operations.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 230

MESSAGING

18.5 EXAMPLE SNAPSHOTS

Figure 18-9 on page 231 shows a snapshot realisation of the example shown in figure 18-8 on page 231.

X
Op1
self"Op2
)
Op2
(
)

Figure 18-8 Example message

This describes how a class has two operation (Opl and Op2) and how the second operation (Op2) is invoked
from the first (Op1).

type
K—\ :Class
Variable
Declaration memberOperation memberOperation
“self’ Op1 002
' :Operation :Operation
referredVariable
:BoundVar Sianal
body
target .
k——/ :Send owningSendAction ownedSignal
Message
Action

Figure 18-9 Example snapshot of figure 18-3 on page 224

Figure 18-10 on page 232 shows a snapshot realisation of the messaging semantic domain definition for the syn-
tax specification of figure 18-9 on page 231. The evolution of the system is described such that an object has a
signal in the post state of the send message action (filmstrip@?2) that did not exist in the pre state (filmstrip@1).
This state transformation was ultimately caused by the first operation (Op1). The second operation (Op2, which
does nothing) occurs later in time and describes how the same signal exists in the input queue of its object and no
longer exists in the output queue of the origin object (the same object) and that signal does not exist after the
operation has executed.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 231

MESSAGING

identity :Object identity
ldentity

identity

filmstrip@1

filmstrip@2 filmstrip@3 filmstrip@4
originObject :Object :Object :Object :Object
prefState | PreState postState postState preState postState
ownedOperatio ownedOperation
Op1: Op2:
Operation Operation
Instance Instance
body OutputQueue InputQueue
M owningActionEvaluation :Signal
Message
- Instance
Action ownedSignallnstance -
Evaluation

Figure 18-10 Example snapshot of figure 18-5 on page 227

18.6 CHANGES TO UML 1.4

A semantics has been defined for message passing.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

Chapter 19
Foundation Templates

19.1 INTRODUCTION

The purpose of this chapter is to describe a set of general purpose templates for language design. Each of the tem-
plates described in this chapter represent a self-contained unit of concepts and properties that capture a specific
aspect of language design. These templates are used to construct the UML specific templates that can be found in
the next chapter.
The templates in this chapter are categorised and ordered as follows:

Structural Templates: Container, TypedElement, Parameterized, Multiplicity.

Naming Templates: Named, Namespace.

Relationship: Relationship, Generalizable, Extendable, Import.

Semantics: Semantics, Parameterized Value, ParameterizedSemantics.
These templates and categories are not fixed. In the process of building the submission, we have noticed many

other useful language design templates. Our intention is to expand this chapter with new templates as we identify
them and our experience of language definition grows.

19.2 CONTAINER

19.2.1 Summary

A containment relationship, in which one element, the container, conceptually contains another element (the con-
tained element). Containers are one of the most fundamental patterns found in a modelling language. Many lan-
guage elements “contain” other language elements.

19.2.2 Derivation

Not derived from any template.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 233

FOUNDATION TEMPLATES

19.2.3 Definition

Container

| Container

<Container>

owning<Container>

>

*

Element

<Element>

1

owned<Element>

<Container>
Associations

owned<Element> The set of owned/contained elements.

<Element>
Associations

owning<Container> The container which owns/contains the element.

19.2.4 Well-formedness Rules

19.2.5 Operations

19.3 TYPEDELEMENT

19.3.1 Summary

This template defines the structure of elements that have a type.

19.3.2 Derivation

Not derived from any template.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

234

FOUNDATION TEMPLATES

19.3.3 Definition

TypedElement pr;Ele_me; a
'Type
L
type
<Type> <TypedElement>
1
<TypedElement>
Associations
type The type of the typed element.
19.3.4 Well-formedness Rules
19.3.5 Operations
19.4 PARAMETERIZED
19.4.1 Summary
An element which has typed parameters.
19.4.2 Derivation
Namespace ma;esza(; o TypedElement ﬁ/r;wjlisn;nt_l
(NemedElemert _ Tee
______ - —_— e —— — —
<ParameterizedElement> | Parameter_| .
L _ pemetel | L el
Parameterized [<ParameterizedElement> |
| <Type>

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 235

FOUNDATION TEMPLATES

19.4.3 Definition

Parameterized !_Parameten'zedElement I_
| ParameterType |
<Parameterized
) Element>
owning
<Parameterized 1
Element>

ownedParameter | « * .|, memberParameter

1

<Parameter
type Type>

Parameter

<ParameterizedElement>

Association
memberParameter The members of the parameterized element’s namespace.

ownedParameter The owned parameters of the parameterized element.

Parameter
Associations
type The type of the parameter.

19.4.4 Well-formedness Rules

<ParameterizedElement>
[1] The members of a parameterized element include its owned parameters.

cont ext <ParaneterizedEl enent> inv:
sel f. menber Par amet er - >i ncl udesAl | (sel f. ownedPar anet er)

[2] A parameterised element cannot have two parameters with the same name.

cont ext <ParaneterizedEl enent> inv:
sel f. menber Paramet er->for Al | (el]
sel f. menber Par anmet er->for Al | (e2]
el <> e2 inplies el.nane <> e2.nane))

19.4.5 Operations

<ParameterizedElement>

[1] Looks up a parameter in a parameterized element given a name.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

FOUNDATION TEMPLATES

cont ext <Parameteri zedEl ement >; : | ookupPar anet er f or Name(x : Nane): Paraneter
sel f. menber Par amet er- >sel ect (e | e.nanme = x).sel ect El enent ()

[2] Looks up the name in a parameterized element given a parameter.

cont ext <Par aneteri zedEl emrent >: : | ookupNaneFor Paraneter (n : Paranet er) : Nane
sel f. menber Paranmet er->select(e | e = x).sel ectEl enent (). nane

Parameter
[1] Checks whether the given parameter is in the same namespace as this namespace

cont ext Paraneter::sanmeNanmespace(x : Paraneter): Bool ean
X. owni ng<Par anet eri zedEl enent >. nenber Par anet er -> i ncl udes(sel f)

19.5 MULTIPLICITY

19.5.1 Summary

A multiplicity is a set of integer values including the distinguished value "unLimited". A multiplicity is associ-
ated with a range which specifies the range of integer values in the set.

19.5.2 Derivation

Not derived from any template.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 237

FOUNDATION TEMPLATES

19.5.3 Definition

Multiplicity

TypedFeature

<TypedElement>

0..1 multiplicity

Multiplicity

isOrdered : Boolean

range

Range

lower : Integer
upper : Integer
isUnlimited : Boolean

<TypedFeature>
Attributes
multiplicity The multiplicity associated with the typed feature.

Multiplicity
Attributes
isOrdered True if the elements are to be ordered.
range The set of number ranges belonging to the multiplicity.

Range
Attributes
lower The lower value
upper The upper value
isUnlimited True if the range is infinite

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

238

FOUNDATION TEMPLATES

19.5.4 Well-formedness Rules

19.5.5 Operations

19.6 NAMED

19.6.1 Summary

A named element.

19.6.2 Derivation

Not derived from any template.

19.6.3 Definition

Named
I NamedElement |—

- —

<NamedElement>

name:Name

<NamedElement>
attribute

name The name of the named element

19.6.4 Well-formedness Rules

19.6.5 Operations

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

239

FOUNDATION TEMPLATES

19.7 NAMESPACE

19.7.1 Summary

A namespace for named elements. A named element is a member of a namespace if it is owned by the namespace
or has been included as a result of import, extension or inheritance. A namespace provides lookup operations that
return a named element for a name and vice versa.

19.7.2 Derivation

. F—— o
Container | 'container Named N -
Element | NamedElement
R o
__'_<Namespace> r— — — —1
------- <NamedElement> . -------]<NamedEIement> |
Namespace |Namespace

&amedElement N

19.7.3 Definition

Namespace rNamespace
[NamedElement
<Namespace>
* 1 owning<NamedElement>
member<NamedElement> * * owned<NamedElement>
<NamedElement>
name:Name

<Namespace>
Attributes
member<NamedElement> The members of the namespace.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 240

FOUNDATION TEMPLATES

Associations

owned<NamedElement> The owned named elements.

<NamedElement>
Attributes
name The name of the named element.
Associations

owningNamespace The namespace owning the named element.

19.7.4 Well-formedness Rules

<Namespace>

[1] The members of a namespace include its owned elements

cont ext <Namespace> i nv:
sel f. menmber <NanedEl enent >- >i ncl udesAl | (sel f. owned<NanedEl enent >)

[2] A namespace cannot have two named elements with the same name.

cont ext <Nanespace> i nv:
sel f. menber <NanedEl enent >- >for Al | (el]
sel f. menber <NanedEl enent >- >f or Al | (e2]
el <> e2 inplies el.nane <> e2.nane))

19.7.5 Operations

<Namespace>

[1] Looks up a named element in a namespace given a name

cont ext <Namespace>: : | ookup<NanedEl enent >f or Name(x : Nane): <NanmedEl enment >
sel f. menber <NanedEl ement >- >sel ect (e | e.name = x).sel ect El enent ()

[2] Looks up the name in a namespace given a named element

cont ext <Namespace>: : | ookupNanmeFor <NanmedEl enent >(n : <NamedEl enent >) : Name
sel f. menber <NanedEl enent >- >sel ect (e | e = x).sel ectEl enent (). nanme

<NamedElement>
[1] Checks whether the given named element is in the same namespace as this namespace

cont ext <NamedEl enent >: : sameNanespace(x : <NanmedEl enent >) : Bool ean
x. owni ng<Nanespace>. menber <NamedEl enent > -> i ncl udes(sel f)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 241

FOUNDATION TEMPLATES

19.8 RELATIONSHIP

19.8.1 Summary

Defines a relationship between two elements of the same type.

19.8.2 Derivation

Not derived from any template.

19.8.3 Definition

| Element
. . Rel |
Relationship |Source
| target N
|sourcerel |
<source> <sourcerel> Erge_trel_ _
1 1
<Element> <Element><Rel>
1 1
<target> <targetrel>

<Element>
assocoation
<sourcerel> The source elements.

<targetrel> The target elements.

<Element><Rel>
association
<source> The source element.

<target> The target element.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 242

FOUNDATION TEMPLATES

19.8.4 Well-formedness Rules

19.8.5 Operations

19.9 GENERALIZABLE

19.9.1 Summary

A generalization relationship between elements.

19.9.2 Derivation

19.9.3 Definition

<Element>
general

[Element !
| Rel |
Relationship |source |
"target |
sourcerel
|targetrel _|
A
|<Element> !
Generalization |
general |
------------------- Ispecific |
|specia|ization |
&eneralization
Generalizable | | — — —
Element
L
Generalizable |_ J—
Element
L —

*

isAbstract:Boolean 1

specific

specialization

*

>
1

generalization

<Element>Generalization

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

243

FOUNDATION TEMPLATES

<Element>
Attributes
isAbstract True if the element is abstract.
Associations
specialization The specializations of element.

generalization The generalizations of element.

<Element>Generalization
Associations
general The general element.

specific The specific element.

19.9.4 Well-formedness Rules

<Element>
[1] Circular inheritance is not permitted

cont ext <El enent> inv:
not self.all General El ement s()->i ncl udes(self)

19.9.5 Operations

<Element>

[1] Returns the generalizations of the element.

cont ext <El enent >:: general El ement s() : Set (<El enent >)
sel f.generalization->terate(p s=Set{} | s->union(Set{p.general}))

[2] Transitively returns all generalizations of the element.

cont ext <El enent>::all General El ement s(): Set (<El enent >)
sel f.general El ements()->iterate(g s=sel f.general El enents() |
s->uni on(g. al | General El enents()))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

244

FOUNDATION TEMPLATES

19.10 EXTENDABLE

19.10.1 Summary

An extension relationship between elements.

19.10.2 Derivation

Relationship

Re

|EIeFerT - |

| source

|target

I
I
| sourcerel |
|

targetrel

|Extension

I
parent |
T Ghild |

I

|extended
| extending

Extendable

e

Element

19.10.3 Definition

Extendable

r—— -

parent

extending

{Element [

o

1

<Element> .
child

>

*

extended

<Element>Extension

1

*

<Element>
Associations
extended The extended elements.

extending The extending elements.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

245

FOUNDATION TEMPLATES

<Element>Extension
Associations

parent The parent Element.
child The child Element

19.10.4 Well-formedness Rules

<Element>

[1] Circular inheritance is not permitted.

cont ext <El enent> inv:
not self.all Ext endedEl enent s() - >i ncl udes(sel f)

19.10.5 Operations

<Element>
[1] Returns the elements that have been extended.

cont ext <El enent >:: ext endedEl enent s() : Set (<El enent >)
self.extended -> iterate(p s = Set{} | s->union(Set{p.parent}))

[2] Transitively returns all elements that have been extended.

cont ext <El enent >:: al | Ext endedEl enent s() : Set (<El enent >)
sel f.extendedEl enents()->iterate(g s = self.extendedEl ements() |
s->uni on(g. al | Ext endedEl enents()))

19.11 IMPORT

19.11.1 Summary

Defines an import relationship for a pair of namespaces.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 246

FOUNDATION TEMPLATES

19.11.2 Derivation

19.11.3 Definition

|Element ~— !
- - |Rel | _____
Relat|0nSh|p |Isource Namespace |Namespace |
ltarget | |NamedElement |
|sourcere| _____
Ltargetrel _ _l
_____ N
I-<NamedE|ement>-|
Import
| parent|
| child | —_———— o
importer ' | - — | <Namespace> |
| imported B IiNamedEIement>
| - — — — 7
mport |[Namespace
'NamedElement
-
imported
* <NamedElement> <Named
<Namespace>
Element>
Import Namespace

member<NamedElement>

NamedElement

<Named

1

owned<NamedElement>

Element>

*

name : Name

<Namespace> @

*

inmported<NamedElement>

owning<Namespace>

*

parent 11 child
importing * oo imported
<Namespace>
Import

*

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

247

FOUNDATION TEMPLATES

<NamedElement>
Associations
imported<NamedElement> The imported elements.

member<NamedElement> The member elements.

19.11.4 Well-formedness Rules

[1] The members of a namespace include its imported elements

cont ext <Namespace> inv:
sel f. menber <NanedEl enent >- >i ncl udesAl | (sel f. i mport ed<NanmedEl enent >)

[2] Parent namespace named elements are imported.

cont ext <Namespace> inv:
sel f.inportedNamespaces()->forAll(x |
sel f. i nported<NamedEl enent >->i ncl udesAl | (x. nenber <NanmedEl enent >))

19.11.5 Operations

<Namespace>
[1] Returns the imported namespaces of the namespace.

cont ext <Namespace>::inported<Nanmespace>(): Set (<Namespace>)
self.inported->iterate(p s=Set{} | s->union(Set{p.parent}))

[2] Transitively returns all imported namespaces of the namespace.

cont ext <Namespace>::all |l nported<Nanespace>(): Set (<Namespace>)
sel f.inported<Namespace>()->iterate(g s=self.inported<Nanespace>() |
s->uni on(g. al | | rport ed<Nanespace>()))

19.12 SEMANTICS

19.12.1 Summary

An semantic relationship between a value and the element it is a value or instance of.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 248

FOUNDATION TEMPLATES

19.12.2 Model

- — — 7
Semantics |E|ement
e
1
<Element> <Value>
of
19.13 PARAMETERIZEDVALUE
19.13.1 Summary
An instance of a parameter.
19.13.2 Definition
Container |€on_tai£r_ -
IEontained B
A
I_< grameterizeEIeEenWa I;> —I
------------- | <Value> |

ParameterizedValue

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

249

FOUNDATION TEMPLATES

19.13.3 Definition

ParameterizedValue

| ParameterizedElementValue |_
"Value

: -
<Parameterized

ElementValue>

owning
<Parameterized | 1
ElementValue>

ownedParameterValue *

ParameterValue <Value>
valuie

<ParameterizedElementValue>

Association
ownedParameterValue The owned parameter values of the parameterized element value.

ParameterValue
Associations
value The value of the parameter value.

19.14 PARAMETERIZEDVALUESEMANTICS

19.14.1 Summary

Defines a semantics for parameterized element. A value of a parameterized element is a parameter value. There

must be a parameter value for every parameter of the parameterized element and vice versa.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

250

FOUNDATION TEMPLATES

19.14.2 Derivation

| - — - Parameterized
Parameterized | paramaterzedEiament || Vabe ||paamawimsdgiemenvave |

|ParameterType | Value |
I—<ParameterizedEIement> 1 <ParameterizedElementValue> 1
| <ParameterType> | <Value>

—_—— — — — — o ——— - — —
5 —

. . |<ParameterizedEIement>
ParameterizedSemantics |

| <ParameterType>
<ParameterizedElementValue> |
| <Value>

19.14.3 Definition

P terizedS ti <ParameterizedElement>
arameterizedSemantics | <ParameterType> |
|<ParameterizedEIementVaIue> |
<Value>
]
. Of .
<Parameterized <Parameterized
Element>] ElementValue>
of
Parameter ParameterValue
1

19.14.4 Well-formedness rules

<ParameterizedElementValue>

[1] A parameterized element value should contain a parameter value for all parameter’s in the parameterized ele-
ment value’s parameterized element’s namespace.

cont ext <ParaneterizedEl enent Val ue> i nv:
sel f. of . menber Paraneter->forAll (c |
sel f. ownedPar anet er Val ue->exi sts(d | d.of = ¢))

[2] For each parameter value owned by a parameterized element value there should be a parameter of the param-
eterized element value’s parameter element’s namespace that the parameterized element value is a value of.

cont ext <ParaneterizedEl ement Val ue> i nv:
sel f. ownedPar anet er Val ue->for Al l (c |
sel f. of . menber Paranet er->exi sts(d | c.of = d))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 251

Chapter 20
UMLTemplates

20.1 INTRODUCTION

This chapter describes the templates used to define UML 2.0. Note, these templates are specifically targeted at
the UML language.
The templates in this chapter are categorised and ordered as follows:

Structural: FeatureClassifier, StructuralFeatureClassifier, BehaviouralFeatureClassifier, Package.

Semantics: StructuralFeatureClassifierValue, StructuralFeatureClassifierSemantics, BehaviouralFeatureClas-
sifierValue, BehaviouralFeatureClassifierSemantics.

Extension: ExtendableNamespace, ExtendablePackage, ExtendableStructuralFeatureClassifier, Extendable-
BehaviouralFeatureClassifier, TemplateInstantiation.

20.2 FEATURECLASSIFIER

Describes the general structure and properties of a classifier and its features.

20.2.1 Derivation

- _ —— — —
Generalizable [1 TypedElement | e iement

|Element Type
it I‘ e

Namespace rN;nt;pa_ce_ 1 |<Classiﬁer> |
|NamedElement —— ——
<Classifier> | <Feature>
<=l <Feature> | <Type> |
.
™ ——— — —
FeatureClassifier | |Classmer
Feature |
Type

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 252

UMLTEMPLATES

20.2.2 Definition

. T
FeatureClassifier | ICIaSSIfler |
Feature |
] IType
<Type>
type
<Classifier> <Feature>
isAbstract:Boolean | OWning<Classifier> * name:Name
1 owned<Feature>
. inherited<Feature>
*
* member<Feature>
general |1 1 V¥ specific *
redefined<Feature>

specialization * * | generalization

<Classifier>Generalisation

<Classifier>
Attributes
isAbstract True if the classifier is abstract
Associations
inherited<Feature> The inherited features of the classifier.
member<Feature> The features that are members of the namespace of the classifier.
owned<Feature> The features owned by the classifier.
specialization The specializations of the classifier.

generalization The generalizations of the classifier.

<Feature>
Attributes
name The name of the feature.
redefined<Feature> The features that are redefined.
type The type of the classifier.
Associations
owning<Classifier> The classifier that owns/contains the feature.

<Classifier>Generalization
Associations

general The general classifier.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

UMLTEMPLATES

specific The specific classifier.

20.2.3 Well-formedness Rules

<Classifier>

[1] The members of a classifier must include the owned features of the classifier.

context <C assifier> inv:
sel f. menber <Feat ure> ->i ncl udesAl | (sel f. owned<Feat ur e>)

[2] Circular inheritance is not permitted.

context <C assifier> inv:
not self.all General El ement s() ->i ncl udes(sel f)

[3] Parent element’s features must be inherited.

context <C assifier> inv:
sel f.inherited<Feature> = self.general El enents()->iterate(p s = Set{} |
s->uni on(p. menber <Feat ur e>- >rej ect (x |
sel f. menber <Feat ur e>- >exi st s(x' |
x' . redefined<Feat ure>->i ncl udes(x)))))

[4] Member features must include the inherited features.

context <Cl assifier> inv:
sel f. menber <Feat ure> ->i ncl udesAl | (sel f.inherited<Feature>)

[5] Features cannot be owned and inherited.

context O ass inv:
sel f. owned<Feat ure>->i ntersection(sel f.inherited<Feature>) -> isEnpty

[6] Member features may only redefine parent features.

context <C assifier> inv:
sel f. menber <Feature> -> forAll (x |
(self.general El enents() -> iterate(s = Set{} |
s->uni on(g. nenber <Feat ure>))))->i ncl udesAl | (x.redefi ned<Feat ur e>)

<Feature>
[1] Redefined features must conform.

context <Feature> inv:
sel f.redefi ned<Feature>->forAll (f |
sel f.type.confornmsTo(f.type))

20.2.4 Operations

<Classifier>
[1] Looks up a feature in a classifier given a name.

context <O assifier>::|ookup<Feat ure>for Nane(x: Nane): featureC assifier::
<Feat ur e>
sel f. menber <Feat ure>- >sel ect (e|] e.nane = x).sel ect El enent ()

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 254

UMLTEMPLATES

[2] Looks up a name in a classifier given a feature.

context <C assifier>::|ookupNaneFor <Feature>(x : <Feature>): Nane
sel f. menber <Feat ure>->sel ect (el e = x).selectEl ement().nane

[3] Returns the generalizations of the classifier.
context <Cl assifier>::general El ements() : Set(<C assifier>)
sel f.generalization->terate(p s=Set{} | s->union(Set{p.general}))

[4] Transitively returns all generalizations of the classifier.
context <Cl assifier>::all General El enents(): Set(<C assifier>)
sel f.general El ements()->iterate(g s=sel f.general El enents() |
s->uni on(g. al | General El ements()))

<Feature>
[1] Checks whether the supplied feature is in the same classifier as the feature.

cont ext <Feature>::sanmeNanespace(x : <Feature>) : Bool ean
x. sl ot Val ue(owni ng<d assi fi er >) . menber <Feat ur e>- >i ncl udes(sel f)

20.3 STRUCTURALFEATURECLASSIFIER

20.3.1 Summary

Describes the general structure and properties of a classifier and its structural features.

20.3.2 Derivation

M irecifiar 1
FeatureClassifier ||Classmer
Feature

[Type |

r)
<Classifier>
|<StructuraIFeature> |

StructuralF eatureClassifier | [Classifier
{ StructuralFeature

type

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

255

UMLTEMPLATES

20.3.3 Definition

StructuralFeatureClassifier Classifier
StructuralFeature
Type
<Type>
1

«» member<StructuralFeature> <Structural

< ifier>
Classifier: > Feature>
1 .
isAbstract : owned<StructuralFeature>| name : Name
Boolean owning<Classifier> *
inherited<StructuralFeature>
specific 1 1 general redefined<StructuralFeature> *

generalization | « . | specialization

<Classifier>
Generalisation

<Classifier>
Attributes
isAbstract True if the classifier is abstract
Associations
inherited<Feature> The inherited structural features of the classifier.
member<Feature> The structural features that are members of the namespace of the classifier.
owned<Feature> The structural features owned by the classifier.
specialization The specializations of the classifier.
generalization The generalizations of the classifier.

<StructuralFeature>
Attributes
name The name of the structural feature.
redefined<Feature> The structural features that are redefined.
type The type of the classifier.
Associations
owning<Classifier> The classifier that owns/contains the structural feature.

<Classifier>Generalization
Associations
general The general classifier.
specific The specific classifier.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

UMLTEMPLATES

20.3.4 Well-formedness Rules

<Classifier>

[1] The members of a classifier must include the owned structural features of the classifier.

context <C assifier> inv:
sel f. menmber <Struct ural Feat ure> ->i ncl udesAl | (sel f. owned<St ruct ur al Feat ure>)

[2] Circular inheritance is not permitted.

context <C assifier> inv:
not self.all General El ement s()->i ncl udes(self)

[3] Parent structural features must be inherited.

context <Cl assifier> inv:
sel f.inherited<Structural Feature> = self.general El enents()->iterate(p
s = Set{}|s->uni on(p. menber<Structural Feat ure>->reject(x |
sel f. menber <Struct ur al Feat ur e>- >exi st s(x' |
x' . redefined<Structural Feat ure>->i ncl udes(x)))))

[4] The member structural features must include the inherited structural features.

context <C assifier> inv:
sel f. nmenber<Structural Feature> ->
i ncl udesAl | (sel f.inherited<Structural Feature>)

[5] Structural features cannot be owned and inherited.

context Cass inv:
sel f. owned<St ruct ur al Feat ure>->
i ntersection(self.inherited<Structural Feature>) -> isEnmpty

[6] Member structural features must only redefine parent structural features.

context <C assifier> inv:
sel f. menber<Structural Feature> -> forAll (x |
(self.general El ements() -> iterate(s = Set{} |
s->uni on(g. menber <Struct ural Feature>))))->i ncl udesAl |
(x.redefined<Structural Feat ure>)

<StructuralFeature>

[1] Redefined structural features must conform.

context <Structural Feature> inv:
sel f.redefi ned<Structural Feature>->forAll (f |
sel f.type. confornsTo(f.type))

20.3.5 Operations

<Classifier>

[1] Looks up a structural feature in a classifier given a name.

context <C assifier>::|ookup<Structural Feat ure>for Name(x: Nane) :
<Structural Feat ure>
sel f. menber <Struct ural Feat ure>->sel ect(e|e.name = x).sel ect El enent ()

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

UMLTEMPLATES

[2] Looks up a name in a classifier given a structural feature.

cont ext <Cl assi fier>:: | ookupNameFor <St ruct ur al Feat ure>(x: <Structural Feat ure>):

Name
sel f. menber <Struct ural Feat ure>->sel ect(ele = x).selectEl ement().nane

[3] Returns the generalizations of the classifier.
context <Cl assifier>::general El ements() : Set(<C assifier>)
sel f.generalization->terate(p s=Set{} | s->union(Set{p.general}))

[4] Transitively returns all generalizations of the classifier.
context <Cl assifier>::all General El enents(): Set(<C assifier>)
sel f.general El ements()->iterate(g s=sel f.general El enent s()
s->uni on(g. al | General El ements()))

<StructuralFeature>

[1] Checks whether the supplied structural feature is in the same classifier as the structural feature.

context <Structural Feature>::saneNanmespace(x : <Structural Feature>) Bool ean
X. owni ng<C assi fi er>. menmber <Struct ur al Feat ur e>->i ncl udes(sel f)
20.4 BEHAVIOURALFEATURECLASSIFIER
20.4.1 Summary
Describes the general structure and properties of a classifier and its behavioural features.
20.4.2 Derivation
Menecifer V0 - .], — — — — —
FeatureClassifier lCIassmer Parameterized || -
i Feature ParameterizedElement |
[Tywpe | Type |
L____r_
r<(£ssEer>_ 0 :B;a\;urajzearejl
<BehaviouralFeature> | <Type> .
e E Type> | T T T T
BehaviouralFeatureClassifier | FCESQ,GT -0
| BehaviouralFeature
e _
2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 258

UMLTEMPLATES

20.4.3 Definition

BehaviouralFeatureClassifier Classifier
BehaviouralFeature
Type
. type
<
Class_lﬁer> <Type>
Generalization 1

generalization| 1

N

specialization

specific * * general

< i i >
Classifier> + member<BehaviouralFeature> | <B€haviouralFeature

isAbstract:Boolean name:Name
1 owned<BehaviouralFeature> *

owning<Classifier> *

* inherited<BehaviouralFeature> «

redefined
Parameter
memberParameter <BehaviouralFeature>
name:Name 1
* owning<BehaviouralFeature>
ownedParameter

<Classifier>
Attributes
isAbstract True if the classifier is abstract
Associations
inherited<BehaviouralFeature> The inherited behavioural features of the classifier.
member<BehaviouralFeature> The behavioural features that are members of the namespace of the classifier.
owned<BehaviouralFeature> The behavioural features owned by the classifier.
specialization The specializations of the classifier.
generalization The generalizations of the classifier.

<BehaviouralFeature>
Attributes
name The name of the behavioural feature.
redefined<BehaviouralFeature> The behavioural features that are redefined.
type The type of the classifier.

Associations
owning<Classifier> The classifier that owns/contains the behavioural feature.

<Classifier>Generalization

Associations

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 259

UMLTEMPLATES

general The general Classifier.
specific The specific Classifier.

20.4.4 Well-formedness Rules

<Classifier>

[1] The members of a classifier must include the owned behavioural features of the classifier.

context <C assifier> inv:
sel f. menber <Behavi our al Feat ur e> ->i ncl udesAl | (sel f. owned<Behavi our al Feat ur e>)

[2] Circular inheritance is not permitted.

context <C assifier> inv:
not self.all General El enent s()->i ncl udes(sel f)

[3] Parent behavioural features must be inherited.

context <C assifier> inv:
sel f.i nherited<Behavi oural Feature> = sel f.general El ements()->iterate(p
s = Set{}|s->uni on(p. menber <Behavi our al Feat ure>->reject (x |
sel f. menber <Behavi our al Feat ur e>- >exi st s(x" |
x' . redefi ned<Behavi our al Feat ur e>->i ncl udes(x)))))

[4] Member behavioural features must include the inherited behavioural features.

context <Classifier> inv:
sel f. nember <Behavi our al Feat ur e>->
i ncl udesAl | (sel f.inherited<Behavi oural Feat ure>)

[5] Behavioural features cannot be owned and inherited.

context Class inv:
sel f. owned<Behavi our al Feat ur e>->
i ntersection(sel f.inherited<Behavioural Feature>) -> isEnpty

[6] Member behavioural features must only redefine parent behavioural features.

context <Cl assifier> inv:
sel f . menber <Behavi our al Feature> -> forAll (x |
(self.general El enents() -> iterate(s = Set{} |
s->uni on(g. menmber <Behavi our al Feature>))))-> incl udesAl |
(x. redefi ned<Behavi our al Feat ur e>)

<BehaviouralFeature>
[1] Redefined behavioural features must conform.

cont ext <Behavi our al Feat ure> inv:
sel f. redefi ned<Behavi our al Feature>->forAl | (f |
sel f.type. confornmsTo(f.type))

[2] The type of the parameter of the behavioural feature must conform to its parent’s type.

cont ext <Behavi our al Feat ure> inv:
sel f. redefi ned<Behavi oural Feature> -> forAll (f |
(1).to(sel f.paraneter->size) -> forAl(n |
sel f.paraneter.at(n).type.confornsTo(f. paraneter.at(n).type)))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 260

UMLTEMPLATES

20.4.5 Operations

<Classifier>

[1] Looks up the behavioural feature in a classifier given a name.

context <d assifier>::|ookup<Behavi oural Feat ur e>f or Nanme(x: Nane) :
<Behavi our al Feat ur e>
sel f. menber <Behavi our al Feat ur e>- >sel ect (e| e. nane = x). sel ect El enent ()

[2] Looks up the name in a classifier given a behavioural feature.

context <d assifier>::|ookupNaneFor <Behavi our al Feat ure>(x :
<Behavi our al Feat ure>): Nane
sel f. menber <Behavi our al Feat ure>->sel ect (e|]e = x). sel ect El enent (). nane

[3] Returns the generalizations of the classifier.
context <C assifier>::general El ements() : Set(<C assifier>)
sel f.generalization->iterate(p s=Set{} | s->union(Set{p.general}))

[4] Transitively returns all generalizations of the classifier.
context <Classifier>::all General El enents(): Set(<C assifier>)
sel f.general El ements()->iterate(g s=sel f.general El enents() |
s->uni on(g. al | General El ements()))

<BehaviouralFeature>

[1] Checks whether the given behavioural feature is in the same classifier.

cont ext <Behavi our al Feat ur e>: : sameNanespace(x: <Behavi our al Feat ur e>) : Bool ean

x. owni ng<C assi fi er>. menber <Behavi our al Feat ur e>- >i ncl udes(sel f)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

261

UMLTEMPLATES

20.5 PACKAGE

20.5.1 Summary

Defines a package template. A package is a large grained module structure that contains named elements..

20.5.2 Derivation

Package

Namespace '_Nﬁe?nge_ 1

T<Package> |

-—-"1<NamedElement>

==

"Package |

|NamedElement

20.5.3 Definition

Package

'Package |

* member<NamedElement>

INamedElement |

<Package>

1 owned<NamedElement>

*

<NamedElement>

owning<Package>

*

name : Name

<Package>
Attributes

member<NamedElement> The named elements that are members of the package namespace.

Associations

owned<NamedElement> The owned named elements.

<NamedElement>
Attributes

name The name of the named element.

Associations

owningPackage The package that owns the named element.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

262

UMLTEMPLATES

20.5.4 Well-formedness Rules

<Package>
[1] The members of a package must include the owned elements of the package.

cont ext <Package> i nv:
sel f. menber <NanedEl enent > - >i ncl udesAl | (sel f. owned<NanedEl enent >)

[2] No two elements must have the same name in the package.

cont ext <Package> i nv:
sel f. menber <NanedEl enent> -> forA |l (el |
sel f. menber <NanedEl enent> -> forAll (e2 |
el <> e2 inplies el.nane <> e2.nane))

20.5.5 Operations

<Package>
[1] Looks up the named element in a package given a name.

cont ext <Package>:: | ookup<NanedEl enent >f or Name(x : Nane): <NanmedEl enment >
sel f. menber <NanedEl enment >- >sel ect (e | e.nanme = x).sel ect El enent ()

[2] Looks up the name in a package given a named element.

cont ext <Package>: : | ookupNaneFor <NanedEl enent >(n : <NanedEl enment >) : Nanme
sel f. menber <NanedEl enent >- >sel ect (e | e = x).sel ectEl enent (). nane

<NamedElement>
[1] Checks whether the supplied named element is in the same package as the named element.

cont ext <NamedEl enent >: : sanePackage(x : <NanedEl enent >): Bool ean
X. owni hg<Package>. menber <NanedEl enent > -> i ncl udes(sel f)

20.6 STRUCTUALFEATURECLASSIFIERVALUE

20.6.1 Summary

Describes the values of classifiers with structural features.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

263

UMLTEMPLATES

20.6.2 Derivation

| Element

| conainer | Moo
J

—_— e — — — — —

StructuralFeatureClassifierValue | | ClassifierValue 1
StructuralFeatureValue

StructuralFeatureValueType |

20.6.3 Definition

— 4
StructuralF eatureClassifierValue | | Classifiervalue L
| StructuralFeatureValue
1 (vValue |
<Value>
value
<Classifier owning<ClassifierValue> * <Structural
Value> e Feature
1 owned<StructuralFeatureValue> | Vale>

<ClassifierValue>
Associations

owned<StructuralFeatureValue> The set of structural feature values owned by the classifier.

<StructuralFeatureValue>
Associations

value The value of the structural feature value.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

264

UMLTEMPLATES

20.6.4 Well-formedness Rules

20.6.5 Operations

20.7 STRUCTURALFEATURECLASSIFIERSEMANTICS

20.7.1 Summary

Defines the semantics for structural features of a classifier.

20.7.2 Derivation

Structural
Feature |____‘| —
Classifier Igltasstlﬁer”: t | | <ClassifierValue> |
| Structurairea urel | <StructuralFeatureValue>
|Type <Value>
o 4 |_ o |
%
N
|_ | \\
<Classifier> | ‘\
ZE | <StructuralFeature> ‘\\
\

StructuralFeatureClassifierSemantics |

Structural
Feature
Classifier | ——————
Value ClassifierValue |
|1 StructuralFeatureValue |
|Value |
Fr—————— — —
|C|assifier
StructuralFeature

|CIassifierVaIue

I
I
IType |
StructuralFeatureValue :

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

265

UMLTEMPLATES

20.7.3 Definition

<StructuralFeature>

1

| Classifier |
StructuralFeature
StructuralFeatureClassifierSemantics | T |
, lype
I Classifiervalue
| StructuralF eatureValue |
Valee 1
owning<ClassifierValue>
<ClassifierValue> @
1
1 of
<Classifier>
owning<Classifier>
member
<Structural
owned
* » | owned<StructuralFeature>
Feature> * |<StructuralFeatureValue>

<StructuralFeatureValue>

name:Name

of

value:<Value>

<Classifier>
Associations

owned<StructuralFeature> The owned structural features of the classifier.

member<StructuralFeature> The member structural features of the classifier.

<ClassifierValue>
Attributes
of The classifier that this is a value of.

<StructuralFeature>
Attributes
name The name of the structural feature.
Associations

owning<Classifier> The classifier that owns the feature.

<StructuralFeatureValue>
Attributes

of The structural feature that this is a value of.

Associations

owning<ClassifierValue> The owning classifier value.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

266

UMLTEMPLATES

20.7.4 Well-formedness Rules

<ClassifierValue>

[1] All values of classifier contain values of its structural features.

context <C assifierValue> inv:
sel f.of . menmber <Structural Feature> -> forAll (c |
sel f. owned<St ruct ur al Feat ureVal ue> -> exists(d | d.of = c))

[2] All contained structural feature values must be values of some structural feature in the classifier.

context <C assifierValue> inv:
sel f. owned<St ruct ural FeatureVal ue> -> forAll (c |
sel f. of . menber<Structural Feature> -> exists(d | c.of = d))

<StructuralFeatureValue>
[1] The type of the value of the structural feature value must conform to the type of its structural feature.

cont ext <Structural FeatureVal ue> inv:
sel f.val ue. of . confornmsTo(sel f.of.type)

20.7.5 Operations

20.8 BEHAVIOURALFEATURECLASSIFIERVALUE

20.8.1 Summary

Describes the values of classifiers with behavioural features.

20.8.2 Derivation

| Element

—_—

ml !_Comainer _‘

1
| <BehaviouralFeatureValue > |
| ParameterValue

- —

BehaviouralFeatureClassifierValue | |ClassifierVaIue 1
BehaviouralFeatureValue

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 267

UMLTEMPLATES

20.8.3 Definition

T LT T T — l
BehaviouralFeatureClassifierValue [Classifiervalue L
| BehaviouralFeatureValue
| Value |
{ordered} history
. N pre i
<Classifier | identity . <Behavioural
<Classifier 1
Value> Value> post Feature
Identity 1 p Value>
owning<BehaviouralFeatureValue> 1
value Parameter ownedParameterValue
<Value>
Value .
1

<BehaviouralFeatureValue>
Associations
ownedParameterValue The owned parameter values.
pre The pre value of the behavioural feature value.

post The pre value of the behavioural feature value.

<ParameterValue>
Associations

value The value of the parameter value.

20.8.4 Well-formedness Rules

20.8.5 Operations

20.9 BEHAVIOURALFEATURECLASSIFIERSEMANTICS

20.9.1 Summary

Defines the semantics for behavioural features of a classifier.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 268

UMLTEMPLATES

20.9.2 Derivation

. Behaviourall
Behavioural Feature
Feature |\ ——— —— _ __ __ __ __ __ __
e . | ifier | m— — — — — -
Classifier !Classlf'e' | | <ClassifiervValue> | CSZT ee rc|assiﬁerVa|ue |
1 BehaviouralFeature | | <BehaviouralFeatureValue> Y |BehaviouraIFeatureVaIue
|Type | | <Value> | Value |
- T L]
\
| <classiters | r
<Classifier> |
ZE |<BehaviouraIFeature>
<Type> |
L -

Classifier

BehaviouralFeatureClassifierSemantics

BehaviouralFeature
| Type

|CIassifierVaIue
BehaviouralFeatureValue

20.9.3 Definition

BehaviouralFeatureClassifierSemantics

|Classifier — ~ ~ !
I BehaviouralFeature
|Type

<ClassifierValue>

ClassifierValue |
|BehaviouraIFeatureVaIue |

Identity
[valwe
identity 1 *
* history|/ {ordered}
of
<Classifier> | <ClassifierValue>
1
* 1 owning<Classifier> re
member 9 p 1 1 | post
<Behavioural
Feature> * * owned<BehaviouralFeature3
<BehaviouralFeature> 1 <BehaviouralFeatureValue>
name:Name of

*

owning<BehaviouraIFeature>$

*

1 ? owning<BehaviouralFeatureValue>

1 Parameter
Parameter
Value
of
1 type 1 value
<Type> <Value>

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

269

UMLTEMPLATES

<Classifier>
Associations
owned<BehaviouralFeature> The owned behavioural features of the classifier.

member<BehaviouralFeature> The behavioural features that are members of the classifier namespace.

<ClassifierValue>
Associations
of The classifier that this is a value of.

identity The identity of the classifier value.

<BehaviouralFeature>
Attributes
name The name of the behavioural feature.
Associations
owning<Classifier> The classifier that owns the feature.

<BehaviouralFeatureValue>
Attributes
of The behavioural feature that this is a value of.
Associations

owning<ClassifierValue> The owning classifier value.

20.9.4 Well-formedness Rules

<ClassifierValue>

[1] All values of classifier contain values of its structural features.

context <C assifierValue> inv:
sel f. of . menber <Behavi our al Feature> -> forAll (c |
sel f . owned<Behavi our al Feat ureVal ue> -> exists(d | d.of = c))

[2] All contained structural feature values must be values of some structural feature in the classifier.

context <C assifierValue> inv:
sel f. owned<Behavi our al Feat ureVal ue> -> forAll (c |
sel f. of . menber <Behavi our al Feature> -> exists(d | c.of = d))

<StructuralFeatureValue>
[1] The type of the value of the structural feature value must conform to the type of its structural feature.

cont ext <Structural FeatureVal ue> inv:
sel f.val ue. of . confornmsTo(sel f.of.type)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 270

UMLTEMPLATES

20.10 EXTENDABLENAMESPACE

20.10.1 Summary

An extension relationship between namespaces. When a namespace extends another namespace, the members of
the parent namespace are extended into the namespace of the child namespace.

20.10.2 Derivation

Namespace :_Nz;w:pa_ce_ - Extendable | — — 7
| Element
NamedElement
L

—

— — — —— e — —

—
Namespace |
_'NamedElement

— — — — -

| Namespace |

I—IiamedElement |
ExtendableNamespace | _
20.10.3 Definition
ExtendableNamespace Namespace i
NamedElement
* member<Packageable> <NamedElement>
<Namespace>
» | name : Name
parent 11 child parent 11 child
extending x * extended extending | * * extended
owned<Packageable>
<Namespace> Extension <NamedElement>
Extension t] . Extension
isRedefined : Boolean isRedefined : Boolean

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 271

UMLTEMPLATES

<Namespace>
Attributes
member<NamedElement> The members of the namespace
Associations
extended The extended namespaces.
extending The extending namespaces.

owned<NamedElement> The owned named elements.

<NamedElement>
Attributes
name The name of the named element.
Associations
owningNamespace The namespace owning the named element.
extended The extended named elements.

extending The extending named elements.

<Namespace>Extension
Attributes
isRedefined True if the extension is redefined.
Associations
parent The parent namespace.
child The child namespace.

owned<NamedElement>Extension The owned named element extensions.

<NamedElement>Extension
Associations
parent The parent named element.
child The child named element.

20.10.4 Well-formedness Rules

<Namespace>

[1] The members of a namespace must include its inherited elements.

cont ext <Nanmespace> inv:
sel f. menber <NanedEl ement >. i ncl udesAl | (sel f. i nherited<NanedEl enent >)

[2] The members of a namespace must include its owned elements.

cont ext <Namespace> i nv:
sel f. menber <NanmedEl enent >. i ncl udesAl | (sel f. owned<NanedEl enent >)

[3] Circular inheritance is not permitted.

cont ext <Namespace> i nv:
not sel f.all Ext endedEl enent s() - >i ncl udes(sel f)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 272

UMLTEMPLATES

<NamedElement>
[1] Circular inheritance is not permitted

cont ext <NanedEl emrent > i nv:
not self.all Ext endedEl ement s() - >i ncl udes(sel f)

<Namespace>Extension
[1] The members of the parent namespace are extended into the namespace of the child namespace.

cont ext <Namespace>Ext ensi on i nv:
sel f. parent. menber <NanedEl enent >->for Al l (e |
sel f. owned<NanedEl enent >Ext ensi on- >exi sts(e' |
e'.parent = e and
sel f. chil d. menber <NanmedEl enent >- >exi sts(e'"' |
e'.child =¢€")))

20.10.5 Operations

<Namespace>
[1] Looks up a named element in a namespace given a name.

cont ext <Namespace>: : | ookup<NanedEl enent >f or Nane(x : Name): <NamedEl enment >
sel f. menber <NanedEl ement >- >sel ect (e | e.name = x).sel ect El enent ()

[2] Looks up a name in a namespace given a named element.

cont ext <Nanespace>: : | ookupNanmeFor <NanmedEl enent >(n : <NanmedEl erent >) : Nane
sel f. menber <NanedEl enent >- >sel ect (e | e = x).sel ect El enent (). nane

[3] Returns the namespaces that have been extended.

cont ext <Namespace>: : ext endedEl enent s() : Set (<Namespace>)
self.extended -> iterate(p s = Set{} | s->union(Set{p.parent}))

[4] Transitively returns all namespaces that have been extended.

cont ext Namespace: : al | Ext endi ngEl ement s() : Set (Namespace)
sel f.extendedEl enents()->iterate(g s = self.extendedEl ements() |
s->uni on(g. al | Ext endi ngEl enents()))

<NamedElement>

[1] Checks whether the given named element is owned by the same name space as this named element.

cont ext <NamedEl enent >: : saneNanespace(x : <NanedEl enent >): Bool ean
X. owni ng<Namespace>. nenber <NanedEl enent > -> i ncl udes(sel f)

[2] Returns the named elements that have been extended.

cont ext <NamedElement>: : ext endi ngEl ement s() : Set (<NamedElement>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

[3] Transitively returns all named elements that have extended.

cont ext NamedElement: : al | Ext endi ngEl ement s() : Set (NamedElement)
sel f. extendi ngEl enents()->iterate(g s = sel f.extendi ngEl enments() |
s->uni on(g. al | Ext endi ngEl enents()))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 273

UMLTEMPLATES

20.11 EXTENDABLEPACKAGE

20.11.1 Summary

This templates defines a package that can be extended.

20.11.2 Derivation

20.11.3 Definition

<Package>
Associations

ExtendableNamespace "Namespace |
|NamedElement _,
Fpﬁa$>_]
-~ <NamedElement> |
ExtendablePackage |Package |
(NamedElement __ __ |
ExtendablePackage Package

*

NamedElement

member<NamedElement>|

<NamedElement>

isRedefined : Boolean

extended

1 *

<Package>
* | name : Name
parent 11 child parent 11 child
extending L extended extending * o
owned<NamedElement>
<Package> Extension <NamedElemen>
Extension gt E xtension

isRedefined : Boolean

extended The extended elements of the Package.

extending The extending elements of the Package.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

274

UMLTEMPLATES

owned<NamedElement> The owned named elements.
member<NamedFElement> The member named elements belonging to the Package namespace.

inherited<NamedElement> The inherited named elements.

<NamedElement>
Attributes
name The name of the NamedElement
Associations
owningPackage The Package owning this NamedElement.
extended The extended elements of the NamedElement.

extending The extending elements of the NamedElement.

<Package>Extension
Attributes
isRedefined True if the extension is a redefinition.
Associations
parent The parent <Package> in the pair of <Package>s it links.
child The child <Package> of the pair of <Package>s it links.
owned<NamedElement>Extension The set of <Named>Extensions owned.

<NamedElement>Extension
Associations

parent The parent NamedElement.
child The child NamedElement.

20.11.4 Well-formedness Rules

<Package>
[1] The members of the package must include its inherited named elements.

cont ext <Package> inv:
sel f. menmber <NanedEl ement >- > i ncl udesAl |
(sel f.inherited<NanedEl enent >)

[2] The members of a Package must include the owned named elements of the Package.

cont ext <Package> i nv:
sel f. menmber <NanedEl enent >- >i ncl udesAl | (sel f. owned<NanedEl enent >)

[3] Circular inheritance is not permitted.

cont ext <Package> i nv:
not self.all Extendi ngEl enents()->i ncl udes(self)

<NamedElement>

[1] Circular inheritance is not permitted.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 275

UMLTEMPLATES

cont ext <NanedEl enent > i nv:
not sel f.all Ext endi ngEl enent s() - >i ncl udes(sel f)

<Package>Extension
[1] Parent’s elements must be extended into the namespace of the child.

cont ext <Package>Ext ension inv:
sel f. parent. menber <NanmedEl enent >->for Al l (e |
sel f . owned<NanedEl enent >Ext ensi on- >exi sts(e' |
e' .parent = e and
sel f. chil d. menber <NanedEl enent >- >exi sts(e'"' |
e .child =¢e")))

[2] If the child doesn’t equal the parent in an owned named element extension then it must be owned by the child.

cont ext <Package>Ext ension inv:
sel f. owned<NanmedEl enent >Ext ension -> forAll (e |
e.child <> e.parent inplies
sel f. chil d. owned<NanedEl enent > -> incl udes(e.child))

20.11.5 Operations
<Package>

[1] Looks up the NamedElement in a Package given a name.

cont ext <Package>::| ookup<NamedEl enent >f or Name(x : Nane): <NanmedEl enent >
sel f. menber <NanedEl enent >- >sel ect (e | e.nane = X).sel ect El enent ()

[2] Looks up the name in a Package given a NamedElement.

cont ext <Package>: : | ookupNaneFor <NanedEl ement >(n : <NanedEl enment >) : Nane
sel f. menber <NanedEl enent >- >sel ect (e | e = x).sel ect El enent (). nane

[3] Returns the packages it has extended from.

cont ext <Package>: : ext endi ngEl enent s() : Set (<Package>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

[4] Transitively returns the set of all named elements it has extended from.

cont ext Package: : al | Ext endi ngEl enent s() : Set (<Package>)
sel f. extendi ngEl enents()->iterate(g s = sel f.extendi ngEl ements() |
s->uni on(g. al | Ext endi ngEl erent s()))

<NamedElement>
[1] Checks whether the given NamedElement is in the same Package.

cont ext <NamedEl enent >: : sameNanespace(x : <NanmedEl enent >) : Bool ean
X. owni ng<Package>. menber <NanedEl enent > -> i ncl udes(sel f)

[2] Returns the named elements it has extended from.

cont ext <NamedElement>: : ext endi ngEl ement s() : Set (<NamedElement>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 276

UMLTEMPLATES

[3] Transitively returns the set of all named elements it has extended from.

cont ext NamedElement: : al | Ext endi ngEl enent s() : Set (NamedElement)
sel f. extendi ngEl enents()->iterate(g s = sel f.extendi ngEl ements() |
s->uni on(g. al | Ext endi ngEl erent s()))

20.12 EXTENDABLESTRUCTURALFEATURECLASSIFIER

20.12.1 Summary

This template defines the structural features of a classifier that can be extended.

20.12.2 Derivation

ro_ .
ExtendableNamespace | Classifier
| Feature
—
<Classifier>]
"'J <StructuralFeature> |
— e - —
— [. 1
ExtendableStructuralFeatureClassifier Classifier
i StructuralFeature l—
| Type |

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

271

UMLTEMPLATES

20.12.3 Definition

ExtendableStructuralFeatureClassifier Classifier
StructuralFeature
1 Type
<Type>
type

member<StructuralFeature>| <StructuralFeature>

<Classifier>

*

name : Name

parent 11 child parent 1 1 child
extending .
* o extended extending| * * extended
owned<StructuralFeature
<Classifier> Extension> <StructuralFeature>
Extension ‘1 Extension L
isRedefined : Boolean isRedefined : Boolean *

<Classifier>
Attributes
member<StructuralFeature> The structural features that are members of the namespace of the Classifier.
inherited<StructuralFeature> The inherited structural features.
Associations
extended The extended classifiers.
extending The extending classifiers.

owned<StructuralFeature> The owned structural features.

<StructuralFeature>
Attributes
name The name of the StructuralFeature.
Associations
owningClassifier The Classifier owning this StructuralFeature.
extended The extended structural features.

extending The extending structural features.

<Classifier>Extension
Attributes
isRedefined True if the extension is redefined.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 278

UMLTEMPLATES

Associations
parent The parent Classifier.
child The child Classifier.

owned<StructuralFeature>Extension The owned extensions.

<StructuralFeature>Extension
Associations
parent The parent StructuralFeature.
child The child StructuralFeature.

20.12.4 Well-formedness Rules

<Classifier>

[1] The member structural features must include the inherited structural features.

context <C assifier> inv:
sel f. menber <Struct ur al Feat ure>-> i ncl udesAl |
(sel f.inherited<Structural Feature>)

[2] The member structural features of a Classifier must include the owned structural features of the Classifier.

context <C assifier> inv:
sel f. menmber <Struct ural Feat ur e>- >i ncl udesAl | (sel f. owned<St ruct ur al Feat ur e>)

[3] Circular inheritance is not permitted.

context <C assifier> inv:
not sel f.all Ext endi ngEl enent s() - >i ncl udes(sel f)

<StructuralFeature>
[1] Circular inheritance is not permitted.

context <Structural Feature> inv:
not sel f.all Ext endi ngEl enent s() - >i ncl udes(sel f)

<Classifier>Extension
[1] Parent’s structural features must be extended into the namespace of the child.

context <C assifier>Extension inv:
sel f. parent. menber<Structural Feature>->forAll (e |
sel f. owned<St r uct ur al Feat ur e>Ext ensi on- >exi sts(e' |
e' .parent = e and
sel f.child. menber<Structural Feat ure>->exi sts(e'"' |
e .child =¢€")))

[2] If the child doesn’t equal the parent in an owned structural feature extension then it must be owned by the
child.

context <C assifier>Extension inv:
sel f. owned<St ruct ural Feat ure>Extension -> forAll (e |
e.child <> e.parent inplies
sel f.chil d. owned<Structural Feature> -> includes(e.child))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 279

UMLTEMPLATES

<StructuralFeature>Extension

[1] This conformsTo relationship is similar to conformsTo, however, it must check that if the types are classes
then the child *extends* the parent.

cont ext <Structural Feat ure>Extensi on inv:
sel f.child.type. confornsToExt ensi on(sel f. parent.type)

[2] If an extension has occurred (as opposed to inheritance) then the type of the child StructuralFeature should be
in the same namespace as the child StructuralFeature's classifier.

cont ext <Structural Feat ure>Extension inv:
self.child <> self.parent inplies
sel f. chil d. owni ng<Cl assi fi er>. sanmeNanespace(sel f.chil d.type)

20.12.5 Operations

<Classifier>

[1] Looks up the StructuralFeature in a Classifier given a name.

context <C assifier>::|ookup<Structural Feature>forName(x : Name):
<Structural Feat ure>
sel f. menber <Structural Feat ure>->select(e | e.nane = x).sel ect El enent ()

[2] Looks up the name in a Classifier given a StructuralFeature.

context <C assifier>::|ookupNaneFor <Structural Feature>(n :
<Structural Feat ure>): Nare
sel f. menber <Structural Feat ure>->select(e | e = x).sel ectEl enent (). nane

[3] Returns the set of classifiers it has extended from.

cont ext <Classifier>: : ext endi ngEl enent s() : Set (<Classifier>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

[4] Transitively returns the set of all classifiers it has extended from.

cont ext Classifier: : al | Ext endi ngEl enent s() : Set (Classifier)
sel f. extendi ngEl enents()->iterate(g s = sel f.extendi ngEl ements() |
s->uni on(g. al | Ext endi ngEl enents()))

<StructuralFeature>

[1] Checks whether the given StructuralFeature is in the same Classifier.

context <Structural Feature>::sameNanespace(x : <Structural Feature>): Bool ean
X. owni ng<C assi fi er>. menber <Struct ur al Feature> -> incl udes(sel f)

[2] Returns the set of structural features it has extended from.

cont ext <StructuralFeature>: : ext endi ngEl enment s() : Set (<StructuralFeature>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

[3] Transitively returns the set of all structural features it has extended from.

cont ext StructuralFeature: : al | Ext endi ngEl enment s() : Set (StructuralFeature)
sel f. extendi ngEl enents()->iterate(g s = sel f.extendi ngEl ements() |
s->uni on(g. al | Ext endi ngEl erent s()))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 280

UMLTEMPLATES

20.13 EXTENDABLEBEHAVIOURALFEATURECLASSIFIER

20.13.1 Summary

This template defines the behavioural features of a classifier that can be extended.

20.13.2 Derivation

— - _—
ExtendableNamespace ||C|assifier Parameterized | b5 ameterizedElement |

| Feature LType]

e N '|'

e <BehaviouralFeature> N _ _ __ __ ZType> T““‘“' b
ExtendableBehaviouralF eatureClassifier | | Classifier |
lBehaviouraIFeature f—
T
e |
20.13.3 Definition
ExtendableBehaviouralClassifier Classifier
BehaviouralFeature
Type
1 type
<Type>
1 type
<Behavioural
member<BehaviouralFeature>
. Feature>
<Classifier> [~
name : Name
parent 11 child parent 11 child
extending o extended extending| * * extended
owned<BehaviouralFeature
<Classifier> Extension> <BehaviouralFeature>
Extension ‘1 . Extension -
isRedefined : Boolean isRedefined : Boolean *
, {ordered} Parameter
. |name : Name

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

281

UMLTEMPLATES

<Classifier>
Attributes
member<BehaviouralFeature> The behavioural features that are members of the namespace of the Classifier.
inherited<BehaviouralFeature> The inherited behavioural features.
Associations
extended The extended classifiers.
extendingThe extending classifiers.

owned<BehaviouralFeature> The owned behavioural features.

<BehaviouralFeature>
Attributes
name The name of the BehaviouralFeature.
member<Parameter> The parameters of the behavioural feature’s namespace.
Associations
owningClassifier The Classifier owning this BehaviouralFeature.
owned<Parameter> The owned parameters.
extended The extended behavioural features.

extending The extending behavioural feature.

<Parameter>
Attributes
name The name of the Parameter
Associations

owningBehaviouralFeature The BehaviouralFeature owning this Parameter.

<Classifier>Extension
Attributes
isRedefined True if the extension is redefined.
Associations
parent The parent Classifier.
child The child Classifier.

owned<BehaviouralFeature>Extension The owned behavioural feature extensions.

<BehaviouralFeature>Extension
AssociationsAttributes

parent The parent BehaviouralFeature.
child The child BehaviouralFeature.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 282

UMLTEMPLATES

20.13.4 Well-formedness Rules

<Classifier>

[1] The members of the Classifier must include the inherited elements.

context <Classifier> inv:
sel f. nenmber <Behavi our al Feat ure> -> i ncl udesAl |
(sel f.inherited<Behavi oural Feat ur e>)

[2] The members of a Classifier must include the owned elements of the Classifier.

context <C assifier> inv:
sel f. menber <Behavi our al Feat ur e>- >i ncl udesAl | (sel f. owned<Behavi our al Feat ur e>)

[3] Circular inheritance is not permitted.

context <Cl assifier> inv:
not self.all Ext endi ngEl enent s()->i ncl udes(self)

<BehaviouralFeature>
[1] Circular inheritance is not permitted.

cont ext <Behavi our al Feat ure> i nv:
not self.all Ext endi ngEl enent s()->i ncl udes(self)

[2] The parameters of a Behavioural Feature must include its owned parameters.

cont ext <Behavi our al Feat ure> inv:
sel f. menmber <Par anet er > - >i ncl udesAl | (sel f. owned<Par anet er >)

<Classifier>Extension
[1] Parent’s elements must be preserved.

context <C assifier>Extension inv:
sel f. parent. menber <Behavi our al Feat ure>->forAll (e |
sel f. owned<Behavi our al Feat ur e>Ext ensi on- >exi sts(e' |
e' .parent = e and
sel f. chil d. menber <Behavi our al Feat ur e>- >exi sts(e'"' |
e'.child =¢€")))

[2] If the child doesn’t equal the parent in an owned behavioural feature extension then it must be owned by the
child.

context <C assifier>Extension inv:
sel f . owned<Behavi our al Feat ure>Extension -> forAll (e |
e.child <> e.parent inplies
sel f. chi | d. owned<Behavi our al Feature> -> includes(e.child))

<BehaviouralFeature>Extension

[1] This conformsTo relationship is similar to conformsTo, however, it must check that if the types are classes
then the child *extends* the parent.

cont ext <Behavi our al Feat ur e>Ext ensi on i nv:
sel f.child.type. confornsToExt ensi on(sel f. parent.type)

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 283

UMLTEMPLATES

[2] If an extension has occurred (as opposed to inheritance) then the type of the child BehaviouralFeature should
be in the same namespace as the child BehaviouralFeature's classifier.

cont ext <Behavi our al Feat ur e>Ext ensi on i nv:
self.child <> self.parent inplies
sel f. chil d. owni ng<d assi fi er>. saneNanmespace(sel f.child.type)

20.13.5 Operations

<Classifier>
[1] Looks up the BehaviouralFeature in a Classifier given a name.

context <O assifier>::|ookup<Behavi oural Feat ure>f or Nane(x : Nane):
<Behavi our al Feat ur e>
sel f. menber <Behavi our al Feat ure>->sel ect (e | e.nane = x).sel ect El enent ()

[2] Looks up the name in a Classifier given a BehaviouralFeature.

context <C assifier>::1ookupNaneFor <Behavi our al Feature>(n :
<Behavi our al Feat ur e>) : Name
sel f. menber <Behavi our al Feat ure>->select(e | e = x).sel ectEl enment (). nane

[3] Returns the set of classifiers it has extended from.

cont ext <Classifier>: : ext endi ngEl enent s() : Set (<Classifier>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

[4] Transitively returns the set of all classifiers it has extended from.

cont ext Classifier: : al | Ext endi ngEl enent s() : Set (Classifier)
sel f. extendi ngEl enents()->iterate(g s = self.extendi ngEl ements() |
s->uni on(g. al | Ext endi ngEl enents()))

<BehaviouralFeature>
[1] Looks up the Parameter in a Behavi our al Feat ur e given a name.

cont ext <Behavi our al Feat ur e>: : | ookup<Parameter>f or Name(x : Nane): <Parameter>
sel f. menber <Parameter>- >sel ect (e | e.name = x).sel ectEl ement ()

[2] Looks up the name in a Classifier given a Parameter.

cont ext <Behavi our al Feat ur e>: : | ookupNaneFor <Parameter>(n : <Parameter>): Nane
sel f. menber <Parameter>- >sel ect (e | e = x).sel ectEl enent (). nanme

[3] Checks whether the given BehaviouralFeature is in the same Classifier.

cont ext <Behavi our al Feat ure>: : saneNanespace(x : <Behavi our al Feat ur e>) : Bool ean
X. owni ng<d assi fi er >. menber <Behavi our al Feat ure> -> incl udes(sel f)

[4] Returns the set of behavioural features it has extended from.

cont ext <BehaviouralFeature>: : ext endi ngEl enent s() : Set (<BehaviouralFeature>)
self.extending -> iterate(p s = Set{} | s->union(Set{p.parent}))

[5] Transitively returns the set of all behavioural features it has extended from.

cont ext BehaviouralFeature: : al | Ext endi ngEl ement s() : Set (BehaviouralFeature)
sel f. extendi ngEl enents()->iterate(g s = sel f.extendi ngEl enments() |
s->uni on(g. al | Ext endi ngEl enents()))

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 284

UMLTEMPLATES

<Parameter>

[1] Checks whether the given Parameter is in the same BehaviouralFeature.

cont ext <Parameter>: : sanmeNanmespace(x

<Parameter>) : Bool ean

X. <owni ng<C assi fi er >. nenber <Parameter> - > i ncl udes(sel f)

20.14 TEMPLATEINSTANTIATION

20.14.1 Summary

A general template for defining templateable elements.

20.14.2 Derivation

None.

20.14.3 Definition

Templatelnstantiation

Namepace

NamedElement

Template

<Named owned<NamedElement>Extension <Namespace>
Element> .
. * Extension
Extension
* generated<NamedElement>Extension extension | 1

—

Parameter

Substitution templateParameterSubstitution

<Namespace>
Template
Instantiation

value : String *

templateParameter
\1/1 <Namespace>
Template templateParameter Template
Parameter
<Namespace>Template

A namespace template.
Associations

renamingExpression The renaming expressions that are associated with the contents of the namespace tem-

plate.

templateParameter The parameters of the namespace template.

2U CONSORTIUM UML 2.0 SUBMISSION

'VERSION 0.81 — JUNE 2002

285

UMLTEMPLATES

<Namespace>Templatelnstantiation

An instantiation relationship.
Associations
templateParameterSubstitution The parameters that are substituted when instantiating the template.

generated<NamedElement>Extension The named element extensions that are generated to realise the instan-
tiation.

20.14.4 Well-formedness Rules

<Namespace>Template
[1] Only one renaming expression per named element in a template.

cont ext <Namespace>Tenpl ate inv:
sel f. <nanmedEl enent >Renani ngExpression -> forA | (rl1, r2 |
rli <> r2 inplies ril. named<NanedEl ement > <> r 2. naned<NanedEl enent >)

[2] Only named elements in the template’s namespace have renaming expressions associated with them.

cont ext <Nanmespace>Tenpl ate inv:
sel f. menber <NanedEl ement >- >
i ncl udesAl | (sel f. <nanedEl enent >Renam ngExpr essi on. naned<NanmedE!l erment >)

<Namespace>Templatelnstantiaton
[1] Parameter substitutions parameters must match those owned by the template.

cont ext <Namespace>Tenpl atel nstantiation inv:
sel f.tenpl at ePar anet er Substituti ons.tenpl at eParaneter =
sel f. ownedPar anet er - >asBag

[2] Named element substitutions are generated for each of the renamed named element in the parents namespace.

cont ext <Namespace>Tenpl atel nstantiation inv:
sel f. gener at ed<nanedEl enent >Ext ensi on. parent =
sel f. ext ensi on. par ent. <NanedEl enent >Renam ngExpr essi on. naned<NanedEl enent >

[3] Generated named element extensions shadow redefined owned named element extensions.

cont ext <Namespace>Tenpl atel nstanti ati on inv:
sel f. ext ensi on. owned<NamedEl enent >Ext ensi on->sel ect (e | e.isRedefined) =
sel f. gener at ed<NamedEl enent >Ext ensi on

[4] The name of the child elements of any generated named element extension is the evaluation of the appropriate
renaming expression.

cont ext <Namespace>Tenpl atel nstantiation inv:
sel f. gener at ed<NanedEl ement >Ext ensi on->forAl |l (n |
n. chil d. nane = sel f. <nanedEl enent >Renani ngExpr essi on- >
select(r | r.named<NanedEl enent> = n.parent).eval (sel f)->asSet)

20.14.5 Operations

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 286

Appendix A
Mapping Package to Class Hierarchies

A.1 INTRODUCTION

This appendix gives the rules characterising the mapping between models expressed as a hierarchy of
packages related through package extension, and models expressed as a hierarchy of classes. These
rules demonstrate that it is possible to produce a class framework suitable to support current approaches
to tool construction from a metamodel defined using package extension and package templates.

A.2 OVERVIEW

Source of mapping

A hierarchy of packages (and template packages) related through package extension, where the contents
of packages are expressed using packages, classes, class generalisation, attributes, associations, query
operations, OCL.

Target of mapping

The subset of the source language including everything but package extension and package templates.

Approach

The eventual goal is to provide a meta-modeled definition of this mapping. If possible, the mapping
should be specified so that it is two-way. For this appendix we present the mapping informally on a case
by case basis. Short explanations are provided for each case.

We need to consider how various modeling elements within a package get treated in two situations:
when there is no renaming on the package extension; when there is renaming on the package exten-
sions. Templates are considered last, as (it turns out) the application of a template is the same as anno-
tating a package extension from that template with renamings generated from the parameters of the
template.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 287

A.3 RULES

Classes, Attributes and Associations — no renaming

With package extension & templates Without

aa aa

w

>
w
>

C aA C D
aA
JAN
Q Q
A A
b'B b:P::B
/ .
C

context Q::D inv: a.oclIsKindOf(Q::A)

[a] B is not changed in Q on LHS, so only P::B is required in RHS.

[b] O::4 has an attribute added on LHS, so class Q::4 is required on the RHS. The type of the attribute
in class in Q::4 is B, which turns into P::B on RHS (see case (a)).

[c] P::C inherits from P::4 on LHS, so depends on P::4. By case (b), 4 is changed in Q on LHS, requir-
ing Q0::4 on RHS. So need Q::C on RHS which inherits from Q.:4 on RHS.

[d] P::D has an attribute of type P::4 on LHS, so depends on P::4. By case (b), 4 is changed in Q on
LHS, so, similar to case (c), class Q::D is required on RHS and includes a constraint to strengthen
the type of attribute a to Q::4.

[e] In a similar way to case (d), association ends of association between P::4 and P.::D must be rede-
fined in Q on RHS.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 288

Classes, Attributes, Associations and Query Operations — renaming

With package extension & templates

P
A
x(b:B):B
b
B
m:Int
C/IA CIA
D/B
d/A:b 5/’/‘3.1)
x_d/A:x %_e/Arx
Q

Without
P
x(b:B):B b
4& B
m:Int
75 VAN
Q
x_d(d:D):D
x_e(e:E):E
d
D
e
E

context Q:Cinv:
b- >i ncl udesAl | (d) and
b->i ncl udesAl | (e)

context Q:C:x d(d:Q@:D:Q:D
x-body’ (d)

context Q:C:x e(e:Q:E):Q:E
x-body’ (e)

context P.: A :x(b:A:B):A:B
x- body(b)

[a] 4 and B get renamed when Q extends P on LHS. Needed matching renamed classes in Q on RHS. 4
is renamed to C under both extensions of QO from P, B is renamed to D, under one extension, and E,

under the other.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002

289

[b] The association end, which also gets renamed twice under package extension, is replicated in Q on
RHS, once for each new name. Attribute renamings are treated similarly.

[c] Similarly, the query operation in P::4 gets renamed twice on extension to Q. A new operation is
introduced in Q::C on RHS. x-body '(d) is like x-body except that all elements from package P men-
tioned in x-body are replaced by their renamed counterparts in Q, and b is replaced by d.

Constraints — all cases

With package extension & templates Without
b.m->asSet()->asBag() = b.mﬁ P
A
P b
; % 5
A m:Int
b 75 AN
B
m:Int
d.m->asSet()->asBag() = d.m
e.m->asSet()->asBag() = e.m
CIA
D/B CIA Q
d/A:b |EB |
elA::b
C
d
Q D

context Q:Cinv;
b->i ncl udesAl | (d) and
b->i ncl udesAl | (e)

The constraint on P::4 in LHS gets replicated twice in Q::C on RHS, as constraint refers to the association end
that gets replicated. The constraint on P::4 on LHS does not carry over to P::4 on RHS. This would have the
effect of adding an undesirable constraint on Q::C, that the union of d.m and e.m must be unique integers (as b
includes the union of d and e), whereas what is actually required is that d.m are unique integers and e.m are
unique integers, with the possibility that there may be integers in d.m and e.m which are the same.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 290

In fact it is not quite as simple as this. In a hierarchy that is more than two levels deep, constraints should only
appear at the lowest level where association ends or attributes involved in the constraint have been replicated.

The only time when a constraint will not be replicated is when it does not involve reference to any attributes,
association ends or queries that are renamed by any package extension lower down in the hierarchy which has the
package where the constraint is first introduced as a direct or indirect (by transitive traversal of package exten-
sions) parent.

This mapping demonstrates a distinct advantage of the modelling using package extension. It is possible to
write constraints on classes in packages that get replicated correcetly in the extension of the package. It is not
possible to simulate this using class inheritance, as placing a constraint on the parent class can conflict with the
constraints that need to appear lower down.

Query operations — no renaming

With package extension & templates Without
P P
A A
B B
y(b:B):B y(b:B):B
A JAN
Q
Q
B
. B
m:Int A
m:Int
P:: A :x(b) has no body
cont ext
Q:A :x(b:A:B):A:B
i f b.ocllsKindO(B) then
x-body’ (b) el se
undefi ned

B gets changed (an attribute is added) in Q on LHS, so by rules in previous section, Q.:B is required on RHS.
P::4 on LHS has a query x that refers to P::B, so, as B is changed in Q, Q::4 is required on RHS with a body that
ensures the appropriate result is returned when the argument is of type Q::B, otherwise undefined is returned. x-
body’(d) 1s like x-body(b), which is the expression defining the query x in P::4 on the LHS, except that all ele-

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 291

ments from package P mentioned in x-body(b) are replaced by their renamed counterparts in Q.
P::A::x(b) has no body; if it did this would conflict with the definition in Q::4.

Templates

Templates add to packages is an ability to generate (possibly a large number of) renamings based on the substitu-
tion of (possibly a few) template parameters. To do this, a template is associated with a set of parameters, and
model elements in the template may be associated with naming expressions. Model elements also have a separate
name, which can be used as a useful alias when building the content of the template (e.g. in OCL expressions).
By default, the name of the element is the result of evaluating the naming expression with template parameters
substituted with their own name. All this means that templates can be treated like normal packages when it comes
to a package extension hierarchy, and all the rules above apply.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 292

Bibliography

[UML 1.4] OMG Unified Modeling Language Specification (version 1.4), 2001. Available from www.omg.org.
[MOF 1.3] Meta Object Facility Specification (version 1.3), 2001. Available from www.omg.org.

[OCL 2.0] Response to the UML 2.0 OCL RFP (version 1.4), April 19, 2002. Available from www.klasse.nl.
[Action Semantics] Action Semantics Specification (version 1.4), 2001. Available from www.omg.org,.
[U2Partners] U2 Partners UML 2.0 Draft Submission (version 0.69), 2002. Available from www.u2-partners.org

[Appukuttan02] B.K. Appukuttan, T. Clark, A. Evans, G. Maskeri, P. Sammut, L. Tratt and J. S. Willans.
A pattern based approach to defining the dynamic infrastructure of UML 2.0. Presented at the 4th fourth
workshop on Rigorous Object Oriented Methods, King's College, March 2002.

[Clark02] A.N.Clark, A.S.Evans, S.Kent. Package Extension and Renaming (<<UML2002>>), Dresden,
LNCS, Springer-Verlag, October 2002.

[ClarkO1a] A.N.Clark, A.S.Evans, S.Kent. A Reference Implementation for UML. In B.Henderson-Sellers and
F.Barbier (eds) Object Modelling with UML, Special Issue of L'Objet, Vol 7, no 3/2001, pp363-385, 2001.

[Alvarez01a] J-M Alvarez, A.S.Evans and P.Sammut. Mapping between Levels in the Metamodel Architecture.
Proceedings of 4th International Conference on the Unified Modeling Language (<<UML2001>>), Toronto,
LNCS 2185, Springer-Verlag, 2001.

[Alverez01b] J-M Alvarez, A.N.Clark, A.S.Evans. An Action Semantics for MML. Proceedings of 4th Interna-
tional Conference on the Unified Modeling Language (<<UML2001>>), Toronto, LNCS 2185, Springer-Verlag,
2001.

[Clark01b] A.N.Clark, A.S.Evans and S.Kent. The Meta-Modeling Language Calculus: Foundation Semantics
for UML. Proceedings of FASE Workshop, European Conference of Theory and Practice of Software (ETAPS),
Genoa, LNCS, 2001

[ClarkO1c] A. Clark, A.S.Evans, S. Kent, and P. Sammut. The MMF approach to engineering object-oriented
design languages. In Workshop on Language Descriptions, Tools and Applications, LTDA2001, Genoa, 2001.

[Alverez01c] J-M Alvarez, A.S.Evans and P.Sammut. MML and the Meta-Model Architecture. In Workshop on
Language Descriptions, Tools and Applications, LTDA2001, Genoa, 2001.

[Kleppe01] Anneke Kleppe and Jos Warmer. Unification of Static and Dynamic Semantic in UML. 2001. Avail-
able from www.klasse.nl.

[Reggio01] G.Reggio and E. Astesiano. A Proposal for a Dynamic Core for UML Meta-Modelling with
MML.Technical Report of DISI - Universit di Genova, DISI-TR-01-17, Italy, 2001. Available from
www.disi.unige.it.

[Clark00] A.N.Clark, A. Evans, S. Kent, S. Brodsky, and S. Cook. A feasibility study in rearchitecting UML as a
family of languages using a precise OO meta-modeling approach. Technical report, pUML Group and IBM, Sep-
tember 2000. Available from www.puml.org.

[Clark99] A.N.Clark, A.S.Evans, R.B.France, S.Kent and B.Rumpe. Response to UML 2.0 Request for Informa-
tion, December 1999. Available from www.omg.org.

[Evans99] A.S.Evans and S.Kent. Meta-modelling semantics of UML: the pUML approach. 2nd International
Conference on the Unified Modeling Language. Editors: B.Rumpe and R.B.France, Colorado, LNCS 1723, 1999.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 293

[Warmer99] J. Warmer and A. Kleppe. The Object Constraint Language: precise modeling with UML, Addison
Wesley, 1999.

[D’Souza98] D. D’Souza and A.Wills. Object, Components and Frameworks with UML: The Catalysis
Approach. Addison Wesley, 1998.

|Griffiths97] A.Griffiths. Object-oriented Operations have Two Parts. University of Queensland. Technical
Report 97-20, Australia, 1997.

[Lamport89] A Simple Approach to Specifying Concurrent Systems. Communications of the ACM, 32(1):32-
45, 1989.

[Chandy88] Parallel Program Design: A Foundation. Addison Wesley, 1998.

2U CONSORTIUM UML 2.0 SUBMISSION 'VERSION 0.81 — JUNE 2002 294

	Contents
	Preface
	0.1 Introduction to the Submission
	0.2 Outline of this Submission
	0.3 Submitters and Contributors
	0.4 Acknowledgements
	0.5 Document History
	0.6 Mapping to RFP Requirements
	0.6.1 General Requirements
	0.6.2 Architectural alignment and restructuring
	0.6.3 Extensibility
	0.6.4 Issues to be discussed

	0.7 Tool Validation
	0.8 Compliance

	Approach
	Chapter 1 Introduction
	Chapter 2 Metamodeling Language
	2.1 Classes, Attributes, Query Operations
	2.2 Associations
	2.3 Packages
	2.4 Constraint Language
	2.5 Package Extension & Imports
	2.5.1 Package Extension
	2.5.2 Package Imports

	2.6 Package Templates

	Chapter 3 Language Architecture
	3.1 The Architecture of UML 2
	3.2 MOF
	3.3 Programming in Pictures
	3.4 Backwards Compatibility
	3.5 Metalayers

	Chapter 4 Language Extension and Profiles

	Definitions
	Chapter 5 Reading Guide
	Chapter 6 DataTypes
	6.1 Position in Architecture
	6.1.1 Example

	6.2 Abstract Syntax
	6.2.1 Derivation
	6.2.2 Model
	6.2.3 Type Conformance

	6.3 Semantic Domain
	6.3.1 Derivation
	6.3.2 Model
	6.3.3 Well-formedness rules

	6.4 Semantic Mapping
	6.4.1 Derivation
	6.4.2 Model
	6.4.3 Well-formedness rules

	6.5 Example Snapshots
	6.6 Changes from UML 1.4

	Chapter 7 Classes
	7.1 Position in Architecture
	7.1.1 Example

	7.2 Abstract Syntax
	7.2.1 Derivation
	7.2.2 Model
	7.2.3 Well-formedness Rules
	7.2.4 Operations

	7.3 Semantic Domain
	7.3.1 Derivation
	7.3.2 Model
	7.3.3 Well-formedness Rules

	7.4 Semantic Mapping
	7.4.1 Derivation
	7.4.2 Model
	7.4.3 Well-formedness rules
	7.4.4 Operations

	7.5 Example Snapshots
	7.6 Changes from UML 1.4

	Chapter 8 Associations
	8.1 Position in Architecture
	8.1.1 Example

	8.2 Abstract Syntax
	8.2.1 Derivation
	8.2.2 Model
	8.2.3 Well-formedness Rules
	8.2.4 Operations

	8.3 Semantic Domain
	8.3.1 Derivation
	8.3.2 Model
	8.3.3 Well-formedness Rules
	8.3.4 Operations

	8.4 Semantic Mapping
	8.4.1 Derivation
	8.4.2 Model
	8.4.3 Well-formedness rules
	8.4.4 Operations

	8.5 Example Snapshots
	8.6 Changes from UML 1.4

	Chapter 9 Packages
	9.1 Position in Architecture
	9.1.1 Example

	9.2 Abstract Syntax
	9.2.1 Derivation
	9.2.2 Model
	9.2.3 Well-formedness Rules
	9.2.4 Operations

	9.3 Semantic Domain
	9.3.1 Derivation
	9.3.2 Model
	9.3.3 Well-formedness rules

	9.4 Semantic Mapping
	9.4.1 Derivation
	9.4.2 Model
	9.4.3 Well-formedness rules

	9.5 Example Snapshots
	9.6 Changes to UML 1.4

	Chapter 10 Package Extension
	10.1 Position in Architecture
	10.1.1 Example

	10.2 Abstract Syntax
	10.2.1 Derivation
	10.2.2 Model (Package extension)
	10.2.3 Well-formedness Rules (Package extension)
	10.2.4 Model (Structural features)
	10.2.5 Well-formedness Rules (Structural features)
	10.2.6 Model (Behavioural features)
	10.2.7 Well-formedness Rules (Behavioural features)
	10.2.8 Additional Definitions

	10.3 Semantic Domain
	10.4 Semantic Mapping
	10.5 Example Snapshots
	10.6 Changes to UML 1.4

	Chapter 11 Templates
	11.1 Position in Architecture
	11.1.1 Example

	11.2 Abstract Syntax
	11.2.1 Derivation
	11.2.2 Model
	11.2.3 Well-formedness Rules
	11.2.4 Well-formedness Rules
	11.2.5 Well-formedness Rules

	11.3 Semantic Domain
	11.4 Semantic Mapping
	11.5 Example Snapshots
	11.6 Changes to UML 1.4

	Chapter 12 Static Expressions
	12.1 Position in Architecture
	12.1.1 Example

	12.2 Abstract Syntax
	12.2.1 Derivation
	12.2.2 Model
	12.2.3 Well-formedness rules

	12.3 Semantic Domain
	12.3.1 Derivation
	12.3.2 Model
	12.3.3 Well-formedness rules

	12.4 Semantic Mapping
	12.4.1 Derivation
	12.4.2 Model
	12.4.3 Well-formedness rules

	12.5 Example Snapshots
	12.6 Templates
	12.6.1 Expression
	12.6.2 Expression operands
	12.6.3 Expression context

	12.7 Changes from UML 1.4
	12.8 Relationship to OCL 2.0 Submission

	Chapter 13 Constraints
	13.1 Position in Architecture
	13.1.1 Example

	13.2 Abstract Syntax
	13.2.1 Derivation
	13.2.2 Model
	13.2.3 Well-formedness Rules
	13.2.4 Operations

	13.3 Semantic Domain
	13.3.1 Derivation
	13.3.2 Model
	13.3.3 Well-formedness Rules

	13.4 Semantic Mapping
	13.4.1 Derivation
	13.4.2 Model
	13.4.3 Well-formedness rules

	13.5 Example Snapshots
	13.6 Changes to UML 1.4

	Chapter 14 Queries
	14.1 Position in Architecture
	14.1.1 Example

	14.2 Abstract Syntax
	14.2.1 Derivation
	14.2.2 Model
	14.2.3 Well-formedness Rules
	14.2.4 Operations

	14.3 Semantic Domain
	14.3.1 Derivation
	14.3.2 Model
	14.3.3 Well-formedness Rules

	14.4 Semantic Mapping
	14.4.1 Derivation
	14.4.2 Model
	14.4.3 Well-formedness rules

	14.5 Example Snapshots
	14.6 Changes to UML 1.4

	Chapter 15 Behaviour
	15.1 Position in Architecture
	15.1.1 Example

	15.2 Abstract Syntax
	15.2.1 Model
	15.2.2 Well-formedness Rules
	15.2.3 Operations

	15.3 Semantic Domain
	15.3.1 Derivation
	15.3.2 Model
	15.3.3 Well-formedness Rules
	15.3.4 Operations

	15.4 Semantic Mapping
	15.4.1 Derivation
	15.4.2 Model
	15.4.3 Well-formedness Rules
	15.4.4 Operations

	15.5 Example Snapshots
	15.6 Changes to UML 1.4

	Chapter 16 Actions
	16.1 Position in Architecture
	16.1.1 Example

	16.2 Abstract Syntax
	16.2.1 Derivation
	16.2.2 Model
	16.2.3 Well-formedness Rules
	16.2.4 Operations

	16.3 Semantic Domain
	16.3.1 Derivation
	16.3.2 Model
	16.3.3 Well-formedness Rules
	16.3.4 Operations

	16.4 Semantic Mapping
	16.4.1 Derivation
	16.4.2 Model
	16.4.3 Well-formedness Rules
	16.4.4 Operations

	16.5 Example Snapshots
	16.6 Changes to UML 1.4
	16.7 Templates
	16.7.1 Primitive and compound action
	16.7.2 Action Operands

	Chapter 17 Operations
	17.1 Position in Architecture
	17.1.1 Example

	17.2 Abstract Syntax
	17.2.1 Derivation
	17.2.2 Model
	17.2.3 Well-formedness Rules
	17.2.4 Operations

	17.3 Semantic Domain
	17.3.1 Derivation
	17.3.2 Model
	17.3.3 Well-formedness rules
	17.3.4 Operations

	17.4 Semantic Mapping
	17.4.1 Derivation
	17.4.2 Model
	17.4.3 Well-formedness rules
	17.4.4 Operations

	17.5 Example Snapshots
	17.6 Changes from UML 1.4

	Chapter 18 Messaging
	18.1 Position in Architecture
	18.1.1 Example

	18.2 Abstract Syntax
	18.2.1 Derivation
	18.2.2 Model
	18.2.3 Well-formedness Rules
	18.2.4 Operations

	18.3 Semantic Domain
	18.3.1 Derivation
	18.3.2 Model
	18.3.3 Well-formedness Rules
	18.3.4 Operations

	18.4 Semantic mapping
	18.4.1 Derivation
	18.4.2 Model
	18.4.3 Well-formedness Rules
	18.4.4 Operations

	18.5 Example Snapshots
	18.6 Changes to UML 1.4

	Chapter 19 Foundation Templates
	19.1 Introduction
	19.2 Container
	19.2.1 Summary
	19.2.2 Derivation
	19.2.3 Definition
	19.2.4 Well-formedness Rules
	19.2.5 Operations

	19.3 TypedElement
	19.3.1 Summary
	19.3.2 Derivation
	19.3.3 Definition
	19.3.4 Well-formedness Rules
	19.3.5 Operations

	19.4 Parameterized
	19.4.1 Summary
	19.4.2 Derivation
	19.4.3 Definition
	19.4.4 Well-formedness Rules
	19.4.5 Operations

	19.5 Multiplicity
	19.5.1 Summary
	19.5.2 Derivation
	19.5.3 Definition
	19.5.4 Well-formedness Rules
	19.5.5 Operations

	19.6 Named
	19.6.1 Summary
	19.6.2 Derivation
	19.6.3 Definition
	19.6.4 Well-formedness Rules
	19.6.5 Operations

	19.7 Namespace
	19.7.1 Summary
	19.7.2 Derivation
	19.7.3 Definition
	19.7.4 Well-formedness Rules
	19.7.5 Operations

	19.8 Relationship
	19.8.1 Summary
	19.8.2 Derivation
	19.8.3 Definition
	19.8.4 Well-formedness Rules
	19.8.5 Operations

	19.9 Generalizable
	19.9.1 Summary
	19.9.2 Derivation
	19.9.3 Definition
	19.9.4 Well-formedness Rules
	19.9.5 Operations

	19.10 Extendable
	19.10.1 Summary
	19.10.2 Derivation
	19.10.3 Definition
	19.10.4 Well-formedness Rules
	19.10.5 Operations

	19.11 Import
	19.11.1 Summary
	19.11.2 Derivation
	19.11.3 Definition
	19.11.4 Well-formedness Rules
	19.11.5 Operations

	19.12 Semantics
	19.12.1 Summary
	19.12.2 Model

	19.13 ParameterizedValue
	19.13.1 Summary
	19.13.2 Definition
	19.13.3 Definition

	19.14 ParameterizedValueSemantics
	19.14.1 Summary
	19.14.2 Derivation
	19.14.3 Definition
	19.14.4 Well-formedness rules

	Chapter 20 UMLTemplates
	20.1 Introduction
	20.2 FeatureClassifier
	20.2.1 Derivation
	20.2.2 Definition
	20.2.3 Well-formedness Rules
	20.2.4 Operations

	20.3 StructuralFeatureClassifier
	20.3.1 Summary
	20.3.2 Derivation
	20.3.3 Definition
	20.3.4 Well-formedness Rules
	20.3.5 Operations

	20.4 BehaviouralFeatureClassifier
	20.4.1 Summary
	20.4.2 Derivation
	20.4.3 Definition
	20.4.4 Well-formedness Rules
	20.4.5 Operations

	20.5 Package
	20.5.1 Summary
	20.5.2 Derivation
	20.5.3 Definition
	20.5.4 Well-formedness Rules
	20.5.5 Operations

	20.6 StructualFeatureClassifierValue
	20.6.1 Summary
	20.6.2 Derivation
	20.6.3 Definition
	20.6.4 Well-formedness Rules
	20.6.5 Operations

	20.7 StructuralFeatureClassifierSemantics
	20.7.1 Summary
	20.7.2 Derivation
	20.7.3 Definition
	20.7.4 Well-formedness Rules
	20.7.5 Operations

	20.8 BehaviouralFeatureClassifierValue
	20.8.1 Summary
	20.8.2 Derivation
	20.8.3 Definition
	20.8.4 Well-formedness Rules
	20.8.5 Operations

	20.9 BehaviouralFeatureClassifierSemantics
	20.9.1 Summary
	20.9.2 Derivation
	20.9.3 Definition
	20.9.4 Well-formedness Rules

	20.10 ExtendableNamespace
	20.10.1 Summary
	20.10.2 Derivation
	20.10.3 Definition
	20.10.4 Well-formedness Rules
	20.10.5 Operations

	20.11 ExtendablePackage
	20.11.1 Summary
	20.11.2 Derivation
	20.11.3 Definition
	20.11.4 Well-formedness Rules
	20.11.5 Operations

	20.12 ExtendableStructuralFeatureClassifier
	20.12.1 Summary
	20.12.2 Derivation
	20.12.3 Definition
	20.12.4 Well-formedness Rules
	20.12.5 Operations

	20.13 ExtendableBehaviouralFeatureClassifier
	20.13.1 Summary
	20.13.2 Derivation
	20.13.3 Definition
	20.13.4 Well-formedness Rules
	20.13.5 Operations

	20.14 TemplateInstantiation
	20.14.1 Summary
	20.14.2 Derivation
	20.14.3 Definition
	20.14.4 Well-formedness Rules
	20.14.5 Operations

	Appendix A Mapping Package to Class Hierarchies
	A.1 Introduction
	A.2 Overview
	A.3 Rules

	Bibliography

