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Abstract. Though there has been nearly three decades of work on pro-
gram slicing, there has been comparatively little work on slicing for state
machines. One of the primary challenges that currently presents a bar-
rier to wider application of state machine slicing is the problem of de-
termining control dependence. We survey existing related definitions,
introducing a new definition that subsumes one and extends another.
We illustrate that by using this new definition our slices respect Weiser
slicing’s termination behaviour. We prove results that clarify the rela-
tionships between our definition and older ones, following this up with
examples to motivate the need for these differences.
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1 Introduction

Program slicing is a source code analysis technique that identifies the parts of
a program’s source code which can affect the computation of a chosen variable
at a chosen point in it. The variable and point of interest constitute the slicing
criterion. There are many variations on the slicing theme. For instance, slices
can be constructed statically (with respect to all possible inputs), dynamically
(with respect to a single input) or within some spectrum in-between. Program
slicing has proved to be widely applicable, with application areas ranging from
program comprehension [HBD03] to reverse engineering and reuse [CCD98].

However, despite thirty years of research, several hundred papers and many
surveys on program slicing [BH04,De 01,Tip95], there has been comparatively
little work on slicing at the model level. This paper tackles slicing at the model
level, particularly static slicing of Finite State Machines (FSMs).

FSMs are a graphical formalism that have become widely used in specifi-
cations of embedded and reactive systems. Their main drawback is that even
moderately complicated systems result in large and unwieldy diagrams. Harel’s



Statecharts [Har87] and Extended Finite State Machines (EFSMs) are two of
the many attempts over past decades to address FSM’s disadvantages.

Work on slicing FSM models began with the work of Heimdahl et al. in the
late 1990s [HW97,HTW98], followed by Wang et al. [WDQ02] and then in 2003
by the work of Korel et al. [KSTV03] and more recently by Langenhove and
Hoogewijs [LH07] and by Labbé et al. [LGP07,LG08].

One of the challenges facing any attempt to slice an EFSM is the problem of
how to correctly account for control dependence. It is common for state machines
modelling such things as reactive systems not to have a final computation point
or ‘exit node’. To overcome this problem, Ranganath et al. [RAB+05] recently
introduced the concept of a control sink and associated control dependence defi-
nitions for reactive programs. A control sink is a strongly connected component
from which control flow cannot escape once it enters. Building on this, Labbé et
al. [LGP07,LG08] introduced a notion of control dependence and an associated
slicing algorithm for EFSMs that was non-termination sensitive. However, they
introduce a syntax dependent condition and thus cannot be applied to any FSM.

However, traditional control dependence, as used in program slicing [HRB90]
is non-termination insensitive, with the consequence that the semantics of a
program slice dominates the semantics of the program from which it is; slicing
may remove non-termination, but it will never introduce it. In moving slicing
from the program level to the state based model level, an important choice needs
to be made

“should EFSM slicing be non-termination sensitive or insensitive?”

Recent work on control dependence has only considered the non-termination
sensitive option [LGP07,LG08]. The non-termination insensitive option was ex-
plored by Korel et al. [KSTV03], but only for the restricted class of state ma-
chines that guarantee to have an exit state. Heimdahl et al. [HW97,HTW98]
have a different notion of control dependence which is not a structural property
of the graph of FSMs but is based on the dependency relation between events
and generated events. This could lead to slices being either non-termination
sensitive or insensitive depending on the specification. The definition of control
dependence given in [WDQ02,LH07] is for UML statecharts with nested and
concurrent states and is the same as that of data dependence when applied to
EFSMs that do not have concurrent and/or nested states. This leaves open the
question of how to extend control dependence to create non-termination insen-
sitive slicing for general EFSMs in which there may be no exit node.

This problem is not merely of intellectual curiosity as it also has implica-
tions for the applications of slicing. In the literature on traditional program
slicing, a non-termination sensitive formulation was proposed as early as 1993
by Kamkar [Kam93], but has not been taken up in subsequent slicing research.
Non-termination sensitive slicing tends to produce very large slices, because all
iterative constructs that cannot be statically determined to terminate must be
retained in the slice, no matter whether they have any effect other than termi-
nation on the values computed at the slicing criterion. These ‘loop shells’ must



be retained in order to respect the definition of non-termination sensitivity. Fur-
thermore, for most of the applications of slicing listed above, it turns out that
it is perfectly acceptable for slicing to be non-termination insensitive.

In this paper, we introduce a non-termination insensitive form of control
dependence for EFSM dependence analysis, that can be applied to any FSM, and
a slicing algorithm based upon it. Like Labbé et al., we build on the recent work
of Ranganath et al. [RAB+05], but our definition is non-termination insensitive.
Also, unlike Korel’s definition, our development of the recent work of Ranganath
et al. allows us to handle arbitrary EFSMs. We prove that our definition of
control dependence is backward compatible with traditional non-termination
insensitive control dependence outside of control sinks. Furthermore, we prove
that our definition agrees with the non-termination sensitive control dependence
of Labbé et al. inside control sinks. Finally we demonstrate the type of slices
produced with our definition.

2 Extended Finite State Machines

We formally define an EFSM as follows.

Definition 1 (Extended Finite State Machine). An Extended Finite State
Machine (EFSM) E=(S, T, Ev, V) where S is a set of states, T is a set of
transitions, Ev is a set of events, and V is a store represented by a set of variables.
Transitions have a source state source(t) ∈ S, a target state target(t) ∈ S and
a label lbl(t). Transition labels are of the form e1[g]/a where e1 ∈ Ev, g is a
guard, i.e. a condition (we assume a standard conditional language) that guards
the transition from being taken when an e1 is true, and a is a sequence of actions
(we assume a standard expression language including assignments). All parts of
a label are optional.

EFSMs are possibly non-deterministic. States of S are atomic. Actions can
involve store updates or generation of events or both. A transition t may have
a successor t′ whose source is the same as the target of t. Two or more distinct
transitions which share the same source node are said to be siblings. A final
transition is a transition whose target is an exit state and an exit state is a state
which has no outgoing transitions. An ε-transition is one with no event or guard.

3 Survey

In this section we survey several existing definitions of control dependence and
discuss their strengths and weaknesses.

Ranganath et al.’s control dependence definitions [RAB+05,RAB+07] are
defined for programs of systems with multiple exit points and / or which execute
indefinitely, and therefore form the basis for subsequent state machine control
dependence definitions. We exclude from this discussion the control dependence
definition as given in [WDQ02,LH07] because it is defined in terms of concurrent



states and transitions and EFSMs do not have concurrent states and transitions.
Moreover, when applied to states and transitions that are not concurrent, it is
the same as data dependence as in Definition 13.

Korel et al [KSTV03], Ranganath et al. and Labbé et al. [LGP07,LG08]
definitions of control dependence are given in terms of execution paths. Since a
path is commonly presented as a (possibly infinite) sequence of nodes, a node
is in a path if it is in the sequence. A transition is in a path if its source state
is in the path and its target state is both in the path and immediately follows
its source state. A maximal path is any path that terminates in an end node or
final transition, or is infinite.

3.1 Control flow for RSML

Heimdahl et al. [HW97,HTW98] present an approach for slicing specifications
modelled in the Requirements State Machine Language (RSML) [LHHR94], a
tabular notation that is based on hierarchical finite state machines. Transitions
have events, guards and actions; events can generate events as actions, which are
broadcast in the next step of execution. Heimdahl et al. were the first to present a
control dependence-like definition for FSMs; it differs from the traditional notion
as it defines control flow in terms of events rather than transitions.

Definition 2 (Control flow for RSML (CF) [HTW98]). Let E be the set
of all events and T the set of all transitions. The relation trigger(T → E)
represents the trigger event of a transition. The relation action(T → E2) repre-
sents the set of events that make up the action caused by executing a transition.
follows(T → T ) is defined as: (t1, t2) ∈ follows iff trigger(t1) ∈ action(t2).

CF can be applied to non-terminating systems that have multiple exit nodes.
However, it depends on transitions being triggered by events and being able to
generate events as actions and therefore cannot be applied to any finite state
machine, such as EFSMs that do not generate events.

3.2 Control dependence for EFSMs

Korel et al. [KSTV03] present a definition of control dependence for EFSMs in
terms of post dominance that requires execution paths to lead to an exit state.

Definition 3 (Post Dominance [KSTV03]). Let Y and Z be two states and
T be an outgoing transition from Y .

– State Z post-dominates state Y iff Z is in every path from Y to an exit state.
– State Z post-dominates transition T iff Z is on every path from Y to the exit

state though T . This can be rephrased as Z post-dominates target(T ).

Definition 4 (Insensitive Control Dependence (ICD) [KSTV03]). Tran-
sition Tk is control dependent on transition Ti if:

1. source(Tk) post-dominates transition Ti (or target(Ti)), and



2. source(Tk) does not post-dominate source(Ti).

This definition is successful in capturing the traditional notion of control de-
pendence for static backward slicing. However it can only determine control
dependence for state machines with exactly one end state, failing if there are
multiple exit states or if the state machine is possibly non-terminating.

3.3 Control dependence for non-terminating programs

Ranganath et al. [RAB+05,RAB+07] address the issue of determining control
dependence for programs utilising Control Flow Graphs (CFGs). A CFG is a
labelled, directed graph with a set of nodes that represent statements in a pro-
gram and edges that represent the control flow. A node is either a statement
node (which has a single successor) or a predicate node (which has two succes-
sors, labelled with T or F for the true and false cases respectively). A CFG has
a start node ns (which must have no incoming edges) such that all nodes are
reachable from ns; it may have a set of end nodes that have no successors.

Two versions of control dependence definitions are described: non-termination
sensitive and non-termination insensitive control dependence. The difference
between these definitions lies in the choice of paths. Non-termination sensitive
control dependence is given in terms of maximal paths.

Definition 5 (Non-termination Sensitive Control Dependence
(NTSCD)). In a CFG, Ni

NTSCD−−−−→ Nj means that a node Nj is non-termination
sensitive control dependent on a node Ni iff Ni has at least two successors Nk

and Nl such that: for all maximal paths π from Nk, where Nj ∈ π; and there
exists a maximal path π0 from Nl where Nj 6∈ π0.

Non-termination insensitive control dependence is given in terms of sink-bounded
paths that end in control sinks. A control sink is a region of the graph which,
once entered, is never left. These regions are always SCCs, even if only the trivial
SCC, i.e. a single node with no successors.

Definition 6 (Control Sink). A control sink, K, is a set of nodes that form
a strongly connected component such that, for each node n in K each successor
of n is in K.

Definition 7 (Sink-bounded Paths). A maximal path π is sink-bounded iff
there exists a control sink K such that:

1. π contains a node from K;
2. if π is infinite then all nodes in K occur infinitely often.

The second clause of Definition 7 defines a form of fairness and hence we refer to
it as the fairness condition. SinkPaths(N) denotes a set of sink-bounded paths
from a node N . We now define Ranganath et al. [RAB+05] non-termination
insensitive version of control dependence.



Definition 8 (Non-termination Insensitive Control Dependence
(NTICD)). In a CFG, Ti

NTICD−−−→ Nj means that a node Nj is non-termination
insensitive control dependent on a node Ni iff Ni has at least two successors Nk

and Nl such that:

1. for all paths π ∈ SinkPaths(Nk) where Nj ∈ π;
2. there exists a path π0 ∈ SinkPaths(Nl) where Nj 6∈ π0.

Fig. 1. A CFG with multiple exit points and which is potentially non-terminating.

The difference between paths in NTSCD and NTICD is shown in Figure 1.
According to Definition 5, n1 NTSCD−−−−→ n2 and n1 NTSCD−−−−→ n3 but not n1 NTSCD−−−−→ n4
because n4 is not in all maximal paths as there is a maximal path with an infinite
loop, i.e. {n2 → n3 → n2...}. However, n1 NTICD−−−−→ n2, n3, n4 since n2, n3 and
n4 occur on all sink-bounded paths from n2 (the control sink for these paths is
n4) and there exists a sink bounded path from n5 (the control sink consists of
n5, n6, n7) which does not include n2, n3 and n4. Compared to NTSCD, NTICD
cannot calculate any control dependencies within control sinks. For example,
in Figure 1, n5 NTSCD−−−−→ n7 but no such dependency exists for NTICD. Some
programs (e.g. servers) are a global control sink and as such there would be
NTSCD, but no NTICD, dependences.

3.4 Control dependence for communicating automata

Labbé et al. [LG08]1 adapt Ranganath et al.’s NTSCD definition for communi-
cating automata, in particular focusing on Input/Output Symbolic Transition
Systems (IOSTS) [GGRT06].

Definition 9 (Labbé et al.- Non-Termination Sensitive Control Depen-
dence (LG-NTSCD) [LG08]). For an IOSTS S, a transition Tj is control
dependent on a transition Ti if Ti has a sibling transition Tk such that:

1. Ti has a non-trivial guard, i.e. a guard whose value is not constant under all
variable valuations;

2. for all maximal paths π from Ti, the source of Tj belongs to π;

1 Labbé et al.’s definition of control dependence in [LGP07] differs slightly from Labbé
et al. [LG08], so we evaluate the most recent.



Fig. 2. If NTSCD or NTICD is applied, undesired dependences are produced.

3. there exists a maximal path π0 from Tk such that the source of Tj does not
belong to π0.

FSM models differ from CFGs is several ways. For example, FSMs can have
multiple start and exit nodes, more than two edges between two states and more
than two successors from a state. Moreover, in CFGs, decisions (Boolean condi-
tions) are made at the predicate nodes while in state machines they are made
on transitions. Labbé et al. take such differences into account when adapting
NTSCD. For example in Figure 2 T2 NTSCD−−−−→ T3 and T3 NTSCD−−−−→ T2 because ac-
cording to the second clause in Definition 5 the maximal paths start from start.
However these control dependencies are non-sensical because T2 and T3 are
sibling transitions. Using LG-NTSCD these control dependencies do not exist
because in the third clause of Definition 9 the maximal paths start from s1.

The first clause of LG-NTSCD concerning the non-triviality of guards is
introduced in order to avoid a transition being control dependent on transitions
that are executed non-deterministically even though they are NTSCD control
dependent. Furthermore, because this is a syntax dependent clause, the definition
cannot be applied to many FSMs, such as the FSM for the elevator system in
Figure 3 that contains transitions with trivial guards.

4 New Control Dependence Definition: UNTICD

We define a new control dependence definition by extending Ranganath et al.’s
NTICD definition and subsuming Korel et al.’s definition in order to capture a
notion of control dependence for EFSMs that has the following properties. First,
the definition is general in that it should be applicable to any reasonable FSM
language variant. Second, it is applicable to non-terminating FSMs and / or
those that have multiple exit states. Third, by choosing FSM slicing to be non-
termination insensitive (in order to coincide with traditional program slicing) it
produces smaller slices than traditional non-termination sensitive slicing.

Following [RAB+05], the paths that we consider are sink-bounded paths, i.e.
those that terminate in a control sink as in Definition 6. Unlike NTICD, the sink-
bounded paths are unfair, i.e. we drop the fairness condition in Definition 7. For
non-terminating systems this means that control dependence can be calculated
within control sinks.

Definition 10 (Unfair Sink-bounded Paths). A maximal path π is sink-
bounded iff there exists a control sink K such that π contains a transition from
K.



Note that a transition is in a path if its source state is in the path and its target
state is both in the path and immediately follows its source state.

Definition 11 (Unfair Non-termination Insensitive Control Depend-
ence (UNTICD)). Ti

UNTICD−−−−→ Tj means that a transition Tj is control depen-
dent on a transition Ti iff Ti has at least one sibling Tk such that:

1. for all paths π ∈ UnfairSinkPaths(target(Ti)), the source(Tj) belongs to π;
2. there exists a path π ∈ UnfairSinkPaths(source(Tk)) such that the source(Tj)

does not belong to π.

UNTICD is in essence a version of NTICD modified to EFSMs (rather than
CFGs) and given in terms of unfair sink-bounded paths. This means that, unlike
in the second clause of Definition 8, sink-bounded paths start from the source of
Tk rather than from the target of Tk because EFSMS can have many transitions
between states and Definition 8 would lead to non-sensical dependences, e.g. in
Figure 2 T2 NTICD−−−−→ T3 while according to our definition T2 does not control T3.

5 Properties of the Control Dependence Relation

We prove the following properties for UNTICD: UNTICD subsumes ICD; the
transitive closure for the NTICD relation is contained in the transitive closure for
the UNTICD relation; and for an EFSM M , UNTICD and NTSCD dependences
for all transitions within control sinks are identical.

5.1 UNTICD subsumes ICD

Proposition 1 Definition 4 (ICD) is a special case of Definition 11 (UNTICD).

Proof. Definition 4 is given in terms of post dominance which considers every
path to a unique exit state. Definition 11 is given in terms of sink-bounded paths
that terminate in control sinks. The final transition that leads to the exit state
is a trivial strongly-connected component that has no successors, and hence is a
control sink. Therefore, the paths in ICD are contained in the paths of NTICD,
but NTICD is not restricted to these. Moreover, the clauses of definition 4 are
the same as the clauses of definition 11. ut

5.2 Relation between NTICD and UNTICD’s transitive closures

In Theorem 2 we show that the transitive closure of NTICD−−−−→ is contained in
the transitive closure of UNTICD−−−−−→. This shows that UNTICD does not introduce
any additional dependences other than NTICD outside of the control sinks (see
Lemma 2) but introduces dependences within control sinks. In order to prove
this theorem, we first need to identify the regions in the state machine where
dependencies can occur and we do that by considering all the cases in which a
transition t1 controls another transition t2, where K, K1, K2 are control sinks:



∀K. t1 6∈ K ∧ t2 6∈ K (1)
∃K. t1 ∈ K ∧ t2 ∈ K (2)

∃K1,K2. t1 ∈ K1 ∧ t2 ∈ K2 (3)
∀K. t1 6∈ K ∧ ∃K.t2 ∈ K (4)
∀K. t2 6∈ K ∧ ∃K.t1 ∈ K (5)

In case (1) both t1 and t2 are not in any control sink K. In case (2) both t1 and
t2 are in the same control sink K. In case (3) t1 is in a control sink K1 and t2
is in another control sink K2. In case (4) t1 is not in any control sink and t2
belongs to a control sink. In case (5) t2 does not belong to any control sink and t1
belongs to a control sink. We introduce Definition 12 that defines a descendant
of a transition and the Lemma 1 so that we can discard any impossible cases.

Definition 12 (Descendent). A descendant of t is a transition related to t by
the closure of the successor relation.

Lemma 1. For all transitions t in a control sink K, all descendants of t belong
to K.

Proof. By Definition 6 of the control sink and Definition 12 of the descendant
relation. ut

By Lemma 1, cases (3) and (5) are not possible since t1 can only control t2 if
t2 is a descendant of t1. Therefore, we only consider cases (1), (2), and (4). When
t1 NTICD controls t2, then for each case we write case1F , case2F , and case4F .
Similarly when t1 UNTICD t2, then we write case1U , case2U , and case4U .

Lemma 2 shows that the control dependences produced by applying UNTICD
to transitions outside of the control sink are the same as those produced when
applying NTICD, i.e. case1U = case1F .

Lemma 2. For an EFSM M , NTICD and UNTICD dependences for transitions
T outside of the control sink K (where t ∈ T and t 6∈ K), are the same.

Proof. Let us assume that in an EFSM M , Tj is NTICD control dependent on

Ti (Ti
NTICD−−−−−→ Tj) and that Ti and Tj are outside of the control sink. From

Definition 8, Ti has a sibling transition Tk such that there exists a path πk ∈
SinkPaths(Tk) where the source(Tj) does not belong to πk.

Now suppose that the fairness condition in the definition of sink bounded
paths is removed, i.e. Definition 11 holds, then this affects the transitions within
the control sink only in that they do not occur infinitely often. The source of Tj

still remains on all paths from Ti as these are outside of the control sink and πk

still exists. Therefore, NTICD and UNTICD dependences of transitions outside
of the control sink are the same. ut



The pairwise intersection of case (1), (2), (4) are empty. Therefore the rela-
tions can be partitioned as follows:

case1F ∪ case2F ∪ case4F = NTICD−−−−→
case1U ∪ case2U ∪ case4U = UNTICD−−−−−→

In Theorem 2 we show that the transitive closure of NTICD dependences between
transitions within a control sink and between a transition outside of the control
sink and a transition within a control sink is a subset of the transitive closure of
UNTICD dependences between transitions within a control sink and between a
transition outside of the control sink and a transition within a control sink, i.e.
(case2F ∪ case4F )∗ ⊆ (case2U ∪ case4U )∗. First we prove the following lemma.

Lemma 3. Let A∩B = C ∩D = ∅ and X = A∪B while Y = C ∪D. If A = C
then X∗ ⊆ Y ∗ if B∗ ⊆ D∗. All relations are over the same base set.

Proof. (x1, x2) ∈ X∗ iff there exists a path π ∈ (x1, x2), (x2, x3), ..., (xn−1, xn)
so that for two successive members (xi, xj) and (xk, xl) ∈ π, xj = xk, and for
all (xi, xj) ∈ X. This constructs the smallest transitive closure of X.

We show X∗ ⊆ Y ∗ by induction on the length of the path π in X∗.

Base Case: length(π) = 1 then either (x0, x1) ∈ A = C ⊆ (C ∪D)∗ = Y ∗ or
(x0, x1) ∈ X∗ because (x0, x1) ∈ B ⊆ B∗ ⊆ D∗ ⊆ (C ∪D)∗ = Y ∗

Induction Case: (Inductive Hypothesis (IH)) Let xX∗y because there exists
a path π ∈ xX∗x1X

∗x2...X
∗y of length N in X∗. Then there exists a path

π1 in Y such that xY ∗y.
Let xX∗z because there exists a path π of length N + 1 in X. Then ∃y, z.
xX∗yXz and by IH xY ∗y by the same arguments for the base case of yXz
then yY ∗z hence xY ∗z. ut

Theorem 2. The transitive closure of NTICD, is contained in the transitive
closure of UNTICD. NTICD−−−→

∗
⊆ UNTICD−−−−→

∗

Proof. NTICD−−−−→
∗
⊆ UNTICD−−−−−→

∗
can also be expressed as the transitive closure for all

of the cases: (case1F ∪ case2F ∪ case4F )∗ ⊆ (case1U ∪ case2U ∪ case4U )∗ which
is true if:

– case1F = case1U , i.e. that NTICD and UNTICD dependences between tran-
sitions that are not in a control sink are the same, by Lemma 2, and

– (case2F ∪ case4F )∗ ⊆ (case2U ∪ case4U )∗, i.e. that the transitive closure of
NTICD dependences between transitions within a control sink and a transi-
tion outside of the control sink, and between transitions within a control sink
is a subset of the transitive closure of UNTICD dependences between tran-
sitions within a control sink and a transition outside of the control sink, and
between transitions within a control sink. This is true because of Lemma 3.

ut



Fig. 3. An EFSM specification for the door control of the elevator system.

5.3 NTSCD and UNTICD dependencies within control sinks

Finally, we show that UNTICD and NTSCD are compatible in control sinks.

Theorem 3. For every Ti ∈ K and Tj ∈ K where K is a control sink in EFSM

M , Ti
UNTICD−−−−−−→ Tj iff Ti

NTSCD−−−−−→ Tj.

Proof. In a control sink K, if Ti ∈ K and Tj ∈ K, then according to Definition 11
sink-bounded paths are reduced to maximal paths, since transitions in K do not
occur infinitely often (fairly). This coincides with Definition 5. Therefore, the
control dependences produced by UNTICD and NTSCD for transitions within
control sinks are equivalent. ut

6 Comparison of UNTICD with existing definitions

Figure 3 illustrates an EFSM of the door control component, a subcomponent of
the elevator control system [SW99]. The door component controls the elevator
door, i.e. it opens the door, waits for the passengers to enter or leave the elevator
and finally shuts the door. In this section we compute all the control dependen-
cies for this EFSM using the existing and new definitions for the purpose of
comparison, as given in Figure 4.

CF cannot be applied to the EFSM in Figure 3 because it is given in terms
of the relationship between events and generated events and according to the
syntax of EFSMs, events cannot be generated.

ICD cannot be applied to the the EFSM in Figure 3 because it does not
have a unique exit state. For EFSMs that lead to a unique exit state the
control dependences computed for both ICD and UNTICD are the same. For
example, in Figure 2, ICD and UNTICD compute the same dependences, i.e.
T1→ T2, T3, T4, T5.

In Figure 4, NTSCD and NTICD are given in terms of nodes but can easily be
represented in terms of transitions. Compared to UNTICD, NTSCD considers
maximal paths rather than sink-bounded paths and consequently introduces
more dependences when there are loops on paths that lead to a control sink. For



CF No dependences as the EFSM does not have generated events

ICD Not applicable as the EFSM does not have a unique exit state

NTSCD wait → closing closing → closed
closed → opening opening → opened
opened → closing closing → opening

NTICD No dependences

LG-NTSCD T3 → T4, T5, T6

UNTICD T5 → T9, T10 T6 → T7, T8
T8 → T9, T10 T10 → T11, T12
T12 → T4, T5, T6

Fig. 4. Control dependences computed by new and existing definitions for Figure 3.

example, in Figure 3, wait NTSCD−−−−→ closing because of the loop introduced by the
self-transition T2. Note that NTSCD and UNTICD have the same dependences
inside control sinks—we have formally shown this to be true in Theorem 3.

In Figure 3 there are no NTICD dependences because any control depen-
dency caused by loops on paths to a control sink are ignored and there are
no control dependencies within control sinks because of the fairness condition
of sink-bounded paths. Unlike NTICD, UNTICD calculates dependences with
control sinks. Also, as formally shown by Theorem 2, the transitive closure of
NTICD is contained within the transitive closure of UNTICD, although trivially
true in this case.

LG-NTSCD is NTSCD adapted for transitions and with a syntax dependent
clause, i.e. that the controlling transition’s guard must be non-trivial. This addi-
tional clause reduces the number of dependences compared to those of NTSCD.
For example, in Figure 3, T5, T6, T8, T10 and T12 do not control any other tran-
sition because they have trivial guards. The transitive closure of LG-NTSCD as
for slicing, could produce too few results to be useful.

7 EFSM Slicing with UNTICD

Backward static program slicing was first introduced by Weiser [Wei81] and
describes a source code analysis technique that, through dependence relations,
identifies all the statements in the program that influence the computation of
a chosen variable and point in the program, i.e. the slicing criterion. It is non-
termination insensitive. Similarly, EFSM slicing identifies those transitions which
affect the slicing criterion, by computing control dependence and data depen-
dence. Data dependence is a definition-clear path between a variable’s definition
and use. We adopt the data dependence definition of [KSTV03] for an EFSM.

Definition 13 (Data Dependence (DD)). Ti
DD−−→v Tk means that transi-

tions Ti and Tk are data dependent with respect to variable v if:



1. v ∈ D(Ti), where D(Ti) is a set of variables defined by transition Ti, i.e.
variables defined by actions and variables defined by the event of Ti that are
not redefined in any action of Ti;

2. v ∈ U(Tk), where U(Ti) is a set of variables used in a condition and actions
of transition Ti;

3. there exists a path in an EFSM from the source(Ti) to the target(Tk) whereby
v is not modified.

The data dependences for the door controller EFSM in Figure 3 are: {T1 →
T2, T3}, {T2→ T2, T3}, {T5→ T11}, {T8→ T11}, and {T11→ T11}.

Definition 14 (Slicing Criterion). A slicing criterion for an EFSM is a pair
(t, V ) where transition t ∈ T and variable set V ⊆ V ar. It designates the point
in the evaluation immediately after the execution of the action contained in
transition t.

Definition 15 (Slice). A slice of an EFSM M , is an EFSM, M ′, that contains
ε−transitions. The transitions that are not ε−transitions are in the set of tran-
sitions that are directly or indirectly (transitive closure) DD and UNTICD on
the slicing criterion c.

7.1 Computing EFSM slices

The objective of the slicing algorithm is to automatically compute the slice of
an EFSM model M with respect to the given slicing criterion c. First, the al-
gorithm computes the data dependences, using Definition 13, and the control
dependences, using Definition 11, for all transitions in M . These are then repre-
sented in a dependence graph, which is a directed graph where nodes represent
transitions and edges represent data and control dependences between transi-
tions. Then, given the slicing criterion c, the algorithm marks all backwardly
reachable transitions from c, i.e. the transitive closure of DD and UNTICD with
respect to c. All unmarked transitions are anonymised i.e. become ε−transitions.
Note that we can replace UNTICD, with NTICD, LG-NTSCD and NTSCD in
order to compare the different slices produced.

If the slicing criterion for the EFSM in Figure 3 is T11, then Figure 5(a) il-
lustrates the slice produced when using UNTICD, and Figure 5(b) illustrates the
slice produced when using LG-NTSCD. Unlike LG-NTSCD and NTSCD, UN-
TICD slicing slices away transitions which are affected by loops (before control
sinks) that do not data dependent on T11, i.e. T3. Moreover, there are no LG-
NTSCD dependences within the control sink because the transitions have trivial
guards. Trivial guards in Figure 3 do not affect whether T10 and T9 will be
taken non-deterministically, so in the case where event opening occurs infinitely,
T11 is never reached. If the slicing criterion for the EFSM in Figure 3 is T12,
then the marked transitions in the UNTICD slice are {T5, T10, T12}, while in
the LG-NTSCD slice are {T3, T12}, in the NTSCD slice are {T3, T5, T10, T12}
and in the NTICD slice is {T12}.



Fig. 5. Static slices computed with LG-NTSCD (top) and UNTICD (bottom). Marked
transitions are in bold. LG-NTSCD has less marked transitions than UNTICD because
dependences in the control sink are not valid as transitions have trivial guards.

8 Conclusions

In this paper, we introduced a non-termination insensitive form of control de-
pendence for EFSM slicing, that built on the recent work of Ranganath et
al. [RAB+05] and subsumed Korel et al’s definition [KSTV03]. We demonstrated
that by removing the fairness condition of Ranganath et al.’s NTICD no control
dependences were removed, but extra control dependences within control sinks
were introduced. Unlike NTICD our new definition works with non-terminating
systems and, in general, produces smaller slices than those based on NTSCD.
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