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ABSTRACT
A large number of software metrics have been proposed in
the literature, but there is little understanding of how these
metrics relate to one another. We propose a novel experi-
mental technique, based on search-based refactoring, to as-
sess software metrics and to explore relationships between
them. Our goal is not to improve the program being refac-
tored, but to assess the software metrics that guide the auto-
mated refactoring through repeated refactoring experiments.

We apply our approach to five popular cohesion metrics
using eight real-world Java systems, involving 300,000 lines
of code and over 3,000 refactorings. Our results demonstrate
that cohesion metrics disagree with each other in 55% of
cases, and show how our approach can be used to reveal
novel and surprising insights into the software metrics under
investigation.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Complexity mea-
sures; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement—Restructuring, reverse engineer-
ing, and reengineering

General Terms
Experimentation, Measurement.

Keywords
Software metrics, search based software engineering, refac-
toring.
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1. INTRODUCTION
Metrics are used both implicitly and explicitly to measure

and assess software [43], but it remains difficult to know
how to assess the metrics themselves. Previous work in the
metrics literature have suggested formal axiomatic analysis
[45], though this approach is not without problems and limi-
tations [18] and can only assess theoretical metric properties
and not their practical aspects.

In this paper we introduce a novel experimental approach
to the assessment of metrics, based on automated search-
based refactoring. It is striking that many metrics purport
to measure the same aspect of software quality, yet we have
no way of checking these claims. For example, many metrics
have been introduced in the literature that aim to measure
software cohesion [9, 11, 26, 33, 20]. If these metrics were
measuring the same property, then they ought to produce
similar results. This poses some important but uncomfort-
able questions: how do the results of metrics that purport to
measure the same software quality compare to one another?
Can metrics that measure the same property disagree, and
how strongly can they disagree? These questions are impor-
tant, because we cannot rely on a suite of metrics to assess
properties of software if we can neither determine the ex-
tent to which they agree, nor have any way to determine
a likely worst case disagreement. They are also uncomfort-
able questions because, despite several decades of software
metrics research and practice, there remains no answer, nor
even an accepted approach to tackling them.

In this paper we address this problem by introducing an
experimental technique to answer questions like these. Our
approach applies automated refactoring to a program, re-
peatedly measuring the values of a number of metrics before
and after applying each refactoring. In this way it is possi-
ble to make empirical observations about the relationships
between the metrics. When a pair of metrics do not agree
on the change brought about by a refactoring, we examine
the causes of the conflict so as to gain a further (and more
qualitative) insight into the differences between the metrics.

We evaluate our approach on five widely-used metrics for
cohesion. We use a search-based, metric-guided refactoring
platform, Code-Imp, that can apply a large number of refac-



torings without user intervention. Using Code-Imp, over
3,000 refactorings were applied to eight non-trivial, real-
world Java programs comprising in total over 300,000 lines
of code. For each refactoring, we compute before and af-
ter values for the cohesion metrics and analyse the results
to obtain a quantitative and qualitative comparison of the
metrics under assessment.

The primary contributions of this paper are as follows:

1. The introduction of a new approach to metric analysis
at the source code level. This implements the approach
to metric investigation using search-based refactoring
first proposed by Harman and Clark [25], but which
has hitherto remained unimplemented.

2. A case study showing how our approach reveals that
seemingly similar metrics can be in conflict with one
another, and can pinpoint the source of the conflict
thus providing new insight into the differences between
the metrics.

3. The identification of a number of undocumented anoma-
lies in established cohesion metrics, thereby demon-
strating the utility of our approach as a means of in-
vestigating metrics.

This paper is structured as follows. In Section 2 we de-
scribe our experimental approach in more detail and in sec-
tion 3 we outline the platform we use in this paper to perform
search based refactoring. In section 4 we describe our initial
investigation into how a suite of software metrics changes
in response to refactoring, which leads to Section 5 where a
detailed empirical comparison between two particular cohe-
sion metrics is presented. Section 6 describes related work
and finally, Section 7 concludes and describes future work.

2. MOTIVATION AND APPROACH
The motivation for this work stems from a desire to “ani-

mate”metrics and observe their behaviour in relation to each
other in a practical setting. A single software application al-
lows only one set of metric measurements to be made. This
is clearly not enough to make meaningful comparisons. A
software repository such as CVS provides multiple versions
of a software application and so serves as a better basis for
comparison, and many studies have taken this approach [14,
2, 44]. However, a sequence of versions of a software appli-
cation may vary wildly in terms of how great the gap is be-
tween each version. This lack of control over the differences
between the versions is a significant confounding factor in
studies that use software repositories to compare software
metrics.

Our approach to this problem begins with the observation
that individual refactorings in the style of Fowler [22] involve
small behaviour-preserving program changes that typically
have an impact on the values of software metrics that would
be calculated for the program. For example, in applying the
PushDownMethod refactoring, a method is moved from a
superclass to those subclasses that require it. The super-
class may become more cohesive if the method moved was
weakly connected with the rest of the class. It may instead
become less cohesive, if the moved method served to glue
other methods and fields of the class together. It is impos-
sible to state that the PushDownMethod refactoring leads
to an increase or a decrease in cohesion without examining

Input: set of classes in program being refactored
Input: set of 14 refactoring types (e.g. PullUpMethod)
Input: set of metrics to be analysed
Output: metrics profile
refactoring count = 0
repeat

classes = set of classes in program
while !empty(classes) do

class = classes.pick()
refactoring types = set of refactoring types
while !empty(refactoring types) do

refactoring type =refactoring types.pick()
refactorings.populate(refactoring type, class)
if !empty(refactorings) then

refactoring = refactorings.pick()
refactoring.apply()
if fitness function improves() then

refactoring count++
update metrics profile

else
refactoring.undo()

end

end

end

end

until refactoring count == desired refactoring count;

The functions used in this algorithm are defined as follows:
Set<element>::pick: removes and returns a it random ele-
ment from a set
Set<Refactoring>::populate(type, class): adds to the set all
legal refactorings of the given type on the given class
fitness function improves: Tests if the applied refactoring
has improved the software metrics. Details vary between
investigation 1 and investigation 2.

Figure 1: The search-based refactoring algorithm
used to explore software metrics

the context to which it is being applied. Furthermore, the
impact the refactoring will have on the metric will depend
on the precise notion of cohesion that the metric embodies.

The approach taken in this paper is to measure a set of
metric values on a program, and then apply a sequence of
refactorings to the program, measuring the metrics again af-
ter each refactoring is applied. Each refactoring represents
a small, controlled change to the software, so it is possible
to identify patterns in how the metric values change, and
how they change in relation to each other. For N refac-
torings and M metrics, this approach provides a matrix of
(N + 1) × M metric values. As will be demonstrated in
sections 4 and 5, this matrix can be used to make a com-
parative, empirical assessment of the metrics and to detect
areas of metric disagreement that can be subjected to closer
examination.

An important issue in this approach is the manner in
which the refactoring sequence itself is generated. The sim-
plest solution is to apply a random sequence of refactorings
to the program. However, most randomly-chosen refactor-
ings can be expected to cause all software metrics to deteri-
orate, which is not of interest. In order to address this, we
use the software metrics that are being studied to guide the
refactoring process itself. In this way, we can ensure that



a refactoring is applied only if it improves at least one of
the metrics being studied. Crucially, each accepted refac-
toring will improve the cohesion of the program in terms of
at least one of the metrics, though it may, in the extreme
case, worsen it for all the other metrics.

This search-based approach to refactoring has already been
used in many other studies [37, 38, 42, 27, 28, 41, 40, 29,
35, 32]. In this paper, we use search-based refactoring not
to achieve a goal in terms of refactoring the program, but
to learn more about the metrics that are used to guide the
refactoring process. The search-based refactoring tool we
use, Code-Imp, is described in more detail in section 3.

The search-based algorithm we use to perform the refac-
toring is defined in figure 1. It is stochastic, as the pick

operation makes a random choice of the class to be refac-
tored, the refactoring type to be used and the actual refac-
toring to be applied. It is only necessary to run this search
once on each software application, as each refactoring ap-
plied is a complete experiment in itself. The purpose of
this algorithm is to give each class an equal chance of being
refactored and to give each refactoring type (PullUpMethod,
CollapseHierarchy, etc.) an equal chance of being applied.
This is important in order to reduce the risk that bias in
the refactoring process affects the observed behaviour of the
metrics. The details of the fitness function are not defined in
this algorithm, as they depend on the exact nature of what
is being investigated. The fitness functions will be defined
in sections 4 and 5 where the experiments are described in
more detail.

3. THE CODE-IMP PLATFORM
Code-Imp is an extensible platform for metrics-driven search-

based refactoring that has been previously used for auto-
mated design improvement [37, 38]. It provides design-level
refactorings such as moving methods around the class hier-
archy, splitting classes and changing inheritance and delega-
tion relationships. It does not support low-level refactorings
that split or merge methods.

Code-Imp was developed on the RECODER platform [24]
and fully supports Java 6. It currently implements the fol-
lowing refactorings [22]:

Method-level Refactorings

Push Down Method: Moves a method from a class to those
subclasses that require it.

Pull Up Method: Moves a method from a class(es) to its
immediate superclass.

Increase/Decrease Method Accessibility: Changes the ac-
cessibility of a method by one level, e.g. public to pro-
tected or private to package.

Field-level Refactorings

Push Down Field: Moves a field from a class to those sub-
classes that require it.

Pull Up Field: Moves a field from a class(es) to their im-
mediate superclass.

Increase/Decrease Field Accessibility: Changes the acces-
sibility of a field by one level, e.g. public to protected
or private to package.

Class-level Refactorings

Extract Hierarchy: Adds a new subclass to a non-leaf class
C in an inheritance hierarchy. A subset of the sub-
classes of C will inherit from the new class.

Collapse Hierarchy: Removes a non-leaf class from an in-
heritance hierarchy.

Make Superclass Abstract: Declares a constructorless class
explicitly abstract.

Make Superclass Concrete: Removes the explicit ‘abstract’
declaration of an abstract class without abstract meth-
ods.

Replace Inheritance with Delegation: Replaces an inheri-
tance relationship between two classes with a delega-
tion relationship; the former subclass will have a field
of the type of the former superclass.

Replace Delegation with Inheritance: Replaces a delegation
relationship between two classes with an inheritance
relationship; the delegating class becomes a subclass
of the former delegate class.

Code-Imp parses the program to be refactored to produce
a set of Abstract Syntax Trees (ASTs). It then repeatedly
applies refactorings to the ASTs and regenerates the source
code from the ASTs when the refactoring process is com-
pleted. Code-Imp decides on the next refactoring to per-
form based on the exact search technique in use and the
value of the fitness function in use. The refactoring process
can be driven using one of a number of metaheuristic search
techniques, namely simulated annealing, hill climbing and a
genetic algorithm. In this paper, only hill climbing is used.

The fitness function that guides the search is a compu-
tation based on one or more software metrics. Code-Imp
provides two implementations for each metric related to the
inclusion or exclusion of inheritance in the definition of the
metric. Five cohesion metrics are used in this paper, namely
Tight Class Cohesion (TCC) [8], Lack of Cohesion between
Methods (LCOM5) [12], Class Cohesion (CC) [10], Sensi-
tive Class Cohesion (SCOM) [21] and Low-level Similarity
Base Class Cohesion (LSCC) [3]. The formal and informal
definitions of these metrics are presented in Figure 2.

As with all automated approaches, the refactoring se-
quence generated by Code-Imp may not resemble the refac-
torings that a programmer would be inclined to undertake
in practice. This issue is not relevant here as our focus is
on the changes in the metric values, rather than the design
changes brought about by the refactorings.

4. INVESTIGATION I: GENERAL ASSESS-
MENT OF COHESION METRICS

In this investigation we take a refactoring walk through
the landscape of the range of cohesion metrics under con-
sideration. Our goal is to gain an overall understanding of
how the metrics change, and to seek out possible anomalous
behaviour that can be investigated further.

As explained in section 2, random application of refactor-
ings will usually cause deterioration in all cohesion metrics.
We therefore use a search that cycles through the classes of
the program under investigation as described in figure 1, and
tries to find a refactoring on the class that improves at least
one of the metrics being studied. The search will apply the
first refactoring it finds that improves any metric. The other
metrics may improve, stay the same, or deteriorate. Because



LSCC(c) =

8>>><
>>>:

0 if l=0 and k >1,
1 if (l> 0 and k=0) or k=1,

lX
i=1

xi(xi − 1)/lk(k − 1) otherwise.

The similarity between two methods is the
collection of their direct and indirect shared
attributes.

TCC(c) =
|{(m1, m2)|m1, m2 ∈ MI(c) ∧ m1 �= m2 ∧ cau(m1, m2)}|

k(k − 1)/2

Two Methods interact with each other if they
directly or indirectly use an attribute of class
c in common.

CC(c) = 2

k−1X
i=1

kX
j=i+1

|Ii ∩ Ij |
|Ii ∪ Ij |/k(k − 1)

The similarity between two methods is the ra-
tio of the collection of their shared attributes
to the total number of their referenced at-
tributes.

SCOM(c) = 2

k−1X
i=1

kX
j=i+1

|Ii ∩ Ij |
min (|Ii| , |Ij |) ∗ |Ii ∪ Ij |

l
/k(k − 1)

The similarity between two methods is the ra-
tio of the collection of their shared attributes
to the minimum number of their referenced
attributes. Connection intensity of a pair of
methods is given more weight when such a
pair involves more attributes.

LCOM5(c)
=

k − 1

l

X
a∈AI (c)

|{m|m ∈ MI(c) ∧ a ∈ Im}|

k − 1

Measures the lack of cohesion of a class in
terms of the proportion of attributes each
method references. Unlike the other metrics,
LCOM5 measures lack of cohesion, so a lower
value indicates better cohesion.

In the above: c is a particular class; MI(c) is the set of methods implemented in c; AI(c) is the set of attributes implemented
in c; k and l are the number of methods and attributes implemented in class c respectively; Ii is the set of attributes
referenced by method i; xi is the number of 1s in the ith column of the Method-Attribute Reference (MAR) matrix,
MAR(i, j) holds 1 if ith method directly or indirectly references jth attribute; cau(m1, m2) holds 1 if m1 and m2 use an
attribute of class c in common.

Figure 2: Formal and informal definitions of the metrics evaluated in this paper.

this fitness function is easy to improve, we obtain the long
refactoring sequences that are required to draw conclusions
about relationships between metrics.

The metrics formulae presented in Figure 2 show how to
calculate the metric for a single class. To measure the cohe-
sion of a number of classes, i.e., an entire program, we use
the formula for weighted cohesion based on that proposed
by Briand and Al Dallal [2]:

weightc =
lckc(kc − 1)X

iεClasses

liki(ki − 1)

where weightn is the weight assigned to the cohesion of class
n, ln is the number of attributes in class n, and kn is the
number of methods in class n. In the case where kc equals 1,
the numerator in the formula becomes l. This is the formula
we use for LSCC. For other metrics we tailor this formula
so it makes sense for that metric.

Most software metrics are ordinal in nature, so any for-
mula that averages them is theoretically suspect. However,
our experience suggests that these metrics are not far from
being on an interval scale and so the risk in treating them
as interval is slight in relation to the advantages that ac-
crue. Briand et al. make a similar argument for the use of
parametric methods for ordinal scale data [11].

System Description LOC #Classes

JHotDraw 5.3 Graphics 14,577 208
XOM 1.1 XML API 28,723 212
ArtofIllusion 2.8.1 3D modeling 87,352 459
GanttProject 2.0.9 Scheduling 43,913 547
JabRef 2.4.2 Graphical 61,966 675
JRDF 0.4.1.1 RDF API 12,773 206
JTar 1.2 Compression 9,010 59
JGraphX 1.5.0.2 Java Graphing 48,810 229

Table 1: Software applications used in the first in-
vestigation

4.1 Results and Analysis
We applied this refactoring process to the eight open source

Java projects presented in Table 1. In each case, the exper-
iment was allowed to run for five days, or until a sequence
of over 1000 refactorings was reached. In total, 3,453 refac-
torings were applied, as shown in Table 2. The applications
were of high quality initially, so improvements to cohesion
were time-consuming to find. JHotDraw proved the easi-
est program to refactor because its extensive use of design
patterns and a rich inheritance hierarchy provided plenty of
opportunity to refactor. Note that in this work we are using
the refactoring process only to investigate the properties of
the metrics. We make no claim that the refactored program
has a better design than the original program.



JHotDraw JTar XOM JRDF JabRef JGraph ArtOfIllusion Gantt All
(1007) (115) (193) (13) (257) (525) (593) (750) (3453)

LSCC 96 99 100 92 99 100 99 96 98
TCC 86 53 97 46 61 72 84 71 78
SCOM 79 70 93 92 79 89 77 80 81
CC 100 98 100 92 99 100 100 99 100
LCOM5 100 100 100 100 100 100 100 99 100

Table 2: Metric volatility as a percentage. This shows the percentage of refactorings that caused a change in
a metric. The number in parentheses is the number of refactorings that were performed on this application.

4.1.1 Volatility
One aspect of a metric that this investigation allows us to

see is its volatility. A volatile metric is one that is changed
often by refactorings, whereas an inert metric is one that
is changed infrequently by refactorings. Volatility is an im-
portant factor in determining the usefulness of a metric. For
example, in search-based refactoring, a highly volatile metric
will have a very strong impact on how the refactoring pro-
ceeds while a relatively inert metric may simply be pointless
to compute. In a software quality context, measuring the
improvement in a system’s design using a set of inert met-
rics is likely to be futile, as they are, by definition, crude
measures that do not detect subtle changes in the property
they measure. Table 2 shows the volatility of the 5 metrics
in each individual system under investigation, and averaged
across all systems.

The first observation is that LSCC, CC and LCOM5 are
all highly volatile metrics. In 99% of the refactorings applied
across all applications, each these metrics either increased or
decreased. The relative lack of volatility of the TCC metric
is largely due to the cau relation (see Figure 2), which holds
relatively rarely for any given pair of methods.

The results for the JRDF application are notable. All
metrics bar TCC are highly volatile for this application. Al-
though JRDF is one of the larger applications, a total of
only 13 refactorings could be applied to it, compared to the
1000+ refactorings that could be applied to JHotDraw, a
similarly-sized application. The explanation for this lies in
the nature of the applications. In JHotDraw, 86% of the
classes are subclasses, whereas in JRDF this figure is only
6%. Since most of the refactorings Code-Imp applies re-
late to inheritance, an application that makes little use of
inheritance provides few opportunities to refactor.

While there is some consistency across the different ap-
plications, the JRDF example illustrates that, given an in-
dividual metric, volatility can vary substantially between
systems. We attempted normalising the volatilities against
the overall volatility of each application, and, while this im-
proved the consistency somewhat, a large variance remained.
We thus conclude that volatility is dependent on a combina-
tion of a metric and the application to which it is applied.

4.1.2 Probability of positive change
Table 2 shows how volatile the metrics are, but it does

not show whether the volatility is in a positive or negative
sense. In Table 3 we present this view of the metrics. Recall
that every refactoring applied in this investigation increases
at least one of the cohesion metrics. It is remarkable then to
note how often an increase in one cohesion metric leads to a
decrease in another. Taking LSCC and ArtOfIllusion as an
example, LSCC decreases in 42% of the refactorings (593 in

total). So for ArtOfIllusion, 249 refactorings that improved
at least one of TCC, SCOM, CC or LCOM5, as guaranteed
by the refactoring process, caused LSCC to worsen.

LSCC TCC SCOM CC

TCC 0.60
SCOM 0.70 0.58
CC 0.10 0.01 -0.28
LCOM5 -0.17 -0.21 -0.46 0.72

Table 4: Spearman rank correlation between the
metrics across all refactorings and all applications.
Note that LCOM5 measures lack of cohesion, so a
negative value indicates positive correlation.

This pattern of conflict is repeated across Table 3. As
summarised in Table 4, TCC, LSCC and SCOM exhibit col-
lective moderate positive correlation, while CC and LCOM5
show mixed correlation ranging from moderate positive cor-
relation (LCOM5 and SCOM) to strong negative correlation
(LCOM5 and CC).

In order to summarise the level of disagreement across
the set of metrics, we also considered each pairwise com-
parison between each pair of metrics for each refactoring.
For 5 metrics we have (5 ∗ 4)/2 = 10 pairwise comparisons
per refactoring. For 3,453 refactorings, this yields a total
of 34,530 pairwise comparisons. Each pair is categorised as
follows:
Agreement: Both metric values increase, both decrease, or
both stay the same.
Dissonant: One value increases or decreases, while the other
stays the same.
Conflicted: One value increases, while the other decreases.
Across the entire set of refactorings, we found the levels to
be as follows: 45% agreement, 17% dissonant and 38% con-
flicted. The figure of 38% conflicted is remarkable and indi-
cates that, in a significant number of cases, what one cohe-
sion metric regards as an improvement in cohesion, another
cohesion metric regards as a decrease in cohesion. This has a
practical impact on how cohesion metrics are used. Trying
to improve a software system using a combination of con-
flicted cohesion metrics is impossible — an improvement in
terms of one cohesion metric is likely to cause a deterioration
in terms of another metric.

4.2 Summary
This investigation has served to show the variance be-

tween software cohesion metrics in terms of their volatility
and their propensity to agree or disagree with each other.
Of course a cohesion metric that completely agrees with an-
other makes no contribution to the cohesion debate. How-
ever, the conflict between the metrics indicates that the suite



JHotDraw JTar XOM JRDF JabRef JGraph ArtOfIllusion GanttProject Average

LSCC ↑50 , 46↓ ↑50 , 49↓ ↑57 , 43↓ ↑46 , 46↓ ↑54 , 46↓ ↑51 , 48↓ ↑57 , 42↓ ↑53 , 43↓ ↑53 , 45↓
TCC ↑45 , 41↓ ↑30 , 23↓ ↑51 , 46↓ ↑23 , 23↓ ↑34 , 27↓ ↑37 , 35↓ ↑52 , 35↓ ↑39 , 31↓ ↑43 , 35↓
SCOM ↑38 , 40↓ ↑34 , 36↓ ↑50 , 44↓ ↑46 , 46↓ ↑37 , 42↓ ↑36 , 53↓ ↑44 , 33↓ ↑40 , 40↓ ↑40 , 41↓
CC ↑53 , 47↓ ↑52 , 46↓ ↑51 , 49↓ ↑46 , 46↓ ↑54 , 44↓ ↑61 , 39↓ ↑58 , 42↓ ↑57 , 42↓ ↑56 , 44↓
LCOM5 ↑51 , 49↓ ↑50 , 50↓ ↑48 , 52↓ ↑54 , 46↓ ↑49 , 50↓ ↑41 , 59↓ ↑56 , 43↓ ↑50 , 50↓ ↑50 , 50↓

Table 3: Of those refactorings that change a metric, the percentage that are improvements and deteriorations,
i.e., an uparrow indicates an improvement in cohesion.

of cohesion metrics do not simply reflect different aspects of
cohesion, they reflect contradictory interpretations of cohe-
sion.

In order to investigate this conflict further, we choose
two cohesion metrics, LSCC and TCC, and analyse them
in greater detail using search-based refactoring. The results
of this are presented in the following section.

5. INVESTIGATION II: DETAILED ANAL-
YSIS OF COHESION METRICS

The first investigation shows how search-based refactoring
can be used to create a broad-stroke picture of how metrics
relate to each other. In this second investigation we take two
well-known cohesion metrics, LSCC and TCC, and explore
their relationship more closely. We choose these two met-
rics as they are popular, low-level design metrics that have
different characteristics. TCC was published in 1995 by Bie-
man and Kang [8], has stood the test of time, and was found
to be rather inert in investigation I. LSCC was published in
2010 by Briand and Al Dallal [2], and hence represents a
very recent interpretation of cohesion. In constrast to TCC,
LSCC was found to be very volatile in investigation I.

Figure 3: Graph of TCC improving as LSCC is im-
proved by refactoring JHotDraw

In the definition of both these metrics [8, 2], the respec-
tive authors mention the issue of whether or not inheritance
should be considered in calculating cohesion, but do not dis-
cuss it in detail. If inheritance is taken into account, then
the cohesion of a class is calculated as if all inherited meth-
ods and fields were part of the class as well. In the view of
the authors of this present paper, this is a critical issue. A
class might appear to have two unrelated methods, but if
they both access the same inherited methods or fields they

might in fact be very cohesive1. Hence we consider two ver-
sions of each of these metrics, the normal, ‘local’ versions
termed LSCC and TCC, and the ‘inherited’ versions, which
we term LSCCi and TCCi.

We conducted two experiments to test the relationships
between these metrics. In each experiment, we use one met-
ric to drive the refactoring process, and measure the impact
on another metric. The experiments are as follows:

1. increase LSCC measure TCC

2. increase TCCi measure LSCCi

The other obvious experiments, increasing TCC and mea-
suring LSCC and increasing LSCCi measuring TCCi were
also performed. The results were in keeping with what we
report below, but the details are omitted for space reasons.
JHotDraw was chosen as the application on which to run
these experiments as it proved in Section 4 to be the appli-
cation that Code-Imp found easiest to refactor.

We alter the fitness function used to drive the search in
these experiments. In our initial investigations in Section 4
the goal was to apply as many refactorings as possible to
gain an overall view of the metric interactions. By contrast,
in this section we wish to mimic a developer refactoring a
program using a cohesion metric as guidance. If we use
average class cohesion as the fitness function, we ignore the
fact that, from a software engineering perspective, classes
are not all of the same importance. For example, it is more
useful to improve the cohesion of a frequently-updated class
than of a stable class.

For these reasons we use a novel fitness function in the
domain of search-based refactoring: a Pareto-optimal search
across the classes of the program being refactored2. A refac-
toring that attempts to increase a metric is only accepted
if it increases that metric for at least one class, and causes
no decline in that metric for any other class. This is quite
a limiting fitness function, but we argue that the resulting
refactoring sequence is likely to be acceptable as a useful
refactoring sequence in practice. The lengths of the refac-
toring sequences in these experiments are much shorter than
those in Section 4, but are of sufficient length for trends to
be observed.

1The Template Method design pattern [23] is an example
of this. The subclasses contain several apparently unrelated
methods. However, it is the inherited template method itself
that provides the glue that makes these methods cohesive.
2Harman and Tratt first used Pareto optimality in search-
based refactoring to avoid summing values for different met-
rics [27]. Our aim is to avoid summing values for the same
metric on different classes.



Figure 4: Impact of refactoring on the TCC metric
in LSCC vs. TCC experiment on JHotDraw.

5.1 Increasing LSCC, measuring TCC
The result of refactoring JHotDraw to improve LSCC and

measuring the impact on TCC is presented in Figures 3 and
4. 33 refactorings are performed and both metrics increase
steadily and with little apparent conflict (Spearman rank
correlation 0.8). However, when we look more closely at the
refactorings in Figure 3, an anomaly becomes apparent. At
refactoring 26, TCC drops slightly and remains constant for
the next 5 refactorings, while LSCC steadily increases. We
examine this area of disagreement more closely to determine
what it tell us about the metrics.

This period of disagreement occurs during a sequence of
PullUpField refactorings where the target class has no fields.
TCC is undefined for a class with no fields, so moving a field
to such a class appears to reduce cohesion by adding a class
with zero cohesion to the program. On the other hand, we
learn from this example that LSCC prefers to move a field
that is loosely associated with a class (e.g. used directly or
indirectly by only one method) to its superclass, if that su-
perclass has a zero LSCC measure (no two methods access
the same field). In practice, this would be viewed as a detri-
mental refactoring, so we have uncovered a weakness in the
LSCC metric that it would reward such a refactoring.

5.2 Increasing TCCi, measuring LSCCi

The result of refactoring JHotDraw to improve TCCi and
measuring the impact on LSCCi is presented in Figure 5. 91
refactorings were performed and while there is some agree-
ment in places, overall the graph shows extreme conflict
(Spearman rank correlation -0.8).

Figure 6 provides a detailed view of the refactorings and
their effect on the LSCCi metric. The most striking fea-
ture is that PullUp Field has a negative impact on LSCCi

in every case. The negative impact occurs because a field
is moved to a superclass where it has no interaction which
reduces LSCCi for that class. TCCi favours this refactoring
because as part of pulling a private field up to a superclass,
it must be made protected, and this causes more interaction
between protected methods that use the field in the hierar-
chy structure. This use of PullUp Field in this case does

Figure 5: Graph of LSCCi improving as TCCi is
improved by refactoring JHotDraw.

truly improve cohesion, so it is a strength of LSCCi that it
would not recommend it.

Another area of conflict is the negative effect PushDown
Method has on LSCCi in six refactorings. On inspecting
these refactorings, we learn that TCCi always prefers a method
to reside in a class where it is used and access the fields
it needs in its superclass (where they cannot be private
of course), rather than reside in the superclass. However,
LSCCi places more emphasis on keeping fields private, so it
frequently prefers a method to stay in the class of the fields
it uses except where the method is used by majority of the
subclasses.

Figure 6: Impact of refactoring on the LSCCi metric
in TCCi vs. LSCCi experiment on JHotDraw.

5.3 Summary
In this section we used a Pareto-optimal search across

classes in order to demonstrate how two metrics can be com-
pared and contrasted in a detailed way. In both experiments,
LSCC vs. TCC and TCCi vs. LSCCi, we found areas of
agreement and conflict between the metrics. Examining the
areas of conflict more closely shed light on aspects of the
metrics that are not readily apparent from their formulae.

6. RELATED WORK
In this section we review related work in Search-Based

Refactoring (section 6.1) and Software Metrics (section 6.2).



6.1 Search-Based Refactoring
Search-based refactoring is fully automated refactoring

driven by metaheuristic search and guided by software qual-
ity metrics, as introduced by O’Keeffe and Ó Cinnéide [39].
Existing work in this area uses either a ‘direct’ or an ‘in-
direct’ approach. In the direct approach the refactoring
steps are applied directly to the program, denoting moves
from the current program to a near neighbour in the search
space. Early examples of the direct approach are the works
by Williams [46] and Nisbet [34] who addressed the paral-

lelization problem. More recently, O’Keeffe and Ó Cinnéide
[37, 38] applied the direct approach to the problem of au-
tomating design improvement.

In the indirect approach, the program is indirectly opti-
mised through the optimisation of the sequence of transfor-
mations to apply to the program. In this approach fitness
is computed by applying the sequence of transformations to
the program in question and measuring the improvement
in the metrics of interest. The first authors to use search
in this way were Cooper et al. [13], who used biased ran-
dom sampling to search a space of high-level whole-program
transformations for compiler optimisation. Also following
the indirect approach, Fatiregun et al. [16, 17] showed how
search based transformations could be used to reduce code
size and construct amorphous program slices.

Seng et al. [42] propose an indirect search-based technique
that uses a genetic algorithm over refactoring sequences. In
contrast to O’Keeffe and Ó Cinnéide [36], their fitness func-
tion is based on well-known measures of coupling between
program components. Both these approaches used weighted-
sum to combine metrics into a fitness function, which is of
practical value but is a questionable operation on ordinal
metric values. A solution to the problem of combining or-
dinal metrics was presented by Harman and Tratt, who in-
troduced the concept of Pareto optimality to search-based
refactoring [27]. They used it to combine two metrics into
a fitness function and demonstrated that it has several ad-
vantages over the weighted-sum approach.

The work of Sahraoui et al. [41] has some similarities to
ours, notably their premise that semi-automated refactor-
ing can improve metrics. Their approach is to seek to gain
insight into the refactorings that are chosen to improve a
chosen metric. Our approach is the reverse of this: we use
refactorings to gain insights into (multiple) metrics.

In recent work, Otero et al. [40] use search-based refac-
toring to refactor a program as it is being evolved using
genetic programming in an attempt to find a different de-
sign which may admit a useful transformation as part of
the genetic programming algorithm. Jensen and Cheng [29]
use genetic programming to drive a search-based refactoring
process that aims to introduce design patterns. Ó Cinnéide
et al. use a search-based refactoring approach to try to im-
prove program testability [35]. Kilic et al. explore the use
of a variety of population-based approaches to search-based
parallel refactoring, finding that local beam search could find
the best solutions [32].

6.2 Analysis of Software Metrics
One criticism that is levelled at the use of software metrics

is that they often fail to measure what they purport to mea-
sure [20]. This has led to a proliferation of software metrics
[19], many of which attempt to measure the same aspect(s)
of code. It is not surprising then that several studies have

attempted to compare software metrics to better understand
their similarities and differences. In this section, we focus on
studies that have analysed cohesion metrics. The overrid-
ing problem with cohesion (and its measurement) has been
that, unlike coupling, any metric claiming to measure cohe-
sion is relatively subjective and open to interpretation [15].
Most cohesion measures have focused on the distribution of
attributes in the methods of a class (and variations thereof).
However, nuances of different object-oriented languages and
the fact that the distribution of attributes can make it im-
possible to calculate cohesion metrics, means that no single,
agreed cohesion metric exists.

The LCOM metric has been subject to detailed scrutiny
[12] and revised several times to account for idiosyncrasies in
its calculation. Comparisons between LCOM and other pro-
posed cohesion metrics are a common feature of empirical
studies [1, 2, 3, 7, 8, 14]. Most newly-proposed cohesion-
based metrics have attempted to improve upon previous
metrics by forming a link between low cohesion and high
fault-proneness [2, 3] or intuitive notions of high cohesion
and subjective developer views of what constitutes high co-
hesion [7]; others have tried to demonstrate a theoretical
improvement [1, 14]. Comparison of cohesion metrics has
been a consistent topic for research [30, 31, 44]. For exam-
ple, the Cohesion Amongst the Methods of a Class (CAMC)
metric [7] provides a variation on the LCOM metric by in-
cluding the self property in C++ in its calculation, and
has been validated against developer opinion.

Al Dallal and Briand [1] investigated the relationship be-
tween their proposed metric, Low-Level Similarity-Based
Class Cohesion (LSCC), and eleven other low-level cohesion
metrics in terms of correlation and ability to predict faults.
Based on correlation studies they concluded that LSCC cap-
tures a cohesion measurement dimension of its own. Four
open source Java applications consisting of 2,035 classes and
over 200KLOC were used as a basis of their study.

Counsell et al. [14] proposed a new metric called the Nor-
malized Hamming Distance Metric (NHD). The authors con-
cluded that NHD is a better cohesion metric than CAMC.
Their empirical data, obtained from three C++ applica-
tions, showed a strong negative correlation between NHD
and other metrics. This contrasts with a more recent study
by Kaur and Singh [31] who explored the relationship be-
tween NHD, SNHD [14] and CAMC. They observed that
class size was a confounding factor in the computation of
both CAMC and NHD.

Alshayeb discovered that refactoring had a positive effect
on several cohesion metrics in his study of open source soft-
ware [6]. However, in later work he reported that this effect
was not necessarily positive on other external software qual-
ity attributes such as reusability, understandability, main-
tainability, testability and adaptability [5]. An information-
theoretic approach to measuring cohesion was proposed by
Khoshgoftaar et al. [4] and while this represented a fresh
approach to cohesion measurement, their metric is subject
to the same criticisms as previous metrics.

These studies have created a deeper understanding of soft-
ware metrics and have shown that metrics with a similar in-
tent do not necessarily provide similar results. However, un-
derstanding the underlying characteristics of a metric is just
a first step in determining their usefulness. The approach
detailed in this paper takes the next step by quantifying the



extent of conflict between metrics to pinpoint the root cause
of that conflict.

7. CONCLUSIONS AND FUTURE WORK
In this paper we use search-based refactoring for a novel

purpose: to discover relationships between software metrics.
By using a variety of search techniques (semi-random search,
Pareto-optimal search on classes) guided by a number of
cohesion metrics, we are able to make empirical assessments
of the metrics. In areas of direct conflict between metrics,
we examine the refactorings that caused the conflict in order
to learn more about nature of the conflict.

In our study of 300KLOC of open source software we
found that the cohesion metrics LSCC, TCC, CC, SCOM
and LCOM5 agreed with each other in only 45% of the refac-
torings applied. In 17% of cases dissonance was observed
(one metric changing while the other remains static) and in
38% of cases the metrics were found to be in direct conflict
(one metric improving while the other disimproves). This
high percentage of conflict reveals an important feature of
cohesion metrics: they not only embody different notions of
cohesion, they embody conflicting notions of cohesion. This
key result refutes the possibility of ever creating a single,
unifying cohesion metric.

In three areas of conflict between LSCC and TCC our
analysis of the refactorings led to detailed insights into the
differences between these metrics (see sections 5.1 and 5.2).
This analysis also demonstrated that the decision of whether
or not to include inheritance in the definition of a cohesion
metric is not simply a matter of taste as has been hitherto
assumed [8, 2] — LSCC and TCC largely agree while their
inherited versions exhibit extreme conflict. Our goal in this
work is not to resolve these issues, but to provide a method-
ology whereby they can be detected in order to aid further
metrics research. In some cases, software design principles
indicate which metric is best. In other cases, the developer
can choose which metric best suits their needs.

We claim that this approach can contribute significantly
to the ongoing metrics debate. It provides a platform upon
which metrics can be animated and their areas of agreement
and disagreement brought into clear focus. Future work in
this area involves performing the analysis using a broader
range of searches, e.g. using two metrics, try to refactor to
increase their disagreement, or refactor to worsen a metric as
much as possible, before refactoring to improve it again, as
well as applying this approach to other metrics, most obvi-
ously coupling metrics. Another area for further research is
the analysis of the refactorings that cause metrics to conflict.
This analysis was performed by hand in this paper, but at-
tempting to automate it is an interesting research challenge.
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