A change propagating model transformation
language

Technical report TR-06-07, Department of Computer Science , King'’s College London

Laurence Tratt
| aurie@ratt. net

August 13, 2006

Contents
1 Introduction

2 Change propagation
2.1 Change propagation compared to incremental transfmma
2.2 Manual or automatic change propagation u e
2.3 Propagating changes in batch orimmediate mode
2.4 Relating source and target elements by key, trace, otifide
2.4.1 Distinguishing target elementsbykey
2.4.2 Relating target elements via tracing information
2.4.3 Distinguishing target elements by identifier
2.5 Correctness checking and conflictresolution

3 PMT
3.1 APMTtransformation’sstages e e
3.2 Example e e e

3.3 Creating target elementidentifiers
3.3.1 Creating unique target elementidentifiers
3.3.2 Deterministically creating target elementidentifie

3.4 Making target elements conformant oo
3.4.1 Changes whichcannotbe propagated @ c.o.o......

3.5 RunningaPMTtransformation e

3.6 Removing elements from thetargetmodel

3.7 Propagating changes between containers C e
3.7.1 Removing elements when propagating changes betvmammners
3.7.2 Propagating change in ordered containers

4 Theexecution of a PMT transformation
4.1 Propagating localised changes e e
4.1.1 Non-localised changesinpractiseo
4.2 PMT'sapproach e e e e

5 Checking conformance operators

6 Implementation
6.1 Conformance operators e e e e
6.2 Conflicts e

7 Futurework
8 Summary
A PMT grammar

B Modd serializer

12
14
16
16
18
18
19
20
20
21

21
21
23
24

25

29
29
32

33

35

36

B.1 Overview . ..
B.2 Example output

1. Introduction

This paper builds upon the MT language defined in the preyiaper, creating a new unidirectional change
propagating model transformation language PMT. AlanenRuowdes provide a useful overview of change
propagating transformations, which also explains soméhefdategories of changes that can be propa-
gated [AP04]. Change propagating transformations inttedronsiderable complexity compared to state-
less transformations. It is my belief that no one approaahsmge propagation is likely to prove sufficient
for all purposes. Furthermore due to the lack of focus onghiticular area of model transformations, much
exploration will be necessary to determine when differgairaaches are most applicable. The aim of this
paper is to outline some of the possibilities for change agagping approaches, and to present a particular
unidirectional change propagating solution, PMT. PMT temued to provide support for use cases similar
to that outlined in [Tra05b].

Although several model transformation approaches mewti@mge propagating transformations few ac-
tually provide such a mechanism. For the purposes of thigmpamly three approaches are potentially
of interest: BOTL [BMO03], Johann and Egyed’s approach [JE@4d XMOF [CS03]. Both BOTL and
XMOF are of limited interest, due to their differing aims coaned to PMT. Since BOTL restricts itself to
bijective transformations, | discount it, since | belietattbijective transformations constitute only a small
proportion of useful transformations. XMOF is also of ligdtinterest since it is poorly documented, and
aims to provide a solution for bidirectional change propiagamodel transformations, which introduces an
extra set of challenges above and beyond those presentetdieational change propagating model trans-
formations. Johann and Egyed’s approach is the most ititggesf the three, as it tackles unidirectional
change propagating model transformations; however itagxplonly one aspect of its approach in detail,
and furthermore is incapable of propagating some impotyguas of changes.

Itis an explicit aim of PMT to facilitate change propagatiomny type of model transformation. However
it is important to note that PMT is not as mature or stable as-Mjy its nature PMT is much more of an
experiment than MT. Nevertheless | hope that this papeeseas a useful step on the path towards mature
change propagating model transformation solutions.

This paper begins with an overview of some of the high-leweltegies and design decisions relevant
to change propagation. PMT itself is then introduced, amadexample it is shown how it allows change
propagating transformations to be expressed. | show how Rldites source and target models, and how it
is capable of propagating changes that defeat other agmeat also detail PMT’s support for expressing
change propagating transformation specifications. HBirlatletail some of the relevant parts of PMT's
implementation.

2. Change propagation

Whilst [Tra05b] motivated change propagating model trammsftions, it gave very little hint as to how such
transformations might be realised. The intention of thigisa is to outline the background of change prop-
agations, and some of the overall design decisions possh#a implementing a change propagating model
transformation approach. Note that | only consider thesigdedecisions in the context of unidirectional
change propagating transformations.

2.1. Change propagation compared to incremental transform ation

Incremental transformation (sometimes known as increahesumputation) is a well studied field (see
[RR93] for an overview of some of the available literaturdhe most widespread, and one of the sim-
plest, examples of incremental transformation are codepdation systems. For example the UNiake
command takes a list of source code files, and compiles ooletlvhich have been modified since the last
execution ofrake.

Incremental transformation initially appears to be vemikir to change propagation. Both approaches
provide support for taking a source item and transforminigtit an appropriate target item; subsequent
changes made to the source item then cause appropriatesmiathe target item. However incremental
transformation approaches assume that the target itenbavilinmodified by the user when they update
it. Incremental transformation need not therefore condseif with many of the issues that affect change
propagation in the context of this paper, chiefly how to pggte changes non-destructively into the target
model. This can be seen clearly in the code compilation sysieample; any modifications the user may
make to the output of the compiler will be lost the next time tiode compilation system discovers it needs
to recompile the associated source file.

There is thus a fundamental difference between the two appes, since an incremental transformation
approach is able to make assumptions about its environrhabtconflict with the use case outlined in
[Tra0O5b]. For the purposes of this paper, change propagaitherefore largely treated as a new subject
with respect to incremental transformation systems.

2.2. Manual or automatic change propagation

Tratt and Clark outline a framework intended to allow uredifonal stateless transformations to be associ-
ated with one or mordelta transformationsvhich can propagate changes [TCO03]. The execution sequence
of such transformations is as follows. The unidirectionatedess transformation takes in a source model and
produces a target model as normal. Subsequent changes arthéesburce model are extracted as change
deltas to the source model. These deltas are then passedafipeopriate delta transformation which is
expected to propagate the change represented by the diiltatayget model. In general each different type
of change will require a different delta transformation édoeated. Note that the framework itself does not
impose, or facilitate, a particular change propagationharism is left open in this framework. An example
of this framework can be seen in the XMF tool which includefange propagation framework with a ded-
icated delta transformation language XSync, to accompamyidirectional stateless model transformation
language XMap [CESWO04].

The concept of delta transformations is an interesting otiest it provides a means of integrating legacy,
or otherwise incapable, transformations into a changeggaiing transformation. However it has two in-
herent problems. Firstly there is an inevitable disconbetiveen the core unidirectional stateless transfor-
mation, and the delta transformations, all of which mustieated by hand. Secondly there is, in general,
no bound on the number of delta transformations needed ®with change deltas. For this reason | clas-
sify this framework as manual change propagation, sincedle to perform change propagation must be
manually created.

Manual change propagation contrasts with automatic changgagation, where a transformation can
propagate changes without additional code needing to bedad8ome approaches choose a hybrid ap-
proach, being able to automatically propagate some chamgist requiring manual assistance to propa-
gate others. For example, OptimalJ is able to propagategelsdmetween some of its simple models auto-

matically, but can require assistance when propagatingggsbetween a complex model and its textual
representation [OJ04].

2.3. Propagating changes in batch or immediate mode

There are two potential modes of operation for running ckgmgpagating transformations: ‘batch’ and
‘immediate’ mode. These two modes refer to the number of ghsthat are propagated in each step.

Batch change propagation takes a number of changes fronotineesmodel and propagates them to the
target model only when explicitly requested to do so by thex.ubhe advantage of batch change propagation
is that the user is in complete control of when changes aneagiated. Batch change propagation can be
considered to be similar to code compilation — users typicalake multiple edits to a source code file
before choosing to compile it. Since change propagation lmeagy relatively slow activity, it is beneficial to
the user if they can schedule change propagation at a timec@mt to them. On the other hand, the user
may consider it inconvenient to have to manually force clarng be propagated.

The concept of immediate change propagating transformsti® defined in [CS03]. An immediate
change propagating transformation propagates changée ttatget model as soon as the source model
is changed. Unlike a batch mode change propagating tramafmmn, which implicitly propagates multiple
changes when run, an immediate mode change propagatirsfainaration propagates small changes, which
can be viewed as being semi-atomic. The advantage of imteediade propagation is that the source and
target models involved in the transformation are alwayshgonised with each other. However there are a
number of potential disadvantages to immediate changeagatimg transformations.

From the users point of view, immediate change propagatiay imroduce a lag every time the user
makes a change to the source model, whilst the system prigsatiee appropriate changes to the target
model. During this lag, the system can choose to either lbeksburce model, thus preventing the user
making changes to it, or to place changes to the source matdedm ordered queue. In the former case, the
user is likely to become highly frustrated; in the latteregadhe advantage of synchronised source and target
models is lost, albeit temporarily. Furthermore, the pssaaf changing a model frequently involves passing
through one or more intermediate stages. Each intermediagee may see elements being temporarily
deleted, renamed and so on. If the changes from these ird@tmestages are propagated, it is possible
that incorrect, and irreversible, changes may be made ttatijet model. Consider a tool which allows
a user to ‘cut’ a model element to a clipboard, who then indetadpaste the element to another part of
the model later. If such a change is propagated immediateiyll lead to the deletion of target elements.
Such elements may contain manual changes or additions taripet model; when the element is deleted,
the manual changes will be lost and will not be replaced whersburce element is ‘pasted’ back into the
model. Since only the user can know the intended end goakafskquence of actions, immediate change
propagating transformations pose an extra set of chaléefagesuch scenarios.

2.4. Relating source and target elements by key, trace, or id entifier

One of the chief challenges when propagating changes isd@finechanism for relating, or distinguishing,
the specific target elements created by a given rule relaigpecific source elements. The distinguishing
of elements is vital to ensure that target elements are neddifireated or deleted correctly during change
propagation. This problem is largely irrelevant duringithigal run of a change propagating transformation,
but is vital when subsequently propagating changes; toislem was outlined by example in [Tra05b].

Johann and Egyed present a basic, high-level overview sfsilifbject, describing the distinguishing of
elements by key and by identifier [JEO4]. For the purposesisfpaper | identify three chief ways of
relating or distinguishing which target elements are eglab specific source elements: by key, by trace,
and by identifier. | now outline these three possibilitiesriare detail.

2.4.1. Distinguishing target elements by key

A simple mechanism for distinguishing elements is to do sahair key i.e. a collection of attributes
which, collectively, uniquely identify any given elemenitlsing this mechanism for change propagation
is advocated by the DSTC QVT approach [DIC03]. By requirihgmeents to be defined in keys, this
mechanism implicitly adds an extra burden on the user sil@ements in a model must be augmented
with a key definition. Although this is often trivial, it is axtra burden, and can be difficult when elements
have no natural key.

The essential idea of propagating by key is that when chafigesan element need to be propagated,
the source element is transformed (possibly to a tempooaatibn), and the key of the target element is
extracted. This then allows the changed parts of the tatgatamt to be merged with an existing target
element with the same key. However this means that modifthegvalues of attributes involved in a key
confuses the propagation algorithm. Consider the tramsftion from and to a simple modelling language
where the key of &l ass is its nane attribute. If a class namexiis transformed to a class also named
X, then many changes made to the source model (e.g. addiityputets) can be trivially propagated to
the relevant target element by transforming the source tad@y and finding the target element with the
appropriate key. However if the source element is renamgdhen the key relationship between the source
elementy and target element is broken; the change propagation algorithm will assumettierelevant
target element has been deleted, and will recreate it froaict

Although not mentioned in the DSTC QVT approach, one teakmighich may potentially improve the
coverage of this technique is to use the previous generafiarsource element to calculate the key of the
appropriate target element. This allows changes to be paded successfully even when source elements
have had the values of attributes involved in their key alterHowever it is unable to cope when manual
changes are made to a target elements’ key.

In the general case, propagation by key is insufficient. Heweé may be combined with other propaga-
tion techniques to increase coverage.

2.4.2. Relating target elements via tracing information

Using the tracing information created by a transformatiorrdlate source and target elements seems a
good candidate, particularly as the information alreadgtexHowever, as shown in MT, there are various
different tracing information creation mechanisms. Thecegs of a change propagation algorithm then
depends on factors such as the coverage and granularitg oftorded tracing information. For example,
while the default tracing information generated by MT retsowhich target elements were created by a
rule from specific source elements, it does not generategénioformation to know which part of the rule
created which target element. Such information may be fotan accurate change propagation algorithm.

There is thus a potential tension between the different abemcing information. The type of tracing
information desirable for change propagation may be vdifgrdint from that required by a user to under-
stand transformations on their model. However, assumiagitlis suitably detailed, tracing information is
sufficient as the sole means of distinguish elements forgdganopagation.

2.4.3. Distinguishing target elements by identifier

A technique that can ultimately be seen as a slight variatiomlistinguishing target elements by tracing
information was detailed by this author in [Tra05a], andeipendently by Johann and Egyed in [JEO4].
When a target element is created it is given an identifier visimntains, at a minimum, the concatenated
identifiers of all the source elements which led to the cosadtf the target element. Henceforth | refer to
this as thdarget element identifieNote that the target element identifier may be in additioart@lements
standard identifier, and that conceptually there is no requént that this new identifier be a single field.

Conceptually this technique does not add any additionalep@wer using tracing information to distin-
guish elements; it is an alternative way of storing tracirfgimation. Indeed, a simple concatenation of the
source elements identifiers means that the target elememiifidr is merely an alternative way of storing
information that can in theory be directly derived from ably fine-grained tracing information. However
extra information can be easily stored in the target elenaamttifier, if required, to allow a transformation
to encode information which may not be present in tracingrimfation. This then allows tracing informa-
tion to be used for other purposes. Furthermore this themsbat tracing information need neither have
complete coverage, nor be fine-grained; as such, tracimgniation can be recorded in a fashion which
gives it the greatest utility to the user.

2.5. Correctness checking and conflict resolution

Some changes made to a source model may not be able to be gexgpagccessfully to the target model.
For example, when propagating an element newly added tootitees model, a conflict may arise with an
element already present in the target model. There are thagestrategies that can be taken in such cases:

1. Propagate all changes regardless of correctness anrgjiticcepting that the resulting target model
may not match expectations, and may even be ill-formed.

2. Check for the correctness of changes before propagdtam;trefuse to propagate changes which
will violate correctness conditions.

3. Propagate all changes which do not violate correctnesditians; note those which violate such
conditions and request manual intervention from the user.

Whilst the first strategy requires little extra support, e tases of the second and third strategies change
propagating model transformation approaches have to elegdn the form of correctness checking, its
completeness, and its ability to be controlled by users.

3. PMT

PMT’s implementation began as a fork of MT, and can be comsdimitially to be a superset of MT. Most
valid MT transformations can be moved into PMT without sgtitachange — when used as a stateless
model transformation language, PMT performs largely as MWhen compared to the design decisions
detailed in section 2, PMT can be said to be a fully automatitch change propagation approach, which
distinguishes target elements by their identifiers, anctivhias user controllable correctness checking built
in. The details of this broad overview will be filled in as tipiaper progresses.

Despite many similarities, the sequence of running a PMiisfamation is fundamentally different
from MT. An MT transformation is initialized with one or mosmurce elements which are immediately

transformed into target elements. In contrast, a PMT tmnsdtion is initialized with a source model,
a (possibly empty) target model, and a (possibly empty) E#tacing information. Unlike MT, source
elements are not immediately transformed after initigiira waiting for the transformation to be executed
by the user. Since none, parts, or all, of the target modellmegyresent after the initialization of the PMT
transformation, the concept of rule execution in PMT is redtk different in MT. In MT, when a rules
source clauses match its input, the execution of the ruldiésithe production of new target elements. In
PMT, when a rules source clauses match its input, the execafithe rule implies that the target model is
modified to make it conformant with respect to the transfdioma Although from a naive users perspective
there is a difference between the initial execution of a Pkdihdformation — which appears to populate an
empty target model — and subsequent executions which patgpabanges, from PMT’s perspective there is
no difference between the initial and subsequent exeaition

Put crudely, the difference between MT and PMT is that thenfaris an imperative model transforma-
tion language whilst the latter is declarative. Concepyu#thie execution of a PMT rule is fundamentally
different from MT. When a PMT rule is executed, it attemptsrtake the necessary changes to the target
model to satisfy the rules declaration. This may requirenelets being added, altered and deleted from the
target model. The way in which the relationship between@®and target elements is specified, and the
process by which the update of the target model occurs atvthdefining aspects of PMT.

3.1. A PMT transformation’s stages
The stages of a PMT transformation are as follows:

1. Take a source model, and an empty target model and tramsf@ source model. This stage — if
taken in isolation and viewed as a black box — is essentidéiptical to an MT transformation. After
the transformation has executed, the source and targetlsnéaigether with the tracing information
created, are stored in some fashion.

2. The user may make arbitrary changes to both the sourceaamet imodels, independent from one
another.

3. The user then requests that the changes they have made $outce model are propagated non-
destructively to the target model. The transformationiisitialized with the updated source and target
models, and the tracing information from the previous etenu The execution of the transformation
then propagates changes from the source model to the tamgplmAfter the transformation has
executed, the source and target models, together with thigraeing information created are once
again stored.

At this point, the sequence moves back to stage 2.

3.2. Example

This subsection presents a simple example of change prigagahich is based on the change propagation
example of [Tra05b]. That example showed the conceptudl@nus of a change propagating transformation
from the ML2 to the ML1 modelling language. The metamodelthefML1 and ML2 modelling languages
are shown in figures 1 and 2 respectively.

The transformation itself is as follows:

© 0 N o 0 B~ W N B

WoWwWwWRNNNNRNRNRNRNNINRNIER R B B B B R
® N P O © ® N 0 &~ ®N P O © ©® N o o s W N B O

MObject

mod_id : String

to_string()
initialize()

T

ML1_Element

name : String

initialize()
elements!
*
MLL_Package ML1_Association
parents ——
= =0 ordered multiplicity : int
allElements| —
initialize() initialize()
0 from

ML1_Class
jparents
ordered
initialize()

Figure 1: The ML1 modelling language.

$<PMT. mt >:
transformation M.2_to_M.1

rul e Package_To_Package:

srcp:

(M.2_Package) [nanme == <n>, el enents == <el enent s>]
tgtp:

(M.1_Package)[nane := n, elements :>= tgt_el enents]
t gt _where:

tgt_elements := Set{}

for x := elenents.iterate():

tgt_elenment := self.transforn([x])

if tgt_elenent.confornms_to(List):

tgt_el ements. extend(Set (tgt_elenent))
el se:

tgt_el enents. add(tgt_el ement)

rule Cass_To_d ass:
srcp:
(M.2_d ass) [name == <n>]

tgtp:
(M.1_d ass)[name := n]

rul e Association_To _Associ ati on:
srcp:
(M.2_Associ ation)[nane == <n>, endl == <endl1>, end2 == <end2>, \
endl directed == 0, end2 directed == 0, \
endl_nmultiplicity == <endl_multiplicity>, \
end2_nultiplicity == <end2_mul tiplicity> endl_nane == <endl_nanme>, \
end2_nanme == <end2_nane>]

10

34
35
36
37
38
39
40
a1
42
43

MObject

mod_id : String

to_string()
initialize()

T

ML2_Element

name : String

initialize()
A

element
*

ML2_Association

end2_name : String
ML2_Package endl_name : String
end2_multiplicity : int
endl_multiplicity : int
initialize() end2_directed : bool
endl_directed : bool

initialize()

fndZ}ndl
ML2_Class
parents
ordered
initialize()

Figure 2: The ML2 modelling language.

t gt p:
(M.1_Associ ation)[nane := end2_nane, from:= tgt_endl, to :
multiplicity := end2_nmultiplicity]
(M.1_Association)[nane := endl_nane, from:= tgt_end2, to := tgt_endl, \
multiplicity := endl_rultiplicity]

tgt_end2, \

t gt _where:
tgt_endl : = self.transforn([endl])
tgt_end2 := self.transforn([end2])

This is an intentionally simple transformation which, irtinterests of brevity, ignores parent packages and
only handles associations which are navigable at both éidse converting ML2 classes and packages to
ML1 classes and packages is exceedingly trivial Raekage _To_Package andCl ass_To_d ass
rules are simple (lines 12 - 18 are a largely inconsequeintiplementation detail that essentially normal-
izes the return value from other transformation rules). Aleoci ati on_To_Associ ati onrule is
slightly more complex, although it only deals with assdoiag which are navigable at both ends; each such
ML2 bidirectional association is transformed into two MLitetted associations.

The initial source model | use for this transformation isvghan figure 3. The resulting visualization of
the transformation is shown in figure 4. At this point, there anly two hints that we are dealing with a
PMT, and not an MT, transformation definition and executith&: >= operator in line 9 is invalid in MT;
identifiers in the target model have a noticeably differentfat to those in MT transformations.

Let us now assume that the user has modified the target moitefigare 5, adding in a directed associ-
ation fromEnpl oyee to Manager denoting an employee’s secondary manager. Let us then adbiamn
the user returns to the original source model and updatesiit figure 6, adding in ®epar t ment Head

11

:ML2_Package

mod_id = "13"
name = "Personnel”|

elements

:ML2_Association

mod_id = "12"
name = "PE"
end2_name = "manager"
end1_name = "employees]
end2_multiplicity = 1
end1_multiplicity = -1
end2_directed =0
endl_directed = 0

l/mz \&dl

:ML2_Class :ML2_Class

elements

mod_id = "11" mod_id = "10"
name = "Manager" name = "Employee"
parents =[] parents =[]

Figure 3: Initial source model for the ML2 to ML1 transforricat.

class and an associated transformation. If the ML2 to MLadfermation was an MT transformation, the
user would now have two choices. If they were to rerun suclarsformation, the original target model
would be overwritten and threecondary manager association would not exist in the new target model.
Alternatively the user could choose to manually port thengjes from the source model to the target model.
In the former scenario, changes to one or the other modebsiign the latter, differences must be manually
propagated between models.

It is at this point — corresponding to stage 3 as describeddtian 3.1 — in the transformation execution
cycle that PMT fundamentally distinguishes itself from Nby,automatically propagating the changes made
to the source model in figure 6 into the updated target modeeé visualization of the target model after
change propagation can be seen in figure 7. As this figure shmw®nly have the changes to the source
model been propagated into the target model, but the mahaales made to the target model by the user
have been preserved. It is important to note that the chamgele to the source and target models by the
user in this example are entirely arbitrary.

The basics of PMT’s change propagation approach are verglainBoth model element patterns and
model element expressions play a key part in the proces®opapgation. PMT uses model element patterns
as the primary means of calculating target element idergtifsee section 2.4). When a rule is executed, and
its source clauses match successfully, a target elemertifideis created, based on unioning the identifiers
of the source elements matched by model element expressianget element expressions in the target
clauses use the target element identifier created by theesalauses. When a model element expression
is executed, it looks in the TM object repository to see if Ement with the same identifier as the target
element identifier already exists. If no such element exstaew model element with that identifier is
created and populated accordingly. If such an elementsgxigs taken from the object repository and its
contents are adjusted as necessary to satisfy the trarsgformSections 3.3 and 3.4 explain the creation of
identifiers and altering of elements in more depth.

3.3. Creating target element identifiers

The construction of target element identifiers is a vitat pAPMT’s change propagation approach. Target
element identifiers should ideally satisfy two criteriaattthey are unique with respect to particular source

12

elements

:ML2_Package

Tracing

mod_id = 13"

name = "Personnel”

Association_To_Association: t3

:ML1_Package

mod_id = "Package_To_Package_0__ 18"
name = "Personnel”

Package_To_Package: t4

Class_To_Class: t1, t2|

T‘mems

:ML2_Association

mod_id = "12"

name = "PE"

end2_name = "manager”
end1l_name = "employees]
end2_multiplicity = 1

elements

parents =[] end1_multiplicity = -1
end2_directed =0
endl_directed = 0
elements abiZnents /13 \ endl
N
:ML2_Class :ML1_Association :ML1_Association :ML2_Class
elements | mod_id ="11" elements | mod_id = "Association_To_Association_0__12|' mod_id = "Association_To_Association_1__12[' mod_id = "10"
name = "Manager" name = "manager" name = "employees" name = "Employee"
parents =[] multiplicity = 1 multiplicity = -1 parents =[]
\¢< to rom from / 1
N
:ML1_Class :ML1_Class

mod_id = "Class_To_Class_0__11|
name = "Manager"
parents =[]

mod_id = "Class_To_Class_0__10[
name = "Employee"
parents =[]

Figure 4: Visualization of the initial execution of the ML@ ML1 transformation.

elements and a particular rule execution; that they can &é&ted deterministically across multiple trans-
formation executions. The need for the former criteria i§ eadent, the latter perhaps less so. However
PMT’s approach relies on the fact that the construction @fetaelement identifiers can be replicated over
multiple transformation executions. Since satisfyindh&it or both, of these two criteria is non-trivial, |
consider it highly desirable that target element identfiean be automatically created and used without
burdening the user unnecessarily. In this subsection inauth detail how PMT automatically creates target
element identifiers; this process is somewhat more invothed its description in previous sections has
suggested.

The way in which target element identifiers are created amckdtmakes use of two internal TM and
PMT features. Firstly the identifier of a TM model element istidng. Unioning identifiers thus becomes
a case of simple string concatenation which, whilst not diredy robust technique, is adequate for the

:ML1_Package

mod_id = "Package_To_Package_0__ 18"
name = "Personnel”

parents =[]
ﬁts felements \emejf

:ML1_Association

ML1_Association :ML1_Association

elements | mod_id = "Association_To_Association_0__12[' mod_id = "17" mod_id = "Association_To_Association_1__12|' lements
name = "manager” name = "secondary_manager| name = "employees”
multiplicity = 1 multiplicity = 1 multiplicity = -1
to from /to from rom (]
N\ -
:ML1_Class ML1_Class

mod_id = "Class_To_Class_0__11|
name = "Manager"
parents = []

mod_id = "Class_To_Class_0__10[
name = "Employee"
parents = []

Figure 5: The updated target model.

13

:ML2_Package

mod_id = "13"
name = "AcmeLtd"

%ﬂems \iﬂents

:ML2_Association :ML2_Association

mod_id = "12" mod_id = "15"
name = "PE" name = "manager”
end2_name = "manager" end2_name = "reports_to"|
end1_name = "employees] [plements endl_name = "oversees”
end2_multiplicity = 1 end2_multiplicity = 1
end1_multiplicity = -1 end1_multiplicity = -1
end2_directed =0 end2_directed =0
endl1_directed =0 endl_directed =0

\%ndl \iiz ﬁl &dz

:ML2_Class :ML2_Class :ML2_Class

elements lements

mod_id = "10" mod_id = "11" mod_id = "14"
name = "Employee" name = "Manager" name = "DepartmentHead"
parents =[] parents =[] parents =[]

Figure 6: The updated source model.

purposes of this paper. Although TM supplies a default ifienta user supplied identifier — such as a PMT
target element identifier — can be specified when elementsreated. Secondly, PMT uses the concept of
model elements matched by model element patterns — exactigesd by the tracing information creation
mechanism — to determine which source elements will have ittentifiers unioned. Thus creating target
element identifiers requires no new underlying machinethéimplementation.

3.3.1. Creating unique target element identifiers

Concatenating the identifiers of source elements is notcgerfi on its own to generate a unique target
element identifier, since the same source elements may Heérusgore than one rule execution. PMT thus

also integrates the name of the rule being executed intoatigettidentifier to ensure that target element
identifiers are unique. However this then raises the pdggibhat executing the same rule with the same
source elements may lead to conflicting target identifiemgogenerated. To avoid this possibility, PMT

rules keep a cache of source elements they have alreadyotraesl; if a rule matches against the same
source elements as it did in a previous execution, then thettalements produced in that previous execution
are returned. It should be noted that this is different fror, Mhich does not need to enforce such a
constraint during its execution. This may potentially l¢addifferences in the execution of seemingly

identical MT and PMT transformations.

The rules given thus far generate a single unique targetegitigientifiers. This is sufficient when a rules
target clauses contain a single model element expressiahweRecutes only once. If a rule has multiple
model element expressions in its target clauses, or if a heddment expression can execute more than
once in a single execution of a rule (e.g. when a model elemgntession is suffixed withor, as in
MT), then a single target element identifier would result inltiple target elements being created with the
same identifier. For example, thssoci ati on_To_Associ at i onrule in section 3.2 has two model
element expressions in itgt p clause. In such cases it is vital that each model elemenéssjon is passed
a unigue target element identifier. In order to ensure thaighhe case, each rule execution keeps a counter
of how many times model element expressions have been exkduting the rules execution. This counter
is incorporated into the target element identifier of modieent expressions, thus ensuring the uniqueness
of the identifiers even when a rule executes more than onelrataeent expression.

14

Association_To_Association: t3, t5

Tracing
Class_To_Class: t1, t2, t4

Package_To_Package: t6

:ML2_Package

mod_id = "13"
name = "Acmeltd"

elements 6 elements
:ML2_Association :ML2_Association
mod_id = "12" mod_id = "15"
name = "PE" :ML1_Package name = "manager”
end2_name = "manager” . . end2_name = "reports_to"]
elemefisend) “name = "employees| rnn;g;.i B A:]:gli?glejojackageioil elements end1_name = "oversees” elements
[y end2_multiplicity = 1 arents = [] end2_multiplicity = 1
ol endl_multiplicity = -1 p endl_multiplicity = -1
end2_directed = 0 end2_directed = 0
endl_directed = 0 endl_directed = 0
‘/ 3 elements end2 elements elements lements endl 5 lements 5 nd2
:ML2_Class :ML1_Association :ML1_Association :ML1_Association :ML2_Class :ML1_Association :ML1_Association :ML2_Class
mod_id ="10" mod_id = "Association_To_Association_0__12[' elementg Mod_id = "Association_To_Association_1__12|' | mod_id = "17" elements mod_id ="11" '‘Association_To_Association_1__ 15" elements| mod_i "Association_To_Association_0__15' [mod_id = "14"
name = "Employee" name = "manager” name = "employees"” name = "secondary_manager name = "Manager" "oversees” name = "reports_to" name = "DepartmentHead"|
parents =[] multiplicity = 1 multiplicity = -1 multiplicity = 1 parents =[] multiplicity = -1 multiplicity = 1 parents =[]
u from to to from from to 2 to from rom to 4
A
:ML1_Class :ML1_Class :ML1_Class
mod_id = "Class_To_Class_0__10[' mod_id = "Class_To_Class_0__11f mod_id = "Class_To_Class_0__14[

name = "Employee”
parents =[]

parents =[]

name = "DepartmentHead"
parents =[]

Figure 7: Visualization of the ML2 to ML1 transformation exftthange propagation.

The general form of a target element identifier in PMT is akovad:

<rul e name> <nodel el ement expressi on execution #> <union of source
identifiers>

Using this template, one can interpret the identifiers afgaelements in figure 7 with respect to the trans-
formation of section 3.2.

It should be noted that in the current implementation whémifive data types are used in model element
expressions, it is possible for PMT to generate non-unidaatifiers, since instances of primitive data types
do not have a proper element identifier. | consider this to tegadively trivial implementation detail.

3.3.2. Deterministically creating target element identifi ers

Itis important for PMT that the target element identifiersréate be deterministic; that is, if a transformation
is rerun with exactly the same source elements as beforaoitld create exactly the same target element
identifiers. If target element identifiers are created dififely over multiple transformation executions then
PMT will not able to identify target elements correctly. Bdiugh the scheme outlined previously has proved
reasonably successful in practise, using the model eleexgmession execution counter leads to a subtle,
but potentially significant, flaw.

Non-ordered datatypes such as sets can cause the modehtkxpesssion execution to become de-
synchronised over multiple transformation executions wugheir inherent non-determinism. Similarly,
ordered data types such as lists can have elements inserieeln in-between transformation executions;
if elements are inserted at any point other than the end obrthered datatype, then the counter can again
become de-synchronised.

A possible solution to this problem is as follows. Each maement expression in the target clauses is
statically assigned a number, starting from 1, and increéeskwith each model element expression encoun-
tered during compilation. For model element expressioasdan only be executed once, this is sufficient
to ensure uniqueness and determinism of the resultantt telgment identifiers. For model element ex-
pressions which can be executed more than once, it is thexsseny to add something further to the target
element identifier to ensure unigueness. For example, and determine which source elements (which,
in general, one would expect to be a strict subset of the theenarce elements matched by a rule) led to the
creation of that particular model element, and make theintifiers part of the target element identifier; note
that in this scheme it would be common for source elementtififns to appear more than once in a target
element identifier. In some cases PMT may be able to autoaflgtidetermine which source elements are
involved in the creation of specific target elements, butdneagal this is not possible; the user will therefore
need a way to inform PMT of the required information. Notet tivilst this solution is largely immune
to non-determinism problems, it still has some conceptualblpms e.g. when dealing with ordered lists
which contain duplicated elements.

While solutions such as the one outlined may provide a mdyastoapproach to creating target element
identifiers, | believe that further research will be needefirid the best solution. For the purposes of this
paper, PMT’s current solution, whilst not robust, is adegudar exploring change propagation.

3.4. Making target elements conformant

When a model element expression is executed, it looks inkhefject repository to see if an element with
the same identifier as the target element identifier alreayse If no such element exists, PMT executes

16

largely as MT. However if such an element exists, PMT exectather differently from MT. The object in
guestion is taken from the object repository and PMT andtéged into a form conformant with the model
element expression.

It is important to note the use of language in this subsectidinen an element already exists it is not
necessarily changed to match the exact values dictatectbydlel element expression. Instead the element
has the minimal number of changes applied to it that makentacmant to the model element expression.
The word ‘conformant’ is important since, in the generakgas infinite number of differing target elements
may be conformant to a given execution of a model elementessjon. This is because the user can make
manual changes and additions to the target model whichahefarmation writer can, if they choose, allow
to remain even when changes are propagated.

In order to achieve this, model element expressions in PM/E laalditional syntax compared to MT.
Most importantly a model element expression in PMT comprizero or moreslot conformancegwhich
are directly analogous to slot comparisons in model eleipa&iterns). In the example shown earlier, one can
see the use of twoonformance operator$?MT’s conformance operators are partially inspired byratmes
found in xXMOF. Some conformance operators are as follows:

Operator Name Description

X 1=y update Forcibly sets the value of slattoy.

X == update if not equal If the value of slotx is not equal toy, forcibly sets the value of slot
X toy.

X :>=y update superset | The value of sloix must be a non-strict supersetys value. Any
elements iny not present irk will be added tox. x may contain
elements not present in.

The update conformance operator forcibly propagates @safingm the updated source model to the target
model. The update if not equal conformance operator pegfdha same action, but only after checking
that the value of the slot in the target element is not equéthéovalue generated by its associated model
expression. In practise, the two operators are very sipfilawever, since in some cases distinct objects can
compare equal the user may wish to specify precisely whétiegrwish the slot value and model expression
to hold exactly the same value, or merely two values whichegrgal. The update superset conformance
operator is more interesting since it does not imply, ordotbe value of the slot in the target element to
be directly equal to the value generated by the model expreskstead, the value of the slot in the target
element is altered to make sure it contains all the eleméatstihe model expression says it should have;
if it has extra elements then those are left intact. In psacthis operator is the chief means of allowing
changes to be propagated non-destructively.

One important point that may not be immediately obvious & transformation writers still need to use
careful thought to determine when each should be used. Fon@e, an inexperienced transformation
writer may choose to use the update operator in all slot cordaces, since this will ensure that all changes
made to the source model. However if the slot in questionatosta set then the users’ manual changes
made in the target model will be destroyed. In such caseswoundd generally expect the transformation
writer to use the updating slot conformance operator. Inescases, however, the transformation writer
may deliberately wish to ensure that the target model cositdie transformed set elements, and nothing
else, in which case the update conformance operator is tnect@hoice. Knowledge of the appropriate
situations for each conformance operator is likely to bégad only through knowledge of the source and
target domains, and experience with the change propagapimgach.

17

Later in this paper | will examine other conformance opemataHowever the three conformance op-
erators detailed in this section are currently the only omeih forcibly alter target elements (the other
conformance operators described in section 5 check, rdtharenforce, conformance). The reason for this
is that, between them, these operators appear to cover avgeypart of the spectrum of change propagation
— certainly, they are sufficient for all examples in this pape

3.4.1. Changes which can not be propagated

There are various types of changes which PMT is incapableoplggating. The most obvious class of such
problems relates to when the propagation of a change raesudis ill-formed model (i.e. one which does
not conform to its meta-model). In such cases, a standardxdeiption is thrown, and the user is informed.
Whilst this is currently a somewhat crude mechanism, it gwegent incorrect target models being created.
The checking conformance operators detailed in sectiorotiged an alternative means of detecting, and
reporting, changes which can not be propagated.

3.5. Running a PMT transformation

Running a PMT transformation is very different to MT (seed0%b]), which is largely a direct result of
the underlying conceptual difference between a stateledsaachange propagating model transformation
approach. An MT transformation is passed a source modehwhiigstantly transforms into a target model,
creating tracing information as it executes. Since a PMsfiarmation may be executed multiple times,
and since between executions its data may have been ssitdipermanent storage, it operates in a funda-
mentally different fashion.

When run for the first time, a PMT transformation is initigd with only a source model. After the
transformation executes, the user can extract the targdelnamd tracing information created during the
transformations execution. There are then two scenarifizdoehange propagation will occur. The first
scenario is that, whilst the transformation is still ‘aetivthe user modifies the source and target models.
Propagating changes then becomes a simple case of reiagethg transformation, which will automati-
cally pick up the changes made to the models. The secondrazénthat after execution, the source and
target models, along with the tracing information, areaied to a persistent store. The transformation
itself is then destroyed. Subsequent executions of theftvemation thus require the transformation to be
reinitialized with the possibly updated source and targetlats, and the tracing information (which must
not have have been changed), all of which will have been @dized from their persistent store. Once suit-
ably reinitialized, the transformation can then be exattbepropagate changes. Both these scenarios are
likely to occur in the real world. Whilst the former scenaisdikely to occur in short-lived tasks, or when
efficiency is key, the latter scenario reflects the pradtiealof long-term use and development of particular
models. PMT transformations are designed to deal sensilitybwth scenarios.

The code to run the example of section 3.2 looks as follows:

enpl oyee := M.2. M.2_O ass(" Enpl oyee")

manager := M.2. M.2_Cl ass("Manager")

enpl oyee_nmnager := M2. M.2_Associ ation("PE", enpl oyee, nmanager, 0, 0, -1, 1, \

"enpl oyees", "manager")

personnel := M.2. M.2_Package("Personnel ", Set{enpl oyee, manager, \
enpl oyee_nmanager})

transformation : = M.2_to_M.1(personnel)
transformation. do_transform()

18

The unassuming, but important, difference between thisamung an MT transformation istlio t r ans-
f or mfunction on a transformation object. This function can pt#dly be called multiple times. Each time
it is called it will propagate changes from the source moddhé target model.

Extracting the target model and tracing information from MTPtransformation is identical to MT.
For those instances when models need to be serialized tos@stpet store, the TM package defines a
Seri al i zer module. This is capable of serializing (i.e. saving) andedatizing (i.e. loading) models
and tracing information viatheeri al i ze,seri al i ze_traci ng,deseri al i ze,anddeseri al -

i ze_tracing functions. A slightly simplified version of the code whichrisizes the ML2 to ML1

transformation is as follows:
src_file.wite(Serializer.serialize(transformation.get_source()))
tgt_file.wite(Serializer.serialize(transformation.get_target()))

tracing_file.wite(Serializer.serialize_tracing(transformation.get_tracing(), \
transformation.get_tracing_rules()))

Appendix B.2 shows the output from serializing the souragtanget models, and tracing information after
the first execution of the example in section 3.2.

Reinitializing a PMT transformation involves initializinthe transformation not only with the updated
source and target models, but also with the tracing infaonagenerated on the previous transformation run.
The tracing information generated by the previous exenutaes not play a direct part in the transformation;
it is used to determine which elements can be safely deleted the target model (see section 3.6). An
entirely fresh set of tracing information is generated ocheaxecution. A simplified version of the code
which deserializes the ML2 to ML1 transformation, and pgatas changes is as follows:

src_nodel Serializer.deserialize(src_file.read())

t gt _nodel Serializer.deserialize(tgt_file.read())

old_tracing, old_tracing_rules := Serializer.deserialize_tracing(\
tracing_file.read())

transformation : = M.2_to_M.1(personnel)
transformation. set _target (tgt_nodel)
transformation. set_ol d_traci ng(ol d_tracing)

transformation. do_transformn()

Models can be transformed, serialized, altered and havegelsgoropagated into them an arbitrary number
of times.

3.6. Removing elements from the target model

An important part of change propagation is to ensure thatrwdélements are removed from the source
model, target elements which were created by transfornfiegsburce elements in question are removed
from the target model. This requirement may at first appebetsolved by examining all target elements at
the end of a transformation execution, and removing alktaetements which were not created as the direct
result of transforming one or more source elements. Howthigrsimple solution would also delete any

elements manually added to the target model by the user,sasuth is clearly not suitable for the use cases
PMT is aimed at. The critical problem is therefore to distiistp which seemingly superfluous elements in
the target model have been manually added by the user, act at@ no longer a part of the transformation.

In order to determine which elements can be safely deletdtiartarget model, PMT utilises tracing
information — both that generated by an execution of thesttamation, and that generated by its previous

19

execution. After changes have been propagated, a PMT tramafion examines every element in the target
model, checking whether it is referenced in either or botthefcurrent and previous tracing information.

Based on this, PMT draws a conclusion about the origins ottbment and whether it is a candidate for
removal. The four possibilities for an element are as falow

In previous In current Conclusion Candidate
tracing info.?| tracing info.? for removal?
vV v Target element previously manually created by PMT. X
X vV Target element newly created by PMT. X
X X Target element previous added to target by user. X
V X Target element previously created by PMT; corre- /

sponding source element now deleted.

Once every element has been examined, PMT performs a gado#lgetion style ‘mark and sweep’
[JL99], using the transformed root set of source elementh@starting point. Any self-contained cycle
consisting solely of elements marked as being candidatesefooval, is then removed from the target
model. The need to identify self-contained cycles of suemelnts is to prevent the removal of elements
cause the target model to become ill-formed. This could odceiements are removed from the model
even though they are referred to by other objects. An examwipldements being removed after change
propagation can be seen in section 4.2.

3.7. Propagating changes between containers

Propagating changes between containers (e.g. sets a)ddistes two challenges not tackled earlier. The
first relates to the removal of elements in containers. ThersEchallenge relates to the synchronising of
ordered containers. In this subsection | detail PMT’s soihg to these challenges.

3.7.1. Removing elements when propagating changes between containers

When elements are deleted from a container in a source maaelthat container is transformed into a
container in the target model, PMT needs to be able to workndiith elements in the target container
should be removed. This is a less than easy task because Rd$ teedistinguish elements in the target
container which have been manually added by the user, asd that are the result of transforming a now
absent source element. In order to make this distinction] Bé&s a technique similar to the general element
removal technique of section 3.6.

When the updating superset operator attempts to propdgathanges from a containgrto a slotx’s
value in a target element, it first adds every element @b x's value if it is not already present therein.
It then iterates ovex'’s value, noting any elements s value which are not present in. When it finds
such elements, it first checks to see if the element is préediie tracing information of the previous
transformation execution. If the element is not presentTRgsumes the additional elemenkiis value is
a manually added element, and ignores it. If the elemengisamt in the previous transformation execution’s
tracing information, PMT assumes that the element wasrailyi added to the container by PMT, and can
now be removed from the container.

Due to a lack of sufficiently fine-grained information, ththeme has one notable problem — if a user
manually adds a target element into a container, and thesalement that led to the creation of that

20

particular target element is subsequently deleted, thereliiment will be erroneously removed from the
container upon change propagation. Note that does not ithptythe element will necessarily be removed
from the model; the element will only be removed — in the mait sweep phase — if its membership of the
container was its only reference within the model.

3.7.2. Propagating change in ordered containers

Propagating changes to ordered containers is considenadng complex than into unordered containers.
Not only are elements ordered, but the same element may rapp@a than once. This means that, for
example, it is not acceptable to merely check for the existeri a given element, since it may appear more
than once. Similarly, between transformation executiehsments may move their position within a list.
When a user is adding, removing, or moving elements withimmered container, the purpose of each
individual change is generally self-evident to them. Frompoint of view of a system viewing an arbitrary
number of such changes, any such intentions are lost.

The update superset conformance operator takes a simpiiedwpproach to the problem. Given a target
slotx, and an ordered containgr, it will ensure thatx’s value contains every elementyfin the order that
those elements are contained witlinHowever it will tolerate an arbitrary number of extra elarsewithin
x. Elements frony are added intax as necessary. Looked at a different way, this mechanisnresshat
there is an ordered sublist efwhich is exactly equal tg . This scheme is less than ideal, since it can lead
to an incorrect duplication of elements in the target comai

4. The execution of a PMT transformation

Up until this point | have been deliberately vague on exasthat actually happens when a PMT transfor-
mation is executed. The reason for this is that PMT's exeaugtrategy runs contrary to a standard intuition
— as exemplified by Johann and Egyed [JE04] — of change prtpada operation. By deferring the expla-
nation of a PMT transformation until this point in the pagdrope that enough material has been presented
to make explanation of this vital point practical.

Intuitively, the concept of change propagation seems simgiven a change in the source model, one
simply needs to rerun the few transformation rules whichteeto the changed source elements in order to
propagate the change to the target model. For many smadlljded changes — such as the renaming of a
class, as seen in the earlier example in this section — tlaitegly is adequate. Whilst this intuition is highly
appealing, it leads to a solution that can not propagate rma®s of changes correctly. At best this may
lead to a target model that is not synchronised with the somnadel; at worst, it may cause the target model
to become ill-formed.

In this section | first point out the problems with the intutichange propagation approach, before pre-
senting PMT’s approach to transformation execution.

4.1. Propagating localised changes

The change propagating example of section 3.2 saw two mpastgf changes to the source model: the
alteration of the values of elements fields (e.g. changingckgges name), and the addition of elements.
The former type of change is intuitively simple to propagatthen thePer sonnel package was renamed
to AcrrelLt d in figure 6, all that is required to propagate the change igtorr the transformation rule(s)

21

Source model Target model Source model Target model

(a) Initial models. (b) A localised change relative to the initial
models.

Source model Target model

(c) A non-localised change relative to the initial
models.

Figure 8: The concept of localised changes.

linked to by the tracing from the source element. A quick exerion of figure 4 shows that rerunning
thePackage To Package rule with the source package in question as input will reisuthe change
being correctly propagated. The latter type of change ghtyi more complex, but intuitively somewhat
similar. One approach would be to first pass the new souraregieto thet r ansf or mfunction; any
source elements which have new links to the new element wittdnsformed using the same approach as
for propagating the change in package name.

The fundamental premise behind this intuitive notion ig tthe propagated changes are what | term
localised Note that this term does not directly relate to the locaditylterations in the source model, but
instead to the locality of the necessary changes to be patgado the target model and the relation of
those changes to the altered source elements. Figure 8 simoalsstract example of a transformation, and
localised and non-localised change propagation. If chaage localised, then changes to elements in the
source model can be propagated by rerunning the rules whiginally applied to the those elements. This
has two implications. Firstly, that changes in the sourcdehwill lead to changes in the target model of a
similar granularity; in other words, that changes local padicular part of the source model should lead to
similarly local changes in the appropriate part of the tangedel. The second implication follows from the
first: that the source and target models are likely to be mastiwholly, isomorphic.

Before | justify these two implications, it is instructive see why they are implicit in the, rather lim-
ited, literature on the subject. For example, Johann ance&@JEO4] describe a system that is almost
wholly targeted at localised changes; despite not beirgcthir model related, Varré and Varrd describe a
similar system [VV04]. By assuming that changes are loedli®oth approaches are able to make change
propagation highly efficient by only running the rules dihgcelated to a particular change. The ability
to highly optimise change propagation in the face of loealishanges is a compelling reason to treat such
changes as a special case. Unfortunately neither appreaepable of propagating non-localised changes
correctly. Johann and Egyed [JEO4] describe what they teemantic changes’ as ‘simple changes in the

22

src

:Association

name = "address"

dest

:Class :Class
name = "Customer” name = "Address"
is_persistent = 1 is_persistent = 0
attrs attrs attrs attrs attrs attrs

:Attribute :Attribute :Attribute :Attribute :Attribute :Attribute
name = "name" name = "house" name = "addr2" name = "addr3" name = "county" name = "postcode"
type = String type = String type = String type = String type = String type = String
is_primary = 1 is_primary = 1 is_primary =0 is_primary =0 is_primary =0 is_primary =0

Figure 9: Source model.

source model that cause a variety of ripple effects amongjpte/imany target elements’, but do not present
a solution to this problem. | believe the reason for this @iois is that many toy transformations, such as
the example of section 3.2, are expressed in such a way thatomalised changes will ever need to be
propagated.

4.1.1. Non-localised changes in practise

Two concrete examples demonstrate the problem of nonidechkhange. In order to demonstrate this,
| return to the advanced variant of the UML modelling langaiag relational database transformation, as
defined in [Tra05b]. | assume that the hypothetical changpagating transformation which would perform
this task follows a similar structure to the MT solution fbist problem, as defined in [Tra05b].

Consider first the (slightly elided) source model of figurea@d the corresponding target model in fig-
ure 10. Imagine first what would happen were we to change the @& thei s_per si st ent slot in
Addr ess class of figure 9 td.. When we execute the transformation to propagate transttns, intu-
itively we would expect to see the target model contain twieis, and for all the columns prefixed with
addr ess to be removed from th€ust oner table. Using a technique similar to that outlined by Johann
and Egyed, this intuitive idea may or may not be matched bijtyetn the initial transformation execution
the Associ ation _Non Persistent C ass To Col ums would have matched thaddr ess
class and transformed it. However by marking it as perdisthat rule is no longer able to match (the
Persi stent Associ ation To Col utms would however now match), and so change propagation
can not occur using the original rule. Johann and Egyed ayeevas to what happens when an alteration
to the source model means that change propagation can natwith the original rule which transformed
that element. However one can imagine that when such a cdséeisted the transformation system would
look for a different rule which does match the changed soatement.

Taking the same source model of figure 9, and the correspgridiget model in figure 10 as the ba-
sis for the second example, consider the effect of changiegdst code Attri bute’sis_primary
key to 1. Upon change propagation, one would expect to see apiesy link from the Cust oner
class to theaddr ess_post code column. Assuming, as in the previous example, that altemnatles
can be executed when an alteration to a source elementdatesi the original rule that transformed it,
Johann and Egyed’'s scheme will not be able to create this-imk fact, the change propagation will
not make any changes to the target model at all. This is duketmodn-localised nature of the change.
Intuitively, although thepost code Attri but e is changed, the rule which will be rerun (in this case

23

:Table

name = "Customer"

pkey cols pkey cols cols cols
:Column :Column :Column :Column
name = "name" name = "address_house" name = "address_addr2" name = "address_addr3"
type = String type = String type = String type = String
cols cols
:Column :Column
name = "address_county" name = "address_postcode"
type = String type = String

Figure 10: Target model.

Primary Primtive Type Attribute_To_Col ums) will only transform theAt t ri but e it-

self; any new primary key links it created will be discardedtlze transformation will be unaware that the
link needs to be considered in an outer context. In other syalthough the primary key link will be cre-
ated, since the transformation rule which transforms elagstables is not rerun, it will not be incorporated
into the transformed table. In general, since the apprtgoater context that needs to be considered may
be an arbitrary number of levels away from the element cldyreyed since the appropriate context can not
be determined in advance, rerunning only part of the transition can never be guaranteed to propagate
all changes correctly.

It is left as an exercise to the reader to spot other casessietample which will similarly foil a change
propagation scheme only capable of propagating localibadges. As the examples of this subsection have
demonstrated, such schemes have a fundamental weaknespnepagating such changes. In the following
section, | demonstrate how PMT’s more general scheme ist@pépropagating such changes correctly.

4.2. PMT's approach

The fundamental challenge with non-localised changesdetermine the particular rules to execute given
a particular alteration of the source model. This requiresuaalysis of all the transformation rules in a

system to determine which are relevant to particular chanlyea fully declarative approach such analysis
may be possible, although it may be impractical or even irsiptes depending on the expressive power of
the approach. However in a hybrid declarative / imperatpgreach such as PMT's, analysis of this sort is

impossible in the general case — whilst PMT’s use of patterag facilitate analysis in some cases, any use
of imperative code (particularly code which calls out to Genge libraries) irreparably muddies the waters.

The criteria for PMT’s execution approach is thus simplanitst be capable of propagating non-localised
changes successfully, and it must be capable of doing sowelien it can not analyse the transformation

and its rules.

PMT’s execution approach thus takes the only solution whi ensure correct operation in all cases:
change propagation involves a complete re-execution dfdéimsformation. By executing the transformation
from the beginning, PMT implicitly propagates even nonaltsed changes. The downside to this approach
is that rerunning the entire transformation is not efficiétdwever since PMT is, by design, a batch change
propagation approach (see section 2.3), | believe thisnisiderably less of a problem than it would be for
an immediate change propagation approach.

The efficacy of PMT’s approach is best seen by example. Irrdodgresent a meaningful comparison, |

24

:Association

mod_id = "19"
name = "address"

src \iit
y

:Class :Class
mod_id = "11" mod_id = "13"
name = "Customer" name = "Address"
is_persistent = 1 is_persistent = 0
%ﬂrs attrs /attrs \gs attrs attrs
4
:Attribute :Attribute :Attribute :Attribute :Attribute :Attribute
mod_id = "12" mod_id = "14" mod_id = "15" mod_id = "16" mod_id = "17" mod_id = "18"
is_primary = 1 is_primary =1 is_primary = 0 is_primary =0 is_primary =0 is_primary =0
name = "name" name = "house" name = "addr2" name = "addr3" name = "county” name = "postcode”
e pe \Pj ¢/PE type type
:PrimitiveDataType
mod_id = "10"
name = "String"

Figure 11: Initial source model.

use exactly the same example as in the previous subseationdér to have a PMT version of the advanced
variant of the UML modelling language to relational datab&snsformation from [Tra05b], one simply
needs to substitut8<PMT. nt > for $<MT. nt > in the transformation code. Although this does not lead
to a particularly idiomatic PMT transformation, it savegpticating the code, and demonstrates how close
MT and PMT are in many aspects. Figure 11 shows the initiatceomodel, and figure 12 the target
model created by running th€l asses To Tabl es transformation. Figure 13 shows the updated
source model, with théddr ess class marked as being persistent, andtbet code attribute marked as
being part of a primary key. Figure 14 shows the result of gegropagation on the target model.

As this example shows, PMT’s change propagation approastres that all changes — including non-
localised changes — are propagated successfully. | beleveelative inefficiency of this method is thus
offset by its ability to propagate non-localised changesemly. Section 7 discusses potential techniques to
increase the efficiency of PMT change propagation in sonoeitistances.

5. Checking conformance operators

In some situations in a change propagating transformatti@ntransformation writer may wish to explicitly
prevent some types of change propagation from occurringnsure that certain relationships between the
source and target models always hold. This is potentialty iraportant for PMT’s use cases, where the
transformation writer may need to constrain the modificeithat the user can perform to the target model
in order to ensure correct change propagation.

PMT provides support for such use cases by providimeckingconformance operators (in contrast to the
updating conformance operators of section 3.4). By usimgking conformance operators, transformation
writers are able to write change propagation specificatiditge that any given model element expression
may contain updatingnd checking conformance operators; change propagationfggdians thus may
live directly alongside change propagation implemeniestio

!Note that the occurrence of four * characters in target identifiers is the result of an implatation detail regarding the identifier
of built-in Converge data types such as strings, and canfbl/sgnored.

25

9¢

pkey

:Column

mod_i "Primary_Primitive_Type_Attribute_To_Colusi) 12"
type = "String"
name = "name"

yZ

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_I@mns_0__address__15"
type = "String"
name = "address__addr2"

cols

:Table

mod_id = "Persistent_Class_To_Table_0__ 11

fkeys =[]

name = "Customer"

cols

cols cols

\

cols cols

AN

:Column

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_I@mns_0__address__17"
type = "String"
name = "address__county"

"Non_Primary_Primitive_Type_Attribute_To_IGmns_0__address__ 18"
tring”

name = "address__postcode”

:Column

:Column

type = "String"

mod_id = "Non_Primary_Primitive_Type_Attribute_To_I@mns_0__address__16"

name = "address__addr3"

type = "String"

mod_id = "Primary_Primitive_Type_Attribute_To_Colusa)__address__14"|

name = "address__house"

Figure 12: Initial target model.

:Association

mod_id = "19"
name = "address"

src \iit
y

:Class :Class
mod_id = "11" mod_id = "13"
name = "Customer" name = "Address"
is_persistent = 1 is_persistent = 1
%ﬂrs attrs /attrs \gs attrs attrs
4
:Attribute :Attribute :Attribute :Attribute :Attribute :Attribute
mod_id = "12" mod_id = "14" mod_id = "15" mod_id = "16" mod_id = "17" mod_id = "18"
is_primary = 1 is_primary =1 is_primary = 0 is_primary =0 is_primary =0 is_primary = 1
name = "name" name = "house" name = "addr2" name = "addr3" name = "county” name = "postcode”

e pe \p‘e ¢/pe type type

:PrimitiveDataType

mod_id = "10"
name = "String"

Figure 13: Updated source model before change propagation.

The following checking conformance operators are defineB Ny

Operator| Name | Description

== y | equality | Check that the value of slat is equal to the value of.

I = y | inequality | Check that the value of slat is hot equal to the value of.

X >=y | superset | Check that the value of slatis a non-strict superset gfs value.
X <=y subset | Check that the value of slat is a non-strict subset gf’s value.

x

These operators perform the checks specified in the taldepraduce aonflict reportif the checks fail.
A conflict report consists of a number of conflict records. Aftiot record pinpoints a specific part of the
target model as being non-conformant relative to the rutgaining the failing checking conformance oper-
ator. Individual conflict records may optionally be able lmw what changes would make the target model
conformant. The intention of such reports is to report touker a particular sequence of modifications
which, if manually applied to the target model by the userldanake it conformant.

In order to demonstrate checking conformance operatonsce again reuse the example of section 3.2
replacing thePackage To_Package rule with the following:

rul e Package_To_Package:

srcp:
(M.2_Package) [nane == <n>, el enents == <el enent s>]
tgtp:
(M.1_Package) [nane == n, elenments >= tgt_el enents]

Essentially this is the same rule as before, but with the tipglaonformance operators in thgt p clauses’
pattern replaced with equivalent checking conformanceatpes. Similarly | reuse the initial source model
of figure 3, which leads to the creation of the same target ineléigure 4. | then assume the user alters
the target model as per figure 5, and the source model as pez igWWhen propagating changes with the
newPackage To Package rule in place, the result of the change propagation is showfigure 15.
Conflicts are clearly shown in red.

The visualization of conflicts in PMT intentionally reusée tvisualization techniques from other parts
of PMT, with the aim of reducing the learning burden for themsThe ‘Conflict report’ in figure 15 is

27

:Table

mod_id = "Persistent_Class_To_Table_0__11__ 19
name = "Customer"

keys cols key
:Column
cols cols | mod_id = "Primary_Primitive_Type_Attribute_To_Colusnif), 12"
type = "String"
name = "name"

:Column :Column
mod_id = "Primary_Primitive_Type_Attribute_To_Colusa®__address__ 14"
type = "String"
name = "address__house" name = "address__postcode"
N :Table
(o] - -
mod_id = "Persistent_Class_To_Table_0__1B"
fkeys =[]
name = "Address"
[pkey | cols key cols ols
:Column :Column :Column
mod_id = "Primary_Primitive_Type_Attribute_To_Colusn® 14" mod_id = "Primary_Primitive_Type_Attribute_To_Colusni® 18" mod_id = "Non_Primary_Primitive_Type_Attribute_To_I@mns_0, 15"
type = "String" type = "String" type = "String"
name = "house" name = "postcode” name = "addr2"
N
:Column :Column
mod_id = "Non_Primary_Primitive_Type_Attribute_To_IGmns_0, i mod_id = "Non_Primary_Primitive_Type_Attribute_To_IGmns_0, 16"
type = "String" type = "String"

name = "county"

name = "addr3"

Figure 14: Updated target model after change propagation.

o 0~ W N P

analogous to the ‘Tracing’ report. In a similar fashion taces, conflicts are named @vheren is an
integer starting from 1. Each separate conflict is generditieidg a particular execution of a transformation
rule. Figure 15 shows two types of conflicts. Conflict ‘c1’ slsothat thenane slot in thePer sonnel
package has an incorrect value. Note that the conflict testiriounded by a rounded box, and the link to
the element is a dotted line — these visualizations only iooteonflict reports, and can not be confused
with the normal visualization of elements. Conflict ‘c2’ si®elements missing from thed enent s slot

of the Per sonnel package. Model elements, and links, in solid (as opposedakeh) red lines show
that such elements need to be added to the target model intordeake it conformant. The ‘+' prefix is
a reinforcement of this. Note that the conflict report itskdhotes only that the twieL1 Associ ati on
elements, thdL1 C ass element and the links from tHeer sonnel package to those elements, need
be added to the target model. However the visualization @ttnflict also shows the links between these
elements (thé o andf r omlinks), since these are implicitly required in order to m#ke target model well
formed. It is important that this information is shown to tieer; if it was not, then fixing a conflict report
may simply result in another conflict report being generdted part of the model just added.

Conflict reports create some interesting corner cases. Vi a@jisimple example of this, | assume a
fresh execution of th€l asses_To_ Tabl es, once again reusing the initial source and target models
of figures 3 and 4 respectively. Removing tRE association from the source model and executing the
transformation to propagate changes leads to figure 16.orgedashes on the links from tRer sonnel
package (combined with the *-’ preceding the conflict namé&herlink) indicate that they should be removed
from the target model in order to make it conformant. Howewmse might have expected to see the two
M_.1 Associ ati on elements also being drawn in red dashed lines to signify tkeenoval. However,
PMT is unable to do this because although the links fromReesonnel shouldbe deleted from the
target model, they are not yet deleted. Therefore theMlub Associ at i on elements are reachable via
these links and via the garbage collection style algorithat PMT runs at the end of the transformation
(see section 3.6) these two elements are considered to lid aad of the target model.

Section 6.2 explains the implementation of conflicts in PMTriore detalil.

6. Implementation

Unsurprisingly, given its origins, PMT's implementatianlargely similar to MT’s. The majority of PMT's
features are simple changes to MT code using the techniquiisenl in [Tra05b], and as such are not
documented in detail in this section. Instead | detail twdipalar parts of PMT’s implementation that
are of additional interest over MT’s implementation. PMg@ifmmmar, which is referenced throughout this
section, can be found in appendix A.

6.1. Conformance operators

A simplified version of the t pt mep patt er n traversal function, which only contains the code for
the>= checking conformance operator operating on unorderedit@ns, is given below:

func t pt mep pattern(node):

[l pt_mep_pattern ::="(" "ID" ")" "[" "ID" pt_nep_pattern_op expr {","
I "ID'" pt_nep_pattern_op expr }x "]"
class_ :=[]| TM _CLASSES REPCSI TORY[$<<CEl .| ift (node[2]. val ue)>>] |]

conformance operators : =[]

29

:ML2_Package

mod_i

| id = 13"
name = "AcmeLtd"

elements

elements

:ML2_Association

:ML2_Association

mod_id = "15"
name = "manager”
end2_name = "reports_to'|

mod_id ="12"
name = "PE"
end2_name = "manager"

Tracing
Class_To_Class:
Association_To_Association

Package_To_Package: t6

11, 12, t4
: 13,15

Conflicts
Package_To_Package: cl, c2

(cl: Slot hame’should be set to ’Acmel_g'

:ML1_Package

mod_id

"Package_To_Package_0__1:

parents =[]

2: +elements 2: +elements

elementy elements eng; name = "oversees” | | endl_name = "employees] elements Personnel”
w end2_multiplicity = 1 end2_multiplicity = 1
o endl_multiplicity = -1 end1_multiplicity = -1
end2_directed = 0 end2_directed = 0
endl_directed = 0 end1_directed =0
1
end2 ﬁendl end2 3 3 elements ‘elements
:ML2_Class :ML2_Class :ML2_Class :ML1_Association :ML1_Association :ML1_Association
mod_id = "14" mod_id = "10" mod_id = "11" mod_id = "Association_To_Association_0__12['| mod_id = "17" mod_id = "Association_To_Association_1__12 klements Elements
name = "DepartmentHead"| | name = "Employee" || name = "Manager" || name = "manager" name = "secondary_manager{ | name = "employees"
parents =[] parents =[] parents =[] multiplicity = 1 multiplicity = 1 multiplicity = -1
1 rom t2 from to to 0
P —
:ML1_Class %

:ML1_Association

:ML1_Association

mod_id = "Class_To_Class_0__ 10|
name = "Employee"

parents =[]

:ML1_Class

mod_id = "Association_To_Association_0__15'| mod_id = "Association_To_Association_1__ 15"
name = "reports_to" name = "oversees"
multiplicity = 1 multiplicity = -1
from to 0 om
:ML1_Class

name =

mod_id = "Class_To_Class_0__11{
Manager"

parents =[]

Figure 15: Target model with conflicts.

mod_id = "Class_To_Class_0__14(
name = "DepartmentHead"
parents =[]

2: +el

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

:ML2_Class

mod_id = "11"
name = "Manager"
parents =[]

:ML2_Package

mod_id ="13"
name = "Personnel"

Package_To_Package: t3

Tracing
Class_To_Class: t1, t2|

Conflicts

Package_To_Package: ¢

elements 3

:ML1_Package

mod_id = "Package_To_Package_0__ 18"

name = "Personnel"

parents =[]

/ \
/ \
7/ cl:-elements \
/ \
/ \

N

lements

cl: -elements

ML1_Association

ML1_Association

elements | mod_id = "Association_To_Association_1__12'
name = "employees"
multiplicity = -1

name = "manager"

mod_id = "Association_To_Association_0__12/'

multiplicity = 1

lements

‘/fmm

:ML1_Class

mod_id = "Class_To_Class_0__11|

name = "Manager"
parents =[]

to to

:ML2_Class

mod_id = "10"
name = "Employee”
parents =[]

MLlicIass

name = "Employee”
parents = [|

mod_id = "Class_To_Class_0__10[

Figure 16: Target model with conflicts after elements areoneed from the source model.

i :=5
while i < node.len() & node[i].type == "I1D":
if node[i + 1][2].type ">="
/1 pt_mep pattern op : do>="
confornmance operators. extend([l
val := $<<sel f.preorder(node[i + 2])>>

if Func _Bindi ng(&obj, oject.fields["get
&obj .$<<CEI . nane(node[i].value)>> := val
elif val.confornms to(Set):
should be in the set :=1]]
should not be in the set :=[]
for set elem:= &obj.$<<CEl.
if not val.contains(set elem:
for in objs, _objs := &sel f.
if out objs.contains(set _elen):
should not be in the set.append(set
br eak
for set elem:= val.iterate():
i f not &obj.$<<CEl.

if should be in the set.len() == 0 &\

el se:

&sel f.
$<<CEl . lift(self.
$<<CEl .
shoul d_not

el se:

shoul d_not be
pass

in _the set.

rul e name)>>,
lift(node[i].val ue)>>,
_be_in_the_set))

len() ==

rai se Type Exception(Set)

1)

31

~slot"]) ("

nanme(node[i].value)>>. iterate():

~old tracing.iterate():

_elem

_conflict_objects.append(Conflict.Set_Conflict(\
&mat ched obj s,
shoul d _be

&obj, \
in_the set, \

_is_initialized") \

nanme(node[i].val ue) >>. contai ns(set elem:
should be in the set.append(set elem

a2
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57

return [|
func () {

new id := identifier based on rule nanme union of source elenents etc.

if TM OBJECTS REPGCSI TORY. cont ai ns(new id):

obj := TM OBJECTS_REPOSI TORY[new_i d]
el se:
obj := $<<class >>.new with id(new id)

$<<conf or mance oper at or s>>

return obj

1O
]

There are two distinct parts to this function. Lines 43 — 58vglthe core of the extended model element
expressions in PMT. Line 45 calculates the identifier for ninedel element expression (see section 3.3).
Line 47 then checks the TM model element repository to segahghen element with such an identifier
already exists. If it does, that element is plucked from gpository (line 48). If it does not, a blank element
of the correct type is created (line 50). The element, blanktberwise, is then handed to the various
conformance operators (line 52).

The superset operator is indicative of the the conformapeeators in general (sections 3.4 and 5). Firstly
the the model element expression is evaluated in line 12e Lihthen checks to see whether the element
has been initialized (meaning that a blank element wasextd@atline 50); if it has not, then the value of
the user expression is simply assigned to the appropriateustl the conformance operator automatically
succeeds. If the slot does contain a value, then lines 16 hé&kdhe value of the slot for conflicts against
the user expression. Lines 19 — 24 check for elements inttewlue that PMT tentatively believes should
not be there (see section 3.7.1), while lines 26 — 28 chec&lénents in the user expression which should
be present in the list. If PMT detects that there are elemaritse set which should or should not be there,
then it generates a conflict report in lines 34 — 37.

6.2. Conflicts

Although conflict reports are generated by PMT, the conflictaept is housed within TM since it needs to
understand conflicts in order to be able to visualize them.dEfihes a simple model of conflicts which is
used to record the required information. Although the madebnflicts is largely an internal detail to PMT
and TM, the model presented in this subsection capturegthared information in a simple manner; | hope
that as other types of conflict reports are needed, it ses/ageactical and efficient base for expansion.

TM currently defines three types of conflict records: slotftots, list conflicts, and set conflicts. Conflict
records conform to the model of figure 17. As this shows, aifloat records share certain things in common.
All conflicts are generated from a particular rule (captubgdther ul e _nane slot), are the result of
transforming one or more source elements @he obj s association), and are specific to a particular
sl ot _nane within a give target element (thegt obj association).

Slot conflicts show when a slot with a primitive type (e.girgls or ints) has an incorrect value. In such a
case, theonfl i ct obj records the value the slot should have. List and set conflartsbe considered
together, since they store highly similar information. &tle case they record zero or more elements which
should be in the given container, and zero or more elemenishvghould not be in the container. As

32

src_objs,

Conflict

rule_name : String tgt_obj
slot_name : String

i

[| |
SIot_Coanict| | List_Coanict| | Set_Conflict

MObject

should_not_be_in_the_set
should_be_in_the_set
should_not_be_in_the_list
should_be_in_the_list
conflict_obj

Figure 17: Conflict report model.

explained in section 3.7.1, at the time a conflict record isegated the list of elements which should not
be in the container is only tentative; PMT and TM currentlyael all such elements, but dynamically filter
them out when required to display conflict information.

7. Future work

Given its inherently experimental nature, PMT raises mamgstjons and challenges for further work. As
part of this, several engineering issues will need to beesdtd before real-world usage is a possibility.
Such issues include devising a practical mechanism fotingetarget identifiers that is more robust than
the current string concatenation method, and so on. Howdyadieve that once engineering issues are put
to one side, two higher-level challenges are of particultarest.

The first is a relatively short term goal. PMT'’s approach tooging extraneous elements from the target
model is often effective, but fails to remove elements if lihks to those elements have existed for more
than one round of change propagation. Since PMT uses thiagradormation of the previous execution,
if an element survives being removed in more than one rountiafige propagation, then PMT incorrectly
assumes it has been manually added to the target model bysédhe BMT can also, in some rarer cases,
erroneously delete manually added links from the targetehoBinding a practical means of accurately
determining which elements can be safely removed from tigetanodel would considerably improve the
overall user experience of change propagation in PMT.

The second challenge | would consider to be a longer term, goal relates to the efficiency of the
approach. As explained in section 4.2, change propagatid®MT involves executing the whole trans-
formation from the beginning. Whilst has the advantage ithedn propagate even non-localised changes
correctly, it is inevitably somewhat slow. On the other haapoproaches like Johann and Egyed optimise
change propagation, but at the considerable expense efctoess. | believe that PMT’s approach is a nec-
essary ‘fall back’ option, but that there are two ways thay mdow PMT to execute only a subset of the
transformation in some cases. The first mechanism is diradftlenced by Johann and Egyed. It may be
possible to perform detailed analysis of some transfonatiles, since model element patterns and model
element expressions not containing arbitrary Converge eod effectively declarative statements relating
two models. In such cases, it may then be possible to use nbiglkdge to determine that certain small
changes only affect certain rules. The second mechanisnmbmagmplementary to the first: often the user
will know whether certain of their transformations will besolved in the propagation of certain changes. If
the user knows that certain types of changes are the onedmeqséntly propagated, they may be willing
to ‘'mark up’ parts of the transformation to indicate thattaigr paths need not be taken or, alternatively,

33

that certain paths must be taken, in the context of specifingbs. | believe that working out appropri-
ate analyses, and also practical mechanisms for ‘markihg tnansformation for change propagation are
considerable, but highly worthwhile, challenges.

8. Summary

In this paper | presented the PMT change propagating maaletfsrmation language. | started the paper
by examining in more depth some of the issues, and desigsidasj facing any change propagating model
transformation approach. The motivating use case for PMiowiag the user to manually alter the target
model, whilst still allowing changes to be propagated ih®dltered model non-destructively — is important
in understanding several of PMT's design decisions. | thesgnted PMT itself, exploring its approach to
change propagation by example. PMT was shown to be capaptepfgating even non-localised changes
correctly. This led to an identification of some areas wheével'B change propagation techniques were
effective, and some areas where they fell short of what onewigh for.

Despite its immaturity — particularly in comparison to MTampwhich it is based — | believe that PMT
is among the very first change propagating model transféomaipproaches to make a genuine attempt at
exploring techniques for facilitating likely real-worldenarios. Although it can by no means be consid-
ered to be production ready in its current form, | believerivides a basis for further exploration of this
challenging and exciting area.

34

A. PMT grammar

PMT’s grammar is identical to MT’s with the exception of the _nmep patt er n rule whose updated
definition is as follows:

pt _nep_pattern ::="(" "ID" ")" "[" "ID" pt_nmep_pattern_op expr { "," "ID
pt _nmep_pattern_op expr }* "]"

M G B0 A N N

pt _nmep_pattern_op ::= ":="

"y
"

"<

35

B. Model serializer

B.1. Overview

The TM Seri al i zer module comprises functions to serialize and deserializeniddiels, and tracing
information. The serializer is essentially a simple graiking function which flattens a model into an
XML tree structure; references between nodes are made by osddel elements’ identifiers and an XML
attributei d.

The deserializer is slightly more complex in operation. tlizes Converge'sXM_. Whol e Par ser
module which provides a simple mechanism for parsing angetsing an XML file. The problem the
deserializer faces is that as it works through its inputtangaappropriate model elements, it may findiah
reference to an element which has not yet been created. lircaises, it creates a blank TM model element
which it uses as a dummy holder to be filled in later when thiediefinition of the element is encountered in
the file. This however means that during the process of ddization the model being created may not be
conformant to its meta-model. In order to prevent excepgtioging raised whilst the model is deserialized,
the deserializer setstha s_ini ti al i zed field of each element t0, ensuring that checks against the
meta-model are not made. When all elements are completslgridézed, it then goes back over each
element, setting this field tb, finally running the meta-models constraints against theanmedel to ensure
that it has been recreated correctly.

B.2. Example output

This section shows the XML output from the TBeri al i zer model on the example of section 3.2.
Firstly the ML2 input model:

<Model >
<El errent id="13" of ="M.2_Package" >
<Attribute nane="nane">
<String val =" Personnel " />
</Attribute>
<Attribute nane="el enents">
<Set >
<Ref ref="12" />
<Ref ref="11" />
<Ref ref="10" />
</ Set >
</[Attribute>
</ El enent >
<El erent id="12" of ="M.2_Associ ation">
<Attribute nane="nane">
<String val ="PE" />
</Attribute>
<Attribute nane="end2_nane">
<String val ="manager" />
</Attribute>
<Attribute nane="endl_nane">
<String val ="enpl oyees" />
</Attribute>
<Attribute nane="end2_nultiplicity">
<Int val="1" />
</Attribute>
<Attribute nane="endl_nultiplicity">
<Int val="-1" />
</Attribute>

36

<Attribute nane="end2 directed">
<Int val="0" />
</[Attribute>
<Attribute nane="endl directed">
<Int val="0" />
</[Attribute>
<Attribute nane="end2">
<Ref ref="11" />
</[Attribute>
<Attribute nane="endl">
<Ref ref="10" />
</[Attribute>
</ El emrent >
<El ement id="11" of ="M.2_d ass">
<Attribute nane="nane">
<String val =" Manager" />
</[Attribute>
<Attribute nane="parents">
<Li st >

</ Li st>
</Attribute>
</ El enent >
<El erent id="10" of ="M.2_d ass">
<Attribute nane="nane">
<String val ="Enpl oyee" />
</[Attribute>
<Attribute nane="parents">
<Li st>

</ Li st>
</Attribute>
</ El ement >
</ Mbdel >

Then the ML1 target model produced by the transformatiortomitial execution:

<Mbdel >
<El emrent i d="Package_To_Package_0__13" of ="M.1_Package" >
<Attribute nane="nane">
<String val =" Personnel " />
</Attribute>
<Attribute nane="parents">
<Li st >

</ Li st>
</Attribute>
<Attribute nane="el enents">
<Set >
<Ref ref="Association _To Association 0 12" />
<Ref ref="Association _To Association_1 12" />
<Ref ref="Class_To_Cass_0__11" />
<Ref ref="Class _To Class 0 10" />
</ Set >
</[Attribute>
</ El enent >
<El enent id="Association_To Association_0_ 12" of ="M.1 Associ ati on">
<Attribute nane="nane">
<String val ="nmanager" />
</Attribute>
<Attribute nane="multiplicity">
<Int val="1" />

37

</Attribute>
<Attribute nane="to">
<Ref ref="Class_To_Cass_0__11" />
</Attribute>
<Attribute nane="froni>
<Ref ref="Class_To_Cass_0__10" />
</Attribute>
</ El enent >
<El ement i d="Associ ation_To_Association_1__12" of ="M.1_Associ ati on">
<Attribute nane="nane">
<String val ="enpl oyees" />
</[Attribute>
<Attribute nane="nultiplicity">
<Int val="-1" />
</[Attribute>
<Attribute nane="to">
<Ref ref="Class_To_Cass_0__10" />
</[Attribute>
<Attribute nane="froni>
<Ref ref="Class_To_Cass_0__11" />
</[Attribute>
</ El emrent >
<El ement id="dass_To _Cass_0__11" of="M.1_C ass">
<Attribute nane="nane">
<String val =" Manager" />
</[Attribute>
<Attribute nane="parents">
<Li st >

</ Li st>
</Attribute>
</ El enent >
<El ement id="d ass_To_Cass_0__10" of="M.1_C ass">
<Attribute nane="nane">
<String val ="Enpl oyee" />
</Attribute>
<Attribute nane="parents">
<Li st>

</ Li st>
</Attribute>
</ El emrent >
</ Model >

And finally the tracing information generated by the transfation on its initial execution:

<Tr aci ng>
<Trace rul e="C ass_To_C ass">
<Frone
<Ref ref="10" />
</ Fronmp
<To>
<Ref ref="Class _To Class 0 10" />
</ To>
</ Trace>
<Trace rul e="C ass_To_C ass">
<Fronw
<Ref ref="11" />
</ Fromp
<To>
<Ref ref="Class_To_Cass_0__11" />
</ To>

38

</ Trace>
<Trace rul e="Associ ati on_To_Associ ati on">
<Frone
<Ref ref="12" />
</ Fron®
<To>
<Ref ref="Association _To Association 0 12" />
<Ref ref="Association_To_Association_1__12" />
</ To>
</ Trace>
<Trace rul e="Package_To_Package" >
<Frone
<Ref ref="13" />
</ Fr onm»
<To>
<Ref ref="Package_To_Package_0__13" />
</ To>
</ Trace>
</ Traci ng>

39

References

[APO4]

[BMO3]

Marcus Alanen and Ivan Porres. Change propagatioa tnodel-driven development tool.
Presented at WiSME part of UML 2004, October 2004.

Peter Braun and Frank Marschall. Botl — the bidirectl object oriented transformation
language. Technical Report TUM-10307, Institut fur Infaatik der Technischen Universitat
Miinchen, May 2003.

[CESWO04] Tony Clark, Andy Evans, Paul Sammut, and Jamesakdéll Applied metamod-

[CS03]

[DICO3]

[JE04]

[JL99]

[0J04]

[RR93]

[TCO3]

[TraO5a]

[Tra05b]

[VV04]

elling: A foundation for language driven development, ®egter 2004. Available from
http://ww. xacti um coml Accessed Sep 22 2004.

Compuware and Sun. XMOF queries, views and transftoms on models using MOF, OCL
and patterns, August 2003. OMG documead/ 2003- 08- 07.

DSTC, IBM, and CBOP. MOF query / views / transfornuais first revised submission, August
2003. OMG documentad/ 2003- 08- 03.

Sven Johann and Alexander Egyed. Instant and ineratrteansformation of models. Septem-
ber 2004.

Richard Jones and Rafael LirGarbage Collection: Algorithms for Automatic Dynamic Mem-
ory ManagementWiley, 1999.

CompuwareOptimal] 2004. http:// ww. conpuwar e. cond product s/ optimalj/.

Ganesan Ramalingam and Thomas Reps. A categoribdidgoaphy on incremental com-
putation. InProc. 20th ACM SIGPLAN-SIGACT symposium on Principles ofjfamming
languagespages 502-510, 1993.

Laurence Tratt and Tony Clark. Issues surroundinglehaonsistency and QVT. Technical
Report TR-03-08, Department of Computer Science, King'kege London, December 2003.

Laurence Tratt. Model transformations and tot#dnation. Journal of Software and Systems
Modelling 4(2):112-122, May 2005.

Laurence Tratt. The MT model transformation laaggr Technical Report TR-05-02, Depart-
ment of Computer Science, King’s College London, May 2005.

Gergely Varr6 and Daniel Varrd. Graph transfoima with incremental updates. IRroc.
GT-VMT 2004, International Workshop on Graph Transformatand Visual Modelling Tech-
niques ENTCS, March 2004. To appeat.

40

