
A change propagating model transformation
language

Technical report TR-06-07, Department of Computer Science , King’s College London

Laurence Tratt
laurie@tratt.net

August 13, 2006

1

Contents

1 Introduction 4

2 Change propagation 4
2.1 Change propagation compared to incremental transformation 5

2.2 Manual or automatic change propagation 5

2.3 Propagating changes in batch or immediate mode 6

2.4 Relating source and target elements by key, trace, or identifier 6

2.4.1 Distinguishing target elements by key 7

2.4.2 Relating target elements via tracing information 7

2.4.3 Distinguishing target elements by identifier 8

2.5 Correctness checking and conflict resolution 8

3 PMT 8
3.1 A PMT transformation’s stages 9

3.2 Example 9

3.3 Creating target element identifiers 12

3.3.1 Creating unique target element identifiers 14

3.3.2 Deterministically creating target element identifiers 16

3.4 Making target elements conformant 16

3.4.1 Changes which can not be propagated 18

3.5 Running a PMT transformation 18

3.6 Removing elements from the target model 19

3.7 Propagating changes between containers 20

3.7.1 Removing elements when propagating changes between containers 20

3.7.2 Propagating change in ordered containers 21

4 The execution of a PMT transformation 21
4.1 Propagating localised changes 21

4.1.1 Non-localised changes in practise 23

4.2 PMT’s approach 24

5 Checking conformance operators 25

6 Implementation 29
6.1 Conformance operators 29

6.2 Conflicts 32

7 Future work 33

8 Summary 34

A PMT grammar 35

B Model serializer 36

2

B.1 Overview 36

B.2 Example output 36

3

1. Introduction

This paper builds upon the MT language defined in the previouspaper, creating a new unidirectional change

propagating model transformation language PMT. Alanen andPorres provide a useful overview of change

propagating transformations, which also explains some of the categories of changes that can be propa-

gated [AP04]. Change propagating transformations introduce considerable complexity compared to state-

less transformations. It is my belief that no one approach tochange propagation is likely to prove sufficient

for all purposes. Furthermore due to the lack of focus on thisparticular area of model transformations, much

exploration will be necessary to determine when different approaches are most applicable. The aim of this

paper is to outline some of the possibilities for change propagating approaches, and to present a particular

unidirectional change propagating solution, PMT. PMT is intended to provide support for use cases similar

to that outlined in [Tra05b].

Although several model transformation approaches mentionchange propagating transformations few ac-

tually provide such a mechanism. For the purposes of this paper, only three approaches are potentially

of interest: BOTL [BM03], Johann and Egyed’s approach [JE04], and XMOF [CS03]. Both BOTL and

XMOF are of limited interest, due to their differing aims compared to PMT. Since BOTL restricts itself to

bijective transformations, I discount it, since I believe that bijective transformations constitute only a small

proportion of useful transformations. XMOF is also of limited interest since it is poorly documented, and

aims to provide a solution for bidirectional change propagating model transformations, which introduces an

extra set of challenges above and beyond those presented by unidirectional change propagating model trans-

formations. Johann and Egyed’s approach is the most interesting of the three, as it tackles unidirectional

change propagating model transformations; however it explains only one aspect of its approach in detail,

and furthermore is incapable of propagating some importanttypes of changes.

It is an explicit aim of PMT to facilitate change propagationin any type of model transformation. However

it is important to note that PMT is not as mature or stable as MT– by its nature PMT is much more of an

experiment than MT. Nevertheless I hope that this paper serves as a useful step on the path towards mature

change propagating model transformation solutions.

This paper begins with an overview of some of the high-level strategies and design decisions relevant

to change propagation. PMT itself is then introduced, and via example it is shown how it allows change

propagating transformations to be expressed. I show how PMTrelates source and target models, and how it

is capable of propagating changes that defeat other approaches. I also detail PMT’s support for expressing

change propagating transformation specifications. Finally I detail some of the relevant parts of PMT’s

implementation.

2. Change propagation

Whilst [Tra05b] motivated change propagating model transformations, it gave very little hint as to how such

transformations might be realised. The intention of this section is to outline the background of change prop-

agations, and some of the overall design decisions possiblewhen implementing a change propagating model

transformation approach. Note that I only consider these design decisions in the context of unidirectional

change propagating transformations.

4

2.1. Change propagation compared to incremental transform ation

Incremental transformation (sometimes known as incremental computation) is a well studied field (see

[RR93] for an overview of some of the available literature).The most widespread, and one of the sim-

plest, examples of incremental transformation are code compilation systems. For example the UNIXmake

command takes a list of source code files, and compiles only those which have been modified since the last

execution ofmake.

Incremental transformation initially appears to be very similar to change propagation. Both approaches

provide support for taking a source item and transforming itinto an appropriate target item; subsequent

changes made to the source item then cause appropriate updates on the target item. However incremental

transformation approaches assume that the target item willbe unmodified by the user when they update

it. Incremental transformation need not therefore concernitself with many of the issues that affect change

propagation in the context of this paper, chiefly how to propagate changes non-destructively into the target

model. This can be seen clearly in the code compilation system example; any modifications the user may

make to the output of the compiler will be lost the next time the code compilation system discovers it needs

to recompile the associated source file.

There is thus a fundamental difference between the two approaches, since an incremental transformation

approach is able to make assumptions about its environment that conflict with the use case outlined in

[Tra05b]. For the purposes of this paper, change propagation is therefore largely treated as a new subject

with respect to incremental transformation systems.

2.2. Manual or automatic change propagation

Tratt and Clark outline a framework intended to allow unidirectional stateless transformations to be associ-

ated with one or moredelta transformationswhich can propagate changes [TC03]. The execution sequence

of such transformations is as follows. The unidirectional stateless transformation takes in a source model and

produces a target model as normal. Subsequent changes made to the source model are extracted as change

deltas to the source model. These deltas are then passed to anappropriate delta transformation which is

expected to propagate the change represented by the delta tothe target model. In general each different type

of change will require a different delta transformation to be created. Note that the framework itself does not

impose, or facilitate, a particular change propagation mechanism is left open in this framework. An example

of this framework can be seen in the XMF tool which includes a change propagation framework with a ded-

icated delta transformation language XSync, to accompany aunidirectional stateless model transformation

language XMap [CESW04].

The concept of delta transformations is an interesting one in that it provides a means of integrating legacy,

or otherwise incapable, transformations into a change propagating transformation. However it has two in-

herent problems. Firstly there is an inevitable disconnectbetween the core unidirectional stateless transfor-

mation, and the delta transformations, all of which must be created by hand. Secondly there is, in general,

no bound on the number of delta transformations needed to cope with change deltas. For this reason I clas-

sify this framework as manual change propagation, since thecode to perform change propagation must be

manually created.

Manual change propagation contrasts with automatic changepropagation, where a transformation can

propagate changes without additional code needing to be added. Some approaches choose a hybrid ap-

proach, being able to automatically propagate some changeswhilst requiring manual assistance to propa-

gate others. For example, OptimalJ is able to propagate changes between some of its simple models auto-

5

matically, but can require assistance when propagating changes between a complex model and its textual

representation [OJ04].

2.3. Propagating changes in batch or immediate mode

There are two potential modes of operation for running change propagating transformations: ‘batch’ and

‘immediate’ mode. These two modes refer to the number of changes that are propagated in each step.

Batch change propagation takes a number of changes from the source model and propagates them to the

target model only when explicitly requested to do so by the user. The advantage of batch change propagation

is that the user is in complete control of when changes are propagated. Batch change propagation can be

considered to be similar to code compilation — users typically make multiple edits to a source code file

before choosing to compile it. Since change propagation maybe a relatively slow activity, it is beneficial to

the user if they can schedule change propagation at a time convenient to them. On the other hand, the user

may consider it inconvenient to have to manually force changes to be propagated.

The concept of immediate change propagating transformations is defined in [CS03]. An immediate

change propagating transformation propagates changes to the target model as soon as the source model

is changed. Unlike a batch mode change propagating transformation, which implicitly propagates multiple

changes when run, an immediate mode change propagating transformation propagates small changes, which

can be viewed as being semi-atomic. The advantage of immediate mode propagation is that the source and

target models involved in the transformation are always synchronised with each other. However there are a

number of potential disadvantages to immediate change propagating transformations.

From the users point of view, immediate change propagation may introduce a lag every time the user

makes a change to the source model, whilst the system propagates the appropriate changes to the target

model. During this lag, the system can choose to either lock the source model, thus preventing the user

making changes to it, or to place changes to the source model into an ordered queue. In the former case, the

user is likely to become highly frustrated; in the latter case, the advantage of synchronised source and target

models is lost, albeit temporarily. Furthermore, the process of changing a model frequently involves passing

through one or more intermediate stages. Each intermediatestage may see elements being temporarily

deleted, renamed and so on. If the changes from these intermediate stages are propagated, it is possible

that incorrect, and irreversible, changes may be made to thetarget model. Consider a tool which allows

a user to ‘cut’ a model element to a clipboard, who then intends to paste the element to another part of

the model later. If such a change is propagated immediately,it will lead to the deletion of target elements.

Such elements may contain manual changes or additions in thetarget model; when the element is deleted,

the manual changes will be lost and will not be replaced when the source element is ‘pasted’ back into the

model. Since only the user can know the intended end goal of their sequence of actions, immediate change

propagating transformations pose an extra set of challenges for such scenarios.

2.4. Relating source and target elements by key, trace, or id entifier

One of the chief challenges when propagating changes is to find a mechanism for relating, or distinguishing,

the specific target elements created by a given rule relativeto specific source elements. The distinguishing

of elements is vital to ensure that target elements are modified, created or deleted correctly during change

propagation. This problem is largely irrelevant during theinitial run of a change propagating transformation,

but is vital when subsequently propagating changes; this problem was outlined by example in [Tra05b].

6

Johann and Egyed present a basic, high-level overview of this subject, describing the distinguishing of

elements by key and by identifier [JE04]. For the purposes of this paper I identify three chief ways of

relating or distinguishing which target elements are related to specific source elements: by key, by trace,

and by identifier. I now outline these three possibilities inmore detail.

2.4.1. Distinguishing target elements by key

A simple mechanism for distinguishing elements is to do so ontheir key i.e. a collection of attributes

which, collectively, uniquely identify any given element.Using this mechanism for change propagation

is advocated by the DSTC QVT approach [DIC03]. By requiring elements to be defined in keys, this

mechanism implicitly adds an extra burden on the user since all elements in a model must be augmented

with a key definition. Although this is often trivial, it is anextra burden, and can be difficult when elements

have no natural key.

The essential idea of propagating by key is that when changesfrom an element need to be propagated,

the source element is transformed (possibly to a temporary location), and the key of the target element is

extracted. This then allows the changed parts of the target element to be merged with an existing target

element with the same key. However this means that modifyingthe values of attributes involved in a key

confuses the propagation algorithm. Consider the transformation from and to a simple modelling language

where the key of aClass is its name attribute. If a class namedx is transformed to a class also named

x, then many changes made to the source model (e.g. adding attributes) can be trivially propagated to

the relevant target element by transforming the source models key and finding the target element with the

appropriate key. However if the source element is renamed toy then the key relationship between the source

elementy and target elementx is broken; the change propagation algorithm will assume that the relevant

target element has been deleted, and will recreate it from scratch.

Although not mentioned in the DSTC QVT approach, one technique which may potentially improve the

coverage of this technique is to use the previous generationof a source element to calculate the key of the

appropriate target element. This allows changes to be propagated successfully even when source elements

have had the values of attributes involved in their key altered. However it is unable to cope when manual

changes are made to a target elements’ key.

In the general case, propagation by key is insufficient. However it may be combined with other propaga-

tion techniques to increase coverage.

2.4.2. Relating target elements via tracing information

Using the tracing information created by a transformation to relate source and target elements seems a

good candidate, particularly as the information already exists. However, as shown in MT, there are various

different tracing information creation mechanisms. The success of a change propagation algorithm then

depends on factors such as the coverage and granularity of the recorded tracing information. For example,

while the default tracing information generated by MT records which target elements were created by a

rule from specific source elements, it does not generate enough information to know which part of the rule

created which target element. Such information may be vitalfor an accurate change propagation algorithm.

There is thus a potential tension between the different usesof tracing information. The type of tracing

information desirable for change propagation may be very different from that required by a user to under-

stand transformations on their model. However, assuming that it is suitably detailed, tracing information is

sufficient as the sole means of distinguish elements for change propagation.

7

2.4.3. Distinguishing target elements by identifier

A technique that can ultimately be seen as a slight variationon distinguishing target elements by tracing

information was detailed by this author in [Tra05a], and independently by Johann and Egyed in [JE04].

When a target element is created it is given an identifier which contains, at a minimum, the concatenated

identifiers of all the source elements which led to the creation of the target element. Henceforth I refer to

this as thetarget element identifier. Note that the target element identifier may be in addition toan elements

standard identifier, and that conceptually there is no requirement that this new identifier be a single field.

Conceptually this technique does not add any additional power over using tracing information to distin-

guish elements; it is an alternative way of storing tracing information. Indeed, a simple concatenation of the

source elements identifiers means that the target element identifier is merely an alternative way of storing

information that can in theory be directly derived from suitably fine-grained tracing information. However

extra information can be easily stored in the target elementidentifier, if required, to allow a transformation

to encode information which may not be present in tracing information. This then allows tracing informa-

tion to be used for other purposes. Furthermore this then means that tracing information need neither have

complete coverage, nor be fine-grained; as such, tracing information can be recorded in a fashion which

gives it the greatest utility to the user.

2.5. Correctness checking and conflict resolution

Some changes made to a source model may not be able to be propagated successfully to the target model.

For example, when propagating an element newly added to the source model, a conflict may arise with an

element already present in the target model. There are threemain strategies that can be taken in such cases:

1. Propagate all changes regardless of correctness conditions, accepting that the resulting target model

may not match expectations, and may even be ill-formed.

2. Check for the correctness of changes before propagating them; refuse to propagate changes which

will violate correctness conditions.

3. Propagate all changes which do not violate correctness conditions; note those which violate such

conditions and request manual intervention from the user.

Whilst the first strategy requires little extra support, in the cases of the second and third strategies change

propagating model transformation approaches have to decide upon the form of correctness checking, its

completeness, and its ability to be controlled by users.

3. PMT

PMT’s implementation began as a fork of MT, and can be considered initially to be a superset of MT. Most

valid MT transformations can be moved into PMT without syntactic change — when used as a stateless

model transformation language, PMT performs largely as MT.When compared to the design decisions

detailed in section 2, PMT can be said to be a fully automatic,batch change propagation approach, which

distinguishes target elements by their identifiers, and which has user controllable correctness checking built

in. The details of this broad overview will be filled in as thispaper progresses.

Despite many similarities, the sequence of running a PMT transformation is fundamentally different

from MT. An MT transformation is initialized with one or moresource elements which are immediately

8

transformed into target elements. In contrast, a PMT transformation is initialized with a source model,

a (possibly empty) target model, and a (possibly empty) set of tracing information. Unlike MT, source

elements are not immediately transformed after initialization, waiting for the transformation to be executed

by the user. Since none, parts, or all, of the target model maybe present after the initialization of the PMT

transformation, the concept of rule execution in PMT is markedly different in MT. In MT, when a rules

source clauses match its input, the execution of the rule implies the production of new target elements. In

PMT, when a rules source clauses match its input, the execution of the rule implies that the target model is

modified to make it conformant with respect to the transformation. Although from a naı̈ve users perspective

there is a difference between the initial execution of a PMT transformation – which appears to populate an

empty target model – and subsequent executions which propagate changes, from PMT’s perspective there is

no difference between the initial and subsequent executions.

Put crudely, the difference between MT and PMT is that the former is an imperative model transforma-

tion language whilst the latter is declarative. Conceptually, the execution of a PMT rule is fundamentally

different from MT. When a PMT rule is executed, it attempts tomake the necessary changes to the target

model to satisfy the rules declaration. This may require elements being added, altered and deleted from the

target model. The way in which the relationship between source and target elements is specified, and the

process by which the update of the target model occurs are thetwo defining aspects of PMT.

3.1. A PMT transformation’s stages

The stages of a PMT transformation are as follows:

1. Take a source model, and an empty target model and transform the source model. This stage – if

taken in isolation and viewed as a black box – is essentially identical to an MT transformation. After

the transformation has executed, the source and target models, together with the tracing information

created, are stored in some fashion.

2. The user may make arbitrary changes to both the source and target models, independent from one

another.

3. The user then requests that the changes they have made to the source model are propagated non-

destructively to the target model. The transformation is reinitialized with the updated source and target

models, and the tracing information from the previous execution. The execution of the transformation

then propagates changes from the source model to the target model. After the transformation has

executed, the source and target models, together with the new tracing information created are once

again stored.

At this point, the sequence moves back to stage 2.

3.2. Example

This subsection presents a simple example of change propagation, which is based on the change propagation

example of [Tra05b]. That example showed the conceptual problems of a change propagating transformation

from the ML2 to the ML1 modelling language. The metamodels ofthe ML1 and ML2 modelling languages

are shown in figures 1 and 2 respectively.

The transformation itself is as follows:

9

MObject

mod_id : String

to_string()
initialize()

of

ML1_Element

name : String

initialize()

ML1_Package

allElements()
initialize()

ML1_Class

initialize()

ML1_Association

multiplicity : int

initialize()

elements
*

parents
* ordered

parents
* ordered

to from

Figure 1: The ML1 modelling language.

1 $<PMT.mt>:
2 transformation ML2_to_ML1
3

4 rule Package_To_Package:
5 srcp:
6 (ML2_Package)[name == <n>, elements == <elements>]
7

8 tgtp:
9 (ML1_Package)[name := n, elements :>= tgt_elements]

10

11 tgt_where:
12 tgt_elements := Set{}
13 for x := elements.iterate():
14 tgt_element := self.transform([x])
15 if tgt_element.conforms_to(List):
16 tgt_elements.extend(Set(tgt_element))
17 else:
18 tgt_elements.add(tgt_element)
19

20 rule Class_To_Class:
21 srcp:
22 (ML2_Class)[name == <n>]
23

24 tgtp:
25 (ML1_Class)[name := n]
26

27 rule Association_To_Association:
28 srcp:
29 (ML2_Association)[name == <n>, end1 == <end1>, end2 == <end2>, \
30 end1_directed == 0, end2_directed == 0, \
31 end1_multiplicity == <end1_multiplicity>, \
32 end2_multiplicity == <end2_multiplicity>, end1_name == <end1_name>, \
33 end2_name == <end2_name>]

10

MObject

mod_id : String

to_string()
initialize()

of

ML2_Element

name : String

initialize()

ML2_Package

initialize()

ML2_Class

initialize()

ML2_Association

end2_name : String
end1_name : String
end2_multiplicity : int
end1_multiplicity : int
end2_directed : bool
end1_directed : bool

initialize()

elements
*

parents
* ordered

end2 end1

Figure 2: The ML2 modelling language.

34

35 tgtp:
36 (ML1_Association)[name := end2_name, from := tgt_end1, to := tgt_end2, \
37 multiplicity := end2_multiplicity]
38 (ML1_Association)[name := end1_name, from := tgt_end2, to := tgt_end1, \
39 multiplicity := end1_multiplicity]
40

41 tgt_where:
42 tgt_end1 := self.transform([end1])
43 tgt_end2 := self.transform([end2])

This is an intentionally simple transformation which, in the interests of brevity, ignores parent packages and

only handles associations which are navigable at both ends.Since converting ML2 classes and packages to

ML1 classes and packages is exceedingly trivial, thePackage To Package andClass To Class

rules are simple (lines 12 - 18 are a largely inconsequentialimplementation detail that essentially normal-

izes the return value from other transformation rules). TheAssociation To Association rule is

slightly more complex, although it only deals with associations which are navigable at both ends; each such

ML2 bidirectional association is transformed into two ML1 directed associations.

The initial source model I use for this transformation is shown in figure 3. The resulting visualization of

the transformation is shown in figure 4. At this point, there are only two hints that we are dealing with a

PMT, and not an MT, transformation definition and execution:the:>= operator in line 9 is invalid in MT;

identifiers in the target model have a noticeably different format to those in MT transformations.

Let us now assume that the user has modified the target model asin figure 5, adding in a directed associ-

ation fromEmployee to Manager denoting an employee’s secondary manager. Let us then assume that

the user returns to the original source model and updates it as in figure 6, adding in aDepartmentHead

11

:ML2_Package

mod_id = "13"
name = "Personnel"

:ML2_Association

mod_id = "12"
name = "PE"
end2_name = "manager"
end1_name = "employees"
end2_multiplicity = 1
end1_multiplicity = -1
end2_directed = 0

end1_directed = 0

elements

:ML2_Class

mod_id = "11"
name = "Manager"

parents = []

elements

:ML2_Class

mod_id = "10"
name = "Employee"

parents = []

elements

end2 end1

Figure 3: Initial source model for the ML2 to ML1 transformation.

class and an associated transformation. If the ML2 to ML1 transformation was an MT transformation, the

user would now have two choices. If they were to rerun such a transformation, the original target model

would be overwritten and thesecondary manager association would not exist in the new target model.

Alternatively the user could choose to manually port the changes from the source model to the target model.

In the former scenario, changes to one or the other model are lost; in the latter, differences must be manually

propagated between models.

It is at this point – corresponding to stage 3 as described in section 3.1 – in the transformation execution

cycle that PMT fundamentally distinguishes itself from MT,by automatically propagating the changes made

to the source model in figure 6 into the updated target model. The visualization of the target model after

change propagation can be seen in figure 7. As this figure shows, not only have the changes to the source

model been propagated into the target model, but the manual changes made to the target model by the user

have been preserved. It is important to note that the changesmade to the source and target models by the

user in this example are entirely arbitrary.

The basics of PMT’s change propagation approach are very simple. Both model element patterns and

model element expressions play a key part in the process of propagation. PMT uses model element patterns

as the primary means of calculating target element identifiers (see section 2.4). When a rule is executed, and

its source clauses match successfully, a target element identifier is created, based on unioning the identifiers

of the source elements matched by model element expressions. Target element expressions in the target

clauses use the target element identifier created by the source clauses. When a model element expression

is executed, it looks in the TM object repository to see if an element with the same identifier as the target

element identifier already exists. If no such element exists, a new model element with that identifier is

created and populated accordingly. If such an element exists, it is taken from the object repository and its

contents are adjusted as necessary to satisfy the transformation. Sections 3.3 and 3.4 explain the creation of

identifiers and altering of elements in more depth.

3.3. Creating target element identifiers

The construction of target element identifiers is a vital part of PMT’s change propagation approach. Target

element identifiers should ideally satisfy two criteria: that they are unique with respect to particular source

12

:ML2_Package

mod_id = "13"
name = "Personnel"

:ML2_Association

mod_id = "12"
name = "PE"
end2_name = "manager"
end1_name = "employees"
end2_multiplicity = 1
end1_multiplicity = -1
end2_directed = 0

end1_directed = 0

elements

:ML2_Class

mod_id = "11"
name = "Manager"

parents = []

elements

:ML2_Class

mod_id = "10"
name = "Employee"

parents = []

elements

:ML1_Package

mod_id = "Package_To_Package_0__13"
name = "Personnel"

parents = []

t4

end2 end1

:ML1_Association

mod_id = "Association_To_Association_0__12"
name = "manager"

multiplicity = 1

t3

:ML1_Association

mod_id = "Association_To_Association_1__12"
name = "employees"

multiplicity = -1

t3

:ML1_Class

mod_id = "Class_To_Class_0__11"
name = "Manager"

parents = []

t2

:ML1_Class

mod_id = "Class_To_Class_0__10"
name = "Employee"

parents = []

t1

elements elements

elements elements

to from from to

Tracing
Class_To_Class: t1, t2

Association_To_Association: t3

Package_To_Package: t4

Figure 4: Visualization of the initial execution of the ML2 to ML1 transformation.

elements and a particular rule execution; that they can be created deterministically across multiple trans-

formation executions. The need for the former criteria is self evident, the latter perhaps less so. However

PMT’s approach relies on the fact that the construction of target element identifiers can be replicated over

multiple transformation executions. Since satisfying either, or both, of these two criteria is non-trivial, I

consider it highly desirable that target element identifiers can be automatically created and used without

burdening the user unnecessarily. In this subsection I outline in detail how PMT automatically creates target

element identifiers; this process is somewhat more involvedthan its description in previous sections has

suggested.

The way in which target element identifiers are created and stored makes use of two internal TM and

PMT features. Firstly the identifier of a TM model element is astring. Unioning identifiers thus becomes

a case of simple string concatenation which, whilst not an entirely robust technique, is adequate for the

:ML1_Package

mod_id = "Package_To_Package_0__13"
name = "Personnel"

parents = []

:ML1_Association

mod_id = "Association_To_Association_0__12"
name = "manager"

multiplicity = 1

elements

:ML1_Association

mod_id = "Association_To_Association_1__12"
name = "employees"

multiplicity = -1

elements

:ML1_Class

mod_id = "Class_To_Class_0__11"
name = "Manager"

parents = []

elements

:ML1_Class

mod_id = "Class_To_Class_0__10"
name = "Employee"

parents = []

elements

:ML1_Association

mod_id = "17"
name = "secondary_manager"

multiplicity = 1

elements

to from from toto from

Figure 5: The updated target model.

13

:ML2_Package

mod_id = "13"
name = "AcmeLtd"

:ML2_Association

mod_id = "12"
name = "PE"
end2_name = "manager"
end1_name = "employees"
end2_multiplicity = 1
end1_multiplicity = -1
end2_directed = 0

end1_directed = 0

elements

:ML2_Class

mod_id = "11"
name = "Manager"

parents = []

elements

:ML2_Class

mod_id = "10"
name = "Employee"

parents = []

elements

:ML2_Class

mod_id = "14"
name = "DepartmentHead"

parents = []

elements

:ML2_Association

mod_id = "15"
name = "manager"
end2_name = "reports_to"
end1_name = "oversees"
end2_multiplicity = 1
end1_multiplicity = -1
end2_directed = 0

end1_directed = 0

elements

end2end1 end1 end2

Figure 6: The updated source model.

purposes of this paper. Although TM supplies a default identifier, a user supplied identifier – such as a PMT

target element identifier – can be specified when elements arecreated. Secondly, PMT uses the concept of

model elements matched by model element patterns – exactly as used by the tracing information creation

mechanism – to determine which source elements will have their identifiers unioned. Thus creating target

element identifiers requires no new underlying machinery inthe implementation.

3.3.1. Creating unique target element identifiers

Concatenating the identifiers of source elements is not sufficient on its own to generate a unique target

element identifier, since the same source elements may be used in more than one rule execution. PMT thus

also integrates the name of the rule being executed into the target identifier to ensure that target element

identifiers are unique. However this then raises the possibility that executing the same rule with the same

source elements may lead to conflicting target identifiers being generated. To avoid this possibility, PMT

rules keep a cache of source elements they have already transformed; if a rule matches against the same

source elements as it did in a previous execution, then the target elements produced in that previous execution

are returned. It should be noted that this is different from MT, which does not need to enforce such a

constraint during its execution. This may potentially leadto differences in the execution of seemingly

identical MT and PMT transformations.

The rules given thus far generate a single unique target element identifiers. This is sufficient when a rules

target clauses contain a single model element expression which executes only once. If a rule has multiple

model element expressions in its target clauses, or if a model element expression can execute more than

once in a single execution of a rule (e.g. when a model elementexpression is suffixed withfor, as in

MT), then a single target element identifier would result in multiple target elements being created with the

same identifier. For example, theAssociation To Association rule in section 3.2 has two model

element expressions in itstgtp clause. In such cases it is vital that each model element expression is passed

a unique target element identifier. In order to ensure that this is the case, each rule execution keeps a counter

of how many times model element expressions have been executed during the rules execution. This counter

is incorporated into the target element identifier of model element expressions, thus ensuring the uniqueness

of the identifiers even when a rule executes more than one model element expression.

14

:ML2_Package

mod_id = "13"
name = "AcmeLtd"

:ML2_Association

mod_id = "12"
name = "PE"
end2_name = "manager"
end1_name = "employees"
end2_multiplicity = 1
end1_multiplicity = -1
end2_directed = 0

end1_directed = 0

elements

:ML2_Class

mod_id = "11"
name = "Manager"

parents = []

elements

:ML2_Class

mod_id = "10"
name = "Employee"

parents = []

elements

:ML2_Class

mod_id = "14"
name = "DepartmentHead"

parents = []

elements

:ML2_Association

mod_id = "15"
name = "manager"
end2_name = "reports_to"
end1_name = "oversees"
end2_multiplicity = 1
end1_multiplicity = -1
end2_directed = 0

end1_directed = 0

elements

:ML1_Package

mod_id = "Package_To_Package_0__13"
name = "AcmeLtd"

parents = []

t6

end2end1

:ML1_Association

mod_id = "Association_To_Association_0__12"
name = "manager"

multiplicity = 1

t3

:ML1_Association

mod_id = "Association_To_Association_1__12"
name = "employees"

multiplicity = -1

t3

:ML1_Class

mod_id = "Class_To_Class_0__11"
name = "Manager"

parents = []

t2

:ML1_Class

mod_id = "Class_To_Class_0__10"
name = "Employee"

parents = []

t1

:ML1_Class

mod_id = "Class_To_Class_0__14"
name = "DepartmentHead"

parents = []

t4

end1 end2

:ML1_Association

mod_id = "Association_To_Association_0__15"
name = "reports_to"

multiplicity = 1

t5

:ML1_Association

mod_id = "Association_To_Association_1__15"
name = "oversees"

multiplicity = -1

t5

Tracing
Class_To_Class: t1, t2, t4

Association_To_Association: t3, t5

Package_To_Package: t6

elements elements

elementselements elements

elementselements

:ML1_Association

mod_id = "17"
name = "secondary_manager"

multiplicity = 1

elements

tofrom fromto from toto fromtofrom

Figure 7: Visualization of the ML2 to ML1 transformation after change propagation.

15

The general form of a target element identifier in PMT is as follows:

<rule name> <model element expression execution #> <union of source
identifiers>

Using this template, one can interpret the identifiers of target elements in figure 7 with respect to the trans-

formation of section 3.2.

It should be noted that in the current implementation when primitive data types are used in model element

expressions, it is possible for PMT to generate non-unique identifiers, since instances of primitive data types

do not have a proper element identifier. I consider this to be arelatively trivial implementation detail.

3.3.2. Deterministically creating target element identifi ers

It is important for PMT that the target element identifiers itcreate be deterministic; that is, if a transformation

is rerun with exactly the same source elements as before, it should create exactly the same target element

identifiers. If target element identifiers are created differently over multiple transformation executions then

PMT will not able to identify target elements correctly. Although the scheme outlined previously has proved

reasonably successful in practise, using the model elementexpression execution counter leads to a subtle,

but potentially significant, flaw.

Non-ordered datatypes such as sets can cause the model element expression execution to become de-

synchronised over multiple transformation executions dueto their inherent non-determinism. Similarly,

ordered data types such as lists can have elements inserted in them in-between transformation executions;

if elements are inserted at any point other than the end of theordered datatype, then the counter can again

become de-synchronised.

A possible solution to this problem is as follows. Each modelelement expression in the target clauses is

statically assigned a number, starting from 1, and incremented with each model element expression encoun-

tered during compilation. For model element expressions that can only be executed once, this is sufficient

to ensure uniqueness and determinism of the resultant target element identifiers. For model element ex-

pressions which can be executed more than once, it is then necessary to add something further to the target

element identifier to ensure uniqueness. For example, one could determine which source elements (which,

in general, one would expect to be a strict subset of the overall source elements matched by a rule) led to the

creation of that particular model element, and make their identifiers part of the target element identifier; note

that in this scheme it would be common for source element identifiers to appear more than once in a target

element identifier. In some cases PMT may be able to automatically determine which source elements are

involved in the creation of specific target elements, but in general this is not possible; the user will therefore

need a way to inform PMT of the required information. Note that whilst this solution is largely immune

to non-determinism problems, it still has some conceptual problems e.g. when dealing with ordered lists

which contain duplicated elements.

While solutions such as the one outlined may provide a more robust approach to creating target element

identifiers, I believe that further research will be needed to find the best solution. For the purposes of this

paper, PMT’s current solution, whilst not robust, is adequate for exploring change propagation.

3.4. Making target elements conformant

When a model element expression is executed, it looks in the TM object repository to see if an element with

the same identifier as the target element identifier already exists. If no such element exists, PMT executes

16

largely as MT. However if such an element exists, PMT executes rather differently from MT. The object in

question is taken from the object repository and PMT and is altered into a form conformant with the model

element expression.

It is important to note the use of language in this subsection. When an element already exists it is not

necessarily changed to match the exact values dictated by the model element expression. Instead the element

has the minimal number of changes applied to it that make it conformant to the model element expression.

The word ‘conformant’ is important since, in the general case, an infinite number of differing target elements

may be conformant to a given execution of a model element expression. This is because the user can make

manual changes and additions to the target model which the transformation writer can, if they choose, allow

to remain even when changes are propagated.

In order to achieve this, model element expressions in PMT have additional syntax compared to MT.

Most importantly a model element expression in PMT comprises zero or moreslot conformances(which

are directly analogous to slot comparisons in model elementpatterns). In the example shown earlier, one can

see the use of twoconformance operators. PMT’s conformance operators are partially inspired by operators

found in xMOF. Some conformance operators are as follows:

Operator Name Description

x := y update Forcibly sets the value of slotx to y .

x :== y update if not equal If the value of slotx is not equal toy , forcibly sets the value of slot

x to y .

x :>= y update superset The value of slotx must be a non-strict superset ofy ’s value. Any

elements iny not present inx will be added tox. x may contain

elements not present iny .

The update conformance operator forcibly propagates changes from the updated source model to the target

model. The update if not equal conformance operator performs the same action, but only after checking

that the value of the slot in the target element is not equal tothe value generated by its associated model

expression. In practise, the two operators are very similar; however, since in some cases distinct objects can

compare equal the user may wish to specify precisely whetherthey wish the slot value and model expression

to hold exactly the same value, or merely two values which areequal. The update superset conformance

operator is more interesting since it does not imply, or force, the value of the slot in the target element to

be directly equal to the value generated by the model expression. Instead, the value of the slot in the target

element is altered to make sure it contains all the elements that the model expression says it should have;

if it has extra elements then those are left intact. In practise this operator is the chief means of allowing

changes to be propagated non-destructively.

One important point that may not be immediately obvious is that transformation writers still need to use

careful thought to determine when each should be used. For example, an inexperienced transformation

writer may choose to use the update operator in all slot conformances, since this will ensure that all changes

made to the source model. However if the slot in question contains a set then the users’ manual changes

made in the target model will be destroyed. In such cases, onewould generally expect the transformation

writer to use the updating slot conformance operator. In some cases, however, the transformation writer

may deliberately wish to ensure that the target model contains the transformed set elements, and nothing

else, in which case the update conformance operator is the correct choice. Knowledge of the appropriate

situations for each conformance operator is likely to be gathered only through knowledge of the source and

target domains, and experience with the change propagatingapproach.

17

Later in this paper I will examine other conformance operators. However the three conformance op-

erators detailed in this section are currently the only oneswhich forcibly alter target elements (the other

conformance operators described in section 5 check, ratherthan enforce, conformance). The reason for this

is that, between them, these operators appear to cover a verylarge part of the spectrum of change propagation

– certainly, they are sufficient for all examples in this paper.

3.4.1. Changes which can not be propagated

There are various types of changes which PMT is incapable of propagating. The most obvious class of such

problems relates to when the propagation of a change resultsin an ill-formed model (i.e. one which does

not conform to its meta-model). In such cases, a standard TM exception is thrown, and the user is informed.

Whilst this is currently a somewhat crude mechanism, it doesprevent incorrect target models being created.

The checking conformance operators detailed in section 5 provided an alternative means of detecting, and

reporting, changes which can not be propagated.

3.5. Running a PMT transformation

Running a PMT transformation is very different to MT (see [Tra05b]), which is largely a direct result of

the underlying conceptual difference between a stateless and a change propagating model transformation

approach. An MT transformation is passed a source model which it instantly transforms into a target model,

creating tracing information as it executes. Since a PMT transformation may be executed multiple times,

and since between executions its data may have been serialized to permanent storage, it operates in a funda-

mentally different fashion.

When run for the first time, a PMT transformation is initialized with only a source model. After the

transformation executes, the user can extract the target model and tracing information created during the

transformations execution. There are then two scenarios before change propagation will occur. The first

scenario is that, whilst the transformation is still ‘active’, the user modifies the source and target models.

Propagating changes then becomes a simple case of re-executing the transformation, which will automati-

cally pick up the changes made to the models. The second scenario is that after execution, the source and

target models, along with the tracing information, are serialized to a persistent store. The transformation

itself is then destroyed. Subsequent executions of the transformation thus require the transformation to be

reinitialized with the possibly updated source and target models, and the tracing information (which must

not have have been changed), all of which will have been deserialized from their persistent store. Once suit-

ably reinitialized, the transformation can then be executed to propagate changes. Both these scenarios are

likely to occur in the real world. Whilst the former scenariois likely to occur in short-lived tasks, or when

efficiency is key, the latter scenario reflects the practicalities of long-term use and development of particular

models. PMT transformations are designed to deal sensibly with both scenarios.

The code to run the example of section 3.2 looks as follows:

employee := ML2.ML2_Class("Employee")
manager := ML2.ML2_Class("Manager")
employee_manager := ML2.ML2_Association("PE", employee, manager, 0, 0, -1, 1, \

"employees", "manager")
personnel := ML2.ML2_Package("Personnel", Set{employee, manager, \

employee_manager})

transformation := ML2_to_ML1(personnel)
transformation.do_transform()

18

The unassuming, but important, difference between this andrunning an MT transformation is thedo trans-

form function on a transformation object. This function can potentially be called multiple times. Each time

it is called it will propagate changes from the source model to the target model.

Extracting the target model and tracing information from a PMT transformation is identical to MT.

For those instances when models need to be serialized to a persistent store, the TM package defines a

Serializer module. This is capable of serializing (i.e. saving) and deserializing (i.e. loading) models

and tracing information via theserialize,serialize tracing,deserialize, anddeserial-

ize tracing functions. A slightly simplified version of the code which serializes the ML2 to ML1

transformation is as follows:

src_file.write(Serializer.serialize(transformation.get_source()))
tgt_file.write(Serializer.serialize(transformation.get_target()))
tracing_file.write(Serializer.serialize_tracing(transformation.get_tracing(), \

transformation.get_tracing_rules()))

Appendix B.2 shows the output from serializing the source and target models, and tracing information after

the first execution of the example in section 3.2.

Reinitializing a PMT transformation involves initializing the transformation not only with the updated

source and target models, but also with the tracing information generated on the previous transformation run.

The tracing information generated by the previous execution does not play a direct part in the transformation;

it is used to determine which elements can be safely deleted from the target model (see section 3.6). An

entirely fresh set of tracing information is generated on each execution. A simplified version of the code

which deserializes the ML2 to ML1 transformation, and propagates changes is as follows:

src_model := Serializer.deserialize(src_file.read())
tgt_model := Serializer.deserialize(tgt_file.read())
old_tracing, old_tracing_rules := Serializer.deserialize_tracing(\

tracing_file.read())

transformation := ML2_to_ML1(personnel)
transformation.set_target(tgt_model)
transformation.set_old_tracing(old_tracing)

transformation.do_transform()

Models can be transformed, serialized, altered and have changes propagated into them an arbitrary number

of times.

3.6. Removing elements from the target model

An important part of change propagation is to ensure that when elements are removed from the source

model, target elements which were created by transforming the source elements in question are removed

from the target model. This requirement may at first appear tobe solved by examining all target elements at

the end of a transformation execution, and removing all target elements which were not created as the direct

result of transforming one or more source elements. Howeverthis simple solution would also delete any

elements manually added to the target model by the user, and as such is clearly not suitable for the use cases

PMT is aimed at. The critical problem is therefore to distinguish which seemingly superfluous elements in

the target model have been manually added by the user, and which are no longer a part of the transformation.

In order to determine which elements can be safely deleted inthe target model, PMT utilises tracing

information – both that generated by an execution of the transformation, and that generated by its previous

19

execution. After changes have been propagated, a PMT transformation examines every element in the target

model, checking whether it is referenced in either or both ofthe current and previous tracing information.

Based on this, PMT draws a conclusion about the origins of theelement and whether it is a candidate for

removal. The four possibilities for an element are as follows:

In previous

tracing info.?

In current

tracing info.?

Conclusion Candidate

for removal?
√ √

Target element previously manually created by PMT. ×

×
√

Target element newly created by PMT. ×

× × Target element previous added to target by user. ×
√

× Target element previously created by PMT; corre-

sponding source element now deleted.

√

Once every element has been examined, PMT performs a garbagecollection style ‘mark and sweep’

[JL99], using the transformed root set of source elements asthe starting point. Any self-contained cycle

consisting solely of elements marked as being candidates for removal, is then removed from the target

model. The need to identify self-contained cycles of such elements is to prevent the removal of elements

cause the target model to become ill-formed. This could occur if elements are removed from the model

even though they are referred to by other objects. An exampleof elements being removed after change

propagation can be seen in section 4.2.

3.7. Propagating changes between containers

Propagating changes between containers (e.g. sets and lists) raises two challenges not tackled earlier. The

first relates to the removal of elements in containers. The second challenge relates to the synchronising of

ordered containers. In this subsection I detail PMT’s solutions to these challenges.

3.7.1. Removing elements when propagating changes between containers

When elements are deleted from a container in a source model,and that container is transformed into a

container in the target model, PMT needs to be able to work outwhich elements in the target container

should be removed. This is a less than easy task because PMT needs to distinguish elements in the target

container which have been manually added by the user, and those that are the result of transforming a now

absent source element. In order to make this distinction, PMT uses a technique similar to the general element

removal technique of section 3.6.

When the updating superset operator attempts to propagate the changes from a containery to a slotx’s

value in a target element, it first adds every element ofy to x’s value if it is not already present therein.

It then iterates overx’s value, noting any elements inx’s value which are not present iny . When it finds

such elements, it first checks to see if the element is presentin the tracing information of the previous

transformation execution. If the element is not present, PMT assumes the additional element inx’s value is

a manually added element, and ignores it. If the element is present in the previous transformation execution’s

tracing information, PMT assumes that the element was originally added to the container by PMT, and can

now be removed from the container.

Due to a lack of sufficiently fine-grained information, this scheme has one notable problem – if a user

manually adds a target element into a container, and the source element that led to the creation of that

20

particular target element is subsequently deleted, then the element will be erroneously removed from the

container upon change propagation. Note that does not implythat the element will necessarily be removed

from the model; the element will only be removed – in the mark and sweep phase – if its membership of the

container was its only reference within the model.

3.7.2. Propagating change in ordered containers

Propagating changes to ordered containers is considerablymore complex than into unordered containers.

Not only are elements ordered, but the same element may appear more than once. This means that, for

example, it is not acceptable to merely check for the existence of a given element, since it may appear more

than once. Similarly, between transformation executions,elements may move their position within a list.

When a user is adding, removing, or moving elements within anordered container, the purpose of each

individual change is generally self-evident to them. From the point of view of a system viewing an arbitrary

number of such changes, any such intentions are lost.

The update superset conformance operator takes a simple minded approach to the problem. Given a target

slotx, and an ordered containery , it will ensure thatx’s value contains every element ofy in the order that

those elements are contained withiny . However it will tolerate an arbitrary number of extra elements within

x. Elements fromy are added intox as necessary. Looked at a different way, this mechanism ensures that

there is an ordered sublist ofx which is exactly equal toy . This scheme is less than ideal, since it can lead

to an incorrect duplication of elements in the target container.

4. The execution of a PMT transformation

Up until this point I have been deliberately vague on exactlywhat actually happens when a PMT transfor-

mation is executed. The reason for this is that PMT’s execution strategy runs contrary to a standard intuition

– as exemplified by Johann and Egyed [JE04] – of change propagation in operation. By deferring the expla-

nation of a PMT transformation until this point in the paper,I hope that enough material has been presented

to make explanation of this vital point practical.

Intuitively, the concept of change propagation seems simple: given a change in the source model, one

simply needs to rerun the few transformation rules which relate to the changed source elements in order to

propagate the change to the target model. For many small, localised changes – such as the renaming of a

class, as seen in the earlier example in this section – this strategy is adequate. Whilst this intuition is highly

appealing, it leads to a solution that can not propagate manytypes of changes correctly. At best this may

lead to a target model that is not synchronised with the source model; at worst, it may cause the target model

to become ill-formed.

In this section I first point out the problems with the intuitive change propagation approach, before pre-

senting PMT’s approach to transformation execution.

4.1. Propagating localised changes

The change propagating example of section 3.2 saw two main types of changes to the source model: the

alteration of the values of elements fields (e.g. changing a packages name), and the addition of elements.

The former type of change is intuitively simple to propagate. When thePersonnel package was renamed

to AcmeLtd in figure 6, all that is required to propagate the change is to rerun the transformation rule(s)

21

(a) Initial models. (b) A localised change relative to the initial
models.

(c) A non-localised change relative to the initial
models.

Figure 8: The concept of localised changes.

linked to by the tracing from the source element. A quick examination of figure 4 shows that rerunning

thePackage To Package rule with the source package in question as input will resultin the change

being correctly propagated. The latter type of change is slightly more complex, but intuitively somewhat

similar. One approach would be to first pass the new source element to thetransform function; any

source elements which have new links to the new element will be transformed using the same approach as

for propagating the change in package name.

The fundamental premise behind this intuitive notion is that the propagated changes are what I term

localised. Note that this term does not directly relate to the localityof alterations in the source model, but

instead to the locality of the necessary changes to be propagated to the target model and the relation of

those changes to the altered source elements. Figure 8 showsan abstract example of a transformation, and

localised and non-localised change propagation. If changes are localised, then changes to elements in the

source model can be propagated by rerunning the rules which originally applied to the those elements. This

has two implications. Firstly, that changes in the source model will lead to changes in the target model of a

similar granularity; in other words, that changes local to aparticular part of the source model should lead to

similarly local changes in the appropriate part of the target model. The second implication follows from the

first: that the source and target models are likely to be mostly, or wholly, isomorphic.

Before I justify these two implications, it is instructive to see why they are implicit in the, rather lim-

ited, literature on the subject. For example, Johann and Egyed [JE04] describe a system that is almost

wholly targeted at localised changes; despite not being directly model related, Varró and Varró describe a

similar system [VV04]. By assuming that changes are localised, both approaches are able to make change

propagation highly efficient by only running the rules directly related to a particular change. The ability

to highly optimise change propagation in the face of localised changes is a compelling reason to treat such

changes as a special case. Unfortunately neither approach is capable of propagating non-localised changes

correctly. Johann and Egyed [JE04] describe what they term ‘semantic changes’ as ‘simple changes in the

22

Figure 9: Source model.

source model that cause a variety of ripple effects among multiple/many target elements’, but do not present

a solution to this problem. I believe the reason for this omission is that many toy transformations, such as

the example of section 3.2, are expressed in such a way that only localised changes will ever need to be

propagated.

4.1.1. Non-localised changes in practise

Two concrete examples demonstrate the problem of non-localised change. In order to demonstrate this,

I return to the advanced variant of the UML modelling language to relational database transformation, as

defined in [Tra05b]. I assume that the hypothetical change propagating transformation which would perform

this task follows a similar structure to the MT solution for this problem, as defined in [Tra05b].

Consider first the (slightly elided) source model of figure 9,and the corresponding target model in fig-

ure 10. Imagine first what would happen were we to change the value of theis persistent slot in

Address class of figure 9 to1. When we execute the transformation to propagate transformations, intu-

itively we would expect to see the target model contain two tables, and for all the columns prefixed with

address to be removed from theCustomer table. Using a technique similar to that outlined by Johann

and Egyed, this intuitive idea may or may not be matched by reality. In the initial transformation execution

the Association Non Persistent Class To Columns would have matched theAddress

class and transformed it. However by marking it as persistent, that rule is no longer able to match (the

Persistent Association To Columns would however now match), and so change propagation

can not occur using the original rule. Johann and Egyed are vague as to what happens when an alteration

to the source model means that change propagation can not occur with the original rule which transformed

that element. However one can imagine that when such a case isdetected the transformation system would

look for a different rule which does match the changed sourceelement.

Taking the same source model of figure 9, and the corresponding target model in figure 10 as the ba-

sis for the second example, consider the effect of changing thepostcode Attribute’s is primary

key to 1. Upon change propagation, one would expect to see a newpkey link from the Customer

class to theaddress postcode column. Assuming, as in the previous example, that alternative rules

can be executed when an alteration to a source element invalidates the original rule that transformed it,

Johann and Egyed’s scheme will not be able to create this link– in fact, the change propagation will

not make any changes to the target model at all. This is due to the non-localised nature of the change.

Intuitively, although thepostcode Attribute is changed, the rule which will be rerun (in this case

23

Figure 10: Target model.

Primary Primitive Type Attribute To Columns) will only transform theAttribute it-

self; any new primary key links it created will be discarded as the transformation will be unaware that the

link needs to be considered in an outer context. In other words, although the primary key link will be cre-

ated, since the transformation rule which transforms classes to tables is not rerun, it will not be incorporated

into the transformed table. In general, since the appropriate outer context that needs to be considered may

be an arbitrary number of levels away from the element changed, and since the appropriate context can not

be determined in advance, rerunning only part of the transformation can never be guaranteed to propagate

all changes correctly.

It is left as an exercise to the reader to spot other cases in this example which will similarly foil a change

propagation scheme only capable of propagating localised changes. As the examples of this subsection have

demonstrated, such schemes have a fundamental weakness when propagating such changes. In the following

section, I demonstrate how PMT’s more general scheme is capable of propagating such changes correctly.

4.2. PMT’s approach

The fundamental challenge with non-localised changes is todetermine the particular rules to execute given

a particular alteration of the source model. This requires an analysis of all the transformation rules in a

system to determine which are relevant to particular changes. In a fully declarative approach such analysis

may be possible, although it may be impractical or even impossible depending on the expressive power of

the approach. However in a hybrid declarative / imperative approach such as PMT’s, analysis of this sort is

impossible in the general case – whilst PMT’s use of patternsmay facilitate analysis in some cases, any use

of imperative code (particularly code which calls out to Converge libraries) irreparably muddies the waters.

The criteria for PMT’s execution approach is thus simple: itmust be capable of propagating non-localised

changes successfully, and it must be capable of doing so evenwhen it can not analyse the transformation

and its rules.

PMT’s execution approach thus takes the only solution whichcan ensure correct operation in all cases:

change propagation involves a complete re-execution of thetransformation. By executing the transformation

from the beginning, PMT implicitly propagates even non-localised changes. The downside to this approach

is that rerunning the entire transformation is not efficient. However since PMT is, by design, a batch change

propagation approach (see section 2.3), I believe this is considerably less of a problem than it would be for

an immediate change propagation approach.

The efficacy of PMT’s approach is best seen by example. In order to present a meaningful comparison, I

24

:Class

mod_id = "11"
name = "Customer"

is_persistent = 1

:Attribute

mod_id = "12"
is_primary = 1
name = "name"

attrs

:PrimitiveDataType

mod_id = "10"
name = "String"

type

:Association

mod_id = "19"
name = "address"

src

:Class

mod_id = "13"
name = "Address"
is_persistent = 0

dest

:Attribute

mod_id = "14"
is_primary = 1
name = "house"

attrs

:Attribute

mod_id = "15"
is_primary = 0
name = "addr2"

attrs

:Attribute

mod_id = "16"
is_primary = 0
name = "addr3"

attrs

:Attribute

mod_id = "17"
is_primary = 0
name = "county"

attrs

:Attribute

mod_id = "18"
is_primary = 0
name = "postcode"

attrs

type type type type type

Figure 11: Initial source model.

use exactly the same example as in the previous subsection. In order to have a PMT version of the advanced

variant of the UML modelling language to relational database transformation from [Tra05b], one simply

needs to substitute$<PMT.mt> for $<MT.mt> in the transformation code. Although this does not lead

to a particularly idiomatic PMT transformation, it saves duplicating the code, and demonstrates how close

MT and PMT are in many aspects. Figure 11 shows the initial source model, and figure 12 the target

model1 created by running theClasses To Tables transformation. Figure 13 shows the updated

source model, with theAddress class marked as being persistent, and thepostcode attribute marked as

being part of a primary key. Figure 14 shows the result of change propagation on the target model.

As this example shows, PMT’s change propagation approach ensures that all changes – including non-

localised changes – are propagated successfully. I believethe relative inefficiency of this method is thus

offset by its ability to propagate non-localised changes correctly. Section 7 discusses potential techniques to

increase the efficiency of PMT change propagation in some circumstances.

5. Checking conformance operators

In some situations in a change propagating transformation,the transformation writer may wish to explicitly

prevent some types of change propagation from occurring, orensure that certain relationships between the

source and target models always hold. This is potentially very important for PMT’s use cases, where the

transformation writer may need to constrain the modifications that the user can perform to the target model

in order to ensure correct change propagation.

PMT provides support for such use cases by providingcheckingconformance operators (in contrast to the

updating conformance operators of section 3.4). By using checking conformance operators, transformation

writers are able to write change propagation specifications. Note that any given model element expression

may contain updatingand checking conformance operators; change propagation specifications thus may

live directly alongside change propagation implementations.

1Note that the occurrence of four ‘’ characters in target identifiers is the result of an implementation detail regarding the identifier
of built-in Converge data types such as strings, and can be safely ignored.

25

:Table

mod_id = "Persistent_Class_To_Table_0__11__19"
fkeys = []

name = "Customer"

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0____12"
type = "String"

name = "name"

pkey cols

x

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0__address__15"
type = "String"

name = "address__addr2"

cols

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0__address__16"
type = "String"

name = "address__addr3"

cols

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0__address__14"
type = "String"

name = "address__house"

cols

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0__address__17"
type = "String"

name = "address__county"

cols

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0__address__18"
type = "String"

name = "address__postcode"

cols

y

Figure 12: Initial target model.

26

:Class

mod_id = "11"
name = "Customer"

is_persistent = 1

:Attribute

mod_id = "12"
is_primary = 1
name = "name"

attrs

:PrimitiveDataType

mod_id = "10"
name = "String"

type

:Association

mod_id = "19"
name = "address"

src

:Class

mod_id = "13"
name = "Address"
is_persistent = 1

dest

:Attribute

mod_id = "14"
is_primary = 1
name = "house"

attrs

:Attribute

mod_id = "15"
is_primary = 0
name = "addr2"

attrs

:Attribute

mod_id = "16"
is_primary = 0
name = "addr3"

attrs

:Attribute

mod_id = "17"
is_primary = 0
name = "county"

attrs

:Attribute

mod_id = "18"
is_primary = 1
name = "postcode"

attrs

type type type type type

Figure 13: Updated source model before change propagation.

The following checking conformance operators are defined byPMT:

Operator Name Description

x == y equality Check that the value of slotx is equal to the value ofy .

x != y inequality Check that the value of slotx is not equal to the value ofy .

x >= y superset Check that the value of slotx is a non-strict superset ofy ’s value.

x <= y subset Check that the value of slotx is a non-strict subset ofy ’s value.

These operators perform the checks specified in the table, and produce aconflict reportif the checks fail.

A conflict report consists of a number of conflict records. A conflict record pinpoints a specific part of the

target model as being non-conformant relative to the rule containing the failing checking conformance oper-

ator. Individual conflict records may optionally be able to show what changes would make the target model

conformant. The intention of such reports is to report to theuser a particular sequence of modifications

which, if manually applied to the target model by the user, would make it conformant.

In order to demonstrate checking conformance operators, I once again reuse the example of section 3.2

replacing thePackage To Package rule with the following:

rule Package_To_Package:
srcp:
(ML2_Package)[name == <n>, elements == <elements>]

tgtp:
(ML1_Package)[name == n, elements >= tgt_elements]

Essentially this is the same rule as before, but with the updating conformance operators in thetgtp clauses’

pattern replaced with equivalent checking conformance operators. Similarly I reuse the initial source model

of figure 3, which leads to the creation of the same target model as figure 4. I then assume the user alters

the target model as per figure 5, and the source model as per figure 6. When propagating changes with the

newPackage To Package rule in place, the result of the change propagation is shown in figure 15.

Conflicts are clearly shown in red.

The visualization of conflicts in PMT intentionally reuses the visualization techniques from other parts

of PMT, with the aim of reducing the learning burden for the user. The ‘Conflict report’ in figure 15 is

27

:Table

mod_id = "Persistent_Class_To_Table_0__11__19"
name = "Customer"

x

fkeys

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0__address__14"
type = "String"

name = "address__house"

cols

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0__address__18"
type = "String"

name = "address__postcode"

cols

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0____12"
type = "String"

name = "name"

cols pkey

y

:Table

mod_id = "Persistent_Class_To_Table_0__13"
fkeys = []

name = "Address"

z

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0____17"
type = "String"

name = "county"

cols

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0____16"
type = "String"

name = "addr3"

cols

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0____14"
type = "String"

name = "house"

pkey cols

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0____18"
type = "String"

name = "postcode"

pkey cols

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0____15"
type = "String"

name = "addr2"

cols

Figure 14: Updated target model after change propagation.

28

analogous to the ‘Tracing’ report. In a similar fashion to traces, conflicts are named cn wheren is an

integer starting from 1. Each separate conflict is generatedduring a particular execution of a transformation

rule. Figure 15 shows two types of conflicts. Conflict ‘c1’ shows that thename slot in thePersonnel

package has an incorrect value. Note that the conflict text issurrounded by a rounded box, and the link to

the element is a dotted line – these visualizations only occur in conflict reports, and can not be confused

with the normal visualization of elements. Conflict ‘c2’ shows elements missing from theelements slot

of thePersonnel package. Model elements, and links, in solid (as opposed to broken) red lines show

that such elements need to be added to the target model in order to make it conformant. The ‘+’ prefix is

a reinforcement of this. Note that the conflict report itselfdenotes only that the twoML1 Association

elements, theML1 Class element and the links from thePersonnel package to those elements, need

be added to the target model. However the visualization of the conflict also shows the links between these

elements (theto andfrom links), since these are implicitly required in order to makethe target model well

formed. It is important that this information is shown to theuser; if it was not, then fixing a conflict report

may simply result in another conflict report being generatedfor a part of the model just added.

Conflict reports create some interesting corner cases. To give a simple example of this, I assume a

fresh execution of theClasses To Tables, once again reusing the initial source and target models

of figures 3 and 4 respectively. Removing thePE association from the source model and executing the

transformation to propagate changes leads to figure 16. The long dashes on the links from thePersonnel

package (combined with the ‘-’ preceding the conflict name onthe link) indicate that they should be removed

from the target model in order to make it conformant. Howeverone might have expected to see the two

ML1 Association elements also being drawn in red dashed lines to signify their removal. However,

PMT is unable to do this because although the links from thePersonnel shouldbe deleted from the

target model, they are not yet deleted. Therefore the twoML1 Association elements are reachable via

these links and via the garbage collection style algorithm that PMT runs at the end of the transformation

(see section 3.6) these two elements are considered to be a valid part of the target model.

Section 6.2 explains the implementation of conflicts in PMT in more detail.

6. Implementation

Unsurprisingly, given its origins, PMT’s implementation is largely similar to MT’s. The majority of PMT’s

features are simple changes to MT code using the techniques outlined in [Tra05b], and as such are not

documented in detail in this section. Instead I detail two particular parts of PMT’s implementation that

are of additional interest over MT’s implementation. PMT’sgrammar, which is referenced throughout this

section, can be found in appendix A.

6.1. Conformance operators

A simplified version of the t pt mep pattern traversal function, which only contains the code for

the>= checking conformance operator operating on unordered containers, is given below:

1 func t pt mep pattern(node):
2 // pt mep pattern ::= "(" "ID" ")" "[" "ID" pt mep pattern op expr { ","
3 // "ID" pt mep pattern op expr }* "]"
4

5 class := [| TM. CLASSES REPOSITORY[$<<CEI.lift(node[2].value)>>] |]
6 conformance operators := []

29

:ML2_Package

mod_id = "13"
name = "AcmeLtd"

:ML2_Association

mod_id = "12"
name = "PE"
end2_name = "manager"
end1_name = "employees"
end2_multiplicity = 1
end1_multiplicity = -1
end2_directed = 0

end1_directed = 0

elements

:ML2_Class

mod_id = "11"
name = "Manager"

parents = []

elements

:ML2_Class

mod_id = "10"
name = "Employee"

parents = []

elements

:ML2_Class

mod_id = "14"
name = "DepartmentHead"

parents = []

elements

:ML2_Association

mod_id = "15"
name = "manager"
end2_name = "reports_to"
end1_name = "oversees"
end2_multiplicity = 1
end1_multiplicity = -1
end2_directed = 0

end1_directed = 0

elements

:ML1_Package

mod_id = "Package_To_Package_0__13"
name = "Personnel"

parents = []

t6

end2end1

:ML1_Association

mod_id = "Association_To_Association_0__12"
name = "manager"

multiplicity = 1

t3

:ML1_Association

mod_id = "Association_To_Association_1__12"
name = "employees"

multiplicity = -1

t3

:ML1_Class

mod_id = "Class_To_Class_0__11"
name = "Manager"

parents = []

t2

:ML1_Class

mod_id = "Class_To_Class_0__10"
name = "Employee"

parents = []

t1

end1end2 elements elements

elementselements

:ML1_Association

mod_id = "17"
name = "secondary_manager"

multiplicity = 1

elements

:ML1_Class

mod_id = "Class_To_Class_0__14"
name = "DepartmentHead"

parents = []

c2: +elements

:ML1_Association

mod_id = "Association_To_Association_0__15"
name = "reports_to"

multiplicity = 1

c2: +elements

:ML1_Association

mod_id = "Association_To_Association_1__15"
name = "oversees"

multiplicity = -1

c2: +elements

tofrom fromto tofrom

Tracing
Class_To_Class: t1, t2, t4

Association_To_Association: t3, t5

Package_To_Package: t6

c1: Slot ’name’ should be set to ’AcmeLtd’

from toto from

Conflicts
Package_To_Package: c1, c2

Figure 15: Target model with conflicts.

30

:ML2_Package

mod_id = "13"
name = "Personnel"

:ML2_Class

mod_id = "11"
name = "Manager"

parents = []

elements

:ML2_Class

mod_id = "10"
name = "Employee"

parents = []

elements

:ML1_Package

mod_id = "Package_To_Package_0__13"
name = "Personnel"

parents = []

t3

:ML1_Class

mod_id = "Class_To_Class_0__11"
name = "Manager"

parents = []

t1

:ML1_Class

mod_id = "Class_To_Class_0__10"
name = "Employee"

parents = []

t2elements elements

:ML1_Association

mod_id = "Association_To_Association_0__12"
name = "manager"

multiplicity = 1

c1: -elements

:ML1_Association

mod_id = "Association_To_Association_1__12"
name = "employees"

multiplicity = -1

c1: -elements

to fromfrom to

Tracing
Class_To_Class: t1, t2

Package_To_Package: t3

Conflicts
Package_To_Package: c1

Figure 16: Target model with conflicts after elements are removed from the source model.

7 i := 5
8 while i < node.len() & node[i].type == "ID":
9 if node[i + 1][2].type == ">=":

10 // pt mep pattern op ::= ":" ">="
11 conformance operators.extend([|
12 val := $<<self.preorder(node[i + 2])>>
13 if Func Binding(&obj, Object.fields["get slot"])(" is initialized") \
14 == 0:
15 &obj.$<<CEI.name(node[i].value)>> := val
16 elif val.conforms to(Set):
17 should be in the set := []
18 should not be in the set := []
19

20 for set elem := &obj.$<<CEI.name(node[i].value)>>.iterate():
21 if not val.contains(set elem):
22 for in objs, out objs := &self. old tracing.iterate():
23 if out objs.contains(set elem):
24 should not be in the set.append(set elem)
25 break
26

27 for set elem := val.iterate():
28 if not &obj.$<<CEI.name(node[i].value)>>.contains(set elem):
29 should be in the set.append(set elem)
30

31 if should be in the set.len() == 0 & \
32 should not be in the set.len() == 0:
33 pass
34 else:
35 &self. conflict objects.append(Conflict.Set Conflict(\
36 $<<CEI.lift(self. rule name)>>, &matched objs, &obj, \
37 $<<CEI.lift(node[i].value)>>, should be in the set, \
38 should not be in the set))
39 else:
40 raise Type Exception(Set)
41 |])

31

42

43 return [|
44 func () {
45

46 new id := identifier based on rule name union of source elements etc.
47

48 if TM.OBJECTS REPOSITORY.contains(new id):
49 obj := TM.OBJECTS REPOSITORY[new id]
50 else:
51 obj := $<<class >>.new with id(new id)
52

53 $<<conformance operators>>
54

55 return obj
56 }()
57 |]

There are two distinct parts to this function. Lines 43 – 55 show the core of the extended model element

expressions in PMT. Line 45 calculates the identifier for themodel element expression (see section 3.3).

Line 47 then checks the TM model element repository to see whether an element with such an identifier

already exists. If it does, that element is plucked from the repository (line 48). If it does not, a blank element

of the correct type is created (line 50). The element, blank or otherwise, is then handed to the various

conformance operators (line 52).

The superset operator is indicative of the the conformance operators in general (sections 3.4 and 5). Firstly

the the model element expression is evaluated in line 12. Line 13 then checks to see whether the element

has been initialized (meaning that a blank element was created in line 50); if it has not, then the value of

the user expression is simply assigned to the appropriate slot and the conformance operator automatically

succeeds. If the slot does contain a value, then lines 16 – 37 check the value of the slot for conflicts against

the user expression. Lines 19 – 24 check for elements in the slots value that PMT tentatively believes should

not be there (see section 3.7.1), while lines 26 – 28 check forelements in the user expression which should

be present in the list. If PMT detects that there are elementsin the set which should or should not be there,

then it generates a conflict report in lines 34 – 37.

6.2. Conflicts

Although conflict reports are generated by PMT, the conflict concept is housed within TM since it needs to

understand conflicts in order to be able to visualize them. TMdefines a simple model of conflicts which is

used to record the required information. Although the modelof conflicts is largely an internal detail to PMT

and TM, the model presented in this subsection captures the required information in a simple manner; I hope

that as other types of conflict reports are needed, it serves as a practical and efficient base for expansion.

TM currently defines three types of conflict records: slot conflicts, list conflicts, and set conflicts. Conflict

records conform to the model of figure 17. As this shows, all conflict records share certain things in common.

All conflicts are generated from a particular rule (capturedby therule name slot), are the result of

transforming one or more source elements (thesrc objs association), and are specific to a particular

slot name within a give target element (thetgt obj association).

Slot conflicts show when a slot with a primitive type (e.g. strings or ints) has an incorrect value. In such a

case, theconflict obj records the value the slot should have. List and set conflictscan be considered

together, since they store highly similar information. In each case they record zero or more elements which

should be in the given container, and zero or more elements which should not be in the container. As

32

Figure 17: Conflict report model.

explained in section 3.7.1, at the time a conflict record is generated the list of elements which should not

be in the container is only tentative; PMT and TM currently record all such elements, but dynamically filter

them out when required to display conflict information.

7. Future work

Given its inherently experimental nature, PMT raises many questions and challenges for further work. As

part of this, several engineering issues will need to be addressed before real-world usage is a possibility.

Such issues include devising a practical mechanism for creating target identifiers that is more robust than

the current string concatenation method, and so on. HoweverI believe that once engineering issues are put

to one side, two higher-level challenges are of particular interest.

The first is a relatively short term goal. PMT’s approach to removing extraneous elements from the target

model is often effective, but fails to remove elements if thelinks to those elements have existed for more

than one round of change propagation. Since PMT uses the tracing information of the previous execution,

if an element survives being removed in more than one round ofchange propagation, then PMT incorrectly

assumes it has been manually added to the target model by the user. PMT can also, in some rarer cases,

erroneously delete manually added links from the target model. Finding a practical means of accurately

determining which elements can be safely removed from the target model would considerably improve the

overall user experience of change propagation in PMT.

The second challenge I would consider to be a longer term goal, and relates to the efficiency of the

approach. As explained in section 4.2, change propagation in PMT involves executing the whole trans-

formation from the beginning. Whilst has the advantage thatit can propagate even non-localised changes

correctly, it is inevitably somewhat slow. On the other hand, approaches like Johann and Egyed optimise

change propagation, but at the considerable expense of correctness. I believe that PMT’s approach is a nec-

essary ‘fall back’ option, but that there are two ways that may allow PMT to execute only a subset of the

transformation in some cases. The first mechanism is directly influenced by Johann and Egyed. It may be

possible to perform detailed analysis of some transformation rules, since model element patterns and model

element expressions not containing arbitrary Converge code are effectively declarative statements relating

two models. In such cases, it may then be possible to use this knowledge to determine that certain small

changes only affect certain rules. The second mechanism maybe complementary to the first: often the user

will know whether certain of their transformations will be involved in the propagation of certain changes. If

the user knows that certain types of changes are the ones mostfrequently propagated, they may be willing

to ‘mark up’ parts of the transformation to indicate that certain paths need not be taken or, alternatively,

33

that certain paths must be taken, in the context of specific changes. I believe that working out appropri-

ate analyses, and also practical mechanisms for ‘marking up’ a transformation for change propagation are

considerable, but highly worthwhile, challenges.

8. Summary

In this paper I presented the PMT change propagating model transformation language. I started the paper

by examining in more depth some of the issues, and design decisions, facing any change propagating model

transformation approach. The motivating use case for PMT – allowing the user to manually alter the target

model, whilst still allowing changes to be propagated into the altered model non-destructively – is important

in understanding several of PMT’s design decisions. I then presented PMT itself, exploring its approach to

change propagation by example. PMT was shown to be capable ofpropagating even non-localised changes

correctly. This led to an identification of some areas where PMT’s change propagation techniques were

effective, and some areas where they fell short of what one may wish for.

Despite its immaturity – particularly in comparison to MT upon which it is based – I believe that PMT

is among the very first change propagating model transformation approaches to make a genuine attempt at

exploring techniques for facilitating likely real-world scenarios. Although it can by no means be consid-

ered to be production ready in its current form, I believe it provides a basis for further exploration of this

challenging and exciting area.

34

A. PMT grammar

PMT’s grammar is identical to MT’s with the exception of thept mep pattern rule whose updated

definition is as follows:

pt_mep_pattern ::= "(" "ID" ")" "[" "ID" pt_mep_pattern_op expr { "," "ID"
pt_mep_pattern_op expr }* "]"

::= "(" "ID" ")" "[" "]"
pt_mep_pattern_op ::= ":="

::= "=="
::= ":" "=="
::= "!="
::= ">="
::= ":" ">="
::= "<="

35

B. Model serializer

B.1. Overview

The TM Serializer module comprises functions to serialize and deserialize TMmodels, and tracing

information. The serializer is essentially a simple graph walking function which flattens a model into an

XML tree structure; references between nodes are made by using model elements’ identifiers and an XML

attributeid.

The deserializer is slightly more complex in operation. It utilizes Converge’sXML.Whole Parser

module which provides a simple mechanism for parsing and traversing an XML file. The problem the

deserializer faces is that as it works through its input creating appropriate model elements, it may find anid

reference to an element which has not yet been created. In such cases, it creates a blank TM model element

which it uses as a dummy holder to be filled in later when the full definition of the element is encountered in

the file. This however means that during the process of deserialization the model being created may not be

conformant to its meta-model. In order to prevent exceptions being raised whilst the model is deserialized,

the deserializer sets theis initialized field of each element to0, ensuring that checks against the

meta-model are not made. When all elements are completely deserialized, it then goes back over each

element, setting this field to1, finally running the meta-models constraints against the meta-model to ensure

that it has been recreated correctly.

B.2. Example output

This section shows the XML output from the TMSerializer model on the example of section 3.2.

Firstly the ML2 input model:

<Model>
<Element id="13" of="ML2_Package">
<Attribute name="name">

<String val="Personnel" />
</Attribute>
<Attribute name="elements">

<Set>
<Ref ref="12" />
<Ref ref="11" />
<Ref ref="10" />

</Set>
</Attribute>

</Element>
<Element id="12" of="ML2_Association">
<Attribute name="name">

<String val="PE" />
</Attribute>
<Attribute name="end2_name">

<String val="manager" />
</Attribute>
<Attribute name="end1_name">

<String val="employees" />
</Attribute>
<Attribute name="end2_multiplicity">

<Int val="1" />
</Attribute>
<Attribute name="end1_multiplicity">

<Int val="-1" />
</Attribute>

36

<Attribute name="end2_directed">
<Int val="0" />

</Attribute>
<Attribute name="end1_directed">

<Int val="0" />
</Attribute>
<Attribute name="end2">

<Ref ref="11" />
</Attribute>
<Attribute name="end1">

<Ref ref="10" />
</Attribute>

</Element>
<Element id="11" of="ML2_Class">
<Attribute name="name">

<String val="Manager" />
</Attribute>
<Attribute name="parents">

<List>

</List>
</Attribute>

</Element>
<Element id="10" of="ML2_Class">
<Attribute name="name">

<String val="Employee" />
</Attribute>
<Attribute name="parents">

<List>

</List>
</Attribute>

</Element>
</Model>

Then the ML1 target model produced by the transformation on its initial execution:

<Model>
<Element id="Package_To_Package_0__13" of="ML1_Package">
<Attribute name="name">

<String val="Personnel" />
</Attribute>
<Attribute name="parents">

<List>

</List>
</Attribute>
<Attribute name="elements">

<Set>
<Ref ref="Association_To_Association_0__12" />
<Ref ref="Association_To_Association_1__12" />
<Ref ref="Class_To_Class_0__11" />
<Ref ref="Class_To_Class_0__10" />

</Set>
</Attribute>

</Element>
<Element id="Association_To_Association_0__12" of="ML1_Association">
<Attribute name="name">

<String val="manager" />
</Attribute>
<Attribute name="multiplicity">

<Int val="1" />

37

</Attribute>
<Attribute name="to">

<Ref ref="Class_To_Class_0__11" />
</Attribute>
<Attribute name="from">

<Ref ref="Class_To_Class_0__10" />
</Attribute>

</Element>
<Element id="Association_To_Association_1__12" of="ML1_Association">
<Attribute name="name">

<String val="employees" />
</Attribute>
<Attribute name="multiplicity">

<Int val="-1" />
</Attribute>
<Attribute name="to">

<Ref ref="Class_To_Class_0__10" />
</Attribute>
<Attribute name="from">

<Ref ref="Class_To_Class_0__11" />
</Attribute>

</Element>
<Element id="Class_To_Class_0__11" of="ML1_Class">
<Attribute name="name">

<String val="Manager" />
</Attribute>
<Attribute name="parents">

<List>

</List>
</Attribute>

</Element>
<Element id="Class_To_Class_0__10" of="ML1_Class">
<Attribute name="name">

<String val="Employee" />
</Attribute>
<Attribute name="parents">

<List>

</List>
</Attribute>

</Element>
</Model>

And finally the tracing information generated by the transformation on its initial execution:

<Tracing>
<Trace rule="Class_To_Class">
<From>

<Ref ref="10" />
</From>
<To>

<Ref ref="Class_To_Class_0__10" />
</To>

</Trace>
<Trace rule="Class_To_Class">
<From>

<Ref ref="11" />
</From>
<To>

<Ref ref="Class_To_Class_0__11" />
</To>

38

</Trace>
<Trace rule="Association_To_Association">
<From>

<Ref ref="12" />
</From>
<To>

<Ref ref="Association_To_Association_0__12" />
<Ref ref="Association_To_Association_1__12" />

</To>
</Trace>
<Trace rule="Package_To_Package">
<From>

<Ref ref="13" />
</From>
<To>

<Ref ref="Package_To_Package_0__13" />
</To>

</Trace>
</Tracing>

39

References

[AP04] Marcus Alanen and Ivan Porres. Change propagation ina model-driven development tool.

Presented at WiSME part of UML 2004, October 2004.

[BM03] Peter Braun and Frank Marschall. Botl – the bidirectional object oriented transformation

language. Technical Report TUM-I0307, Institut für Informatik der Technischen Universität

München, May 2003.

[CESW04] Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied metamod-

elling: A foundation for language driven development, September 2004. Available from

http://www.xactium.com/ Accessed Sep 22 2004.

[CS03] Compuware and Sun. XMOF queries, views and transformations on models using MOF, OCL

and patterns, August 2003. OMG documentad/2003-08-07.

[DIC03] DSTC, IBM, and CBOP. MOF query / views / transformations first revised submission, August

2003. OMG documentad/2003-08-03.

[JE04] Sven Johann and Alexander Egyed. Instant and incremental transformation of models. Septem-

ber 2004.

[JL99] Richard Jones and Rafael Lins.Garbage Collection: Algorithms for Automatic Dynamic Mem-

ory Management. Wiley, 1999.

[OJ04] Compuware.OptimalJ, 2004. http://www.compuware.com/products/optimalj/.

[RR93] Ganesan Ramalingam and Thomas Reps. A categorized bibliography on incremental com-

putation. InProc. 20th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 502–510, 1993.

[TC03] Laurence Tratt and Tony Clark. Issues surrounding model consistency and QVT. Technical

Report TR-03-08, Department of Computer Science, King’s College London, December 2003.

[Tra05a] Laurence Tratt. Model transformations and tool integration. Journal of Software and Systems

Modelling, 4(2):112–122, May 2005.

[Tra05b] Laurence Tratt. The MT model transformation language. Technical Report TR-05-02, Depart-

ment of Computer Science, King’s College London, May 2005.

[VV04] Gergely Varró and Dániel Varró. Graph transformation with incremental updates. InProc.

GT-VMT 2004, International Workshop on Graph Transformation and Visual Modelling Tech-

niques, ENTCS, March 2004. To appear.

40

