
Direct Left-Recursive Parsing Expression Grammars

Laurence Tratt
laurie@tratt.net

October 25, 2010

Technical report EIS-10-01
Middlesex University, The Burroughs, London, NW4 4BT, United Kingdom.



Direct Left-Recursive Parsing Expression
Grammars

Laurence Tratt laurie@tratt.net

October 25, 2010

Abstract. Parsing Expression Grammars (PEGs) are specifications of un-
ambiguous recursive-descent style parsers. PEGs incorporate both lexing
and parsing phases and have valuable properties, such as being closed under
composition. In common with most recursive-descent systems, raw PEGs
cannot handle left-recursion; traditional approaches to left-recursion elim-
ination lead to incorrect parses. In this paper, I show how the approach
proposed for direct left-recursive Packrat parsing by Warth et al. can be
adapted for ‘pure’ PEGs. I then demonstrate that this approach results
in incorrect parses for some PEGs, before outlining a restrictive subset of
left-recursive PEGs which can safely work with this algorithm. Finally I
suggest an alteration to Warth et al.’s algorithm that can correctly parse a
less restrictive subset of directly recursive PEGs.

1 Introduction

Parsing is the act of discovering the structure of text with respect to a particular
grammar. Parsing algorithms such as LL and LR parsing were developed alongside
the first generation of high level programming languages. In general, such parsing
algorithms aim to parse subsets of the full class of Context Free Grammars (CFGs).
By limiting the class of parseable languages, such algorithms are both time and space
efficient, considerations that were of huge practical importance given the performance
limitations of hardware available at the time. In this classical sense, parsing is generally
split into two phases. In the first phase, tokenization (or ‘lexing’) splits the input into
distinct tokens (or ‘lexemes’), which can be broadly thought of as being similar to
splitting English text into words. In the second phase, the token stream is parsed,
checking that it conforms to the user’s grammar and, optionally, ordering it into a tree
structure (the parse tree). While both tokenizers and grammars can be written by
hand, it is common to use specialised tools to generate them from customised domain
specific languages (e.g. the ubiquitous yacc tool). The speed of modern computers
means that relatively inefficient approaches to parsing are now often practical. For
example, Earley’s algorithm [1] can parse the entire class of CFGs; while it is O(n3),
even a simple implementation can parse in the low thousands of lines per second [2]. For
many people, parsing is a solved problem: there are a wide variety of well understood
algorithms, with a reasonable body of knowledge about which are the most suitable in
differing circumstances.

Traditional parsing algorithms have one major weakness: it is at best difficult, and
generally impossible, to combine two parsers. For example, one may wish to embed SQL

1



inside Java so that SQL expressions can be used wherever a Java expression is expected;
such examples require a parser which understands both constituent languages. Ideally
one would like to take existing, separate, Java and SQL parsers and combine them.
Many parsing algorithms restrict the class of grammars they can accept (in general
to a subset of CFGs); for most such approaches, combining two valid grammars can
lead to a grammar which falls outside the class of valid grammars. Equally critically,
the separation of the tokenization and parsing phases hinders switching between the
different language parsers. Put simply, since tokenizers are largely stateless they cannot
know when to stop tokenizing (meaning that the Java tokenizer may raise an error when
it comes across SQL input)—attempts to hack around this problem are rarely pleasant
and generally fragile.

Visser introduced arguably the first practical scannerless parsing approach [3], which
unites the tokenization and parsing phases, making the combination of grammars prac-
tical. Visser’s approach has no theoretical problem combining grammars, since it can
parse the full class of CFGs, and CFGs are closed under composition—however a com-
bined grammar may contain new ambiguities relative to its constituent parts. Since
the static detection of ambiguity is, in general, impossible, this can make grammar
composition a difficult exercise in practice.

Ford introduced Parsing Expression Grammars (PEGs) [4] which are an alternative
approach to scannerless parsing. PEGs have three major differences when compared
to other parsing approaches. First, the class of languages PEGs can express has no
relation to CFGs. Second, PEGs describe an unambiguous parser; a string is either not
parsed by a PEG or has a single unambiguous parse. Third, PEG parsers are closed
under union, intersection, and complement. Because of this last point, PEGs are of
substantial interest to those looking to combine parsers (see e.g. [5, 6]).

Although PEGs can perform limited context sensitive parsing (through semantic
predicates, which are effectively side-conditions on parsing rules), in practice they re-
semble a combination of simple regular expressions and recursive-descent parsing. Be-
cause of this latter point, PEGs cannot handle left-recursion, which is when a rule
refers to itself before any input has been consumed. For example – assuming a suitable
tokenizer – a typical CFG grammar for a subset of mathematical expressions might be
expressed as follows:

Expr ::= Expr "+" Prim

| Expr "-" Prim

| Prim

Prim ::= "(" Expr ")"

| INT

The directly translated PEG parser looks as follows:

Expr <- Expr "+" Prim

/ Expr "-" Prim

/ Prim

Prim <- "(" Expr ")"

/ Int

Int <- [0-9]+

Unfortunately, as with recursive descent parsers in general, the left-recursion in the Expr
rule means that a PEG parser will enter an infinite loop and never terminate. Since
many standard grammar constructs are most naturally represented with left-recursion,
this limitation is often frustrating in practice. As I show in Section 3, traditional
left-recursion techniques cannot provide the expected result with PEGs. Thus, while
grammars can be manually rewritten to avoid left-recursion, it is difficult to verify that
the language accepted by the rewritten grammar is identical to the original.

2



"s " Match string literal s
[c ] Match against character class c

. Match any character
(e ) Grouping
e ? Match e zero or one times
e * Match e zero or more times
e + Match e one or more times
&e Non-consuming match of e
!e Non-consuming negative match of e
e1 e2 Sequence
e1 / e2 Ordered choice

Figure 1: PEG operators.

Warth et al. recently proposed a modification to handle left-recursion in Packrat
parsers [7]. Packrat parsers are essentially an optimisation of PEGs, utilising mem-
oisation to make Packrat parsers O(n) [8]; Warth et al.’s approach relies on Packrat
memoisation. Warth et al. first present a relatively simple adaption of Packrat parsing
to cope with direct left-recursion, before detailing a much more complicated adaption
to cope with indirect left-recursion. As will become apparent as this paper continues,
direct recursion raises sufficiently many issues that I concentrate solely on it. It should
be noted that while Packrat parsing obviously adds an extra layer of complexity over
‘pure’ PEGs, contrary to expectations it often slows parsing down when used blindly
for every rule [9].

The first research challenge tackled in this paper is: can Warth et al.’s approach be
adapted to a ‘pure’ PEG parser without Packrat memoisation (Section 4.2)? Having
then identified that certain PEG grammars then lead to incorrect parses (Section 5)
the second research question tackled is: can a well-defined subset of PEGs be parsed
correctly with Warth et al.’s algorithm (Section 6.1)? The final research question
tackled is: can Warth et al.’s algorithm be modified so that a wider set of directly
recursive PEGs be parsed correctly (Section 6.3)?

2 PEG overview

A full overview of PEGs can be found in Ford’s original paper [4]. This section is a
brief refresher.

Figure 1 shows the PEG operators. The crucial difference between PEGs and CFGs is
the ordered choice operator e1 / e2. This means ‘try e1 first; if it succeeds, the ordered
choice immediately succeeds and completes. Only if e1 fails should e2 be tried.’ In
other words, once an earlier part of an ordered choice matches against a piece of text,
the ordered choice has committed to that piece of text, and latter parts of the ordered
choice are never tried. Therefore an ordered choice a / ab will not match against the
complete string ‘ab’ as the ordered choice immediately matches a, succeeds, and does
not try the second part of the ordered choice. This in contrast to CFGs where both e1
and e2 are on an equal footing.

The &e and !e operators are semantic predicates which succeed if e matches or does
not match, respectively; note that they do not advance the input position. Semantic
predicates are the other significant difference between PEGs and CFGs.

Most other aspects of PEGs are similar to CFGs. A PEG grammar consists of one
or more rules; rules are referenced by their name. In keeping with Ford’s original

3



definition, a PEG rule R with a body expression e is written R <- e.

3 Traditional left-recursion removal

Put simply, left-recursive PEGs are those where a rule calls itself without advancing the
input position being parsed; in other words, left-recursive PEGs cause infinite loops.
Consider this example from Warth et al.:

expr <- expr "-" num / num

num <- [0-9]+

When this parses against an input, the first action of the expr rule is to call itself;
once called, the expr rule then calls itself again recursively. Since no input is consumed
before expr calls itself, no progress is ever made (indeed, the general result of running
such a PEG is a ‘stack exhausted’ error). As expr calls itself directly, this example
shows a direct left-recursive rule. Indirect left-recursion is when a rule R calls a rule
R′ which then calls R (where R and R′ are distinct rules). Indirect left-recursion adds
a number of challenges over direct left-recursion which I do not consider further in this
paper.

The problem of left-recursion is a long-standing issue in LL and recursive-descent
parsing. In this section I show a simplified version of the standard technique for left-
recursion elimination from parsing theory (see e.g. [10] for more details), and demon-
strate why it is not suitable for PEGs. In essence, a left-recursive rule:

R → R a
| b

can be translated to the right-recursive:

R → b R′

R′→ a R′

| ε
The language accepted by the latter non-left-recursive CFG is provably the same as
the former left-recursive CFG. It therefore seems sensible to apply this approach to
left-recursive PEG, rewriting the example from above as follows:

expr <- num expr2

expr2 <- "-" num expr2

/

num <- [0-9]+

If we use this new PEG to parse the input 1-2-3 and write a standard tree walker over
it to evaluate the expression we get the answer 2, instead of the expected -4. Where we
expect 1-2-3 to parse as equivalent to (((1)-2)-3), it has in fact been parsed as the
equivalent of (1-(2-(3))); the left-recursion elimination has turned the left-associative
left-recursive PEG into a right-associative right-recursive PEG.

Attempting to restore left-associativity is difficult and, in the presence of semantic
actions or predicates, impossible. Grimm’s Rats! [5] uses traditional left-recursion elim-
ination but ‘promises’ to transparently transform the resulting right-associative parse
tree into the equivalent left-associative structure. This technique is only applicable to
those directly left-recursive rules which do not call external code (e.g. no semantic
predicates), as the order that the text is parsed is still incorrect; thus, actions cannot
appear in such rules, as they could unwittingly be victims of the incorrect parse order.

In summary, näıve traditional left-recursion destroys left-associativity. While in cer-
tain limited situations left-associativity can be restored ex post facto, this is not a
general solution.

4



4 Warth et al.’s proposal

Warth et al. propose a solution to both direct and indirect left-recursion in PEGs. Their
approach is based on the concept of ‘growing the seed’. In essence, when direct left-
recursion on a rule R at input position P is detected a default seed value (initially set
to a ‘fail’ value) is immediately returned for subsequent references to R, meaning that
infinite recursion is avoided. An unbounded loop is then started; whenever the body of
R matches input successfully, the seed is updated (or ‘grown’), and R is reevaluated at
input position P . When no further input is matched, or if less input than the previous
iteration is matched, the loop is finished. The seed value (which may not have been
grown beyond ‘fail’) is then returned. In essence, the parser turns from (recursive)
top-down in normal operation to (iterative) bottom-up when left-recursion is detected.

In this section I first show that Warth et al.’s approach is not limited to Packrat
parsers and can be naturally applied to pure PEGs (Section 4.2). I also provide a much
more detailed explanation of the parser than Warth et. al.

4.1 Conventions

Sets are mutable datatypes (used conventionally otherwise), written as {E0, ..., En}.
An element E can be added to a set S with ADD(S, E) and removed with DEL(S, E).

Maps are data types relating keys to elements. A map is written <K0:E0, ..., Kn:En>
where K represents a key and E an element. In this paper, keys are either integers or
rule names; elements can be of an arbitrary type. The existence of a key K within a
map M can be checked with K ∈ M . The corresponding element E for a key K in a
map M can be obtained with M [K]; looking up a non-existent key is a fatal error.

4.2 A pure PEG version of Warth et al.’s proposal

While Warth et al.’s approach is given in terms of Packrat parsing, there is noth-
ing about the approach which makes it fundamentally incompatible with a pure PEG
approach—Packrat memoisation is used to detect left-recursion and (in an adaption
over the original Packrat definition) to store the growing seed. In this section I show
that by using a simple map to record left-recursive seed growth, one can provide a pure
PEG analogue of the Packrat approach, without the (conceptual and storage) overhead
of total memoisation.

Algorithm 1 is written in the style of Warth et al.’s direct left-recursion Packrat
algorithm and shows my adaption of their algorithm for ‘pure’ PEGs. While Warth
et al.’s algorithm is presented as an APPLY-RULE function which evaluates a rule R at
position P , the pure PEG APPLY-RULE takes two extra arguments Rorig and Porig; these
are used so that the ‘calling’ rule can transmit to APPLY-RULE its identity (Rorig) and
the input position in effect when Rorig was called (Porig where Porig ≤ P ). APPLY-

RULE returns a result object on a successful parse; unsuccessful parses return null. The
precise details of a result are left largely abstract; I assume only that it has a pos
attribute which details its finishing input position. Using this algorithm, we can now
use the left-recursive PEG from Section 3 to parse the input 1-2-3, receiving a parse
tree equivalent to the input (((1)-2)-3). Happily, Algorithm 1 not only terminates
(left-recursion does not cause infinite loops), but, for this example, correctly retains the
expected left-associativity of the original PEG (a standard tree walker over this parse
tree will return the answer -4).

While Algorithm 1 can initially appear rather confusing, in reality it is relatively
simple. First of all, we can assume that all aspects of PEG parsing other than rule
calling are exactly as they would be in ‘normal’ PEG evaluation. Where Warth et

5



Algorithm 1 Pure PEG adaption of Warth et al.’s algorithm

1: growing ← <R : <>>
2: function apply-rule(R, P , Rorig, Porig)
3: if R = Rorig ∧ P ∈ growing [R] then
4: return growing [R][P ]
5: else if R = Rorig ∧ P = Porig then
6: growing [R][P ] ← null
7: while true do
8: result ← apply-rule(R, P , Rorig, Porig)
9: seed ← growing [R][P ]

10: if result = null ∨ (seed 6= null ∧ result.pos < seed.pos) then
11: remove P from growing [R]
12: return seed
13: end if
14: growing [R][P ] ← result
15: end while
16: else
17: traditional PEG rule application
18: end if
19: end function

al.’s proposal uses memoisation to detect that left-recursion is occurring, Algorithm 1
instead uses a map:

growing is a map <R → <P → seed >> from rules to maps of input positions to
seeds at that input position. This is used to record the ongoing growth of a seed
for a rule R at input position P .

growing is the data structure at the heart of the algorithm. A programming language-
like type for it would be Map<Rule,Map<Int,Result>>. Since we statically know all
the rules for a PEG, growing is statically initialised with an empty map for each rule
at the beginning of the algorithm (line 1).

Algorithm 1’s simplest case is when Rorig is not left-recursively calling itself, in which
case rule calling happens as normal (line 17). However, if the call of R is left-recursive
then there are two cases. It is most natural to consider the second case first, which is
when left-recursion has not yet occurred but is about to begin. This is triggered when
no input has been consumed, detected when P has not advanced over Porig (line 5).
We first set the seed in the growing map at input position P for rule R to null (line
6), meaning that if / when left-recursion happens for this rule at this input position,
the initial left-recursion will fail. For a rule like expr <- expr "-" num / num, this
means that, on the first recursive call, the first part of the ordered choice will fail (due
to line 4), forcing the ordered choice to then try its second part.

The while loop starting at line 7 is where the algorithm changes from a standard
recursive top-down PEG parser to a Warth et al. iterative bottom-up parser. In
essence, we continually re-evaluate the rule R at input position P (note that P does not
advance); each time this re-evaluation is successful, we update the seed in growing [R][P ]
(line 14). As expected, this means that each update of the seed includes within it the
previous seed.

Re-evaluation of R at input position P can be unsuccessful for two reasons: if the
re-evaluation fails completely; or if the result returned by re-evaluation consumes less
of the input than the current seed (if one exists). The former case is trivial (though

6



note that, by definition, it can only trigger on the first attempt at left-recursion). The
latter is less obvious, and is not explained in depth by Warth et al. Intuitively, if a left-
recursive call returns a ‘shorter’ result than the previous known one, then by definition
it has not used the current seed; in other words, the left-recursion must have exhausted
itself. When re-evaluation is unsuccessful, the seed is returned (line 12). Note that the
seed will be null if the left-recursive call failed to match any input.

The final unexplained part of Algorithm 1 is when left-recursion is occurring and R
calls itself. In this case, the seed is immediately returned (line 4). Note again that this
will be set to null (due to line 6) on the first left-recursive call; thus line 4 is the key
point in preventing an infinite loop in the presence of left-recursion.

4.3 Practical considerations

Algorithm 1 is tailored for simplicity of presentation and analysis, not for performance.
In particular, it imposes unnecessary checks for all rules. A practical implementation
can trivially reduce this cost by statically determining which rules are potentially di-
rectly left-recursive, and only calling the APPLY-RULE in Algorithm 1 for those rules;
normal rules can call a ‘traditional’ PEG function which does not impose such costs.
Thus, non-left-recursive calls can trivially be relieved of any extra processing over-head
related to left-recursion handling. Furthermore, many approaches will (for efficiency
reasons) fold APPLY-RULE into a larger function. In such cases, the third and fourth
arguments – Porig and Rorig – are also trivially removed. The example implementation
that accompanies this paper (see Section 7) demonstrates both aspects.

5 Incorrect parses with Algorithm 1

Unfortunately Algorithm 1 has a major, if subtle, flaw. Consider the following minor
change to Warth et al.’s example from Section 3, where the right hand side of the first
ordered choice in expr has been changed from num to expr :

expr <- expr "-" expr / num

num <- [0-9]+

When we use this PEG and Algorithm 1 to parse the input 1-2-3 we get a parse tree
tree equivalent to the input (1-(2-(3))). As with traditional left-recursion removal,
we have obtained a right-associative parse. It may not be immediately obvious that
this is an incorrect result: after all, if the above PEG were a CFG, this would be an
entirely valid parse. However this parse violates a fundamental aspect of PEGs, which
is that rules match text greedily in order to ensure unambiguous parses [4]. In the
above right-associative parse, one can clearly see that the right-recursive call of expr

has matched more text (2-3) than the left-recursive call (1).
An important question is whether this error is a result of the move from Packrat

parsing to pure PEGs in Algorithm 1. However exactly the same issue can be seen in
faithful implementations of Warth et al.’s algorithm. Given the following PEG, Warth’s
OMeta tool [11] produces exactly the same incorrect parse for 1-2-3:

ometa AT <: Parser {

Expr = Expr:l "-" Expr:r -> (l - r)

| Num:i -> (i),

Num = digit+:ds -> ds.join(’’)

}

A corollary of greedy matching is that, for a given input position P , later expressions in
an ordered choice cannot affect the text matched by earlier expressions (i.e. in e0/e1,
e1 cannot effect e0). Algorithm 1 also violates this corollary. Consider the PEG:

7



expr <- expr "-" num / expr "+" num / num

num <- [0-9]+

When used to parse 1+2-3 the resulting parse tree is equivalent to the input (((1)+2)-3).
If we now make the second part of the ordered choice in expr right-recursive:

expr <- expr "-" num / expr "+" expr / num

num <- [0-9]+

then the parse of 1+2-3 creates a parse tree equivalent to the input (1+(2-(3))). In
other words, the change to the second expression of the ordered choice has effected the
first expression.

As these examples show, by unintentionally altering the rules on greedy matching,
Algorithm 1 introduces ambiguity into PEG parsing, thus losing many of the formal
guarantees of traditional PEGs. To the best of my knowledge, this is the first time that
this problem with Warth et al.’s algorithm has been shown.

6 Identifying and mitigating the problem

Let us first consider the simplest solution to the problem in Section 5: disallowing
all (direct or indirect) recursive calls in a left-recursive rule other than an initial left-
recursive call. For example, R <- R X is allowed, but R <- R X R and R <- R X R Y

are disallowed (assuming that X and Y are input consuming substitutions). Restrict-
ing the set of parseable PEGs to this is trivial – and easily done dynamically; static
enforcement would require some cunning as we shall soon see – and will clearly solve
the problem. However, while it does increase the set of parseable PEGs relative to the
traditional approach, it is still rather restrictive.

In this section, I first show that right-recursion in left-recursive rules is the funda-
mental problem, allowing a wider class of PEGs to be parsed; by forbidding these,
Algorithm 1 can be safely used (Section 6.1). I then show that all definitely direct
left-recursive rules without potential right-recursion can be safely parsed too (Section
6.3).

6.1 Pinpointing right-recursion in left-recursive rules

An intuitive analysis of the examples in Section 5 and Algorithm 1 highlights the un-
derlying problem. While Algorithm 1 contains both a top-down and bottom-up parser,
the two are not on an equal footing—the top-down parser gets the first opportunity
to run to completion. When the bottom-up parser calls APPLY-RULE on line 8 of Al-
gorithm 1, it allows the top-down parser opportunity to match the maximum possible
text without giving the bottom-up parser an opportunity to wrest back control. Thus
in any battle between left and right-recursion in a single rule, right-recursion (using the
top-down parser) always wins over left-recursion (using the bottom-up parser).

That rules that are both left and right-recursive is the underlying issue can be seen
with a minor modification to the running example, placing an arbitrary input consum-
ing ‘end marker’ after the right-recursive call to expr (thus making it merely recursive,
not right-recursive):

expr <- expr "-" expr "m" / num

num <- [0-9]+

If we now parse 1-2m-3m (i.e. our running example text with end markers inserted), we
get a parse tree equivalent to the input (((1)-2)-3)—the end markers have prevented

8



right-recursion matching an arbitrary amount of text, thus allowing left-recursion to
work as expected, giving us a left-associative parse.

It thus seems that we can now state a fairly liberal, but still easily implementable,
solution which prevents the problem noted in Section 5 from arising: PEGs which
contain rules which are both left and right recursive are not permitted. However there is
one further subtlety which we must consider, which is best highlighted by the following
modification to the running example, making end markers optional:

expr <- expr "-" expr "m"? / num

num <- [0-9]+

If we parse the text 1-2-3 against this PEG, we will once again receive an incorrect
right-associative parse. Until now I have implicitly assumed that right-recursive rules
are those which ‘look obviously’ right-recursive. In fact, some rule calls are right-
recursive, or merely recursive, depending on the input string and whether they are
followed by other expressions which can match against the empty string; the same
idea is also true for left-recursion. We can use the standard nullables computation
from parsing theory [10], which is trivially transferable to PEGs, to statically calculate
potentially left or potentially right-recursive calls1.

Therefore a precise, fairly liberal, solution to the problem noted in Section 5 is to
statically forbid any potentially left-recursive rule which contains potentially right-
recursive calls. Non-left-recursive rules can still safely include potentially (direct or
indirect) right-recursive calls.

6.2 The case for right-recursion in left-recursive rules

In Section 6.1 I showed that forbidding potentially right-recursive calls in potentially
left-recursive rules solved the problem of Section 5. For many uses, this may well allow
a sufficiently large class of PEGs to be parsed. There are, however, two reasons why we
might wish to remove this restriction. First, this sort of (seemingly arbitrary) restriction
is arguably one of the reasons why parsing is considered a black art by many otherwise
capable people; the classically liberally minded have every right to ask whether we can
allow some form of right-recursion in left-recursive rules. Second, grammars with both
left and right recursion are the most natural way to write and evolve many grammars;
their absence can complicate development.

For example, a standard expression grammar encoding correct precedences for +, -,
*, and - looks as follows in traditional PEGs:

S <- Term ! .

Term <- Fact "+" Term / Fact "-" Term / Fact

Fact <- Int "*" Fact / Int "/" Fact / Int

Int <- [0-9]+

Using Warth et al.’s algorithm we can rewrite this to be left-recursive as follows:

S <- Term ! .

Term <- Term "+" Fact / Term "-" Fact / Fact

Fact <- Fact "*" Int / Fact "/" Int / Int

Int <- [0-9]+

Although this rewriting has simply swapped the left and right-recursion, many people
find the left-recursive version more natural. However, in both of the above grammars,
we are forced to be careful about making sure the recursion terminates consistently:
in both the Term and Fact rules, note that the non-recursive alternative at the end

1In some parsing formalisms this is referred to as ‘hidden’ recursion.

9



of the rules (Fact and Int respectively) has to be encoded in each of the preceding
alternatives too. This means that some seemingly local alterations to the grammar
in fact require much larger chunks to be altered. For example, if we wish to allow
bracketed expressions in the above grammar, we not only have to add a new rule, but
change three references to it, as shown in the following (where changes are highlighted
in italics):

S <- Term ! .

Term <- Term "+" Fact / Term "-" Fact / Fact

Fact <- Fact "*" Prim / Fact "/" Prim / Prim

Prim <- "(" Term ")" / Int

Int <- [0-9]+

Consider if, instead, we had been able to write the original expression grammar using
both left and right-recursion:

S <- Term ! .

Term <- Term "+" Term / Term "-" Term / Fact

Fact <- Fact "*" Fact / Fact "/" Fact / Int

Int <- [0-9]+

Adding bracketed expressions to this grammar would then require changing only a
single reference:

S <- Term ! .

Term <- Term "+" Term / Term "-" Term / Fact

Fact <- Fact "*" Fact / Fact "/" Fact / Prim

Prim <- "(" Term ")" / Int

Int <- [0-9]+

Though there are other arguments one could advance for justifying why right-recursion
in left-recursive rules is useful, I hope that the above example of increased ease of
grammar evolution provides sufficient motivation.

6.3 Allowing direct definite right-recursion in left-recursive rules

In order to begin tackling the problem of allowing right-recursion in left-recursive rules,
we first have to solve a challenge: can we ensure that the top-down parser gets sufficient
opportunity to run when right-recursion is present in left-recursive rules? A simple
observation is key: when we are in left-recursion and then encounter right-recursion,
the bottom-up parser allows the right-recursion to continue many recursive levels deep,
gobbling up text. Instead, we want the right-recursion to go only one recursive level
deep, and then to return control to the bottom-up parser.

The solution, at a high level, therefore seems reasonably straight forward. When we
are in left-recursion on a rule R and then right-recursively call R, we need to make all
further right recursive calls to R fail, until the top-level right-recursion has returned
control to the bottom-up parser. Intuitively, for a rule such as expr <- expr "+"

expr / num, the right-recursive call of expr would then match only num, since the first
part of the ordered choice would fail.

At a low level, we are forced to consider the issue of potential right-recursion. The
high-level solution implicitly relies on statically identifying right-recursive calls; how-
ever when executed, potential right-recursion, by definition, may sometimes be simply
normally-recursive or definitely right-recursive. To make matters worse, we can not
dynamically determine whether a potentially right-recursive call is definitely right-
recursive or not until its containing rule is completely evaluated. With PEGs this is
not very useful since – unlike traditional CFGs, where one can backtrack arbitrarily
– PEGs commit themselves to certain parses which backtracking can not undo. The
issue can be seen in this extension of expr:

10



expr <- expr "-" expr ("-" expr)? / num

num <- ["0-9"]+

Given this PEG, we would hope that 1-2-3 would parse as (((1)-2)-3). In order for
this to be the case, we would first need to evaluate the sub-expression ("-" expr)? to
determine whether it matched any of the input; depending on whether it did, or did not,
we would then know whether to treat the middle call of expr as normal recursion (not
needing special treatment) or right recursion (and requiring the special rule mentioned
in the high-level solution). Since we can not evaluate ("-" expr)? before evaluating
the middle call of expr, this means that the high-level solution outlined above would
mean the above PEG is ambiguous, since the potential right-recursion could lead to
two different parses.

The problem with the high-level solution and potential right-recursion seems inher-
ent. The only way to avoid it is to ban potential right-recursion in left-recursive rules.
For the avoidance of doubt, we can state the following two rules: non-left recursive
rules are allowed to have potential right-recursion; but left-recursive rules must either
have no right-recursion or definite right-recursion.

There is one last issue to consider: potential left-recursion. As with right-recursion,
one can create rules such as e <- e? "x" e where left-recursion occurs, or not, solely
depending on the input. One could therefore wait until run-time to discover whether
a rule is called left-recursively, and, if the rule was also statically determined to be
potentially right-recursive, complain. The algorithm in the following section supports
this dynamic approach. The accompanying implementation, on the other hand, recog-
nises that this is unlikely to be the desired behaviour, and statically rejects potentially
right-recursive calls in potentially left-recursive rules.

6.4 An algorithm for definite right-recursion in left-recursive rules

Algorithm 2 shows, in the style of Warth et al., how PEGs can cope with both direct
left-recursion and direct definite right-recursion. Presenting the algorithm in this fash-
ion does involve some compromises; however, the advantage conferred by continuity
outweighs the distaste incurred by ugliness. In particular, there is a need to convey
the information about whether a rule call is right-recursive or not. For the sake of
simplicity, I assume that the R argument to the APPLY-RULE function has a boolean
attribute drr (Definitely Right-Recursive) which is set to true if that rule is definitely
right-recursive.

The first thing to note about Algorithm 2 is that it is really just an extension of
Algorithm 1—lines 14–26 inclusive (the bottom-up parser) are unchanged.

The most complex part of Algorithm 2 relates to calling a right-recursive rule (lines
5–13). We maintain a set limit which contains the rule names of all current right-
recursive calls (note that limit is global only to maintain symmetry with growing ; it
could as easily be a fifth argument to APPLY-RULE). Therefore when calling a definitely
right-recursive call R, we first need to see whether we’re already in right-recursion on
R; if so we fail (line 6), in order to ensure that right-recursion never goes more than
one level deep. If we’re not in right-recursion on a rule, but are in left-recursion (which
is implied if Porig is in growing [R], meaning that the bottom-up parser is in operation),
then we add R to limit and evaluate the rule as normal (lines 8–10). If we’re not in
right or left-recursion, we evaluate the rule purely as normal (line 12).

The final subtlety in Algorithm 2 relates to when right-recursion is happening in a
rule R and we non-right-recursively call R. In this case, we need to ensure that the
non-right-recursive call of R evaluates as normal, without limiting recursion to just one
level. Fortunately we do not need to be as explicit as this might suggest; it is sufficient

11



Algorithm 2 An update of Algorithm 1 which correctly deals with direct right-
recursion in left-recursive rules

1: growing ← <R : <>>
2: limit ← { }
3: function apply-rule(R, P , Rorig, Porig)
4: if R = Rorig ∧R.drr then
5: if R ∈ limit then
6: return null
7: else if Porig ∈ growing [R] then
8: add(limit, R)
9: traditional PEG rule application

10: del(limit, R)
11: else
12: traditional PEG rule application
13: end if
14: else if R = Rorig ∧ P ∈ growing [R] then
15: return growing [R][P ]
16: else if R = Rorig ∧ P = Porig then
17: growing [R][P ] ← null
18: while true do
19: result ← apply-rule(R, P , Rorig, Porig)
20: seed ← growing [R][P ]
21: if result = null ∨ (seed 6= null ∧ result.pos < seed.pos) then
22: remove P from growing [R]
23: return seed
24: end if
25: growing [R][P ] ← result
26: end while
27: else
28: if R ∈ limit then
29: del(limit, R)
30: traditional PEG rule application
31: add(limit, R)
32: else
33: traditional PEG rule application
34: end if
35: end if
36: end function

to temporarily remove R from limit (if it exists) whenever R is called and it does not
fit into the cases listed above (lines 28–34).

Given the following PEG and the string 1-2-3 we get the left-associative parse we
originally desired:

expr <- expr "-" expr / num

num <- ["0-9"]+

7 Conclusions

This paper first presented a ‘pure PEG’ adaption of Warth et al.’s left-recursive Packrat
algorithm. I then showed cases where this algorithm failed, before identifying a safe

12



subset of left-recursive PEGs which can be used with this algorithm. I then extended the
algorithm, allowing left-recursive rules with definite right-recursion to work as expected.
As this paper has shown, in order to safely parse right-recursive PEGs, a number
of subtle issues need to be considered, and the class of right-recursive PEGs safely
parseable is smaller than might originally have been hoped for. While the obvious
next step is to extend the solutions presented in this paper to deal with indirect left
and indirect right recursion, this may well prove to be quite challenging and to impose
further restrictions on valid PEGs. This therefore raises a deeper philosophical question:
are PEGs really suited to allowing left-recursion? That question is left to others to
ponder.

Example code which implements the algorithms in this paper can be found at
http://tratt.net/laurie/research/publications/files/direct left recursive pegs.

My thanks to Tony Sloane for verifying the problem noted in Section 5 with the
Packrat implementation in his Kiama tool and providing comments on a draft of this
paper; to David Hazell, Franco Raimondi, and Chris Hyuck for providing comments
on a draft of this paper; and to Alessandro Warth for answering questions. Any errors
and infelicities are my own.

References

[1] Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13(2) (February 1970)

[2] Tratt, L.: Domain specific language implementation via compile-time meta-
programming. TOPLAS 30(6) (2008) 1–40

[3] Visser, E.: Scannerless generalized-LR parsing. Technical Report P9707, Pro-
gramming Research Group, University of Amsterdam (July 1997)

[4] Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: Proc. POPL, ACM (January 2004) 111–122

[5] Grimm, R.: Better extensibility through modular syntax. Volume 14 of Proc.
Programming language design and implementation. (June 2006) 38–51

[6] Seaton, C.: A programming language where the syntax and semantics are mutable
at runtime. Master’s thesis, University of Bristol (May 2007)

[7] Warth, A., Douglass, J., Millstein, T.: Packrat parsers can support left recursion.
In: Proc. PEPM, ACM (January 2008) 103–110

[8] Ford, B.: Packrat parsing: Simple, powerful, lazy, linear time. In: International
Conference on Functional Programming. (October 2002) 36–47

[9] Redziejowski, R.R.: Some aspects of parsing expression grammar. Fundamenta
Informaticae 85(1-4) (2008) 441–451

[10] Grune, D., Jacobs, C.J.: Parsing techniques. (1998)

[11] Warth, A., Piumarta, I.: OMeta: an object-oriented language for pattern match-
ing. In: Proc. Dynamic Languages Symposium, ACM (2007) 11–19

13


