
Experiences with an Icon-like Expression Evaluation System

Laurence Tratt
Middlesex University, The Burroughs, Hendon, London, NW4 4BT, United Kingdom

laurie@tratt.net

Abstract
The design of the Icon programming language’s expres-
sion evaluation system, which can perform limited back-
tracking, was unique amongst imperative programming lan-
guages when created. In this paper I explain and critique the
original Icon design and show how a similar system can be
integrated into a modern dynamically typed language. Fi-
nally I detail my experiences of this system and offer sug-
gestions for the lessons to be learned from it.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Languages

Keywords Language design, Icon, Converge

1. Introduction
Icon [3] is a programming language designed chiefly by
Ralph Griswold, intended to be usable as a general pur-
pose language, but particularly well suited to text process-
ing. Icon’s immediate predecessor is the little-known SL5,
considered a dead-end by its designer and quickly aban-
doned [2]; arguably its true predecessor language is the
better known SNOBOL4 [5] (indeed, Icon was known as
SNOBOL5 during its early development). SNOBOL4 was
specifically aimed at text processing; in modern terms, it
would be considered a Domain Specific Language (DSL) as
it is not well suited to general purpose computing. Icon can
be seen as the integration of SNOBOL4-esque text process-
ing capabilities into a dynamically typed general purpose
programming language.

Icon’s expression evaluation system utilises what it calls
goal-directed evaluation and was, until recently, the only
imperative programming language capable of backtracking.
While Icon’s goal-directed evaluation strategy is not as pow-
erful or extensive as the backtracking used in some declara-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DLS 2010, October 18, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0405-4/10/10. . . $10.00

tive languages (e.g. Prolog), it can express surprisingly com-
plex relationships. In order to allow backtracking, the de-
sign of Icon’s expression evaluation system is fundamentally
different than other imperative languages, yet it manages to
ensure that ‘vanilla’ expression evaluation has the same ob-
servable effect as in most other languages (though the means
used to achieve this effect are rarely the same). The under-
pinnings of Icon’s expression evaluation system challenge a
number of standard assumptions.

To modern eyes, Icon has an old-fashioned feel, reflect-
ing its 1970’s heritage. Syntactically it can be described as a
dynamically typed Algol variant; semantically it has a num-
ber of ‘unfortunate’ features such as differentiating between
values and references that similar languages have long since
discarded. This should not be taken as a criticism of Icon – it
was ahead of its time in many ways – but is merely an obser-
vation that modern programmers expect something slightly
different from their programming languages. Today, Icon is,
fairly or not, a largely forgotten language. However small
elements of its influence live on in other languages: for ex-
ample, Python’s generators were inspired by (although not
as powerful as) Icon’s equivalent concept [8].

When I was designing the Converge language [11] I in-
tegrated an expression evaluation system whose design was
heavily inspired by Icon. As far as I am aware, Converge is
the first – and, to date, the only – language that is not a di-
rect clone of Icon to integrate such a system. This paper1 has
two aims. First it implicitly shows that the design of Icon’s
expression evaluation system can be extracted, reused, and
altered as needed in other programming languages. Second
it aims to capture the changes made to the original Converge
design, lessons learnt, and subsequent ideas for the future.

This paper is structured as followed. First I present an
overview of Icon and its expression evaluation system. I then
describe several unfortunate aspects of this system, followed
by an explanation of how Converge tries to address these
aspects. I then briefly describe performance implications,
and suggest possible optimisations. Finally I present what,
from my experience, I consider to be the advantages and
disadvantages of such an expression evaluation system.

1 A much earlier version of this paper appeared as a blog post on my
website.

2. Icon
This section aims to give a basic introduction to the salient
features of Icon. It is not a replacement for the full manual
[3], but should allow those familiar with mainstream pro-
gramming languages to gain an understanding of Icon suffi-
cient for the rest of this paper.

2.1 Basics
Icon is a procedural, dynamically typed language using an
Algol-esque keyword-based syntax. One syntactic oddity
relative to the rest of the language is that groups of expres-
sions – such as the clauses of an if construct or body of a
while loop – are enclosed in curly brackets. Icon does not
distinguish between statements (which, in many languages,
do not produce values) and expressions (which do produce
values): everything in Icon is an expression (though, as we
shall see, Icon expressions do not always produce values).

A complete Icon program which counts and then prints
the number of lines in a file (the equivalent of the wc -l

Unix command) is as follows:
procedure main(argv)

f := open(argv[1], "rt")
i := 0
while read(f) do {

i := i + 1
}
write(i)

end

There is only one small hint in this simple program of some-
thing unusual. The read function in Icon returns the next
line in a given file; when all lines in the file have been read,
read causes the while loops condition to fail and execution
to pass to the write function. The mechanism by which this
happens is explored in the following sub-section.

2.2 Success and failure
In traditional imperative programming languages, expres-
sions produce values. In Icon, however, expressions succeed
or fail; expressions which succeed produce values, while
those that fail do not. If an expression fails, it transmits
failure to its enclosing expression (which may then fail re-
cursively). This concept is at the heart of Icon’s expression
evaluation system. While the concept of failure is often con-
fused with exceptions, they are two very different things—
exceptions indicate undesired behaviour (such as being un-
able to open a file), while failure indicates that an expression
can produce no more values (e.g. the read function from
Section 2.1). The two concepts are orthoganal and both can
be present in a language, though Icon itself does not have
exceptions.

A simple example of an expression which, in different
circumstances, can succeed or fail is x < y. If x is 2 and
y is 3, then the expression succeeds and the value 3 is
produced (in Icon, relational operators produce their right
hand value if the operator succeeds); if the values of x and
y are reversed, then the expression fails and no value is

produced. As this might suggest, Icon does not have standard
boolean logic; indeed there is neither a boolean data type,
nor conventional boolean operators. Despite this, in ‘normal’
use, standard constructs have the same observable effect as
in most mainstream programming languages so that code
such as the following executes as per standard expectations:

if x < y then {
write(x)

}

Nested expressions are valid in Icon, and failure is cascaded
recursively (see Section 2.5 for details about the the limits of
this cascading). Therefore the expression z := x < y only
assigns the value of y to z if the expression x < y succeeds;
if x < y fails, no assignment is made to z and it retains its
previous value.

2.3 Generators
In Icon, procedures can generate zero or more values. Con-
ventionally those which always generate exactly one value
are called simply procedures; those which can generate
a variable number of values are called generators. The
suspend keyword is similar to normal return, but as well
as transmitting a value to the functions caller, it saves the
generator’s call stack; the generator can later be resumed,
with the generator’s call stack put back in place, and execu-
tion continuing from directly after the suspend call, allow-
ing a generator to produce multiple values. If the syntactic
end of the generator or return &fail is encountered then
the generator has finished generating values; failure is then
transmitted to its caller.

The following complete program with a generator ito

prints 1 to 9 inclusive:
procedure ito(x)

i := 0
while i < x do {

suspend i
i := i + 1

}
end

procedure main()
every x := ito(10) do { write(x) }

end

The every construct can be considered to be broadly equiv-
alent to a typical for statement, and is the standard way
in Icon of pumping a generator for all of its values. The
above code works by first calling ito, which suspends it-
self with the value 0; this is then assigned to x and the body
of the every construct executed. Once the body has been
executed, every then resumes the suspended ito genera-
tor and repeats the loop; when the generator eventually fails,
the every construct itself fails. Note that while and every

are very different constructs; every evaluates its expression
once, and subsequently pumps it for values if it is a gener-
ator, whereas while evaluates its expression anew on each
iteration.

Two other types of generator are noteworthy. The genera-
tor i to j generates all values from i to j inclusive (similar

to the ito example used earlier). More surprisingly, a spe-
cial type of generator subsumes the boolean notion of ‘or’.
Icon’s alternation operator ‘|’ is a non-procedure generator
which successively – and therefore lazily – generates each of
its values. Goal-directed evaluation (see Section 2.4) means
that constructs such as if x | y work as per typical expec-
tations; however one can also explicitly make use of alter-
nation in expressions such as every write(1 | 2) which
prints 1 then 2.

2.4 Goal-directed evaluation
As stated earlier, Icon’s goal-directed evaluation strategy al-
lows a limited form of backtracking. This can most easily be
seen with the conjunction operator ‘&’ which joins together
two or more sub-expressions and succeeds only if each sub-
expression succeeds. If a sub-expression fails, and one of the
preceding expressions is a generator, then control backtracks
to the generator which is resumed to generate another value;
the conjunction then continues execution from after the gen-
erator. A simple modification of the program from Section
2.3 prints out the even numbers between 0 and 9 inclusive:

procedure main()
every x := ito(10) & x % 2 == 0 do {

write(x)
}

end

This works as follows. First the ito function is called, which
suspends with the value 0which is then assigned to x; since 0
% 2 == 0 succeeds, the conjunction succeeds and the body
of the every construct is executed. The every construct
then pumps ito for its next value 1 which is assigned to
x; however since 1 % 2 == 0 fails, the conjunction then
causes immediate backtracking and pumps ito for its next
value, without executing the every constructs body.

Icon has several other features related to goal-directed
evaluation. If backtracking occurs over a reversible assign-
ment (which uses the syntax x <- e to allow Icon to differ-
entiate this from normal un-reversible assignment), then the
variable x reverts to the value it had before the assignment.
Limited generation e \ i allows a generator to be pumped
a maximum of i times.

2.5 Bounded expressions
In languages such as Prolog, backtracking can occur to an
arbitrary depth (unless restricted with the ‘cut’ predicate).
Clearly, backtracking in an imperative language can not be
as far-reaching either practically (in general an unbounded
quantity of memory would be needed to allow backtracking,
causing unexpected performance issues) or philosophically
(it would subvert widely held expectations about basic im-
perative programming constructs). Icon’s solution to this is
the concept of bounded expressions; backtracking can only
occur within a bounded expression. What this means is that
backtracking in Icon is inherently local in nature and is con-
strained to small units. Icon’s bounded expressions are delib-
erately chosen to preserve typical expectations; for example

the conditional of the if construct is a bounded expression
as are top-level expressions separated by new-lines.

3. Icon’s expression evaluation strategy
critiqued

In this section I list various issues I have encountered with
the design of Icon’s expression evaluation strategy. Note that
the intention of this section is not to critique Icon in general.
Icon reflects the era in which it was designed, and features
such as variables with default values and a distinction be-
tween variables and references are often considered to be
flaws by modern programmers—however such issues are not
pertinent to the core of this paper and are thus not consid-
ered.

3.1 Procedures fail by default
In Icon, the default ‘return value’ of a procedure is failure; in
other words, there is an implicit return &fail at the end
of each procedure. This is very useful for generators such as
ito, whose last action is to signal that they have no more
values to generate. However it causes seemingly innocuous
non-generator procedures such as the following to behave in
ways that are very hard to debug:

procedure f(x)
if x > 0 then {

return 1
}

end

procedure main()
write(f(-1))

end

When this program is run, nothing is printed to screen be-
cause the failure of f’s condition means that the procedure
executes its default return action, which is to fail, meaning
that write is never called. While this particular example is
easily debugged, variations on this problem – such as when
an assignment x := f(..) fails – can cause havoc in large
programs.

After falling victim to this problem several times, I briefly
analysed several programs. This quickly showed that gen-
erators are, by some distance, the least common form of
procedure—most procedures always return a single value
(and only a single value). In other words, Icon’s default be-
haviour is useful for a small subset of procedures (genera-
tors), but dangerous for the majority.

3.2 Lack of a boolean datatype
In general, Icon’s lack of a boolean datatype is unproblem-
atic: normal conditional evaluation produces results which
match convention (even though the underlying evaluation
mechanism is different). Indeed, various other languages
(such as K&R C) also lack a boolean datatype, generally
relying on the convention that conditionals evaluate to false
if an integer value is 0 (used conventionally for ‘false’) and
true for other values (1 is used conventionally for ‘true’).

However, since any expression which produces a value in
Icon succeeds, there is no equivalent way of expressing this
notion in Icon. Thus the following code prints taken to
screen:

procedure main()
c := 0
if c then {

write("taken")
}

end

Indeed, because variables have a default value in Icon, even
removing the assignment c := 0 does not alter the be-
haviour of the above program!

To work around this, individual code needs to use a con-
vention about what a ‘true’ and a ‘false’ value are in any
given circumstances. Typically one uses 1 and 0 respec-
tively, but this often makes statements such as if x == 0

seem ambiguous: is this a boolean check that happens to use
integers, or simply a normal integer comparison?

3.3 Generators are easily hidden
Generators are an integral part of Icon, and a common idiom
is to pair a generator with a normal procedure in an every

construct to perform a repeated action. For example the
following code prints the index of every digit (0-9) in the
string s using the generator upto and the normal procedure
write:

every write(upto(’0123456789’, s))

In general it is not clear from simply looking at the code if
either, both, or neither, of the two functions write and upto

is a generator. This can cause confusion when debugging as
without this knowledge, there is no way of determining the
expected behaviour of the code, discouraging the use of such
generator related idioms.

3.4 Backtracking can be unwieldy and difficult to use
outside string scanning

One of the major features of goal-directed evaluation is that
it allows backtracking. The most common way for this to
be achieved is by linking expressions together with the con-
junction operator &. Combining conjunction with every al-
lows compact expressions such as the following to be ex-
pressed (where upto(c, x) generates each index position
where the character c appears in the string s):

x := "cbaabaacvcabcbab"
every write(i := upto(’a’, x) & i % 2 == 0 & i)

This prints out every index position in x which is a multiple
of two, and which contains the character a (4 and 6 in this
case). Although this small example is relatively readable, as
such code increases in size, it rapidly becomes unreadable.
To partly solve this, Icon introduces the concept of string
scanning e1 ? e2 where, in essence, the string e1 evaluates
to is made the global search for the code in e2. Procedures
such as upto follow a protocol where the ‘global’ search
string is used if a specific search string is not specified. The

above example can be rewritten using string scanning as
follows:

every write(x ? { upto(’a’) & i % 2 == 0 & i })

Icon has several string matching procedures which follow
the required protocol. While string scanning can slightly re-
duce the complexity of backtracking, it is far from a com-
plete solution. Furthermore it requires the use of two special
pseudo-global variables (&subject which records the string
being scanned and &pos which records the current index of
the search in the string) and a suite of functions which oper-
ate on these two special variables.

A far more fundamental problem is that, in my experi-
ence, the form of backtracking used is too weak to be useful
for complex operations on anything other than strings. Icon
allows variables in conjunctions to have assignments undone
during backtracking, but does not reverse other similar op-
erations such as assignments within lists and so on. Note
that I am not arguing that Icon could, or should, do this (see
Section 2.5): simply that its absence precludes many sce-
narios). This means that more complex uses of backtracking
(see [12] for an example of highly complex backtracking in
an Icon-like system) still require most of the complex back-
tracking to be manually encoded much as in other imperative
languages.

In summary, Icon’s backtracking can be useful, but only
for certain use cases (mostly related to string scanning).

4. An Icon-like language: Converge
When I was designing the Converge language I integrated
an expression evaluation system heavily inspired by Icon.
For the purposes of this paper, Converge can be thought of
as a cross between Python (in terms of general aesthetics,
including its syntax) and Icon (its expression evaluation sys-
tem). The driving aim behind Converge was to add a macro-
esque system to a dynamically typed language; this system is
then used to implement syntactically distinct DSLs. As many
of the original DSLs implemented in Converge used com-
plex matching over tree and graph structures, it was natural
to consider the integration of Icon’s expression evaluation
system which had sufficiently similar aims and was with-
out precedent in other imperative languages2. As far as I am
aware, Converge is the only non-Icon clone to integrate such
a system. Though it may seem obvious, it is worth explicitly
noting that Converge’s existence shows that the ideas under-
lying Icon’s expression evaluation system are applicable to
other languages.

Most of Converge’s aspects – other than its expression
evaluation system – are documented elsewhere (see e.g. [10,
13]) and I do not cover most of those here, concentrat-
ing on those aspects relevant to Converge’s Icon inheri-
tance. Historically speaking, early versions of Converge in-

2 I became aware of Icon through my (mostly inconsequential) involvement
with Python development, specifically many mailing list messages from the
sage-like Tim Peters.

herited Icon’s expression evaluation system wholesale; over
time various changes have been introduced. This section
describes and motivates those changes. All example code
henceforth is written in Converge and not in Icon.

4.1 Procedures don’t fail by default
I considered two solutions to Icon’s decision to make pro-
cedures return fail by default (see Section 3.1). First, one
could syntactically differentiate generators and procedures,
with the former failing by default and the latter not. Sec-
ond, one can make all procedures not fail by default. Given
the burden that comes with new syntax, and since genera-
tors aren’t common, the decision was an easy one. Converge
functions are similar to those in many other languages, with
their default return action being to return the null object.
This solves the common problem noted in Section 3.1 at the
expense of a less common problem: generators which do not
explicitly fail at their end return null as their final object.
When the lack of an explicit fail is an oversight, it tends
to be relatively easy to debug in comparison to the origi-
nal problem, since it usually results in performing an invalid
operation on the null object.

4.2 Introducing a boolean datatype by the
backdoor
As described in Section 3.2, Icon does not have a boolean
datatype; consequently much mundane programming be-
comes even more of a chore than normal. Simply adding a
boolean datatype into an Icon-like language raises several
thorny questions about when ‘false’ should cause failure:
the two concepts are clearly related in some cases, but not
in others. For example, while one would clearly expect 2
< 1 to cause the else branch of an if statement to be ex-
ecuted, what should happen to a statement like x := 2 <

1? Should x be assigned the value ‘false’ (as in most lan-
guages), or the assignment simply not executed (as in Icon)?
It seems hard to integrate in a typical boolean datatype and
still maintain Icon-like behaviour in such corner cases.

I therefore attempted to find an Icon-esque solution to
this problem based on the idea that one only needed a value
which caused conditional statements to fail. This would al-
low one to write idiomatic code such as if b and if not b.
I therefore introduced a fail value into the Converge run-
time, analogous to null (fail was in essence a keyword
pointing to a singleton object). If statements such as if or
return statement evaluated their child expression and re-
ceived the fail value, then the parent statement would fail.

For most simple uses of booleans, this introduction of a
boolean-esque datatype by the backdoor worked very well.
However, it introduced some unpleasant corner cases. Con-
sider the following piece of Converge code:

l := [1, fail, 2]
Sys::println(l[1])

This printed nothing, as l[1] is a synonym for l.get(1),
which tried to evaluate return fail, which then caused

get to fail. While this might seem a contrived example,
a slight variation on it cropped up in real code. Converge
modules can enumerate their definitions and associated val-
ues; every module contains standard definitions for lexical
scoping such as null. One such definition was named fail

which unsurprisingly pointed to the fail object; trying to
find out the definitions value caused the same problem as
l.get(1) above, and an innordinate amount of time to de-
bug.

This problem lead to the realisation that the fail object
is fundamentally dangerous, and that attempts to mitigate
this were only likely to move the danger around, without
ever actually removing it. A convention (not enforced by the
compiler) was developed that the only safe idiom involving
fail was return fail, and this was followed for around
2 years; eventually it was banished from Converge entirely.
In current versions of Converge, fail is a statement causing
a generator to fail. While removing user access to the fail

object (though it lives on internally in the Converge VM)
does require users to resort to the same boolean encoding
tactics as in Icon, the result is far less conceptually troubling.

4.3 A convention for generator names
As shown in Section 3.3, it is impossible to statically de-
termine in Icon whether a call to a given function f is to
a generator or a normal function; this makes code hard to
read, particularly in the face of OO polymorphism (as found
in Converge). I considered two solutions to this problem.
First one could introduce new syntax for generator calls.
Second one could introduce a convention for generator func-
tion names. Preferring when possible not to add new syntax
to Converge, I took the second option. In general, generator
names in Converge are prefixed by iter which, whilst un-
obtrusive, highlights that the function in question is a gener-
ator. This gives a surprisingly large boost to code readability.

4.4 Simplification of backtracking features
Converge acknowledges the weakness of Icon’s advanced
backtracking features (such as reversible assignments) and
simply does not include them (though note that the simple
backtracking used in Section 3.4 works identically in Icon
and Converge). This significantly simplifies the language
without losing much practical functionality. Reversible as-
signments, for example, are used extremely infrequently—
even in Icon’s core library! A possible solution to the prob-
lem would seem to be to increase the power of Icon’s back-
tracking abilities, to better match that of e.g. Prolog. I be-
lieve this is impractical: mutable state prevents data-sharing,
meaning that huge – and, in general, unbounded – quanti-
ties of memory would rapidly be consumed to allow back-
tracking. As well as quickly exhausting memory, this would
also lead to large performance penalties as data was copied
and garbage collected on a far larger scale than would be
the case with immutable state. More subtly, this would un-
dermine one of the implicit guarantees of that imperative

programming languages give—predictable performance. In
summary, users would be unlikely to use such advanced
backtracking features; they would introduce much complex-
ity into the language and implementation with little likely
gain; and, I suggest, they would stray from Icon’s design
goals.

Most notably, Converge has no equivalent of string scan-
ning, for two reasons. First, modern regular expression li-
braries subsume most simple cases of string scanning, and
formal parsing tools (i.e. parsing using context free gram-
mars) most complex cases. Second, string scanning raises
issues about global or semi-global variables and privileged
access to them—while there are occasional reasons for using
global variables, making them a commonplace seems dan-
gerous at best.

5. Implementation
Both Icon and Converge are implemented as stack-based
Virtual Machines (VMs). In both systems, a compiler trans-
forms source code into bytecode which is then executed by
a VM. While much of each VM is relatively standard, Icon’s
expression evaluation system requires an unusual approach.
Converge very closely follows Icon’s VM in this regard, so
most of this section is framed in terms of Converge’s im-
plementation (which is smaller and more amenable to ex-
perimentation); however the general principles are trivially
adaptable to Icon.

The main reason why an Icon-like VM must diverge
from standard VM principles is due to failure. This has a
number of implications, in particular a heavy reliance on
stack operations to cope properly with failure. For example
in Converge the following code fragment:

x := 1 < 2
rest

is translated to the following:
ADD FAILURE FRAME rest // If failure occurs below,

// jump to rest
INT 1 // Pushes 1 onto the stack
INT 2 // Pushes 2 onto the stack
LT // Pops two objects and performs a

// ‘less than’ comparison pushing an
// object to the stack if successful
// or failing otherwise

ASSIGN VAR 0 1 // Pops an object from the stack and
// assigns to a var

REMOVE FAILURE FRAME
... // rest

Converge stacks only have a handful of entry types, chiefly:
continuation frames (for the purposes of this paper this can
be thought of as a ‘function call frame’), failure frames
(recording what should happen in the case of failure dur-
ing expression evaluation), generator frames (recording the
status of suspended generators), and object references. At
any point the stack has to record pointers to the current
continuation frame, failure frame, and generator frame (the
latter two of which must always be later in the stack than
the continuation frame). The ADD FAILURE FRAME opcode

pushes a failure frame onto the stack which records the
current failure and generator frame pointers and the ‘fail
to’ point, updates the stacks failure frame to point to the
new failure frame and unsets the generator frame pointer.
REMOVE FAILURE FRAME pops the failure frame from the
stack and restores the previous failure frame and generator
frame pointers. If, after the ADD FAILURE FRAME opcode,
but before the the REMOVE FAILURE FRAME opcode, failure
occurs then the failure frame is summarily popped from the
stack (and the previous generator and failure frame pointers
restored), and execution jumps to the position rest .

The translation of other constructs, in particular the Icon
every construct, relies on large numbers of similar stack
operations. In the interests of brevity, this paper does not
look in detail at the translation of each language construct;
see [4] for a detailed description.

5.1 Optimisation suggestions
The ADD FAILURE FRAME and REMOVE FAILURE FRAME op-
codes give an important insight into an inefficiency shared
by existing Icon and Icon-like implementations but not
by other languages. Since every logical line of code is
a bounded expression, and because within logical lines
there can be extra bounded expressions, the number of
ADD FAILURE FRAME and REMOVE FAILURE FRAME oper-
ations executed is large: for a typical Converge program ex-
ecution, they represent around 25-30% of executed opcodes.
While relatively cheap opcodes to execute, any execution
which touches the stack incurs costs, and their sheer fre-
quency means that a frustrating amount of execution time is
devoted to them. Although it is difficult to obtain a precise
figure for the cumulative time stack operations specific to
the Icon-esque evaluation system occupy in the Converge
VM as a whole (since some are intertwined within other
code), crude estimates show it is a minimum of 10% of total
execution time. Note that in the Converge VM, such stack
operations are one of the few reasonably optimised pieces
of code; if the rest of the VM was similarly optimised, they
would take up a much larger proportion of execution time.
Therefore anything which can reduce the number of such op-
codes executed, or the time taken to execute them, is likely
to have a noticeable effect on performance [7, 9]. It is there-
fore worth considering how an Icon-esque VM can reduce
the number of stack operations.

Considering only failure frame operations, a simple
thought experiment shows that a few stack-based operations
can be statically removed. For example the expression x

:= 2 can never fail (since integer creation is a primitive
operation), and need not be surrounded by failure frame op-
erations. However the highly dynamic nature of languages
such as Icon and Converge limits the analysis that can be
performed statically, and it is likely that only small gains
could be realised in this particular aspect.

Fortunately, real execution data suggests that Icon-esque
VMs are not as inherently stack-based as previously thought.

The reason why failure frames are pushed onto the stack is
that they can be nested to an arbitrary depth, and the max-
imum depth is not statically calculable. By inserting sim-
ple logging statements into the relevant part of the Converge
VM, one can see how deeply nested such frames are in a
real execution; the following figures are from an execution
of the Converge compiler on the convergec.cv file (part
itself of the compiler). Approximately 44% of continuation
frames have a maximum of 1 nested failure frame at any
point; 60% have a maximum of 2 failure frames at any point;
and 80% have a maximum of 3 failure frames at any point.
The maximum number of nested failure frames is 17, which
occurs only once during execution (the next highest num-
ber of nested failure frames is 13, which again occurs only
once). With the exception of the maximum number of nested
failure frames (which is unusually high), these data are rep-
resentative of normal executions. They show that the need
to cope with an arbitrary depth of nested failure frames is
relatively rarely needed. Indeed, 80% of the time it would be
practical to statically reserve 3 ‘slots’ in the global execution
state for failure frames; when a new function is called, these
can be pushed onto the stack along with other data such as
the program counter. In the few cases where the 3 slots are
not adequate, a fall-back to the traditional stack-based frame
approach can be used. In so doing, expensive stack opera-
tions would be significantly reduced. Exactly the same tech-
nique can be used for generator frames, which are generally
even less deeply nested; the same execution data shows that
nearly 99% of continuation frames have a maximum of one
nested generator frame.

6. Advantages and disadvantages
This section details the experiences I have derived from
the way that I and others have used Converge’s Icon-like
expression evaluation system. By its very nature, this section
is not in any way scientific; however, I hope it provides
interesting insights for readers.

6.1 Advantages
Two features from Icon are particularly heavily used in Con-
verge. Most obviously, Icon’s generator concept provides
a lightweight iteration mechanism which also doubles as a
simple means of lazy evaluation.

The second candidate is less obvious: it is the concept
of failure in if constructs. Frequently used libraries are en-
hanced by using the ‘if this function succeeded, assign the
value to this variable and then do xyz’ idiom. Converge has
evolved to make frequent use of this idiom, which is well
demonstrated in Converge’s dictionaries (known as hash ta-
bles or hash maps in many other languages). As in most lan-
guages, container items such as dictionaries have a get func-
tion which returns the value associated with a certain key; if
the key does not exist, get raises an exception.

Frequently callers need to see if a key exists and, if it
does, to get a value back; if it does not exist, no action is
to be taken. There are two main solutions to this problem.
The first is that get returns null if the key is not found;
however this means that one can not distinguish between a
key mapping to null and a key not existing. The second is
to have a contains function which tests for existence of the
key; if it exists, then get is called. In most languages this
idiom is expressed roughly as follows:

d := Dict{"a" : 2, "b" : 8}
if d.contains("a"):

Sys::println(d.get("a"))

Not only is the double lookup of a an eyesore, and a mainte-
nance accident waiting to happen, but it can be a significant
overhead in tight loops. In Python (and probably other lan-
guages), it is not uncommon to see an idiom which, encoded
in Converge, looks as follows:

d := Dict{"a" : 2, "b" : 8}
try:

v := d.get("j")
Sys::println(v)

catch Exceptions::Key_Exception:
pass

This idiom makes use of the fact that it is nearly always
quicker to catch an exception if a key isn’t found than to
perform two lookups. In my opinion this idiom obscures
the original intent by using (a rather ungainly) exception
for performance reasons rather than the expected ‘disaster
recovery’.

In Converge the functionality of contains and get can
be subsumed into a single function, which succeeds if the
key is found, and fails if it is not. In Converge the find

function can be used as follows:
d := Dict{"a" : 2, "b" : 8}
if v := d.find("a"):

Sys::println(v)

Note that Converge contains both get (which raises an ex-
ception if the key is not found) and find (which fails if the
key is not found) but not contains (which is equivalent to
ignoring the return value of find if it succeeds). get and
find are so named because when one goes to get something,
one is expected to come back with it, but when one tries to
find something, it is possible that it will not be found. The
get / find idiom is used repeatedly throughout the Con-
verge libraries, and the frequency and consistency of its use
has proved a real success.

6.2 Disadvantages
The chief disadvantage of the Icon-esque expression evalu-
ation system in Converge is simply that – apart from gener-
ators and failure in if constructs – it has not been greatly
used. This means that although the language has extra con-
cepts, the compiler is more complex, and the VM slower,
users rarely use the features that necessitate these costs.
There are several possible reasons for this: perhaps users (in-
cluding myself) tend to think in ‘traditional’ ways and forget

the new functionality available; and maybe problems do not
naturally decompose in ways best suited to such an expres-
sion evaluation system. However, I suspect the main reason
can be deduced from Icon. String scanning (see Section 3.4)
is the main place where sophisticated use of Icon’s expres-
sion evaluation system is used yet modern regular expres-
sion libraries subsume most simple cases of string scanning,
and formal parsing tools most complex cases. In short: goal-
directed evaluation isn’t as useful in a modern language as it
might have been in Icon’s heyday.

7. Conclusions
In this paper I explained the unusual expression evaluation
system of the Icon programming language. I then detailed
several minor flaws with this system, and showed how the
Converge programming language contains a similar expres-
sion evaluation system with some flaws fixed and some un-
fortunately retained. Finally I outlined what, from my own
experiences, I consider to be the advantages and disadvan-
tages of such an expression evaluation system.

Three final questions relating to language design remain.
First, was it worth experimenting with an Icon-esque ex-

pression evaluation system in a modern dynamically typed
OO language? My answer is an easy ‘Yes’. In interviews and
writing with Ralph Griswold (e.g. [1, 2]) it is clear that one
of the aims of Icon was not to be just another (boring) syn-
thesis of a few existing language design staples, but to try
something new. Icon fully succeeded in that, and is a gen-
uinely interesting language, worthy of exploration.

Second, if I were to design another general purpose pro-
gramming language, would I repeat the experiment of in-
cluding an Icon-esque expression evaluation system? My an-
swer here is more nuanced. I would definitely include gen-
erators. I would try very hard to include a way of allowing
failure in if constructs. However I would not include most
of the rest of Icon’s features, including the bulk of features
related to goal-directed evaluation: the resulting complexi-
ties and inefficiencies are not worth it for the general user.

Third, and finally, do I foresee a place for Icon’s ex-
pression evaluation system? Icon’s goal-directed evaluation
shines through in string scanning. However it is unclear to
me whether Icon’s string scanning retains many uses: regu-
lar expressions subsume most simple uses, and formal pars-
ing techniques most complex uses. It is therefore equally un-
clear whether modern general purpose languages would ben-
efit greatly from Icon’s expression evaluation system. How-
ever, a fruitful future area of research may be to investigate
how domain specific languages (including domain specific
embedded languages [6]) can integrate similar functional-
ity. Though I suspect that such systems would require more
powerful backtracking features than present in Icon, it may
provide a good basis for the eventual design.

For those interested in experimenting with the systems
discussed in this paper, open-source, portable versions of

Icon (http://www.cs.arizona.edu/icon/) and Con-
verge (http://convergepl.org/) are freely available.

References
[1] D. S. Cargo. An interview with

Ralph and Madge Griswold, July 1990.
http://www.cbi.umn.edu/oh/pdf.phtml?id=135 Last
accessed May 31 2010.

[2] R. E. Griswold and M. T. Griswold. History of the Icon
programming language. pages 599–624, 1996.

[3] R. E. Griswold and M. T. Griswold. The Icon Programming
Language. Peer-to-Peer Communications, third edition, 1996.

[4] R. E. Griswold and M. T. Griswold. The Implementation of the
Icon Programming Language. Peer-to-Peer Communications,
third edition, 1996.

[5] R. E. Griswold, J. F. Poage, and I. P. Polonsky. The SNOBOL4
Programming Language. Prentice-Hall, second edition, 1971.

[6] P. Hudak. Building domain-specific embedded languages.
ACM Computing Surveys, 28(4), Dec. 1996.

[7] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. The
implementation of Lua 5.0. Journal of Universal Computer
Science, 11(7):1159–1176, 2005.

[8] N. Schemenauer, T. Peters, and M. L. Hetland.
Simple generators. Python PEP 255, June 2001.
http://www.python.org/dev/peps/pep-0255/ Accessed
Sep 15 2008.

[9] Y. Shi, K. Casey, M. A. Ertl, and D. Gregg. Virtual machine
showdown: Stack versus registers. Transactions on Architec-
ture and Code Optimization, 4(4):1–36, 2008.

[10] L. Tratt. Compile-time meta-programming in a dynamically
typed OO language. In Proc. Dynamic Languages Sympo-
sium, pages 49–64, Oct. 2005.

[11] L. Tratt. The Converge programming language. Technical
Report TR-05-01, Department of Computer Science, King’s
College London, 2005.

[12] L. Tratt. Model transformations in MT. Science of Computer
Programming, 68(3):169–186, Oct. 2007.

[13] L. Tratt. Domain specific language implementation via
compile-time meta-programming. TOPLAS, 30(6):1–40,
2008.

