An extensible dynamically typed object
orientated language with an application to
model transformations

Laurence R. Tratt

August 2005

Thesis submitted in partial fulfilment for the degree of
Doctor of Philosophy

King's College London

Abstract

Dynamically typed object orientated languages such asoRydine increasingly seen as a viable im-
plementation technology for software systems. Despiterginetime flexibility that such systems
present, few present any means of extending the base lamguditnough languages such as LISP
provide features for extending the base language via a nsgstem, few modern languages are capa-
ble of compile-time meta-programming, and of those thahtkmy of the most powerful are statically
typed functional languages. In this thesis | first presernmaehdynamically typed object orientated
languageConverge which can be extended via its compile-time meta-programynfiacility. This
facility can then be used to extend Converge’s syntax, aligubomain Specific Languages (DSLSs)
to be embedded directly within Converge.

| then use Converge to tackle the problem of model transfiioms& Model transformations are
of increasing importance in the development of large systevhose models need to be manipulated
into many different forms. Model transformations writtangdgeneral programming languages are
typically bloated, buggy, and inflexible and perform behaatisonable expectations. The difficulties
of implementing model transformations have hampered igagtrogress in this area. In this thesis
| show a large scale example of a model transformation appribll implemented as a Converge
DSL. | then use this as a basis for a novel change propagatintinransformation approadtMT

which explores practical approaches to this challengimgplpm.

Acknowledgements

| would like to thank those who have helped me in my researatk \@oring the last five years. Two
people in particular have had a big impact on this work. TotariCguided me through some of the
early stages of this work, but more importantly opened mysdgethe possibilities out there, and
who put up with my constant questions and chattering. JosingFiplayed a similar guiding role, and
suffered a similar verbal attack, during my school days.n'dihink I'd have got to this point without
their guidance.

My thanks to all my friends from over the years who've givensapport in one form or another —
there really are too many to mention everyone here, so | gjgglan advance to those who I've for-
gotten to mention. Arlene Ong & Kelly Androutsopoulos haeei constant companions at King’s,
and | don't know quite how different this would all have beeithwut the pair of them. It might have
been a bit quieter, but also lot duller. To my friends outsiflthe King’s bubble who will never read
this — Eliot, Martin, Steve, Vasa, amongst many others — yauatl claim prize money oa£1000 if
you report this offer to me within 7 days of the publicationtloik thesis.

To both bodies that funded me — the EPSRC for my first year anibeictly, Tata Consultancy
Services thereafter —thank you. | assure you both that | pat/gour money to the best possible use.

This thesis would not have been possible without industiigntities of metal. It would be remiss
of me not to attempt to embarrass my future self by remindipgeti of this. | thus thank all those
who've recorded discordant and insanely distorted guib&es a backdrop of caveman drumming,
and topped it all off with prddomo sapiensocals. I'd like to particularly thank the tiny minority
who've taken this route and used it to create memorable tangeu rock.

To my parents, who opened up the opportunities that led nfedgoint and have supported me all
the way through, you've made this all possible — Mum, Dad diweque is in the post, honest. Since
| will never be able to repay you what | owe, it's probably natrith me even starting to try, so I'll
say simply: | love you both. This thesis is dedicated to Gyawho would have loved to have seen

me see this through.

Contents

bstract

cknowledgements

1 Introduction

1.1 OVEIVIEW e e e e e e e e

1.1.2 Modeltransformationd

1.2 Overallaims ofthethesisd.

1.3 Overallthesis structurd e

1.4 Contributiond

1.5 Detalled SYNnopsiso

1.6 Previous availability of material

1.6.1 Publicationd e e e e

1.6.2 Softward

1.7 Thesisconventiong o v v v v e e e e e e

2 Background |
2.1 Domain specific languages.

2.4 A method for model transformationd

225 Challengesraisedbytheexampled

4 Model transformations SCOPE e

5 Changepropagationl

10
10
10
12
14
15
15
15
16
16
17
17

3 Review 33

&u_tmganJﬂLel_ma.cm_ta.cunLQ 36
3.2.2 Syntax level macro facilitied oL 37
3.2.3 MetaMl and Template Haskell 38
S.Z_A_O_O_Ia.n.gua.g_aJ 39
M 39
3.3.1 Transformation specificationd, 39
3.3.2 Transformation technologied. 40
333 XSLT 40
3.3.4 Graph fransformationd 41
335 logicprogramming 44
3.3.6 TXLl 44
337 QVIl . . . 45
338 TRU. 46
339 XMOH. 47
3.3.10 QVI-Partners approachl 49
3.3.11 Otherapproaches 50
3.3.12 Summary of model transformation approached 51
3.4 Researchproblenm 52
S.A.J_A_Dﬁ.L_imDJﬂm.enlalLQ.D_Le.ch.n.QLQg;J 52
3.4.2 Issues with existing model transformation approached. 53
343 Thesisaimd 54
3.4.4 Assessmentcriterid 55
4 The Converge programming language | 56
A.l_C.O.mLELg.e_b.aS.i; 56
4.1.1 Syntax, scopingandmoduled L. 56
4.1.2 Functiond 58
4.1.3 Goal-directed evaluationl 59
4.1.4 Datamodel 62
4.1.5 Comparisons and comparison overloading 64
4.1.6 EXCeptiond 64

4.1.7 Meta-objectprotocol 64
4.1.8 Differences from Python 65
4.1.9 Differencesfromlicon. 65
4.1.10 Implementationl 66
4.l.J.l_Ea.Ls.i.n.£J 67
4.1.12 Relatedworl 69

4.2 Compile-time meta-programmingo e e e 69
4.2.1 _Background 69
4.2.2 Afirstexampld 70
A_ZB_S_ij_cjﬂd 71
4.2.4 The guasi-quotesmechanism oo 72
4.2.5 Basic scoping rules in the presence of quasi-quoted 73
426 The CElinterface 74
4.2.7 Liftingvalues 76
4.2.8 Dynamic scopind 77
A.ZB_ana.Ld_L&ELﬂm_a.D.dﬁp.chjﬂd 78
4.2.10 Compile-time meta-programminginuse« 79
A.Lll_Run_LLm:;eﬁLmnnJ 81
4.2.12 Compile-time meta-programming costd 83
4.2.13 Errorreporting . .- o e e 84
4.2.14 Relatedworl 86

4.3 Implications for other languages and their implementations 87
ign implicationd 87

o2 compecanadd 88
4.3.3 Compilerinterfacd 90

4.4 Syntaxextension for DSLY 91
4.4.1 DSL implementation functiond 92
442 Addingaswitch statemeni. 92
443 Relatedworl 94

4.5 Modelling language DSI 94
451 Exampleofusd 95
452 Datamodel 96
453 Pre-parsingand gramman e 98
4.5.4 Traversingthe parsetred. 100

456 Diagrammatic visualizatiod 103
4..6_Eulu.LEJALQLJ 104
A7 SUMMAIY .« .« « o o v e e e e e e e 105

5 A rule based maodel transformation system 106
5.1 Running examplel e e e 106
.2 The QVT-Partners model transformations approachl 108

D21 OVEIVIEW v v e e 108

.24 Issues withthe approach 113

D.2.5 SUmMmMard e e e e e e e e e e e 115

5.3.2 Matching source elements with patterng 118
5_3_3_Ean.em_Languag£| 119
.34 Producingtargetelements. 120
535 Exampld 121
5.3.6 _Running a transformatiod 122
M 123
5.4.1 Visualizing tracing informatiod L. 124
5.4.2 Standard tracing information creation mechanism 127
5.4.3 Augmenting or overriding the standard mechanism 128
.5 Towards more sophisticated fransformationd 130
5.5.1 Extending the runningexampld 130
5.5.2 Pattern multiplicitied 131
553 Extendedexampld 135
5.5.4 Pruningthetargetmodel. 138
5.5.5 Combinatorsd 138
5.6 Implementation 140
5.6.1 Outline of the implementation 141
562 Translatingruled 141
5.6.3 Translating a rules source modelclaused 142

5.6.4 Translatingpatterng. 144
S_ﬁ.uan.alalm.gla.nﬂb.l.e_bm.dmgg 144
5.6.6 Translating model element patternd 145
5.6.7 Translatingsetpatternd, 150
5.6.8 Translating Converge expressions when used as patternd 150
5.6.9 Anexample franslated pattern 151
5.6.10 Translating pattern multiplicitied 152
5.6.11 Standard functiond 154
5.6.12 Embedding Converge code within DSLd 154
5.6.13 Extending the Converge grammatl 155
5.6.14 Unintended interactions between translated and embedded codd . . . 156
5.6.15 Generating tracing information from nested model patternd 158
5.6.16 Summary of the implementation 159
5.7 Relatedworl e 159
5.8 Future work L e e e e e 161
DO SUMMAIM e e 162
6 A change propagating model transformation system | 164
m_chaugs_nmnagmia 165
6.1.1 Change propagation compared to incremental transformation 165
6.1.2 Manual or automatic change propagatiod 166
6.1.3 Propagating changes in batch or inmediate modd 167
6.1.4 Relating source and target elements by key, trace, or identified 168
6.1.5 Correctness checking and conflict resolutiond 170
6.2 PMTl. e e 170
6.2.1 A PMT transformation'sstaged 171
6,22 Exampld 172
6.2.3 Creating target element identifierd 176
6.2.4 Making target elements conformant 180
6.2.5 Running a PMT fransformation 181
6.2.6 _Removing elements from the target model 183
6.2.7 Propagating changes between containerd 184
6.3 The execution of a PMT fransformation 185
6.3.1 Propagating localised changed 186

6.3.2 PMT'sapproach e e e e e e e e e

6.5 Implementation e e e

6.5.1 Conformance operatord

6.5.2 Conflictd

6.6 Future World e e e

6.7 Summary

7 _Conclusions

/.1 Summary

7.2 Conclusiond e e e e e e,

7.2.1 Futureworld e e

Converge grammar

B _DSL _grammars |

B.l MT Grammall v v o e e e e e e e e e e e e e e e e e e e

D_Example translations

D.1 The ‘Simple UML' modellin

E__Model serializer

E.1 Overvie

E.2 Example outpul e e

E_Glossary

201
201
202

205

209
209
210

211
211
213

216
216
217

226
226
226

230

Chapter 1.

Introduction

1.1. Overview

1.1.1. An extensible programming language

When developing complex software systems in a General Barpanguage (GPL), it is often the
case that one comes to a problem which is not naturally esitesn the GPL used to develop that
system. In such cases, the user has little choice but to finitabke workaround, and encode their
solution in as practical a fashion as they are able. Whilsh suorkarounds and encodings are often
trivial, they can on occasion be exceedingly complex. Irhstases the system can become far less
comprehensible than the user may have wished. AlthougheStagues that ‘a main goal in designing
a language should be to plan for growth” [Sfe99], most mod&Phs only allow growth through the
addition of libraries. The ability of a user to extend, or auggt, their chosen programming language
is thus severely restricted.

Domain Specific Languages (DSLs) are an attempt to work ardlie lack of expressivity in a
GPL by presenting the user with a mini-language targetetlégarticular domain they are working
in. Mernik et. al[MHSO3] define DSLs as ‘languages tailored to a specific apptin domain. They
offer substantial gains in expressiveness and ease of ogeaced with general purpose programming
languages in their domain of application’. TraditionallsDs — for example the UNInake pro-
gram — have been implemented as entirely stand alone agipfisaHudak contrasts the consequent
high costs of traditional DSL implementation with DomaineSiiic Embedded Languages (DSELS)
[Hud9€]. DSELSs contrast with traditional DSLs in that theg a language within a language; in other
words the DSL is embedded within a GPL. In so doing, the DSHipiek up many of the benefits of
the surrounding GPL. However Hudak specifically limits hisians to DSLs embedded in strongly
typed functional languages such as Haskell, relying on éngqular feature sets that such languages

offer.

Wilson argues that programming languages need to allowslataxes to be extended if powerful
DSLs are to be exploited to their maximum potential [WilOBludak’s vision is thus fundamentally
limited since he expressly forbids any form of syntax extmm$o the host GPL. Part of the reason for
this may be that few modern languages are capable of syntarstéan. Although LISP’s macro fa-
cilities are well known, its syntactic minimalism is far reaed from modern programming languages
and whilst the syntax is inherently flexible, it is not po$sitb change it in a completely arbitrary
fashion. Nemerle [SMO04] is a statically typed OO languagthe Java / C# vein, which includes a
macro system that permits a limited form of syntax extensBravenboer and Visser perhaps come
closest to the ideal vision of syntax extension with MetaBorg system which allows language
grammars to be extended in an arbitrary fashion [BV04]. Hawx&letaBorg is a heterogeneous
system meaning that the language being extended is ggnéiffdirent than the language doing the
extension. In order to use such a system, one needs to bd axpleree entirely separate systems
(the language being extended, the language doing the éxtesasd the ‘emulation’ of the language

being extended) in order to produce a quality implementatichich is a significant barrier to use.

A primary aim of this thesis is to present an extendable pnogning language. Since the GPLs
that | use most frequently for my researc¢h_[Tra05] are dycallyi typed Object Orientated (OO)
languages such as Pythan [vRR03], this thesis further aimesgent an extendable dynamically typed
object orientated language. Dynamically typed OO langsiagech as Python, Ruby ITHOO] and
Smalltalk [GR89] are increasingly recognised as havingrgportant rble to play in the development
ecosphere, particularly for the rapid development of safemvhose requirements evolve and change
as the software itself develops [Ouk98]. Although they hisaditionally been labelled somewhat
dismissively as ‘scripting languages’, modern dynamigleayge implementations can often lead to
programs which are close in run-time performance to thaticstlly typed counterparts, whilst having

a significantly lower development co5t [Pre00].

In contrast to a heterogeneous system sucMetmBorg , a language which successfully meets
this thesis’s aims would need to be entirely homogeneousitare. In order to achieve this, the
language thus needs some way to execute arbitrary code gilegime. To the best of my knowl-
edge, the only dynamically typed OO language capable ofishylan [BP99], which is a hetero-
geneous system since its macro language is distinct fronmthia language. Relatively recently
languages such as the multi-staged MetaML [Tah99] and Tamplaskell (TH)[[SJ02] have shown
that statically typed functional languages can house plolveompile-time meta-programming facil-
ities where the run-time and compile-time languages areamaethe same. Whereas lexing macro
systems typically introduce an entirely new language tostesy, and LISP macro systems need the

compiler to recognise that macro definitions are differeainf normal functions, languages such as

11

TH move the macro burden from the point of definition to the rmamll point. In so doing, macros
suddenly become as any other function within the host lagguaaking this form of compile-time
meta-programming in some way distinct from more traditiomacro systems. Importantly these
languages also provide powerful, but usable, ways of copiitig the syntactic richness of modern
languages.

Since languages such as MetaML and TH are concerned withreliff aspects of program devel-
opment (such as statically determinable type-safetyd,léds than clear whether or not a dynamically
typed OO language could satisfactorily house a similar dlastipne system. In this thesis | present
the Converge programming language, which can be seen in mays as a Python derivative, both
syntactically and semantically. However, Converge is aenexperimental multi-paradigm language
than Python and its ilk. It has been designed, in part, tocerpf, and how, various language fea-
tures can be integrated together. In this thesis | presentniin Converge language along with its
TH-derived compile-time meta-programming facilitiespkining the impact this has had on the lan-
guage’s design since it is important that the addition ohsaideature does not unduly complicate
other areas of the language. | then show how Converge allmwsyntax to be directly extended,
thus allowing DSLs to be embedded in Converge in an entiratynal fashion. In order to validate
Converge’s approach to DSL implementation, the followingsection details a substantial problem,

which is then implemented within Converge.

1.1.2. Model transformations

In recent years the movement towards developing softwatie tlve use of models has increased
rapidly. Organizations are increasingly seizing the opputy to move their intellectual property,
business logic, and processes, from source code into madlelsing them to focus on the important
aspects of their systems, which have traditionally beeietur and sometimes lost — in the mélange
resulting from the use of general purpose languages (GRick)&s Java and C++. For the purposes
of this thesis, models can be assumed to be UML [BJRO0O0O] mpdekimilar. This increasingly so-
phisticated use of models has led to the desire to transfaydets into various different forms. Needs
range from the mundane (e.g. simple data format convertiahg traditional (e.g. model compilers)
to the innovative (e.g. transformations which can propaghtinges after an initial transformation).
Model transformations are the key to solving this very fundatal problem, and are vital if the
use of modelling is to reach its full potentidl [BG02, G182, [Whi02]. A simple definition of a
model transformation is that it is a program which mutates model into another; in other words,
something akin to a programming language compiler. Of egufshis simple description accurately

described model transformations, then we would be facel avitelatively simple and uninterest-

12

ing problem to solve — GPLs and traditional techniques wealidost certainly suffice to solve this

problem satisfactorily, as they do with many other problems

In practise writing model transformations is difficult, panlarly so when GPLs are the only tool
available to write them. Whilst such languages present gogatonments for solving many classes of
problems, model transformations make frequent use of igaba and features which are either absent
or cumbersome to use in GPLs. Such features thus need to beéezhin a roundabout fashion in the
host language. For example, models are most naturallysepted as graphs; encoding backtracking
over a graph, of the kind frequently needed by model transfitions, in a GPL is a surprisingly
challenging task. Performance issues also feature — fangbeathe potential size of models can
necessitate against the eager evaluation of arbitrargtates. Encoding suitable techniques using
the facilities available in a GPL is of course possible, lsutedious, error-prone and can lead to
inefficient execution. More fundamentally it prevents thensformation writer from concentrating
on the important aspects that they need to express; it ldrbdese who later wish to understand code
which relies on knowledge both of the problem being solved e elaborate encodings used to

solve it; and lessens the potential for reuse.

To alleviate these problems, a number of different appresidiedicated to model transformations
have recently been proposed. Most approaches have begedcrégth the assumption that existing
GPL approaches are unsatisfactory. However few, if any;camies are explicit about this assump-
tion and none analyse traditional approaches sufficierRigrhaps because of this, most proposed
model transformation approaches are somewhat ‘hit and missms of tackling the problem more
successfully than existing approaches. Significantly, liefse that most model transformation ap-
proaches are largely similar to each other. Without redsleravaluation of all the potentially major
different types of model transformation approach, it isdhtar be sure that any particular approach
is as good as can be reasonably achieved. There is also atgrideassume that there is a suitable
‘one size fits all’ solution to the problem because of themaress of the solutions being attempted.
At this stage in the development of the area, it seems sertsildlssume that different solutions may

be required to tackle different aspects of the problem.

It is my contention that the difficulty of implementing modednsformation systems is one of the
chief reasons for the relative simplicity of most currentdebtransformation approaches. Only a
small proportion of proposed approaches appear to be ingpltad; of those that do have an imple-
mentation, some are too limited to perform any meaningfsk.te&Since model transformations are
an inherently practical topic, implementations are vitaldssessing and evolving new ideas. A long
and labour intensive idea-implement-assess cycle séyiosbits such experimentation. The area

of model transformations thus finds itself in something oi@ous cycle: as a relatively new area,

13

experimentation is vital for discovering the merits of diffnt approaches and techniques, yet the
difficulties of creating implementations inhibits expeentation.

In respect to model transformations, this thesis has twgbementary aims. The first is to demon-
strate how a complex DSL fits within Converge, and how it islenpented. The second is to explore

the model transformations field by investigating new typlemodel transformations.

Types of model transformation

In this thesis various types of model transformations agatified (see sectidn 2.3), with two being

of particular significance. These two types can be sumnthdsdollows:

Stateless model transformationstake in a source model and produce a target model in a singiar v
to a programming language compiler. Once the transforméités been run it is complete, and
the only action to be taken when rerunning the transformaitioto create an entirely fresh

target model from the source model.

Change propagating model transformations are only relevant after an initial transformation from
a source to target model. Subsequent to such an initialftranation they are capable of

propagating changes made to the source model to the targiel m@ non-destructive fashion.

The majority of existing model transformation approachesanly capable of expressing state-
less model transformation. Although stateless model toamstions are widely recognised as being
important, change propagating model transformations lacedd considerable interest.

In this thesis | present a stateless model transformatiogulgge MT which serves as an example
of implementing a complex DSL within Converge. | then présenovel change propagating model

transformation language PMT.

1.2. Overall aims of the thesis

Consistent with the issues outlined in secfiod 1.1, thisithleas the following complementary aims:

1. To provide an extensible dynamically typed OO prograngnemguage which allows DSLs to
be embedded within it.

2. To provide a non-trivial example of a DSL within the extehtt programming language.

3. To examine new approaches for expressing stateless angelpropagating transformations.

14

1.3. Overall thesis structure

In order to satisfy the stated aims, this thesis is orgarirgedour main parts:

1. An analysis and review of compile-time meta-programnsggtems, and model transforma-

tions.

2. | present the design of a new imperative programming laggunamed Converge, designed to

facilitate the implementation of DSLs.

3. Converge is used to express a simple, but powerful ridedatateless model transformation

system.

4. The rule-based approach is then extended to define a rieadie propagating model transfor-

mation approach.

1.4. Contributions

The main contributions of this thesis are as follows:

The design of the Converge programming language.

A clear identification of significant types of model transf@tions.

The use of Converge to implement a practical rule-baseeletst model transformation system,

which severs as a non-trivial example of using Converge flément a DSL.

e The use of Converge to explore practical approaches to ehaogpagating transformations.

1.5. Detailed synopsis

Chapter 2 introduces the concepts of DSLs and model transformatidh& chapter motivates the
need to consider model transformations as a distinct arguiarproblem via an analysis of the
problem they aim to solve. This leads to a categorizationoofes significant types of model
transformation, and the establishment of a simple methatdhtiodel transformation approaches

conform to. By defining the problem space thus, a wide salgjgace is also defined.

Chapter 3 reviews and analyses the major approaches to compile-tieti@programming and model
transformations. The analysis leads to two choices beirgenfairstly | present a dynamically

typed OO language capable of compile-time meta-programr(chapter 4), and secondly |

15

choose to provide new approaches for expressing stateldsshange propagating transforma-

tions (chapters 5 and 6).

Chapter 4 presents the design of a new dynamically typed OO languageetge designed to facil-
itate the implementation of DSLs. Converge is an impergtiagramming language, capable

of compile-time meta-programming, and with an extendajphees.

The chapter concludes with a user extension to Convergehvetiiows simple modelling lan-
guages to be embedded within Converge. As well as being dqabdemonstration of Con-

verge’s features, this facility is used extensively thioogt the remainder of the thesis.

Chapter 5 constructs a rule-based stateless model transformatiproagh. This serves as a non-

trivial example of implementing a DSL in Converge.

Chapter 6 details a more sophisticated model transformation salwiming to tackle the problem
of change propagation. The rule based approach of the miewibapter is augmented with
mechanisms for ensuring that transformations can be megafter an initial transformation,
and are capable of propagating changes made to a source sobdefuent to its initial trans-
formation. In so doing, a number of insights into the chajks of change propagation, and

solutions to several of these problems, are presented.

Chapter 7 Conclusions.

1.6. Previous availability of material

1.6.1. Publications

Several parts of this thesis have appeared in identifialvha fo previous publications, all authored
solely by myself. An early version of parts of chapters 2 amd3 be found in the following journal

publication:

Laurence Tratt. Model transformations and tool integratidournal of Software and

Systems Modelling}(2):112-122, May 2005.
A slightly augmented version of chapter 4 appeared in tHevidhg symposium publication:

Laurence Tratt. Compile-time meta-programming in a dymathi typed OO language.

Proc. Dynamic Languages Symposium, October 2005.

Large parts of chapters four have previously appeared ifotteving two technical reports:

16

Laurence Tratt. Compile-time meta-programming in Congefigechnical report TR-04-

11, Department of Computer Science, King's College Londegember 2004.

Laurence Tratt. The Converge programming language. Teahréport TR-05-01, De-

partment of Computer Science, King’s College London, Falyr2005.

Chapter five appeared largely verbatim in the following techl report:
Laurence Tratt. The MT model transformation language. et report TR-05-02,
Department of Computer Science, King’s College London, K20§5.

1.6.2. Software

This thesis has led to the creation of several pieces of aoftwAll software in this thesis can be

downloaded fronhttp://convergepl.org/

1.7. Thesis conventions

Please note that some code has had to be reformatted in onaeike it fit on the printed page.
Also note that whilst error messages and so on frequently gdmplete pathnames for the files
they refer to, in the interests of brevity these have gelyebalen cut down to show only the leaf name

of the file involved.

17

Chapter 2.
Background

This chapter is intended to fill in the background informati@cessary for the work presented in this
thesis. The concept of DSLs and model transformations giaieed and motivated in more detail.
Also spread throughout this section are the definitions afralyver of existing and unfamiliar terms —

and explanations of unfamiliar concepts — which are useaalititrout this thesis.

2.1. Domain specific languages

Mernik et. al [MHSO03] define DSLs as ‘languages tailored to a specific appbn domain. They
offer substantial gains in expressiveness and ease of ogeaced with general purpose programming
languages in their domain of application’. The canonicaregle of a DSL is the widely available
UNIX program make, which allows dependencies between files to be expressedl fild x upon
which a filef depends, has been updated it will fofcéo be recomputed. Although newer versions
of make have added (sometimes incompatible) features upon this biagn, in essencenake is
only capable of expressing simple dependencies.

A complete real world example of input toake is as follows:

echo: echo.c echo.h
cc -0 echo echo.o

In this fragment, theecho binary will be relinked (with a user-specified command) ther the
echo.c orecho.h files has been changed since the last Imiake also ensures that all C files (files
whose names end inc' °) are recompiled if they have been changed since their sipdation. The
expressive power of themake DSL for its chosen domain can be gauged by comparing the simpl
input to the following GPL pseudo-code:

if not futil.exists("echo.o0") or (futil.last_modified(" echo.c") >\

futil.last_modified("echo.0")):

sys.shell("cc -c -0 echo.o echo.c")

if not futil.exists("echo") or (futil.last_modified("ec ho.c") >\
futil.last_modified("echo")) or (futil.last_modified("echo.h") >\

futil.last_modified("echo")):
sys.shell("cc -0 echo echo.o")

As this example clearly shows, for its intended domamake allows users to express file depen-
dencies in a concise fashion compared to a GPL alternatigghi8 hopefully suggests, the aim of a
DSL is not to provide a generic solution to a wide categoryrobfems; rather a DSL should aim to
provide a succinct way of expressing solutions to a veryiipgeoblem. It should also be noted that
although this example, and most of the other DSLs mentiondkis thesis, are computer related, in
general DSLs can be written for any domain. For example, omddaconstruct a DSL designed to
allow banks to express the changing rates of interest ondleepunts. van Deursagt. al provide a

comprehensive review of much of the material about DSLS [VIDE].

2.2. Model transformations

Although transformations in general are a subject that bas much research over the past decades,
model transformations are a relatively new area of resedrcinthermore much of the research on
non-model transformations has been targeted at very spapiflications of transformations, nullify-
ing much of its applicability to model transformations winigim to encompass a much broader and
general scope [GLROZ]. Therefore, in order to define what a model transfornmaiso reference to
previous transformations work is of limited use.

Model transformations have an intuitive meaning: they aagrams which change one model
into another. Although this simple definition encompasses af the most important tasks of model
transformations, it fails to capture other tasks which theydel transformations aim to facilitate.
This definition also gives little sense asttowmodel transformations might work, or how one might
go about creating a model transformation. In this sectigmrekent a simple example of a model

transformation which allows many of the different aspettmodel transformations to be highlighted.

2.2.1. Transforming between two similar modelling languag es

Figure[Z1 shows the metamodels of two similar modellingyleages which will be used in most of
the examples in this chapter. A metamodel is literally thelet@f a model; it is a set of constraints
which determine its valid instances. A metamodel and a maxdeanalogous to a BNF grammar and
a particular textual input. In the interests of brevity | dat formally define the semantics of these
languages, assuming that equivalent elements in eitheelimglanguage have the same semantics
unless otherwise stated. The modelling langusigd in figure[Z.1(d) supports directed associations
and package inheritance; the latter is a mechanism fortating models as found in e.g. Appukuttan

et. al[ACE™02]. For the purposes of this example, a packdgehich inherits from a packagB is

19

considered to posses a copy of all the elemenis. iRigurdZ.1{g) shows the modelling langudde2
which does not provide support for package inheritancellws bidirectional associations. Because
of the large overlap between the two metamodels, many modalbe instances of either metamodel;
however many models will make use of the conflicting featofeme or the other modelling language
and are thus not directly interchangeable. This is reptatea of the real world where two modelling
tools store and manipulate models in only marginally déferfashions, yet still end up preventing
users from interchanging their models between them

Figure[2.2(d) shows a typical example of package inheran@ simple model of a company —
different aspects of the company have been separated ifecedit packages to aid comprehension.
The Companypackage then inherits the relevant sub-packages, meaniogtains all the relevant
parts of the company model. Since this model makes use ofagackheritance, it must be an
instance of theML1 modelling language; any tool which understands M2 modelling language
will not be able to interpret the model correctly. Intuitigeall that is needed to obtain thdL2
equivalent of the model in figufe Z.2(a) is to flatten the pgekiaheritance by copying elements from
the super-packages into the sub-package. F[gure P.2(psshach a model created by hand (with the
super-packages not copied over since they are redundant).

In this example creating thiIL2 model from theML1 model by hand is simple and relatively
quick. However it is clear that this is not a scalable appnodeerforming a similar task on larger
models would be both tedious and error-prone; it would beumtilag prospect to frequently repeat
this task. The problem at hand is thus how to provide usetsaviractical means of automating this

task.

2.2.2. Encoding the example in a GPL

Any first attempt at an automatic model transformation islliko be created in a GPL. A relatively,
but not completely, naive non-OO0 attempt, expressed iiirlg fagh-level pseudo-code, might look
as follows:

func transform(element : ML1.Element) : M2.Element:
if type(element) == ML1.Package:
package_elements = []
for package_element in element.elements:
package_elements.append(transform(package_element))
parents_temp = elements.parents.copy()
for parent in parents_temp:
for parent_element in parent.elements:
package_elements.append(transform(parent_element))
parents_temp.extend(parent_element.parents)
return new M2.Package(element.name, package_elements)

As purely anecdotal evidence, in 2002 | informally evaldate interoperability of approximately eight UML modetjin
tools. | was surprised to find that few tools could load modelged by other tools, and frankly shocked to discover that
some tools could not even be relied upon to load in their owedanodels in all cases.

20

ML1

from
elements |
> Element o
| parents parents

* *

Package Class Association

name : String name : String name : String

(a) TheML1 modelling language.

ML2
elements endi
> Element end2
| parents
Package Class Association
name : String name : String name : String

end1_directed : Bool
end2_directed : Bool

(b) TheML2 modelling language.

Figure 2.1.: Language metamodels.

elif type(element) == ML1.Class:
parents = []
for parent in element.parents:
parents.append(transform(parent))
return new ML2.Class(element.name, parents))
elif type(element) == ML1.Association:
return new ML2.Association(element.name, transform(ele ment.from),
transform(element.to), true, false)
func main(model_in : Seg{ML1.Element}) : Void:
model_out =]
for element in model_in:
model_out.append(transform(element))
The essential idea here is to transform every element insdarioe of théML1 language into its coun-
terpart in theML2 language; elements from inherited packages are broughthet child packages
and the package inheritance itself disappears. This apipioas two immediate, and closely related,
problems: elements can easily be duplicated during theftvemation e.g. if a clasS is specialized
by two other classes then two copies$fwill appear in the target model; cycles in the model cre-
ated by associations between two classes cause the traasifmn to loop without termination. Both
problems are related to the fact that models are graph stasct
If one ignores the flaws in this particular example, then tiybstic issues can be discerned. Most
obviously, the entire transformation has been squeezeaire function. Clearly this is not a scalable
approach. However, factoring out the code from the body ohdmanch of thef statement into

separate functions reveals another limitation of this epgin. The expressions in the condition of

21

Sales Stock

Company

(a) Company model with package inheritance.

Company

(b) Company model without package inheritance.

Figure 2.2.: Example models.

each branch of theé statement are an inherent part of eaale in the transformation, since they
determine whether the rule can be executed or not. Sepgthtrbody of each branch into a function

creates a dichotomy between the two aspects of the rule.

A more sophisticated approach which uses a cache to detemthiich elements have already been
transformed, and uses the overloading facilities of manyl@@Quages allows one to encode a more
rule-based approach (see secfion 3.1) to overcome thespnshdutlined thus far:

class ML1_To_ML2:
func transform(model_in : Seq{ML1.Element}) : Seq{ML2.EI ement}:
self.processed_elements = [] // These two sequences will al ways
self.processed_results = [] // be of the same length
model_out = []
for element in model_in:
model_out.append(self.transform_element(element))
return model_out

func transform_element(element : ML1.Element) : ML2.Elem ent:
if self.processed_elements.index(element) != -1:
processed_element = self.processed_results[
self.processed_elements.index(element)]
else:
processed_element = self.transform_rule(element)
self.processed_results.append(processed_element)
return processed_element

func transform_rule(element : ML1.Package) : ML2.Element
package_elements = []
for package_element in element.elements:
package_elements.append(self.transform_element(pack age_element))
for parent in element.parents:
for parent_element in parent.elements:
package_elements.append(self.transform_element(pare nt_element))
return new M2.Package(element.name, package_elements)

func transform_rule(element : ML1.Class) : ML2.Element:

22

parents =]
for parent in element.parents:
parents.append(self.transform_element(parent))
return new ML2.Class(element.name, parents))
func transform_rule(element : ML1.Association) : ML2.Ele ment:
return new ML2.Association(element.name, transform(ele ment.from),
transform(element.to), true, false)

Our simple example is now successfully encoded — we now rgelotmansform elements twice nor
can the transformation enter into infinite cycles. By ovading thetransform rule, the reliance on a
largeswitch -style statement has been removed. However this latteesadés somewhat illusionary
because of the lack of expressive power afforded by thisogmbr. The only form of constraint that
each rule can express is about the type of source model détm transform. This would not
be sufficient to express, for example, a rule which transfopackages whose names begin with a
‘ "in a different way from packages whose names do not begih wit ' (such a rule may be
used to enforce naming conventions). Complex constrainth as this are often a part of model
transformations; method overloading does not providedefft expressive power.

Despite the lack of generality of the overloading appro#ul,transformation is still a considerable
improvement over its flawed predecessor. A significant grobhowever with this transformation is
its relative size to our naive solution, with a large amafridoiler plate code and general machirfery
added in order to get the transformation to work correcthoriingly, the necessary machinery is
not confined to certain aspects of the transformation — itguks every aspect. Whilst this machinery
is of manageable proportions for a small transformatio® @an surmise that such an approach will
swiftly lead to the substance of the underlying transforamabeing swamped as the transformation
grows larger. Thus whilst we have a solution for the origimablem, it seems unlikely that such an

approach will scale appropriately.

2.2.3. A change propagating example

In the previous section, | motivated the need for model faansations by exploring the need to per-
form a transformation between models stored in differealstcand the difficulties in trying to write
such a transformation in a GPL. | classify that transfororagxample as anidirectional stateless
transformation. It is unidirectional because it can onansform an instance ®fL1 into an instance

of ML2. It is stateless because running the transformation wheesdbrce model has changed results
in the creation of an entirely new target model even if it i®aact duplicate of the model that already
exists. Although such a transformation can be of practisalin integrating together different tools,

it tackles only part of the problem.

2] use the term ‘machinery’ to denote code which is necessagpmstruct a running system but which detracts from the
users’ focus in creating the system.

23

One enticing future scenario is when tools which speciahizdifferent aspects of modelling can
be used together throughout the development life c¥cleO8]ra.g. a UML modelling tooUT and
a Java modelling toq@lT. In such a scenario, a model is not just transformed betwigfsmeatht tools
once, but may be edited multiple times in each tool. For eXxengn initial model may be created
in UT, transformed and subsequently editedThbefore high-level architectural changes are applied
in UT which one expects to see reflected)in A similar, although more linear, scenario involving
incremental model development is explained in Beakeal BHWO04]. The general aim underlying
such scenarios is to allow the user to leverage the partisplecialities of different tools at varying

points in the development life cycle.

The significant challenge raised by this scenario can be isegure[Z:8. Imagine first that one
has the model in figufe Z.3]a) (an instance of Mie2 modelling language) in a todIT2. One then
transforms this model into an instance of &1 modelling language for use in another tddT 1.
The result of the transformation frodML2 to ML1 is shown in figurd”Z:3(b), which contains two
directed associations. Now if the user changes the moddlTig, what might the result be on the
model inMT1? Being stateless in nature, the example presented in thiepsesection would simply

erase whatever was MT1and create an entirely fresh model.

A more sophisticated approach would be for the transfoomat attempt to perform the minimum
alteration to the target model to propagate the changegntgd otherwise intact. In order to do this,
the transformation needs to somehow recognise those dignmethe model inMT1 which relate
to those inMT2 and use, or change, them appropriately. This initially sedéarly trivial — for
example theemployeeclass is obviously shared in both models. However, congigebidirectional
association itMT2 which is non-trivially related to two directed associasdn MT1— how should a
transformation recognise such a relationship? One coalttsén anMT2model for a pair of directed
associations whose names appear to correspond to thatdifectional association iNIT1, but such
correspondences may be pure coincidence (the user bemtpfreame associations as they so wish),
which would lead to an incorrect change propagation. Oneitapt type of propagation results from
the deletion of an element MT2which should result in the appropriate deletion of elemani4T 1.
Unfortunately, no matter how clever a property-based d¢aticin might be in determining element
equivalence, if the transformation has no record of whigmants inMT2 relate to those iMT1 it
will be unable to perform such a deletion reliably. At besvili not delete elements iMT1 that it

should; at worst it may result in the accidental deletionlefreents inMT1.

The scenario is further complicated by the fact that it iglsaacceptable for the transformations
between tools to reconstruct a model from scratch if it ayeaxists. In other words, although the

original transformation from a model T to a model inJT creates the target model from scratch,

24

Personnel
Employee |Smeoves % Manager

(a) ThePersonnepackage in th&L2 language.

Personnel

manager
Employee |_empioyees | Manager

(b) ThePersonnepackage in th&IL1 language.

ii

Figure 2.3.: Models with different types of associations.

subsequent transformations need to alter the models glpgadent rather than wiping the model and
treating every transformation as if it were an initial tremmation (even if it perfectly recreates said
model). There are two main reasons for this. Firstly comtilyucreating large models from scratch
can be prohibitively inefficient, particularly if only a sthaortion of one model has been changed.
Secondly, the user may in the target model manually creataazits which do not directly relate to
the source model (e.g. in théT andJT example, this could involve adding Java specific details int
the model indT). Subsequent updates must not destroy manually addedmgroethe links to them,
simply because they are not a direct part of the transfoomati

It is important to note that the scenario given here is deditedy limited compared to the general
case. It calls only for changes Wil to be propagated t&T, not vice versa. A solution for the general
case would utilize didirectionaltransformation that could also propagate any relevantgggamade
in JT to UT. True bidirectional transformations present a number allehges above and beyond
those tackled in this thesis, and by most current model fimamstion technologies (see sectidn 3).
Consequently they are largely ignored in this thesis — hewall of the challenges listed in this thesis

apply equally to bidirectional transformations.

2.2.4. A method for model transformations

Based on examples such as those just presented, a simpledhfethmodel transformations can be
discerned which can significantly aid understanding of theegal problem. It also allows the com-
parison of different approaches by describing where, amdvell, any approach fits into the method.
Because, as shall be seen in chapker 3, there are varioerediftategories of model transformations,
this method is intentionally high level and therefore apgdtile to the majority of practical approaches.
For example, in a simplistic approach encoded in a GPL thidvoatewould apply to the entire pro-

gram; in a rule based approach, this method could be seenaied to each rule. The example in

25

Source model Target model Source model Target model

!

(a) Initial model. (b) Identifying elements.

Source model Target model Source model Target model
(c) Transforming. (d) Creating tracing information.

Source model Target model Source model Target model

g
3%

! !

(e) Altering a model. (f) Propagating changes.

Figure 2.4.: Transforming a model.

figure[Z4 is intended to help visualise these parts:

1. Searching a model to identify appropriate elements tesfoam.

2. Transforming elements.

3. The retention (in some manner) of tracing informatiorording which elements in a model

are related by the transformation to elements in other nsodel

4. Detecting updates in one model involved in the transftionaand performing relevant opera-

tions in the transformations other affected models.

Whilst a minimal approach to model transformations neeg patform parts one and two, a com-
plete approach would be capable of performing all parts: dehwansformation technology which
limits itself to merely taking in one model and producing @r@s model out fails to tackle all the
required problems outlined in sectibn2]2.3. Howeveraitgh the method is comprised of four main

parts, it is not necessary for these parts to correspondstimcti phases of execution. Parts one and

26

two are often patrtially intertwined and it would be surprisif parts two and three in particular were
implemented as separate phases because the requiredatitorior part three will be determined by

what happens in part two.

2.2.5. Challenges raised by the examples

These simple examples are intended to give the reader amadamly of the overall problem that
model transformations are attempting to tackle, but alsddsues raised in tackling the problem. In

short the two main challenges of the ‘what’ and the ‘how’ carsbmmarised as follows:

1. The desire to reduce the necessary, but largely irrdlevaachinery which can swamp the

essence of any given model transformation.

2. The need not only to transform an initial instance of a meidel ML1 into an instance of
a metamodeML2, but also to propagate subsequent changes made tdlthemodel non-

destructively to thevL2 model.

A third challenge could be considered to be the desire taet@directional transformations. How-
ever the problem of bidirectional transformations is ngplieitly considered in this thesis chiefly
because it requires, at a minimum, practical solutions éopitoblems listed in the two challenges

above.

2.3. Notable categories of model transformation

There are many categorisation criteria that one can appiyddel transformations. For example
one could categorize the way they are used, the paradigmetk@pit [?], the features they pro-
vide [GGKHO3] and so on; chaptEl 3 details some existinggmateations in more detail. Already
in this chapter a few types of model transformation have kafeparticular note and, since they
recur throughout this thesis, it is useful to have fixed tetmeefer to them. Starting from the in-
tuitive / naive notion of a model transformation being agsamm which ‘consumes an instance of
the metamodeML1 and produces an instance of the metamaddie?’, the following types of model

transformations are particularly significant:

Uni/bidirectional transformations. Implicit in the naive notion of a model transformation i® th
idea that the transformation is unidirectional. In otherdsy the transformation is incapable
of taking an instance of the metamoddL?2 in and producing an instance of the metamodel

ML1 out. There are several reasons why a particular transfaméa unidirectional, two of

27

the most important being: the transformation loses infdiwnaand hence there is insufficient
detail in instances oB alone to perform a full reversal; bidirectional transfotimas tend

to be considerably more difficult to write than unidirectibriransformations. Note that this
simple definition of bidirectionality does not necessaiityly that a reverse transformation

will perfectly recreate the original source model.

In the interests of simplicity, throughout this thesis | geally refer to ‘source’ and ‘target’
models although this should not be taken to mean that a tranafion between two models

labelled thus implies that only unidirectional transfotimas can exist between the two.

Multi-domain transformations In this thesis, as in most work in this area, the general aggamis
that two models odomainsare involved in a transformation — however it is importantdalise
that in the context of this thesis, this simplification is glyrto aid exposition. Multi-domain
transformations, though rarer than those involving onlg tlemains, are important tools. A
simple example is a model diff transformation (analogouth®oUNIX diff tool [HM76])

which takes in two models and produces a third.

The reason for the use of the term ‘domain’ is to allow one rotiogable type of transformation:
so-called ‘update in place’ transformations. This is adfarmation which alters its source
model into the target model, rather than operating a targeteinwhich is entirely separate

from the source model.

Stateless transformations.An example of a real world stateless transformation is a dempin
simplified terms, it takes in a source file, transforms it, emides out a binary file. Once done,
the transformation is complete, and if the source file charige entire transformation is rerun
in an identical fashion regardless of the existence of tharyi— an existing binary file will
simply be overwritten. Note that the stateless classiboatioes not imply that transformations
need necessarily be uni-directional: for example, dectargpcan reverse the compilation pro-

cess (albeit imperfectly) in exactly the same statelessdasas a compiler.

Change propagating transformations. These are transformations which can not only perform a
one-off transformation but can propagate subsequent elsdrgm some or all of its constituent
domains without the need to rerun the entire transformatiothe context of this thesis there is
an extra implication on change propagating transformatishich is that they propagate their
changes non-destructively; in other words, they do notbjioverwrite the target when propa-
gating changes. Since this is a far trickier propositiomthatateless transformation, relatively
few such transformations exist in practise at the momettipagh as seen in sectign 212.3

there is a real need for such transformations in a modellongext. Compuware’s OptimalJ

28

tool [OJ04] provides a practical example of this, where a UMabdel is transformed into an

EJB specific model; changes to either the model or the codefieeted in the other.

Note that these types of model transformations are not sadgsmutually exclusive: one can, for
example, have a bidirectional, multi-domain change prafiag transformation. The terms defined

above are used throughout the rest of this thesis.

2.4. Model transformations scope

In this chapter, most of the examples have been small arfetiattito aid exposition. Examples of
larger model transformations abound — some are currendigl big real users, some are in develop-
ment, and some require more advanced technologies thammeatty available. To give the reader
a rough feel for the scope of the problem we are talking atsmrhe representative examples are, in

approximate ascending order of complexity:

e A simple model refactoring of the kind found in many IntegchDevelopment IDE’s such as
Eclipse [Ecl04], where changing a methods name causesfaterees to that method to be

renamed appropriately.

e Transforming a model that uses multiple inheritance inte thrat only uses single inheritance

by creating intermediate interfaces [CERM].

e A data conversion transformation between two models whastaimodels are fairly similar in

the aspects being transformed e.g. UML to BPELTAGGI04].

e A model compiler that takes a UML model (e.g. class diagrathstatecharts) and transforms

it into a model for a specific programming langudgeg. Java.

e An abstracting transformation which operates between mduagd in two tools, one of which

is an abstraction of the other, and which propagates chdjesen the two automatically.

Further examples can be found in elg. [AQEE,[BDJ 03].

2.5. Change propagation

Consider the challenge of expressing change propagatmgfarmations in a GPL. Referencing

the model transformation method of section 2.2.4, one cartts the first novel aspect of change

3The underlying meta-model is likely to closely follow thesattact syntax for the language involved.

29

propagating transformations — the creation of approptiagng information — is relatively easy to
perform in a GPL. In essence, whenever an element is creattitk itarget model, an appropriate
piece of tracing information is created relating the retg\source and target elements.

Consider now what happens when the source model involvdeittransformation is altered. There
are two immediate issues to consider when propagating elsaéngm the source model to the target
model. Firstly, should the entire transformation be rer8e@ondly, how do we propagate the relevant
changes whilst maintaining any additions made by the ustradarget model? The first issue can
be considered to be a performance issue, and is thus notatfigrport. The second issue however
covers a much more fundamental problem.

Recall that in the examples presented in se¢fionl?.2. ldatdrobject creation was used to populate
the target model. This means that if such a transformatioang part thereof, is rerun then entirely
new model elements will be created from scratch, rather &hasting elements being altered into
their appropriate new form. To make this example concretll the following function in théiL1
to ML2 transformation which transforms packages:

func transform_rule(element : M1.Package) : M2.Element:

package_elements := []
for package_element in element.elements:
package_elements.append(self.transform_element(pack age_element))
for parent in element.parents:
for parent_element in parent.elements:
package_elements.append(self.transform_element(pare nt_element))
return new M2.Package(element.name, package_elements)
Assume that, following an initial transformation, we hawgled a new element to ailL 1 package,
and have managed to identify that only the above functiod heeerun in order that the correspond-
ing ML2 element is changed accordingly. When rerun in the form piteseabove, an entirely new
package element will be created — thus two packages whickgept the same thing will now be in
existence. Schemes that, for example, delete all elememts frevious iterations (so that when a
change is propagated, all elements from the initial tramsédion are removed to avoid duplication)
go some way to solving the problem, but also unveil anothablpm. This relates to the requirement
that new elements manually created by the user in the targeéhbe left unchanged when changes
are propagated. Manually added elements may well have hksl td or from elements created in
previous transformation iterations. Simply replacing oiddel elements with new model elements
destroys all links to and from the manually added elementstead transformations need to detect
and update old model elements when appropriate.

In the case of théransform _rule function, a suitable change propagating equivalent may
look along the lines of the following:

func transform_rule(element : ML1.Package) : M2.Element:

package_elements := []
for package_element in element.elements:

30

package_elements.append(self.transform_element(pack age_element))
for parent in element.parents:
for parent_element in parent.elements:
package_elements.append(self.transform_element(pare nt_element))
existing_package = NULL
for processed_element in self.processed_elements:

if type(processed_element) == ML1.Package and
processed_element.name == element.name:
existing_package = processed_element
break

if existing_package !'= NULL:
existing_package.name = element.name
existing_package.elements = package_elements

else:
return new ML2.Package(element.name, package_elements)

The intention here is that the function first searches to firmhiappropriate element exists in the
target model and, if it does, that element is updated withctireect new information. If no such

element exists, one is created. There are two problems kigtlparticular approach. Firstly it relies

on identifying equivalent elements in the source and tamgedels by their name which, as detailed
in sectio 2,213, is not a generally applicable strategye Jécond problem is much more significant
— the transformation has been significantly complicatechieyaddition of code to cope with change
propagation. Separate branches are needed to deal withetiteoo of new elements, and the update

of existing elements.

There is another potential solution for GPLs which suppa@tarclasses (see Forman and Danforth
[ED98]) where the object creation mechanism can be coerttdly users. If all model elements are
instances of a suitable meta-class, then instantiatingdeheement would require passing it a key
as well as the values of the elements attributes. The masa-clan then check against a repository
to see whether an element with the same key has already besed;rand if so returns that element
with its attributes updated appropriately rather thantangaa new element; otherwise a new element
is created. However this mechanism only works for model elem sets, sequences and other built-
in types present a serious problem if the user manuallysadterinstance of one in the target model.
Furthermore since the meta-class mechanism is not availabbany widely used OO languages (e.g.
neither C++, Java or C# has such support), this mechanisnmatabe considered to be generally
applicable. In such languages, cumbersome workarountavbi the standard object creation need

to be employed.

This section has so far largely avoided a tackling an imponppaactical element of many change
propagating transformations: the generation of suitalelgsk The concept of a key has hitherto
been vaguely defined. In the context of change propagatimgfisrmations, elements in the target
model have a key which is an identifier based in part on atg#drom the source elements. In
essence, given a particular set of source elements invatvadransformation, one should always

be able to generate the same key. This becomes a complaxiafaiPLs when e.g. multiple target

31

elements are generated from the same set of source elemehéspresence of a loop — how does
one generate unique keys. Furthermore since a target dierlenis based on attributes froafi
source elements relevant to the target element, then thisaaplicate the program flow since this
information potentially needs to be passed to all parts cdr@sformation rule. Sectidn 6.1.4 explains
the concept of keys in change propagating transformationsoire detail, and also details alternative
mechanisms to keys.

The issues noted in this subsection are severe enough thatdtzaware of any published instances

of change propagating model transformations written in &.GP

32

Chapter 3.

Review

This chapter has two main parts. The first is a review of cogrfiihe meta-programming systems.
The second is a review of the major model transformation aggres proposed thus far (section
B32).

Since terms related to programming language paradigms d@muently in this chapter, | first
present brief definitions of some relevant terms. | then gikigef overview of specification orientated
approaches to model transformations; whilst these arelatively little practical use, they were an
important precursor to implementation orientated apgresc Finally the bulk of the chapter details

several different model transformation approaches.

3.1. Programming language paradigms

When talking about different programming languages andehtrdnsformation approaches, | use
certain terms in order to give the reader an impression ofcepately where they lie in relation
to each other. Since not all of these terms are likely to bevknto all readers — and because some
of these terms have various definitions attached to them edemt a brief explanation of the more
contentious or unfamiliar here to clarify their later usaddote that many of these terms are not

mutually exclusive; indeed many of these terms can be applieonjunction to certain languages.

Declarative / imperative As shall be seen in secti@n 3.B.2, existing approaches teht@shsforma-
tions, and to programming languages in general, can be lroategorized into two camps:
those taking aleclarativeapproach, and those opting for enperativeapproach. The terms
declarative and imperative can sometimes be rather cémtisntand | use them with no small
hesitation — they can also be rather crude mechanisms feopigoling different approaches.
With that warning in mind, it is important to realize that lmetwider context of programming
languages there is a generally accepted consensus as to eftiiee two approaches best de-

scribes most languages. Crudely put, a language is comdiderbe imperative if it has side

effects and if it forces the programmer to be explicit abtwat $equence of steps to be taken
when it is executed; languages that are side effect free amtbtiforce the programmer to
be explicit about the execution sequence are considereel dedlarative. In essence, declara-
tive languages allow the programmer to state the outcomecofrgoutation without explicitly
stating the steps necessary in order to achieve said outéoroentrast, imperative languages
force the programmer to state the steps of a computationhwidpefully achieves the desired

outcome.

Typically, functional languages such as Haskell [Jon03] Emgic languages such as Prolog
[SS94] are considered to be declarative, whilst languagels as Javel [GIJSBOO0], C++[Sti97]
and Python[lvR01] are considered to be imperative. Becédhee is a grey area in between
these two terms, languages such as XSLT [W3C99b] — whichdis-affect free and has an
implicit approach to function call / pattern applicatiomt s explicit in some aspects about the
computation sequence — can be argued to conform to eithadigan. Wherever possible | try
to suitably qualify these terms when talking about langgabat can reasonably be considered
to lie somewhere between the two paradigms. As this may stigges often the case that the

two paradigms to co-exist within the same environment.

Strongly / weakly typed Strongly typed languages are those where data have arsintijpe which
must be respected at all times. This is most easily expldgednsidering its inverse: a weakly
typed language. For examplek@rnighan88c allows users to give an arbitrary type to any
memory address. In C, one can incorrectly consider the da@articular memory address to
be of an incorrect type leading to bizarre errors. In a stotygped language such an operation

will cause an error.

Note that strong typing does not stipulate when the chedkintype correctness may occur; it

may be at compile-time or run-time.

Statically / dynamically typed Statically typed languages are those that enforce typecingss
at compile-time. Haskell is an example of a strongly stéiiciyped language, in that any
type errors will result in a program which does not compileynBmically typed languages
enforce type correctness at run-time. Python is a stronghauhically typed language. Thus
the expressio? + "x" will result in a compile-time error in Haskell, but a run-gnerror in

Python. In both cases however the type of objects is regmecte

Note that some languages combine aspects of static and dyhgoimg. For example Java has
partial static typing, but type casts force some type chézhkse performed at run-time. Also

note that static checking does not imply strong typing; €.efcample, is a weakly statically

34

typed language.

Rule based Rule based languages allow the user to define multiple indke rules of the form
guard => actioni.e. ‘if-then’. In most GPLs the process of execution is lobge calling
specific named functions in a sequence determined by théopeve This contrasts with rule
based languages where a given piece of input data is chegedasteach rules’ guard; the
first rule whose guard matches then has its body called. Radedlanguages thus use what
is termedforward chainingas their fundamental execution method; once a guard is mdtch
and an action is performed, the system does not revert bacpitevious state nor does control
flow backtrack to a previous point. Forward chaining of thost $s an inherently data-driven
process, although note that the action part of a rule can tlardéve or imperative in nature.

Examples of rule based languages include ELAN [B#3€] and XSLT.

Logic based Logic based languages are in some senses similar to ruld lmasgages, in that they
define a series of largely independent clauses (which afdebrdown into facts and rules)
with the order that clauses are executed being determingldebianguages engine and not the
developer. The runtime strategy however is effectively e abackward chainingstrategy
as opposed to forward chaining. Rule based languages staraveystem state and try to
continually apply rules to the system, often changing the&esy state in the process. Logic
systems operate in the opposite fashion: they start withah god attempt to prove that the
system satisfies the goal, creating intermediate data as@ate to satisfy this goal. This
process effectively starts at the lowest level where it hasah facts it can prove about the
existing system, and works backward trying to prove newgoatil the overall goal is satisfied.

The canonical example of a logic language is Prolog.

Constraint solving Constraint solving involves the specification of multiplenstraints that have
variables which are quantified over infinite variables [Brd he constraint solving algorithm
then attempts to combine all constraints in a system to fiod@able solution(s). Sketchpad

is the original example of a constraint solving system [3ut6

Constraint logic based A relevant variation on logic based programming is Constrabgic Pro-
gramming (CLP). Essentially this involves the merger of ¢bastraint solving and logic pro-
gramming paradigms into one. CLP overcomes two particuialolpms often associated with
standard logic programming [FH¥92]. Most significantly, CLP allows data to be interpreted;
in other words new datatypes can be created. By providirfgrdifit constraint solving mech-

anisms, CLP also allows users to sidestep the often sigmiffparformance issues associated

35

with the general purpose depth-first search rule of logiggmmming. Interestingly, CLP sys-

tems are often modified logic systems. See €.40. [JM94] foerdetails.

3.2. Compile-time meta-programming

Compile-time meta-programming allows the user of a prognamg language a mechanism to interact
with the compiler to allow the construction of arbitrary gram fragments by user code. As Steele
argues, ‘a main goal in designing a language should be tofptagrowth’ [Site99] — compile-time
meta-programming is a powerful mechanism for allowing glage to be grown in ways limited only
by a users imagination. For example, it allows users to addfeatures to a language [SeABP99],
or apply application specific optimizatioris [SCKO03].

In the following subsections | review material relevant éonpile-time meta-programming.

3.2.1. Token level macro facilities

By far the most common programming language macro facitituse today is the C PreProcessor
(CPP). In their comprehensive analysis of C preprocessagajsrnst et. al note that although the
CPP is not a fundamental part of the language ‘C ... is incetaplithout its macro processor’
[EBNOZ]. The CPP operates as a pre-compilation stage tipainels macros and allows conditional
compilation before the C compiler itself is executed. Galheithe separate existence of these two
stages is transparent to the user, although typically re#ttagie can be individually invoked.

The CPP operates at the token level, sharing its tokeniziagegy with the C language. Macro
definitions consist of a name, arguments and a body and ayepenhitted to occupy one logical
line in the source file. Once introduced, subsequent tokdrnishamatch the name of a macro are
automatically replaced by the body of the macro with sugasgument replacement.

Because the CPP is entirely ignorant of the syntactic coritéx operating in, one can quickly
run into unexpected situations. The need to develop and asesctions is paramount to avoid
serious problems such as variable capture, and unexpece meplacement. Variable capture is
a particularly insidious problem, which is most often netlavhen a macro expands to manipulate
a particular named variable; at such a point, if the usergsaissa variable of the same name as an
argument to the macro then the two clash and unexpectedsesise (see Dybvig et. el [DHBOB2]
for an in depth examination of this problem).

In common with most token level macro facilities (e.g. theiXJ¥4 macro processor), the CPP
provides useful features but at a cost: its use must be digretintrolled to prevent unexpected side

effects. This is largely due to the fact that most such féedioperate with limited knowledge (CPP)

36

or total ignorance (M4) of the syntactic environment in whibey are operating. Although the CPP
is widely used, it is well-known for causing bizarre prograing headaches due to unexpected side

effects of its use (see e.@. [CMA93, Bawd9, EBNO02]).

3.2.2. Syntax level macro facilities

The LISP family of languages, such as Scheme IKCR98], have lad powerful macro facilities
allowing program fragments to be built up at compile-timecls macro facilities suffered for many
years from the problem of variable capture; fortunately exadmplementations of hygienic macros
[DHBY9Z] allow macros to be used safely. LISP and Scheme progmake frequent use of macros,
which are an integral and vital feature of the language.

Brabrand and Schwartzbach differentiate between two matiegories of macro$ [BS00]: those
which operate at the syntactic level and those which opextatbe lexing level. Scheme’s macro
system works at the syntactic level: it operates on Abstegeitax Trees (AST'’s), which structure
a programs representation in a way that facilitates makipiisticated decisions based on a nodes
context within the tree. Macro systems operating at thetplevel are inherently less powerful, since
they essentially operate on a text string, and have littleoteense of context.

The macro language provided by Scheme is powerful and @miikny traditional LISP imple-
mentations) reliable. However it has spawned few imitatofdthough one could suggest many
reasons for this, perhaps the most crucial is related tcettietiat few other languages share Scheme
and LISP’s highly regular, sparse syntax; a LISP grammaraaynrtimes smaller than that of any
programming language in wide spread use today. In no smiltpa to this, LISP is able to use ex-
pressions themselves as a data strucieegpressiongor s-exp for short). In other words, this means
that a macro call is a simple operation that first of all pregidubstitution in one s-exp (the macro)
and then splices the resulting s-exp into another s-expnfdoero caller). In general, manipulating a
language with a complex grammar in such a way is far more diffie.s Weise and Crew note, such
attempts generally lead to heavily convoluted and hard tmtaia code that has to manipulate and
create ASTS[WCZ3].

Weise and Crew propose a new style of macro language (impkeahdor C) where macros are
C-like functions, with added syntax for macro related ifie#, which take in and produce ASTs. A
special operator allows abstract syntax fragments to beesged in the standard C concrete syntax,
rather than relying upon the explicit creation of an AST viagedure calls. Inside the fragments
limited variable replacement can be made by usingstbperator to refer to variables outside of the
fragment. In so doing, Weise and Crew are able to providegmygimacros for a language with

a relatively complex grammar in a relatively natural manridowever their solution is somewhat

37

hampered by the fact that the macros themselves requirédeoalsle added syntax over the base
language C, and that because the macro solution is incampkattain types of macro are impossible

to express.

3.2.3. MetaML and Template Haskell

Despite the power of syntactic macro systems, and the witkad usage of the CPP, relatively few
programming languages other than LISP and C explicitly ipomate such systems (of course, a
lexing system such as the CPP can be used with other textifdeshare the same lexing rules). One
of the reasons for the lack of macro systems in programminguages is that whilst lexing systems
are recognised as being inadequate, modern languages dbaret LISP’s syntactic minimalism.
This creates a significant barrier to creating a system whiekches LISP’s power and seamless
integration with the host languade [BP99].

Relatively recently languages such as the multi-stagedMe{Tah99] and THI[SJ02] have shown
that statically typed functional languages can house pglolveompile-time meta-programming facil-
ities where the run-time and compile-time languages areamigethe same. Whereas lexing macro
systems typically introduce an entirely new language te@edings, and LISP macro systems need
the compiler to recognise that macro definitions are diffefem normal functions, languages such
as TH move the macro recognition burden from the point of dafinto the macro call point. In so
doing, macros suddenly become as any other function witt@rhbst language, making this form of
compile-time meta-programming in some way distinct fromreniaditional macro systems. Impor-
tantly these languages also provide powerful, but usaldgswef coping with the syntactic richness
of modern languages.

MetaML was the first proposal to show how a modern languagéncamporate powerful compile-
time meta-programming facilities. MetaML is a multi-stalgaguage; that is, it can generate and
compile arbitrary program fragments even at run-time. IndWd., macros are normal functions
that are indistinguishable from any other and hence arecliss, unlike Scheme macros (although
Bawden has proposed a first-class macro system for Schem&UPa The use of a macro however
requires an explicit ‘splice’ operator that evaluates fguanents at compile time and inserts the
results into the AST. Since a goal of MetaML is to ensure thpe tyorrectness not only of program
generators, but also generated programs themselvesntiuaige is severely restricted. For example
MetaML can not, as standard, introduce entirely new defindti(although Ganet. al propose a
solution for this [GSTO1]). TH takes the most important aspef MetaML — quasi-quoting and
splicing — and refines them in the context of Haskell. TH is a-stage language in that it can only

generate and compile program fragments at compile-time.intégjrates its features more tightly

38

into the host language, and places less restrictions orutteegquent generated programs. However
Template Haskell does contain one obvious limitation: malafinitions and macro calls must exist

in different modules.

3.2.4. OO languages

Few OO languages have any form of macro facility. The dynatyidyped OO language Dylan
has a macro facility which is similar to Scheme’s [BlP99]. Hwoer Dylan’s macro language is very
different from the main language itself, leading to a veryiobs seam between the two. The statically
typed OO language Nemerle has a compile-time meta-progiagnsystem that is partially inspired
by TH [SMOU04]. Nemerle is also capable of a limited form of synextension. Nemerle's system
is unusual in that it is partly homogeneous (hormal Nementetions can be called at compile-time)

and partly heterogeneous (in that top-level macro funstioast be explicitly identified).

3.3. Model transformations

3.3.1. Transformation specifications

Two of the first works in the area of model transformations theg of Lano [LB98] and Evans
[Eva98] who both define transformations with respect to aheding semantics of class diagrams.
The transformations they define are not directly executabtber they specify a transformation. In
essence this means that given two particular model inssaheespecification can determine the well-
formedness of the two models with respect to one anotheer lvatrk such as that of the 2U group
[CEKO1] and Akehurst and Kerit [AK02] refine the use of claggmdams and OCL for transformation

specifications.

Although transformation specifications have many uses [QB4I, they are of limited relevance
in this thesis’s context of transformation implementasioklowever it is important to note that while
transformation specifications are often said not to be dabtei[QVT034], this is slightly mislead-
ing. Specifications can provide a ‘yes’ / ‘no’ answer abowt well-formedness of a given pair of
models. In advanced cases, a specification may even be aptevide a detailed analysis of why

two particular models are not well formed with respect tcheaiher.

This is largely an implementation restriction due to the that the existing TH implementation forces staged exeouti
on an engine not originally intended for such a purpose.

39

3.3.2. Transformation technologies

In the following subsections | review the major technolasgier expressing model transformations.
Some of these technologies were specifically designed fitinggmodel transformations; others have
been adapted to suit this purpose. The technologies indbi®osa are listed in approximate order from

those technologies least specialized for model transftiomato those most specialized.

3.3.3. XSLT

XSLT [W3C990h] is a rule based XML transformation technologhich has gained a significant
amount of attention over the past few years. XSLT initiakems a promising candidate in which
to realise model transformations, because models are stitead as XML in order to interchange
between tools (via the XMI standard [OMGO03]). An XSLT rulééa the form of a simple pattern
written in the XPath languagk [W3C99a] and a body which isramsual mix of explicit and implicit
sequencing. XSLT is also unusual in that both the data todmstormed and the transformation itself
are represented in the same form — XML.

Peltier et al. [[PBG01] based a model transformation franmkwpon XSLT but used it only at
the lowest-level, citing general readability issues ad aglspecifics such as the lack of acceptable
error reporting. As this experience suggests, XSLT sufiens a number of flaws which render it
unsuitable for the majority of medium or large tasks that weiaterested in. As noted in Bex et
al. [BMNOZ], ‘XSLT is highly adequate for the simple transfwations it was intended for (recall
that XSL was originally intended just for XML to HTML trangfimations)’ but that it has serious
shortcomings for more advanced transformations. One githiglems alluded to by Bex et al. about
XSLT is its lack of power; it took several years before a fokqm@of was constructed that XSLT
is Turing complete[[KepUZ]and — as both the relatively recent timing and need for axisteof
the proof may suggest — in practical usages one very oftadlyalits the limits as to the sorts of
transformations XSLT can naturally express.

Because XSLT transformations are written in XML, they havednform to both XML's syntax
and XML's rigid well-formedness rules. XML's syntax is rathverbose compared to most program-
ming languages. Whilst XML's well-formedness rules go sonay to ensure that XML data has
been correctly represented, they also force XSLT transitions to be somewhat more wordy than
would otherwise be necessary. Because XSLT transfornsatiarst be well-formed XML files, there
are also some seemingly valid transformations involving Xfkagments that are in fact invalid be-

cause the XSLT transformation can only naturally deal widtlsfiormed XML fragments. lll-formed

2Seehttp://www.unidex.com/turing/utm.htm for the Turing machine implementation the proof is based
upon.

40

fragments, such as those which do not contain balanced Btepmeust be encoded using IGATA
mechanism thus circumventing much of XSLT’s syntactic emiwns. The net effect of XSLT's
syntax is to cause the ‘poor readability and the high costaihtenance’ noted by Peltiet. al

A separate issue which makes expressing model transfamsaith XSLT less than ideal is that
XML documents are represented as a tree structure; modglsnathe general case, naturally rep-
resentable as graphs. Although graphs can be representgddsywith link references between
nodes, the difference in representation can lead to an urahaepresentation of many types of model
transformations [VP03, Var03]. To compound this issue, XBtovides relatively poor support for
references, making the following of references a heavymegxercise that further clutters model
transformations.

Of particular relevance to this thesis is the fact that XSiahsformations are inherently unidirec-
tional and stateless. Furthermore when compared to theoshethsectio 2. 214, one can see that
XSLT comes off poorly by virtue of the fact that it not even abfe of creating tracing information

relating source and target elements.

3.3.4. Graph transformations

A particular style of transformation which has seen heawy instheoretical circles since their in-
troduction in the late 60's are graph transformations; #deH™99] for a relevant, comprehensive
overview of this area. Note that the term ‘graph transforomatis misleading, as it refers to a par-
ticular category of rule-based transformation that isdgfly represented diagrammatically. Various
other types of transformations operate on graphs but areemoed ‘graph transformations’ — Mens
and van Gorp note that ‘graph transformation is more a programg paradigm than a technique’
[MGO04].

Well known styles of graph transformations include the k&irend double push-out approaches,
though there are several others. Graph transformatioroappes, viewed at a suitably high level,
operate in a similar fashion. Essentially the input grappredually transformed in-place into the
output graph; rules identify subgraphs to transform, amah thlue in a replacement graph. Rules
are successively applied to the changing model until no rappdy. Factors such as the handling of
dangling references during replacement, and the order iohwiles are tried differentiate various
approaches. Graph transformations have a number of ubefetical properties which make them
attractive and, in the context of this thesis, the fact thatlets are well represented as graphs is
particularly appealind [VP03].

Early work involving graph transformation and models ldygeentred on their use in defining the

semantics of different modelling diagram types. In the wibg work of Gogollaet. al [GPP98,

41

Gog00/ GZK0B], graph transformations are used to transfdlth models into instances of a ‘core’
UML, using the precise semantics of this core to define theaséins of the rest of the language.
Although an intriguing approach, Gogolla’s transformatidgackle only small-scale problems.

Typed attributed graphs are a style of graph well suited poagenting models and for reasoning
about properties such as termination and confluence [HKTKi§ter et al.[[KHEOB] define a general
model transformation approach using graph transformatthe underlying mechanism, allowing
them to draw upon some of the properties of graph transfeomeatn a model transformation context.
By grouping transformation rules into transformation snit is reasonable to expect that such an
approach will scale to larger problems than Gogolla’s apging but to date only small scale examples
appear to have been attempted.

Levendovszkey et al.l [LKMO0Z], Sendall [Sen03], Varrg [VVP0Z, Var03] and Willink TWE]
have all proposed model transformation approaches whigtbased upon simple graph transfor-
mation systems. Agrawat. afs more mature5ReATsystem [[AKSOB] is in a similar vein. These
approaches all share in common that they define a visual dgegior defining unidirectional stateless

transformations.

Change propagation

None of the graph transformation approaches mentionedfainiis this section has been capable of
any form of change propagation. There are other instancie iliterature relating to graph transfor-
mations and change propagation which | now describe.

In Braun and Marschall’s languade [BM03] the ‘B’ stands fiidirectional’, although this appears
to be a recent change of direction that is not yet fully realis BOTL originally stood for ‘Basic
Object-oriented Transformation Languade’ [BN102]. Braum &arschall present a small amount of
theory intended to facilitate bidirectional transfornoas, but choose to restrict the transformations
they consider to bijective transformations. A bijectivéati®n is one that is injective and surjective.
Informally, an injective relation means that distinct szsmiobjects must map to distinct target objects
(commonly known as ‘one-to-one’). A surjective relationans that each source object must map
to a target object (commonly know as ‘onto’). Looking bacleatn the simple examples of section
[ZZ1, one can see that many useful model transformatidin® featisfy one or both of the injective
and surjective criteria. Even if the BOTL approach were tdllly fleshed out, the fact that it is
fundamentally incapable of expressing many simple modektormations severely limits its utility.

Triple graph grammars_[Sch94] are a formalism specificadigighed to facilitate bidirectional
transformations. Several approaches reference triplghggeammars but, to the best of my knowl-

edge, none have yet used this as the underlying formalisris iy be in part due to the fact that

42

triple graph grammar rules are considerably more diffiquitreate and comprehend than normal pair
grammar rules, since they encode productions and corrdspoa rules in one. Kindlest. al out-

line a possible implementation of triple graph grammars ewoediel transformations [KRW04], but
the approach has yet to be realised. Beakterl [BHWO4] present a model transformation scheme
which integrates some limited aspects of triple graph gransrimto an approach that otherwise shares
more in common with unidirectional stateless graph tramsé&tion approaches. With this they are
able to perform some limited change propagation, althohgir scheme requires frequent manual

intervention on the part of the user to resolve conflicts.

Rule organization and control structures

Most of the graph transformation approaches detailed & gbition give little or no attention to
facilities for organizing rules or control structures. $hdwo points are connected in a way that may
not be obvious. Since most approaches lack appropriateot@dtuctures, one often needs to copy
rules making subtle modifications to get the same effect aerifrol structures were present. The
proliferation of rules is then aggravated by the lack oflfaes for organizing rules.

The lack of such features in research prototypes is perhatgurprising. However although there
are some suggestions for enhancing such facilities in gtegisformation systems (for example,
[SW9€] defines an organization mechanism based on UML pasiagven mature graph transforma-
tion systems such as PROGRIES [SWIZ99] have surprisingly wegdnization facilities and control
structures[IMGO4]. It is unclear whether this reflects a ameéntal problem in the methodology, or

merely a lack of development effort into practical matters.

Formal properties

Although graph transformations can be used to prove iriageproperties about transformations,
only a fairly small minority of useful transformations argently amenable to such analysis [MDUJ02].
In practise the formal properties of graph transformatiares of relatively little use, and can not be

considered to be a significant advantage over other appesachich do not make similar claims.

Conclusion

The sheer number of model transformation approaches basgdph transformations suggests that
they hold promise for realizing model transformations. ldwer current approaches are limited in
scope and rather simplistic. Despite being a well estadistubject area the relative paucity of graph
transformation implementations is surprising. Perhapsttfo best known systems are PROGRES

and FUJABA [NNZOD]. The former is a venerable and generdligandidate with roots stretching

43

back to nearly two decades; however it is very much a resaagisitle and has seen relatively little
development in recent years. The latter is more modern lapasialized for certain restricted styles
of Java development.

Some explanation for the lack of tool support can perhapddsngd from the literature on graph
transformation based model transformations. Men and vap Gmmment that ‘it remains to be seen
whether graph transformation alone suffices to express lesrnansformationsIMG04]. Czarnecki
et. al[?] note that users often perceive graph transformations wob&plex beasts, hence why they
have seen relatively little real-world usage.

In conclusion, graph transformations have yet to show thay ire a practical vehicle for model
transformations. Furthermore, the fact that no current@gh provides anything other than rudi-

mentary support for change propagation reduces theiraet®vto this thesis.

3.3.5. Logic programming

An approach unigue in the model transformation world is tlestcribed by Whittle [Whi02] who uses
the rewriting logic based language Maude [CEIE]. Although the prime motivation of the approach
is to automate simple unidirectional stateless transftama on simplified UML class diagrams,
the concept oflifference matchings introduced. The example given is the checking of a model
D, as a valid refactoring of a modé),. Differences between the two models are discovered, and
transformation rules are invoked in order to reduce thefferdices; if the repeated application of
rules reduces the differences between the models to theyesaptthen the models are correct with
respect to the transformation. Although difference matghs partly intended to alleviate the logical
problem of instantiation of unbound variables, the conasptld usefully be applied to non-logic
based system. It should be noted that this concept is coabigedifferent than the transformation
specification approaches detailed in secfion 8.3.1. Fumibve the unusual nature of this feature

means that it does not neatly fit into the method of se¢fio2.2

3.3.6. TXL

Cordy’s TXL [Cor04] is a particularly interesting transfoation language. Although originally in-
tended for transforming instances of the programming laggururing, it has evolved into a language
capable of transforming instances of arbitrary languagengnars. In so doing, TXL has morphed
into a hybrid rule-based / functional programming langsad&hilst rules can still be fired in a tradi-
tional rule-based manner, rules can also call specific atagred rules. If the guard of a named call
does not match then the source model is returned unmodifi¥d. rilles contain powerful guards,

which consist of a relatively crude pattern augmented mhanclause containing an arbitrary ex-

44

pression. As its origins might suggest, TXL is largely geamvards transforming one programming
instance into another instance of the same programmingiéay®y It is possible to transform between
two different programming languages via a ‘union grammahmicl is a single grammar combining
all relevant aspects of the grammars of the two languagesaatipn.

Paige and Radjenovic performed some initial investigatiohthe feasibility of using TXL for
model transformation$ [PRD3]. They provide a small exaropketransformation between simplified
models of UML and Java. The example is carefully construstethat a single grammar is sufficient
to express both models, and thus the transformation isuwellasimple.

TXL has many advantages as a transformation system. It isrenafficient, and is demonstrably
capable of succinctly expressing many useful transfonati It is one of the few transformation
systems to have been used to process large volumes (Coroldsea case where several billion
lines of code were transformed with TXL), and its pragmagipraach to rule-based transformations
incorporating functional aspects is far more refined thanainhe dedicated model transformation
approaches reviewed in this chapter. Offset against itargdges are two significant issues relevant
to model transformations. Firstly, TXL's support for trémning between two different languages is
poor, relying on the artificial concept of union grammarsctsgrammars require significant manual
effort to create, and allow the transformation writer toateehybrid models which satisfy the union
grammar but which conform to neither of the original langeggalthough this may on occasion be
useful, it also opens up many possibilities for generatiyrgactically invalid output. Secondly, TXL
is an inherently unidirectional stateless transformati@chanism; in terms of the method of section

224, itis similar to XSLT.

3.3.7. QVT

Model transformations are a vital factor in the realizatiddthe OMG’s MDA vision [BG02], which
is based on the idea of progressively facilitating more aondensoftware development with models.
Since models appear in different forms at different stadgélseoMDA vision, the concept of a model
transformation is key within MDA. For example: transformimodels representing one technology
into others which represent different technologies; alotitng and refining models; merging models;
and so on. To this end a Request For Proposals (RFP) was ibgubd OMG ‘MOF 2.0 Queries
/ Views / Transformations (QVT)TIOMG02] in 2002 to seek arglard way of performing model
transformations.

There were eight initial submissions to the RFP. When thésithwas in its early stages of writing,
seven submissions remained on the table. Since that poimy afdhe submissions have attempted to

merge — this process is ongoing at the time of writing. Nontefriginal submissions have yet been

45

‘taken off the table’, and since they cover a broad spectriisolotions, with several indicative of the
state of the art, an analysis of them is still highly relevaddiwever it is not my intention to enumerate
all of the individual submissions; see Gardner et al._[GGRH@ particular for a comparison of
the individual submissions, and also Czarnecki and Hel8gwlio propose a feature classification
scheme for transformation approaches, including sevevdl §dbmissions. In the following sections

| use three QVT submissions — TRL, xXMOF and the QVT-Partnebsrgssion — to examine some
interesting points in the model transformation spectruime first two of these three submissions are

bi-polar opposites; the third lies somewhere between thetfiro.

3.3.8. TRL

The Transformation Rule Language (TRL) langudge [OQV03hisssence a standard rule-based
imperative language specialized with features for deality UML model transformations. This
specialization comes in several forms: concepts suchassfiormation rule’ are raised to first-class
status, meaning they do not need to be encoded using stdadgrege constructs; some of the infor-
mation recorded in the new first class constructs is useddiditianal purposes e.g. to create tracing
information; extra syntax is provided for e.g. accessing stereotype of a UML model element.
Rules consist of a signhature — comprising the types of theceoand target model elements — and
an imperative body. The syntax and semantics are essgtitiatl of the Object Constraint Language
(OCL) [OMG91] augmented with side-effects and a small hahdf necessary control constructs.
The benefit of this approach is its relative familiarity teetss and the knowledge that imperative
programming languages traditionally lead to efficient iempéntations. However this argument is
slightly dented by the relatively unusual concrete syntast semantics which result from adding
side-effects to a side-effect free constraint language.

Whilst TRL is adequate for specifying small transformasipit has several flaws which become
apparent when attempting more complex tasks. For exanigaffers from many of the problems
associated with writing model transformations in GPLss thicompounded by the surprising realiza-
tion that despite initial appearances TRL is not an OO lagguadditionally, despite having several
language constructs specifically designed to aid inspgetivd manipulating models, TRL implicitly
adopts a fixed meta-level system — representing models thaitod of the type originally envisioned
is difficult. Fundamentally TRL is only capable of expregsimidirectional stateless transformations
— whilst tracing information can be automatically creatsshf rules, the fundamentally imperative
nature of the majority of the language and use of expliciecbgreation rules out practical change
propagation.

TRL can thus be seen to be a fairly standard non-OO rule-biageerative language, augmented

46

with a few unusual features for its intended domain. Due ¢oviiry coarse grained nature of the rule
signature mechanism, TRL relies heavily on the use of OClstraimts to detect elements of interest.
In short, TRL is adequate for a certain style of limited magahsformation, but its addition of very

specialized model features coupled with a paucity of stahdantrol and data mechanisms means it

is not a practical vehicle for complex model transformagion

3.3.9. xXMOF

The xMOP language[[CS03] is a constraint solving system for modelsfarmations. An xMOF
program consists of a number of OCL constraints about mdeeients involved in a transformation,
with the aim of specifying bidirectional change propagatiransformations. The xMOF engine then
attempts to ensure that all models in the system satisfyahstiaints. As far as the constraint writer
is concerned there is thus no practical difference betweeinitial transformation and subsequent
change propagation.

The chief advantage of the xXMOF approach is seen to be thigsithie transformation designer
of the need to perform the tedious and verbose book-keemntadded by imperative approaches.
Furthermore since the relationship between two modelstistated in terms of inputs and outputs,
the transformation is implicitly bi-directional.

XMOF has some features which are of particular interestefGmongst these is its powerful but in-
tuitive solution to the potential paradox inherent in bédtional change propagating transformations
—that is, if, after an initial transformation, one model finged, in which directions should changes
be propagated? A simplistic system might notice the diffeeebetween the two models and propa-
gate changes from the unchanged model, thereby wiping ewthinges made to the other model. A
more complex system would be for the system to record whietmehts have been changed in which
model and use that to determine the direction in which chasbeuld be propagated. However un-
fettered change propagation is not always desirable andtialways possible in cases in which an
infinite number of possibilities might satisfy some relagdetween models (for an analogy, consider
what happens if, given specific values.ofand z, one varies the value of in the equatiorx +y
= z — there are an infinite number of paies z) which will satisfy the equation). xXMOF therefore
allows developers to specify the direction of equality ie ghesence of change propagation. A simple
example of this is as follows. Consider the XMOF statermenhe :== name which means that
the name attribute of the Ihs and rhs models should be the same; if difesr, the name of the |hs

should be used to update the rhs. The opposite effect carhimvad byname ==: name. Al-

3xMOF uses a number of terms in ways that conflict with gengmdcepted definitions; in the interests of simplicity |
largely ignore the particular terms xMOF uses.

47

though xXMOF requires such functionality for bidirectiomilange propagation, one can see that such

a feature could be of use even in unidirectional change giatpay transformations.

However xMOF has several severe disadvantages from agabptiint of view. Firstand foremost,
it places a burden on the user to make sure that the constithiey specify completely describe
the transformation — if they fail to do this, the resultingst®m is likely to either produce arbitrary
results each time it is run, or to run out of memory as it attesnig enumerate all matching values.
Although this complaint can be levelled against any condtisolving system, it is arguably more
critical in a modelling environment which contains richerdamore complex datatypes than many
similar systems. There are therefore a large number ofrdiffewvays that a user can under specify
their transformation; it is unclear that xMOF can report @gio instances of this in advance to the
user to significantly lessen the problem. A similar issuelzaeeen when considering transformation
composition; although xMOF allows arbitrary transforras to be composed together, it places
no restrictions on how constraints between different fiansations interact. Since individual rules
typically interact together in complex ways, adding anotet of rules via composition can easily

generate unexpected results.

A secondary problem with XMOF is that, perhaps surprising/ specification is entirely non-
committal about execution strategies. Whilst this giveplamenters scope for concentrating on
aspects important to specific audiences, it also placeswy lheaden on each implementer to develop
the sophisticated inference rules necessary for analggimgps of constraints, and for producing an
engine capable of finding solutions which satisfy all of thehhis has a subtle knock-on effect for
end users: since different execution engines will haveerdfit inference rules and so on, sets of
constraints that may execute as expected in one XMOF systgmmat do so in another. However, at
the time of writing, this can be considered to be a minor issnee there is currently only one xXMOF

implementation available.

Perhaps the most intractable issue with xXMOF is that, bydty wature, and even with perfectly
specified systems, it can take an unbounded amount of timeetute. Particularly in the case of
large models, it is unclear that a solution of this type wiéeute in a reasonable time. Constraint
programming, as detailed by e.g. Bartak [Bar99] is a chgileg and relatively unexplored area of
research (despite existing for over four decades [Sut@aiich has shown potential in small, tightly
defined areas, but there is little precedent for using it cask bf the order of complexity of model
transformations. Conceptually however XMOF is inter@gtircause it satisfies all parts of the method
of sectiolZZW.

48

3.3.10. QVT-Partners approach

Having detailed two approaches at opposite ends of the mmtedformation spectrum in the pre-
ceding two sections, it is interesting to evaluate the Q\dftfers submission [QVT0Ba] as it can be
seen as lying between the other two submissions. This seotimes with a bias warning: it should
be noted that the author was a major contributor to this ss&ion.

The QVT-Partners approach makes a distinction betweesftianation specifications and imple-
mentations, providing support for both. Specifications chack whether two models are correct
according to the specification. Implementations actuadipgform a given model into another. In the
general case, specifications are not executable in the Heatsthey are capable of transforming one
model into another; however the QVT-Partners approach stilecase that certain types of small
specification can automatically be refined into impleméonigt The specification aspect of the ap-
proach shares much in common with the wholly specificatisentated approaches noted in section
B31.

The overall framework is a rule-based one, with a limitedrfasf backtracking occurring when
transformations are composed together. Transformatimn$oemed of a number of domains, each
domain being formed of a pattern and a constraint. Patteensugcinct ways of expressing powerful
constraints about models and can be arbitrarily nested amgpased. Patterns can contain unbound
variables which are effectively wildcards that are asdigte value of whatever they match against.
A transformation can contain an overarching OCL constraimich is able to tie together variables
over multiple patterns.

Transformations can be composed together using threetopedisjunct , conjunct and
not . Composition can be used in two different fashions: a nemsfaamation can be the composi-
tion of one or more other transformations; transformatimplementations can utilise a limited form
of composition in their expressions. In order that specifles can be composed, rules have names
which allow individual rules to be explicitly called. Bothliaggrammatic and textual notations are de-
fined; the diagrammatic notation conveys less informatimhall but the most simple transformations
make at least some use of the textual notation.

The QVT-Partners approach is interesting in several waysmBking heavy use of patterns, it
is often able to express complex transformations sucgiraid in a manner which is reasonably
comprehensible. Its use of composition with limited baagking allows complex transformations to
be built which are still likely to run in a reasonable time.

However the approach is not without its limitations. Forragpde the rule-application mecha-
nism is ill-defined and confusing. Transformation composits marred somewhat by the default

semantics otonjunctwhich automatically and arbitrarily merge some model eletsiecturned by

49

the composed transformation together leading to unexgettd confusing results. The pattern lan-
guage provided is relatively threadbare, lacking vitatdess, and its definition ambiguous in several
important areas. Significantly, there is no support pravidepresent for facilitating change prop-
agating transformations. However there have also been &ewuaoi follow-up publications to the
QVT-Partners submission that explore and elucidate varadber areas around the submission e.g.
[ACRT03].

3.3.11. Other approaches

DSTC approach

The CLP based model transformation approach of the DSTC Q¥msssion[[DICO3] is in essence
a Prolog-like language highly specialized for model transfations. Despite some superficial sim-
ilarities to XMOF, the two approaches are in fact ratheredéht — the DSTC approach is far more
explicit than xMOF about many aspects of transformations ttemoving many of the possibilities
for users to write transformations that can not be execledexample, transformations in the DSTC
approach are inherently unidirectional. Transformatigies can create tracing (called tracking in the
DSTC terminology) information but require the user to esifiiy specify what elements must be in-
volved in each trace. A concept of a ‘key’ is also defined wisdnway of uniquely defining an object
based on certain of the objects’ properties. This concdatgely unused in the current approach; one
can surmise that it is intended as part of a strategy to emhblege propagation. Although the DSTC
submission makes clear that its choice of a declarativeoagpris to enable change propagation —
and despite the presence of relevant features such asiigeakd keys — it is currently only capable

of specifying unidirectional stateless transformations.

ATL

The ATL languagel[BDJ03] takes a rule-based approach broadly similar to the Qaftrers ap-
proach, albeit with significantly enhanced tool supportidés not possess a very specialised pattern
language, relying chiefly on a slightly augmented versio®@GL. Unlike the QVT-Partners approach,
which places a strong emphasis on the imperative aspedte aolution, ATL downplays the non-
declarative aspects of the language. Currently the approaly supports unidirectional stateless

transformations.

50

Johann and Egyed’s approach

Johann and Egyed briefly outline a framework for unidirewiochange propagation model transfor-
mation approacH [JED4]. As shall be seen in sedfionl6.3edr, phoposed solution is only capable of
propagating certain limited forms of changes. Howevenrtapproach is notable for being the only

unidirectional change propagating approach documenttdsirsection.

3.3.12. Summary of model transformation approaches

Several interesting points can be taken away from the rewefegxisting model transformation ap-

proaches:

1. Approaches are either essentially variant GPLs (e.g.)TRlogic-based (e.g. XMOF). The
QVT-Partners approach is unusual in that it has aspectstbfdtgles, but it can be argued that

it is really two different approaches under one umbrella.

2. Most approaches contain some discussion of change @tigag However with one or two
exceptions (notably xMOF) very few approaches actuall\s@né any concrete material as to

how they might support change propagating model transfiomsin practise.

3. Many approaches either lack a publicly available impletaton, or have an implementation

that only implements a subset of what is documented.

A corollary of the first two points is that the existing apprbas only explore a handful of points
within the overall solution space.

Many of the current model transformation approaches camategorised as declarative. Those
that are categorised as imperative (e.g. the QVT-Partrgpeach and TRL) are of limited use
because they share the same issues as GPLs, as noted in B&tid\t this point, it is important
to note that although this implies — as do the majority modeigformation documents — that only
a fully declarative solution is capable of providing a pieat solution to change propagating model
transformations, this is not in fact the case. In fact, vitikveral of the issues noted in section 2.5
are irksome when expressing change propagating transiomagexplicit object creation is the only
issue which fundamentally limits change propagation.

Although explicit object creation is the default in GPLs1tis no inherent reason why imperative
approachefaveto use explicit object creation. If the relationship betwedements in the source
and target models is specified declaratively then the detdithe computation which leads to the

relationship is irrelevant — the computation can be detilera@r imperative. However currently only

51

solutions which have a fully declarative computation arke dab specify the relationship between
source and target elements sufficiently.

An interesting point to note is that whilst many model tramsfation approaches claim to be de-
signed with change propagation in mind few of them, at the tinwriting, have any practical support

for such model transformations.

3.4. Research problem

Having in this chapter reviewed the major approaches to derime meta-programming and to
model transformations, this section identifies two redegroblems which are tackled in the remain-

der of this thesis.

3.4.1. A DSL implementation technology

As noted by Hudak, implementing DSLs as stand alone apjaitatis time-consumind_[Hud98].

In response to this, Hudak proposes Domain Specific Embedddeduages (DSEL's), which take
a different approach, embedding a DSL inside a larger, rithiguage. Unfortunately the style of
DSEL that Hudak promotes is quite limited in nature. His apgh relies on the built-in features
of functional languages such as Haskell: higher-ordertfans, lazy evaluation and so on. Whilst
these features can ease the expression of many DSELSs, steehienit to how much one can express
without descending into cumbersome encodings. The fundehkmitation of Hudak’s approach

is that he expressly forbids any form of syntax extensionischbst languages. Conversely Wilson
argues that programming languages need to allow theirsgsite be extended if powerful DSLs are
to be exploited to their maximum potential [Wil05].

There exist other approaches to embedding DSLs within laosfuages in a fashion that permits
syntax extension. LISP and Nemerle provide limited formsyoftax extension and were discussed
in section3.2. Bravenboer and Visser perhaps come claséketideal vision of syntax extension
with the MetaBorg system which allows language grammars to be extended inkétnaay fash-
ion [BV04]. MetaBorg is a heterogeneous system in that the language being egténdenerally
different than the language doing the extension. Thus tier lmust provide facilities ranging from
parsers and parse tree datatypes to emulations of aspé¢btsexdtended languages compiler in order
to present a system which can compete with LISP-esque maerpswer. In order to use such a sys-
tem, the person implementing the extension will need to Ipexn three entirely separate systems
(the language being extended, the language doing the éxtesasd the ‘emulation’ of the language

being extended) in order to produce a quality implememat®ecause of this, theletaBorg ap-

52

proach currently seems best suited for embedding DSLs tbanaall and localised in nature.

The research problem tackled by this thesis is thus to peog&igrogramming language which al-
lows its syntax to be extended in order to facilitate DSL d@wanent. Both Wilson, and Bravenboer
and Visser note that no modern programming language caraifficient facilities ‘as is’ to achieve
this aim. Chaptefl4 thus details my solution to this problemmew imperative programming lan-
guage named Converge, which supports syntax extensioniteilompile-time meta-programming

facilities.

3.4.2. Issues with existing model transformation approach es

Although, as shown in sectién-3.3112, there are many ddtpidénts one can pick out from the analy-
sis of existing model transformation approaches, two hi¢gaeel points in particular have relevance

to the direction of this thesis. The first is fairly easily dedd:

1. Despite superficial differences, most existing modeaidfarmation approaches are relatively
similar to one another, and are also largely simplistic girtpproaches. For example, with
the notable exception of xMOF, all existing approaches ahg@apable of expressing stateless

model transformations.

Put in different terms, since model transformations arelatively recent development there is
little collective knowledge about even the most basic ofding blocks. Unsurprisingly therefore, all
existing approaches are therefore somewhat limited anplistio in nature. This suggests that rather
than expecting a new model transformation approach to pressomplete, unified solution it is more
important to focus on attempting novel approaches to eveplsiissues. In this way one would hope
that in time the best solutions for various aspects of madekformations will be identified.

The second point has not, to the best of my knowledge, beentljirarticulated in the context of

model transformations but is a well known issue in similaast

2. The relative expense and time necessary to implementcigalamodel transformation ap-

proach inhibits experimentation.

Hudak documents this issue in a more general, but highlyicaipé, context[|[Hud98]. Hudak
highlights an unfortunate tendency that one can also seedehtransformation approaches — as they
grow in complexity they tend to acquire more and more featurBuenced by normal programming
languages. This not only adds to the implementation burdenthe programming language-esque
features tend to be inferior to their counterparts. Thislégrwy can be seen in its most extreme form

in TRL.

53

It is my contention that the two points here are closely lthk&he difficulty of implementing
model transformation approaches is one of the chief reasehind the lack of exploration of dif-
ferent techniques and approaches, and hence the relasivepte and uniform approaches that are
currently available. Since model transformations are &erently practical topic, implementations
are vital for assessing and evolving new ideas. A long anduantensive idea-implement-assess
cycle seriously inhibits such experimentation. Model $fammations are thus an excellent candidate

for implementation as DSLs within a programming languagth an extendable syntax.

Specific model transformation approaches

As noted in sectiofi-3.3.12, although there exist fully ing@e model transformation approaches
(chiefly TRL), the majority of approaches can be categoraedeclarative. The gap between these
two extremes is currently under-explored. The QVT-Pasgrgproach is almost alone in exploring
this gap, but achieves only limited success since it is g¥fely an umbrella for two different ap-
proaches: a wholly declarative approach and a mostly intigerapproach. Whilst there is some
reuse of concepts between the two approaches, the overat &f far from seamless from a user
point of view.

Therefore the first choice | make about the specific modesfeaimation approaches that | will in-
vestigate in this thesis is that they should fuse elemertistbf declarative and imperative approaches.
Note that there is a deliberate synergy with the choice itiae8.4.1 to use an imperative language
to implement embedded model transformation DSLs: one whofzk to be able to reuse aspects of
the host imperative language within the model transforomatDSL.

The second choice that needs to be made relates to the typesdel transformations to be at-
tempted. Since one of the purposes of Converge is to redecienfiementation burden when cre-
ating model transformation approaches, it is importantres@nt some evidence that it is useful for
implementing more than one model transformation approdtierefore choose to define a ‘standard’
unidirectional stateless model transformation approaathaptefb. | then extend this approach to

define a unidirectional change propagating model transittam approach in chaptgl 6.
3.4.3. Thesis aims
In summary, this thesis has the following aims:

1. To provide an extensible dynamically typed OO prograngtémguage which allows DSLs to
be embedded within it.

2. To provide a non-trivial example of a DSL within the exteht programming language.

54

3. To examine new approaches for expressing stateless angelpropagating transformations.

3.4.4. Assessment criteria

In this section | present the criteria by which Converge ptbed4) and the model transformation

approaches (chaptdis 5 did 6) can be judged by.

Assessment criteria for a DSL implementation technology

Reasonable criteria by which one can judge the success chadldgy that aims to aid the imple-
mentation of DSLs are simple to state, but difficult to askgséor example the fundamental criteria
in the context of this thesis is whether the technology paipaeduces the required implementa-
tion effort. However, it is beyond the scope of this thesiptovide hard numbers in the form of
comparative time measurements or lines of code since — stagkavould be a major undertaking.

In the context of the overall thesis the only feasible waydseas the implementation technology
proposed is an indirect one: through the model transfoomatpproaches presented in chagdiérs 5 and
[8. If those approaches are seen to be useful and novel in ahdroelves, then one can surmise that,
at worst, the proposed implementation technology did notgex their development and, at best, it
actively helped their development.

Note that although it is hard to assess the success of a madsfarmation implementation tech-
nology in general, the specific technology proposed in thésis is not only intended to be used
for implementing model transformation approaches. In, f@cnverge is proposed as a general GPL
and can be assessed completely independently of modeiamarations. Therefore part of chaplér 4
presents a comparison of Converge to other GPLs, and detailsome of the lessons learned from

its development could be used to augment mainstream GPhswihe of its more novel features.

Assessment criteria for a model transformation approach
A model transformation approach can be assessed on theifadjdwo criteria:
1. The scope of the problem it tackles (compared to the meathedctiorZ.Z}).

2. The practicality of the solution.

The first of these criteria is relatively easy to assess, @bersd considerably less so. Nevertheless
the second point is an important one: a powerful solutionctvliequires of a potential user undue
effort can not really be considered to present a realistigtisn to what is an inherently practical

problem.

55

Chapter 4.
The Converge programming language

This chapter presents the design of a new dynamically typ@diadguage Converge designed to
facilitate the implementation of DSLs. Converge is a dyreaiy typed imperative programming
language, capable of compile-time meta-programming, aitid an extendable syntax. Although
Converge has been designed with the aim of implementingréift model transformation approaches
as embedded DSLs in mind, it is also a GPL, albeit one with wallyspowerful features.

This chapter comes in four main parts. The first part docusthetbasics of the Converge language
itself. The second part details Converge’'s compile-timdanpeogramming and syntax extension
facilities, including a section detailing suggestionstioww some of Converge’s novel features could
be added to similar languages. The third part of the chapjglaims Converge’s syntax extension
facility, and includes a simple example of syntax extensiowse. The final part of the chapter
documents a user extension which allows simple UML modgliimguages to be embedded within
Converge. As well as being a practical demonstration of €mw@/s features, this facility is used

extensively throughout the remainder of the thesis.

4.1. Converge basics

This section gives a brief overview of the core Convergeuiiest that are relevant to the main subject
of this thesis. Since most of the basic features of Convergsimilar to other similar programming
language, this section is intentionally terse. Howevendigd allow readers familiar with a few other
programming languages the opportunity to quickly come tpsgwith the most important areas of

Converge, and to determine the areas where it differs frérardanguages.

4.1.1. Syntax, scoping and modules

Converge’s most obvious ancestor is PytHon [VRO03] regylftinan indentation based syntax, a sim-

ilar range and style of datatypes, and general sense ofetiesthThe most significant difference is

that Converge is a slightly more static language: all namesp (e.g. a modules’ classes and func-
tions, and all variable references) are determined stigtiah compile-time whereas even modern
Python allows namespaces to be altered at runitin@onverge’s scoping rules are also different
from Python’s and many other languages, and are intentjomaty simple. Essentially Converge’s
functions are synonymous with both closures and blocks.v€rge is lexically scoped, and there is
only one type of scope (as opposed to Python’s notion of landlglobal scopes). Variables do not
need to be declared before their use: assigning to a vadalylehere in a block makes that variable
local throughout the block (and accessible to inner black$pwever if a variable is declared via
thenonlocal keyword, then Converge searches for the first block comtgian assignment of that
variable, from the current block outwards; reading andgaésg to the variable will then refer to the
outer variable in the block containing ti@nlocal definition, but not by default to further inner
blocks. Variable references search in order from the innstrhlock outwards, ultimately resulting
in a compile-time error if a suitable reference is not fourdd in Python, fields within a class are
not accessible via the default scoping mechanism: they briseferenced via theelf variable
which is automatically brought into scope in abgund function(functions declared within a class
are automatically bound functions). Converge’s justifarafor this is subtly different than Python'’s,
which has this feature to aid comprehension; although théxjually true in Converge, without this
feature, namespaces would not be statically calculabte sin objects slots are not always known at
compile-time.

Converge programs are split into modules, which contaimiasefdefinitions(imports, functions,
classes and variable definitions). Unlike Python, each eadindividually compiled into a bytecode
file by the Converge compileronvergec and linked byconvergel to produce a static bytecode
executable which can be run by the Converge VM. If a modulkdsrtain moduleof a program (i.e.
passed first to the linker), Converge callsritain function to start execution. The following module
shows a caching Fibonacci generating class, and indirslatiws Converge’s scoping rules (thand
fib _cache variables are local to the functions they are containedimitiprinting 8 when run:

import Sys

class Fib_Cache:

func init():
self.cache := [0, 1]
func fib(x):
i := self.cache.len()
while i <= x:
self.cache.append(self.cache[i - 2] + self.cache[i - 1])

i +=1
return self.cache[x]

Prior to version 2.1, Python’s namespaces were determilmeasawholly dynamically; this often lead to subtle bugs,
and hampered the utility of nested functions.

57

func main():
fib_cache := Fib_Cache()
Sys.printin(fib_cache.fib(6))

Compiling and running this fragment looks as follows:

$ converge convergec -o fib.cvb fib.cv

$ converge convergel -o fib fib.cvb lib/libconverge.cvl
$ converge fib

8

As in Python, Converge modules are executed from top to tottben they are first imported. This
is because functions, classes and so on are normal objeitiis \&i Converge system that need to
be instantiated from the appropriate built-in classes +etioee the order of their creation can be
significant e.g. a clagsustbe declared before its use by a subsequent class as a sepeittde that
this only affects references made at the modules top-leveferences e.g. inside functions are not

restricted thus.

4.1.2. Functions

Converge uses the term function both in its traditional progning sense of a stand-alone function
(or ‘procedure’), and also for functions which reside irsslas (often called methods). The reason for
this is that ‘normal’ functions and ‘methods’ are not reggd in Converge to only their traditional
roles: ‘normal’ functions can reside in classes and ‘mésh@an reside outside of classes. When
it is important to distinguish between the two, Converge taas distinct types:unbound functions
(‘normal’ functions) andound functiong'methods’). Bound functions expect to have an implicittfirs
argument of the self objeGthowever they can not have arguments applied to it dire&ktracting

a bound function from an object createguaction bindingwhich wraps a bound function and a
reference to the self object into an object which can there llmguments applied to it. Function
bindings can be manually created by instantiatingRhac _Binding class, which allows bound

functions to be used with arbitrary self objects.

In normal use, Converge automatically assumes that the deyfunc introduces an unbound
function if it is used outside class, and a bound functiorsédiinside a class. Using theund func
orunbound func keywords overrides this behaviour. Functions, bound obunf, can have zero
or more parameters; prefixing the final parameter in a funatith a* denotes the ‘var args’ param-

eter.

An important feature of functions is theapply slot which applies a list of objects as parameters

to the function. This allows argument lists of arbitraryesia be built and applied at run-time.

2Note that unlike Python, Converge does not force the usexpticitly list self as a function parameter.

58

4.1.3. Goal-directed evaluation

An important, if less obvious, influence to Converge is Ic@GRO64&]. Since Icon is likely to be
unfamiliar to be most readers, a brief overview of Icon igringive in understanding why it possesses
an unusual, and interesting, feature set. Icon’s chiefdesiwas Ralph Griswold, and is a descendant
of the SNOBOL series of programming languages — whose désan Griswold had been a part of
—and SNOBOL's short-lived successor SL5. SNOBOL4 in paldicwas specifically designed for
the task of string manipulation, but an unfortunate dichgtdetween pattern matching and the rest
of the language, and the more general problems encountdred tnying to use it for more general
programming issues ensured that, whilst successful, émeshieved mass acceptance; SL5 suffered
from almost the opposite problem by having an over-germzdland unwieldy procedure mechanism.
See Griswold and Griswol@ [GGR3] for an insight into the mexleading to Icon’s conception. Since
programs rarely manipulate strings in isolation, post-Slriswold had as his aim to build a language
which whilst being aimed at non-numeric manipulation alssswsable as a general programming
language. The eventual result was Icon [GG96a, G(596b],qubaye still in use and being developed
to this day. In order to fulfil the goal of practical string nyauation, the premises on which Icon is
founded are not only fundamentally different from thosenmalty associated with GPLs, but are also
tightly coupled with one another.

As Icon, Converge is an expression-based language, wiilasinotions of expressiosuccessnd
failure. In essence, expressions which succeed produce a valuessixms which fail do not produce

a value and percolate the failure to their outer expressionexample the following fragment:

func main():
X =1<2
y =2<1

Sys.printin(x)
Sys.printin(y)

leads to the following output:

2
Traceback (most recent call last):

File "expr.cv", line 5, column 13, in main
Unassigned_Var_Exception: Var has not yet been assigned to

This is because when the expressbn< 1 is evaluated, it fails (since 2 is not less than 1); the
failure percolates outwards and prevents the assignmentalfie to the variablg. Note that failure
does not percolate outwards to arbitrary points: failune @at crossbound expressionsA bound
expression thus denotes a ‘stop point’ for backtrackinge Most obvious point at which bound
expressions occur is when expressions are separated binegwl an Converge program although
bound expressions occur in various other points. For examgach branch of aifi expression

is bound, which prevents the failure of a branch causing thieedf expression to be re-evaluated.

59

Converge directly inherits Icon’s bound expression rulegtvlargely preserve traditional imperative
language evaluation strategies, even in the face of badti
Success and failure are the building blocks for goal-did@&valuation, which is essentially a lim-
ited form of backtracking suitable for imperative programgilanguages. Functions which contain
theyield statement argeneratorsand can produce more than one return value. yiiekl state-
ment is an alternative type of function return which effesly freezes the current functions closure
and stack, and returns a value to the caller; if backtrackitgurs, the function is resumed from its
previous point of execution and may return another valuae@eors complete by using theturn
statement. Since threturn statement returns theull object if no expression is specified, gener-
ators typically useeturn falil to ensure that the completion of the generator does not cagse
final loop of the caller —eturn ’ing the fail object causes a function to percolate failure to its
caller immmediately.
The most frequent use of generators is seemingly mundaep@urs in the following idiom,
which uses théterate generator on a list to print each list elemémn a newline:
| :=[3, 9, 27]
for x := lLiterate():
Sys.printin(x)
In simple terms, théor construct evaluates its condition expression and aftdr garation of the
loop backtracks in an attempt to pump the condition for madees. This idiom therefore subsumes
the verbose encoding of iterators found in most OO languages
Generators can be used for much more sophisticated purpdsasider first the following gener-
ator which generates all Fibonacci numbers from high :
func fib(high):
a, b := [0, 1]
while b < high:
yield b
a, b :=1[b, a+ b]
return fall
The for construct exhaustively evaluates its condition (via bi@witing) until it can produce no
more values. Therefore the following fragment prints alidfiacci values from 1 to 100000:

for f := fib(100000):
Sys.printin(f)

The conjunction operata conjoins two or more expressions; the failure of any parthef éx-
pression causes backtracking to occur. Backtracking resuhe most recent generator which is still
capable of producing values, only resuming older genesatdren more recent ones are exhausted.
Thus backtracking in Converge is entirely deterministicéhese the sequence in which alternatives
are tried is explicitly specified by the programmer — this ggkhe evaluation strategy significantly

different than that found in logic languages such as Prolbgll expressions in a conjunction suc-

60

ceed, the value of the final expression is used as the valdeeafanjunction. If failure occurs, and
there are no generators capable of producing more values tesomed, then the conjunction itself
fails.

Combining thefor construct with the& operator can lead to terse, expressive examples such as
the following which prints all Fibonacci numbers wholly diible by 3 between 1 and 100000:

for Sys.printin(f := fib(100000) & f % 3 == 0 & f)

A brief explanation of this can be instructive. Firstly= fib(100000) pumps thdib genera-
tor and assigns each value it returns to the variébl8ince it is contained within the first expression
of the & operator, when théb generator completes, its failure causesfthe ... assignment
to fail, which causes the entig&operator to fail thus causing tfier construct to fail and complete.
Secondif % 3 == 0 checks whethdr modulo 3 is equal to 0 or not; if it is not, failure occurs and
backtracking occurs back to tfie generator. Sinck % 3 == 0, if it succeeds, always evaluates
to 0 (== evaluates to its right hand argument on success), the fipatssion of produces the value
of the variable whict8ys.printin then prints.

Neither Icon or Converge possess standard boolean logie siuivalent functionality is available
through other means. The conjunction operator acts as ahdgerator. Although the disjunction
operator| is generally used as ‘or’, it is in fact a generator that sasiely evaluates all its ex-
pressions, producing values for those expressions whiotesd. Thus in most circumstances the
operator neatly preserves the normal expectation of ‘ohat it evaluates expressions in order only
until it finds one which succeeds — whilst also providing usektra functionality.

This section has detailed the most important aspects of €ges Icon-esque features, but for
a more thorough treatment of these features | recommendslomenual [GG96a] — virtually all
the material on goal-directed evaluation is trivially tsferable from Icon to Converge. Gudeman
[Gud92] presents a detailed explanation of goal-direct@duation in general, with its main focus on
Icon, and presents a denotational semantics for Icon’sdjoadted evaluation scheme. Proebsting
[Pro97] and Danvy et al. [[DGRD1] both take subsets of Iconsehofor their relevance to goal-
directed evaluation, compiling the fragments into varipusgramming languages (Daney. alalso
specify their Icon subset with a monadic semantics); bogfemaprovide solid further reading on the

topic.

While loops

Converge also containsvehile construct. The difference between ftoe andwhile constructs
is initially subtle, but is ultimately more pronounced tharmost languages. In essence, each time

afor loop completes, the construct backtracks to the conditigmession and pumps it for a new

61

Object

slots : Dict{String : Object}

conforms_to(Class)

get_slot(String) : Object
get_slots(String) : Dict{String : Object}
has_slot(String)

id() : Object

init(*Object)

set_slot(String, Object)

to_str() : String

instance_of T supers
*]

Class

name : String
fields : Dict{String : Object}

is_subclass(Class)
new(*Object) : Object

Figure 4.1.: Core Converge data model.

value. In contrast, avhile construct evaluates its expression anew after each daratihis means
that if the condition of avhile construct is a generator it can only ever generate a maxinimeo
value before it is discarded. To emphasise this, the foligndode endlessly repeats, printing 1 on
each iteration:

while f := fib(100000):
Sys.printin(f)

4.1.4. Data model

Converge’s OO features are reminiscent of Smalltalk’s_[@JR&erything-is-an-object philosophy,
but with a prototyping influence that was inspired by Abadi &ardelli’'s theoretical work [AC96].
The internal data model is derived from ObjVLisp [Cdi87]. a€%es are provided as a useful and
common convenience but are not fundamental to the objetgrayis the way they are to most OO
languages. The system is bootstrapped with two base cl@dgest andClass , with the latter
being a subclass of the former and both being instanc€task itself: this provides a full metaclass
ability whilst avoiding the class / metaclass dichotomyrfdun Smalltalk [BC80, DM95]. The core
data model can be seen in figlirel4.1. Note thastbes field in theObject class is conceptual
and can only be accessed via fet slot andget slots functions.

In the Smalltalk school of OO, objects consist of a slot focheattribute in the class; calling a
method on an object looks for a suitable method in the olgjénstantiating class (and possibly its
superclasses). In contrast Converge, by default, creajests with a slot for each field in a class,
including methods. This therefore moves method overridingasses to object creation time, rather
than the more normal invocation time. This is possible sirsein Python, a function’s name is
the only factor to be taken into account when overriding. é0bpreation in Converge thus has a

higher overhead than in most OO languages; this is offsehéyfdct that calling a function in an

62

object is faster (since classes and super-classes do mbttmdee searched). The reason for this
design decision is to ensure that all objects in a Convergiesyare ‘free objects’ in that they can
be individually manipulated without directly affectinghetr objects, a feature which can prove useful
when manipulating and transforming objects. This behavalso mirrors the real world where,
for example, changing a car’s design on paper does not chaatgal cars on the road; it does not
however reflect the behaviour of non-prototyping OO langsad-or example, in Converge adding
(or deleting) a method in a class does not automaticallytdfiejects which are instances of that class,
whereas in Python all of the classes instances would appeaow (or lose) a method. Note that this
flexibility also allows objects to be dynamically reclassifiwithout additional language features; this
contrasts with more static languages where additionaluagg features need to be added to allow
this feature (see Drossopoulett alfor a concrete proposal [IDDDCGO02]). Although not explored

further in this thesis, such a feature is highly desirabtestacalled ‘update in place’ transformations.

From a practical point of view it is important to note that mrmal use most users will be unaware
of the difference between Converge’s object creation sehana its more normal counterparts since
common usage does not involve directly manipulating thearsgstem. Note that this entire area of

behaviour can be overridden by using meta-classes and tlzeahject protocol (sectidn4.1.7).

Metaclasses

In similar fashion to ObjVLisp, metaclasses are otherwisemal objects which possessnew
slot. Class is the default metaclass; individual classes can instantadifferent class via the
metaclass keyword. Metaclasses typically subclaBkass , although this is not a requirement.
A simple example of a useful metaclass is the following sitai metaclas$ IGHJVDB4] which allows
classes to enforce that at most one instance of the classxisrirethe system. Noting thaxbi
(EXtract and BInd) can be viewed as being broadly equivaiemther languagesuper keyword,

theSingleton class is defined and used as follows:
class Singleton(Class):
func new():
if not self.has_slot("instance"):
self.instance := exbi Class.new()
return self.instance

class M metaclass Singleton:
pass

Note that thenew function inClass automatically calls thénit function on the newly created

object, passing it all the arguments that were passeéwo

63

Built-in data types

Converge provides a similar set of built-in data types tchByt strings, integers, dictionaries (key
/ value pairs) and sets. Dictionary keys and set elementsigie immutable (though this is not
enforced, violating this expectation can lead to unprediet results), and must defire andhash
functions, the latter of which should return an integer espnting the object. All built-in types are
subclasses dDbject , and can be sub-classed by user classes (although thetdorme@mentation

restricts user classes to sub-classing a maximum of oneibyipe).

4.1.5. Comparisons and comparison overloading

Converge defines a largely standard set of binary operaifdrs. lack of standard boolean logic in
Converge means that thet operator is slightly unusual and is not classed as a congpecigerator.
Rather thamot taking in a boolean value and returning its negated val@ndh operator evaluates
its expression and, if it failsjot succeeds and produces thal object. If the expression succeeds,
the value produced is discarded andtlo¢ operator fails.

Objects can control their involvement in comparisons byriledj, or overriding, the functions
which are called by the various comparison operators. kamgtre passed an object for compari-
son, and should fail if the comparison does not hold, or rethe object passed to them if it does.
Comparison operators are syntactic sugar for calling atiomof the same name in the left hand side
object (e.g. thes= operator looks up the= slot in an object).

Note that although the Converge grammar (appellix A) burttkis operator into theompar-
ison _op production, it is unlike the other comparison operatorshiat tit tests two objects for

equality of their identities, and can not be overridden grubjects.

4.1.6. Exceptions

Converge provides exception handling that is largely simi Python. Theaise expression raises
an exception, printing a detailed stack-trace, the typb@fxception and a message from the excep-
tion object itself. All exceptions must be instances of Eheeption class in theExceptions

module. Thery ... catch construct is used to test and capture exceptions.

4.1.7. Meta-object protocol

Converge implements a simple but powerful Meta-Objectdaat(MOP) [KdRB91], which allows
objects to control all behaviour relating to slots. The d&fMOP is contained within th©bject

class and comprises tlyet _slot , get _slots ,has_slot andset _slot functions. These

64

can be arbitrarily overridden to control which slots thesmbjclaims it has, and what values such slots
contain. Note thaall accesses go through these functions; if they are overrigddarsubclass, the
user must exercise caution to call the ‘master’ MOP funetiortheObject class to prevent infinite
loops. The following example shows a MOP which returns awefalue ofnull for unknown slot

names:

class M:
func get_slot(n):
if not self.has_slot(n):
return null
return exbi Object.get_slot(n)

4.1.8. Differences from Python

Converge deliberately presents a feature set which candgkinsa fashion similar to Python. Pro-
grammers used to Python can easily use Converge in a Pyfimue-dashion although they will miss
out on some of Converge’s more advanced features. The diferfedices from Python are that Con-
verge is a more static language, able to make stronger geasabout namespaces, and that Con-
verge is an expression based language rather than Pythat@ment based approach. Converge has
a more uniform object system, and less reliance on a batfeglobally available built-in functions
than Python.

One small change from Python to Converge is a generalizafitre somewhat confusingly named
finally branch which can be attached to Pythdies andwhile loops. Thefinally branch
is executed if the loop construct terminates naturally (eak is not called). Converge renames
thefinally branch toexhausted and also allows &roken branch to be added which will be

called if abreak is encountered. A slightly contrived example of this featisras follows:

high := 10000
for x := fib(high):

if x % 9 == 0:

break

exhausted:

Sys.printin("No Fibonacci numbers wholly divisible by 9 up to ", high)
broken:

Sys.printin("Fibonacci number ", x, " wholly divisible by 9 ")

4.1.9. Differences from Icon

Converge’s expression system is highly similar to Icon. vitgied they can adjust to the Python-
esque veneer, lcon programmers will have little difficulipleiting Converge’s expression system
and implementation of goal-directed evaluation. Theretam@ever two significant differences in
Converge’s functions and generators.

Firstly, whereas Icon functions which do not haveeturn expression at the end of a function

have an implicitreturn fail added, Converge functions instead defaulteturn null (as

65

do Python functions). Icon takes its approach so that gasrdo not accidentally return an extra
object when they should instead fail, and Converge orityinabk the same approach as lcon. How-
ever in practise it is quite common, when developing codayrite incomplete functions — often
one part of the code not initially filled in is the function’sidil return expression. Such functions
then cause seemingly bizarre errors since they do not ratvatue, causing assignments in calling
functions to fail and so on (indeed, this happened surgiigifrequently in the early stages of Con-
verge development). Since the proportion of generator®tmal functions is small, it seems more
sensible to optimise the safety of normal functions at thegeasge of the safety of generators. As
can be seen from secti@n 4.3, generators in Convergealgrieavereturn fail as their final
action in order to emulate Icon’s behaviour.

Secondly, Converge does not propagate generation acretsra expression. In Icon, if is a
generator themeturn f() turns the function containing theturn expression into a generator
itself which produces all the values tHaproduces. Converge does not emulate this behaviour, which
somewhat arbitrarily turngeturn into a sort offor construct in certain situations that can only
be determined by knowing whether the expression contairenargtor. The same behaviour can be

obtained in Converge via the following idiom:

for yield f()
return fail

Finally, two important features present in Icon are absefitanverge. One is the concept of string-
scanning expressions, which are a specialised form ofystniatching; such a concept is not general
enough for Converge but, if required, could be expressedx3lasee sectioi4.4). Second is Icon’s
reversible assignment operator. Reversible assignment acts as normal assignment exctpt in
presence of backtracking, which will restore the varialdiang assigned to its original value. Whilst
conceptually a useful idea, this is used reasonably ingety in practise and is thus not included in

Converge.

4.1.10. Implementation

The current Converge implementation consists of a VirtuatMne (VM) written in C, and a com-
piler written in Converge itself (the current compiler wamtstrapped several generations ago from
a much simpler Python version). The VM has a simplistic seamiservative garbage collector which
frees the user from memory management concerns. The VM ug@giauation passing technique at
the C level to make the implementation of goal-directedwsatibn reasonably simple and transparent
from the point of view of extension modules. Its instructiet is largely based on Icon’s, although
the VM implementation itself shares more in common with nmradéM’s such as Python’s.

This thesis is not overly concerned with the implementatbthe VM and compiler. Interested

66

readers are encouraged to visitp://convergepl.org/ where the VM and compiler can be

downloaded and inspected.

4.1.11. Parsing

An aspect of Converge and its implementation that is pdéityuimportant throughout this thesis
is its ability to easily parse text. Converge implements &sgratoolkit (the Converge Parser Kit or
CPK) which contains a parsing algorithm based on that pteddsy Earleyl[Eard0]. Earley’s parsing
algorithm is interesting since it accepts and parses anyebhRree Grammar (CFG) — this means
that grammars do not need to be written in a restricted forsuitthe parsing algorithm, as is the case
with traditional parsing algorithms such as LALR. By allogigrammars to be expressed without
concern for many of the traditional parsing concerns, aidrato DSL development is removed.
Practical implementations of Earley parsers have traditlg been scarce, since the flexibility of the
algorithm results in slower parsing times than traditiopalsing algorithms. The CPK utilises some
(though not all) of the additional techniques developed fpgosk and Horspool [AHO2] to improve
its parsing time, particularly those relating to th@roduction. Even though the CPK contains an
inefficient implementation of the algorithm, on a modern hiae, and even with a complex grammatr,
it is capable of parsing in the low hundreds of lines per sdawshich is sufficient for the purposes
of this thesis. The performance of more sophisticated Eadesers such as Accent [Sch05] suggest
that the CPK'’s performance could be raised by approximatelprder of magnitude with relatively
little effort.

Parsing in Converge is preceded by a tokenization (also krasAexing) phase. The CPK provides
no special support for tokenization, since the built-inuleg expression library makes the creation
of custom tokenizers trivial. Tokenizers are expected tarnea list of objects, each of which has
slotstype ,value ,src file andsrc _offset . The first two slots represent the type (ilB.)
and value (i.eheight) of a token and must be strings; the latter two slots recott the file and
character offset within the file that a particular token mr@ged in. The tokenizer for Converge itself
is somewhat unusual in that it needs to understand abouttiiiten in order that the grammar can
be expressed satisfactorily. Each increase in the leveldefitation results in BNDENT token being
generated; each decrease results DEDENTollowed by aNEWLINEtoken. Each newline on the
same level of indentation results ilfEEWLINEtoken.

The CPK implements an EBNF style system — a BNF system witladagion of the Kleene star.
CPK production rules consist of a rule name, and one or mteenaktives. Each alternative consists
of tokens, references to other rules and groupings. Cuyrdrg only form of grouping accepted is

the Kleene star. Since this thesis contains several graswiiting in the CPK, the grammar of the

67

CPK itself is as follows:

(grammay = (rule)*
(rule) = ‘ID’ (rule_alternative*
(rule_alternative ::= ‘::= ’ (rule_elem*

| ‘u= " (rule_elem* ' %PRECEDENCHNT’

(rule_elem = (atom)
| (grouping
(grouping = 7 (atom) ‘} 7
(atom) n= MY TOKENS™?
| ‘D’

Since Earley grammars can express any CFG, grammars carbiiguans — that is, given inputs
can satisfy the grammar in more than one way. In order to diggumate between alternatives when
building the parse tree, the CPK allows grammar rules to hgwecedence attached to them:; if more
than one rule has been used to parse a given group of tokensjl¢hwith the highest precedence is
used.

In order to use the CPK, the user must provide it with a gramthamame of a start rule within the
grammar, and a sequence of tokens. The result of a CPK paasenistomatically constructed parse
tree, which is represented as a nested Converge list ofing for oduct i on nane, token or
listq, ..., t oken or i st,]. The following program fragment shows a CPK grammar for

a simple calculator:

GRAMMAR = "™
S = E
E = E "+'" E %precedence 10

E " " E %precedence 30
Il(ll E ll)ll
N "INT" %precedence 10

2

Assuming the existence of a suitalifekenize function, an example program which uses this
grammar to parse input is as follows:
import CPK.Grammar, CPK.Parser
func calc_parse(input):
grammar := Grammar.Grammar(GRAMMAR, "S")

tokens := tokenize(input)
parser := Parser.Parser(grammar)

3Note that there is another, much rarer, type of ambiguitpliring alternatives which contain different number of toke
These are currently always resolved in favour of the alter@aontaining the least number of tokens, no matter its
precedence. This generally gives the expected behavioucap cause problems in some rare cases. This limitation is
purely due to a naive implementation.

68

tree := parser.parse(tokens)
Sys.printin(tree)

The parse tree is printed out as:

['S", ['E", ['E", ['N'], <INT 5], <+> ['E", ['E", ['N'], <I NT 25], < *>, ['E",
['N'], <INT 3>]]]]

This is somewhat easier to visualize when usingpgasse tree function in aParser instance

to format the list as a tree:

N ->
INT <3>

The full Converge grammar can be seen in appehdlix A.

4.1.12. Related work

This section has made several comparisons between Conarddcon and Python in particular.
These are not repeated in this subsection.

The Unicon project [JMPP03] is in the reasonably advancagest of extending Icon with object
orientated features. It differs significantly from Conweig maintaining virtually 100% compatibility
with Icon. Unicon’s extensions to Icon, effectively beingalt-on to the original, mean the resulting
language features are not as closely integrated as thely @eniverge. Godiva [JefD2], which claims
as a goal to be a ‘very high level dialect of Java’, also inocaes goal-directed evaluation. In reality,
Godiva’s claim to be a dialect of Java is slightly tenuousilstlit shares some syntax, the semantics
are substantially different. Neither Unicon nor Godivadavmeta-circular data model (see section

F5.2), and both are less dynamic languages than Converge.

4.2. Compile-time meta-programming

4.2.1. Background

Compile-time meta-programming provides the user of a @nogning language with a mechanism
to interact with the compiler to allow the construction dbitnary program fragments by user code.

In this section | detail an extension to the core Convergguage which adds compile-time meta-

69

programming facilities similar to TH. Since this is the fitishe that facilities of this nature have been
added to a dynamically-typed OO language such as Convexgioiil4.B details the implications of

adding such a feature to similar languages.

4.2.2. A first example

The following program is a simple example of compile-timetaprogramming, trivially adopted
from its TH cousin in[COST0U4]expand _power recursively creates an expression that multiplies
n x times;mk_power takes a parameter and creates a function that takes a single argumemtd

calculates:™; power3 is a specific power function which calculates:

func expand_power(n, X):

if n == 0:
return [| 1 |]
else:
return [| $<<x>> * $<<expand_power(n - 1, x)>> |]

func mk_power(n):
return |
func (x):
return $<<expand_power(n, [| x [])>>
1]

power3 := $<<mk_power(3)>>

The user interface to compile-time meta-programming isiitd from TH: quasi-quote expressions
- 1 build abstract syntax trees - ITree’s in Converge’s teriaigy - that represent the

program code contained within them, and the splice anmot&&<...>> evaluates its expression
at compile-time (and before VM instruction generationjplaeing the splice annotation itself with the
ITree resulting from its evaluation. When the above exarhpkebeen compiled into VM instructions,

power3 essentially looks as follows:

power3 := func (x):
return x x x * x * 1

By using the quasi-quotes and splicing mechanisms, we hese &ible to synthesise at compile-time
a function which can efficiently calculate powers withousaging to recursion, or even iteration.

Note how apart from the quasi-quotes and splicing mechanismextra features have been added
to the base language — unlike LISP style languages, all padsConverge program are first-class

elements regardless of whether they are executed at cotimpéeor run-time.

This terse explanation hides much of the necessary det&hvdan allow readers who are unfa-
miliar with similar systems to make sense of this synthelighe following sections, | explore the

interface to compile-time meta-programming in more degdplaining the system step by step.

70

4.2.3. Splicing

The key part of the ‘powers’ program is the splice annotatiothe linepower3 = $<<mk -
power(3)>> . The top-level splice tells the compiler to evaluate theregpion between the chevrons
at compile-time, and to include the result of that evaluaiiothe module for ultimate bytecode gener-
ation. In order to perform this evaluation, the compilerates a temporary or ‘dummy’ module which
contains all definitions up to, but excluding, the definitibie splice annotation is a part of; to this
temporary module a new splice function (conventionallyecbb$splice$$) is added which con-
tains a single expressioaturn spl i ce expr . Thistemporary module is compiled to bytecode
and injected into the running VM, whereupon the splice fiomcts called. Thus the splice function
‘sees’ all the definitions prior to it in the module, and calfi tteem freely — there are no other limits
on the splice expression. The splice function must returalia ¥VTree which the compiler uses in
place of the splice annotation.

Evaluating a splice expression leads to a new ‘stage’ in ¢imepier being executed. Converge’s
rules about which references can cross the staging bouradargimple: only references to top-
level module definitions can be carried across the stagingdery (see sectidn 4.2.5). For example
the following code is invalid since the variabkewill only have a value at run-time, and hence is
unavailable to the splice expression which is evaluatedmtpie-time:

func f(x): $<<g(x)>>
Although the implementation of splicing in Converge is méiexible than in TH — where splice
expressions can only refer to definitions in imported maosldlé raises a new issue regarding forward
references. This is tackled in sectlon412.9.

Note that splice annotations within a file are executedtstrie order from top to bottom, and that

splice annotations can not contain splice annotations.

Permissible splice locations

Converge is more flexible than TH in where it allows splice@ations. A representative sample of

permissible locations is:

Top-level definitions. Splice annotations in place of tepel definitions must return an ITree, or a

list of ITree’s, each of which must be an assignment.

Function names. Splice annotations in place of functionesmmust return &lame(see section
A28).

Expressions. Splice annotations as expressions can rahyrmormal ITree. A simple exam-

ple is$<<x>> + 2. We saw another example in the ‘powers’ program vgtwer3 :=

71

$<<mk_power(3)>>

Within a block body. Splice annotations in block bodies (eagfunctions body) accept either a
single ITree, or a list of ITree’s. Lists of ITree’s will belgged in as if they were expressions

separated by newlines.

A contrived example that shows the last three of these slla@ions (in order) in one piece of code
is as follows:
func $<<create_a_name()>>():
X = $<<f()>> + g()
$<<list_of_exprs()>>
At compile-time, this will result in a function named by thesuolt ofcreate a nameand contain-
ing 1 or more expressions, depending on the number of expnss®turned in the list byst _ of-
_exprs .
Note that the splice expressions must return a valid I Trethfolocation of a splice annotation. For
example, attempting to splice in a sequence of expressitmsn expression splice such&s<x>>

+ 2 results in a compile-time error.

4.2.4. The quasi-quotes mechanism

In the previous section we saw that splice annotations g@laged by ITree’s. In many systems the
only way to create ITree’s is to use a verbose and tedioudfact of ITree creating functions which
results in a ‘style of code [which] plagues meta-prograngripstems’[[WC93]. LISP’s quasi-quote
mechanism allows programmers to build up LISP S-expresgehich, for our purposes, are anal-
ogous to be ITree’s) by writing normal code prepended by tiekfuote' notation; the resulting
S-expression can be easily manipulated by a LISP prograrfortunately LISP’s syntactic minimal-
ism is unrepresentative of modern languages, whose ridasss are not as easily represented and
manipulated.

MetaML and, later TH, introduce a quasi-quotes mechanidtadto syntactically rich languages.
Converge inherits TH’s Oxford quotes notatign...|] notation to represent a quasi-quoted piece
of code. A quasi-quoted expression evaluates to the ITréehwhpresents the expression inside it.
For example, whilst the raw Converge expresdlor 2 evaluates to, and prints out &s,[| 4 +
2 |] evaluates to an ITree which prints outds+ 2. Thus the quasi-quote mechanism constructs
an ITree directly from the users input - the exact nature eflifree is of immaterial to the casual
ITree user, who need not know that the resulting ITree iscairad along the lines addd(int(4),
int(2)).

To match the fact that splice annotations in blocks can dsspences of expressions to splice in,

72

the quasi-quotes mechanism allows multiple expressiobe &xpressed within it, split over newlines.
The result of evaluating such an expression is, unsurgfigia list of ITree’s.
Note that as in TH, Converge’s splicing and quasi-quote meisins cancel each other o8& <||

X |]>> is equivalent tox (though not necessarily vice versa).

Splicing within quasi-quotes

In the ‘powers’ program, we saw the splice annotation beisgduwithin quasi-quotes. The ex-
planation of splicing in sectiofh 4.2.3 would seem to sugtjesst the splice inside the quasi-quoted
expression in thexpand _power function should lead to a staging error since it refers tiades
n andx which were defined outside of the splice annotation. In faplices within quasi-quotes
work rather differently to splices outside quasi-quotesistrsignificantly the splice expression itself
is not evaluated at compile-time. Instead the splice expressi@aopied as-is into the code that the
quasi-quotes transforms to. For example, the quasi-quatpressior]] $<<x>> + 2 |[] leads
to an ITree along the lines afdd(x, int(2))- the variablex in this case would need to contain a valid
ITree. As this example shows, since splice annotationsinvitbasi-quotes are executed at run-time
they can access variables without staging concerns.

This feature completes the cancelling out relationshipvben splicing and quasi-quoting]|

$<<x>> |] is equivalent tox (though not necessarily vice versa).

4.2.5. Basic scoping rules in the presence of quasi-quotes

The quasi-quote mechanism can be used to surround any @enegpression to allow the easy
construction of ITree’s. Quasi-quoting an expression &lae another important feature: it fully
respects lexical scoping. Take the following contrivedregke of moduleA:

func x(): return 4

func y(): return [| x() * 2]
and moduleB:

import A, Sys

func x(): return 2

func main(): Sys.printin($<<A.y()>>)
The quasi-quotes mechanisms ensures that since the &fei@x in the quasi-quoted expression
in Ay refers lexically toA.x , that running moduld prints out8. This example shows one of the
reasons why Converge needs to be able to statically detemmaimespaces: since the referencg of

in Ay is lexically resolved to the functioA.x , the quasi-quotes mechanism can replace the simple

73

reference with aroriginal namé that always evaluates to the sbotwithin the specific module\
wherever it is spliced into, evenAfis not in scope (or a differet is in scope) in the splice location.

Some other aspects of scoping and quasi-quoting requirera subtle approach. Consider the
following (again contrived) example:

func f(): return [| x = 4 |]

func g():

x = 10

$<<f()>>

y = X
What might one expect the value wfin function g to be after the value of is assigned to it? A
naive splicing off() into g would mean that the within [| x = 4 |] would be captured
by thex already ing —y would end with the valud. If this was the case, using the quasi-quote
mechanism could potentially cause all sorts of unexpectttactions and problems. This problem
of variable capture is well known in the LISP community, amadipered LISP macro implementations
for many years until the concept of hygienic macros was itee[KEFD86]. A new subtlety is now
uncovered: not only is Converge able to statically deteenmamespaces, but variable names can be
a-renamed without affecting the programs semantics. Thassighificant deviation from the Python
heritage. The quasi-quotes mechanism determines all beanables in a quasi-quoted expression,
and preemptivelyv-renames each bound variable to a guaranteed unique nahtkehseer can not
specify; all references to the variable are updated sitpil@hus thex within[| x = 4 |] will
not cause variable capture to occur, and the varightefunctiong will be set to10.

There is one potential catch: top-level definitions (all dfieh are assignments to a variable, al-
though syntactic sugar generally obscures this fact) cabaa-renamed without affecting the pro-
grams semantics. This is because Converge’s dynamic typeans that referencing a slot within
a module can not generally be statically checked at contipile: Thusa-renaming top-level def-
initions would almost certainly lead to run-time ‘slot niigg exceptions being raised as the user
attempts to reference a definitidhwithin a module. Although the current compiler does not lsatc
this case, since the user is unlikely to have cause to quasdedop-level definitions, barring it should
be of little practical consequence.

Whilst the above rules explain the most important of Congisrgcoping rules in the presence of

guasi-quotes, upcoming sections add extra detail to tHe bagping rules explained in this section.

4.2.6. The CEl interface

At various points when compile-time meta-programming, oreds to interact with the Converge

compiler. The Converge compiler is entirely contained imith package calle@€ompiler which

“This terminology is borrowed from TH, but with a much diffatémplementation.

74

is available to every Converge program. TBEI module within theCompiler package is the

officially sanctioned interface to the Compiler, and carmbparted withimport Compiler.CEI

ITree functions

Although the quasi-quotes mechanism allows the easy, d&adaaation of many required ITree’s,
there are certain legal ITree’s which it can not express. tMosh cases come under the heading of
‘create an arbitrary number of e.g. a function with an arbitrary number of parameters, roifa
expression with an arbitrary number elif clauses. In such cases thé&l interface presents a
more traditional meta-programming interface to the usat #tlows ITree’s that are not expressible
via quasi-quotes to be built. The downside to this approadhat recourse to the manual is virtu-
ally guaranteed: the user needs to know the name of the ITeeeeat(s) required (each element
has a corresponding function with a lower case name and &mpdeg ‘i’ in theCEIl interface e.qg.
ivar), what the functions requirements are etc. Fortunatedyittierface needs to be used relatively

infrequently; all uses of it in this thesis will be expligitexplained.

Names

Section4.ZB showed that the Converge compiler sometirses nmames for variables that the user
can not specify using concrete syntax. The same techniqueeis by the quasi-quote mechanism to
a-rename variables to ensure that variable capture doesoot. dHowever one of the by-products of
the arbitrary ITree creating interface provided by @l interface is that the user is not constrained
by Converge’s concrete syntax; potentially they could ter@ariable names which would clash with
the ‘safe’ names used by the compiler. To ensure this doesamir, theCEl interface contains
several functions — similar to those in recent versions ofTklated to names which the user is
forced to use; these functions guarantee that there can inadwertent clashes between names used
by the compiler and by the user.

In order to do this, th€EI interface deals in terms of instances of €el.Name class. In order to
create a variable, a slot reference etc, the user must passtance of this class to the relevant func-
tion in theCEl interface. New names can be created by one of two functiamsndme(x) function
validatesx, raising an exception if it is invalid, and returnindNameotherwise. Thdresh name
function guarantees to create a unigdameeach time it is called (this is the interface used by
the guasi-quotes mechanism). This allows e.g. variableesambe created safely with the idiom
var := CEl.ivar(CEl.name("var _name")) . fresh _nametakes an optional argument
x which, if present, is incorporated into the generated nammiststill guaranteeing the uniqueness

of the resulting name; this feature aids debugging by afigwthe user to trace the origins of a fresh

75

name. Note that theame interface opens the door for dynamic scoping (see seCiif}.

4.2.7. Lifting values

When meta-programming, one often needs to take a normale@gmvalue (e.g. a string) and obtain
its ITree equivalent: this is known &ifting a value.

Consider a debugging functidog which prints out the debug string passed to it; this function
is called at compile-time so that if the glob@EBUG BUILD variable is set tdail there is no
run-time penalty for using its facility. Thieg function is thus a safe means of performing what is
often termed ‘conditional compilation’. Noting thpass is the Converge no-op, a first attempt at
such a function is as follows:

func log(msg):

if DEBUG_BUILD:
return [| Sys.printin(msg) |]
else:
return [| pass |[]
This function fails to compile: the reference to thmsg variable causes the Converge compiler to
raise the error:

Var ‘msg’ is not in scope when in quasi-quotes (consider usin g
$<<CEL lift(msg)>>).

Rewriting the offending piece of code to the following githe correct solution:
return [| Sys.printin($<<CELIift(x)>>) |]
What has happened here is that the string valumsyd is transformed by théft function into its
abstract syntax equivalent. Constants are automatidtdig by the quasi-quotes mechanism: the two
expression§| $<<CELlift("str")>> |] and[| "str"] are therefore equivalent.
Converge’s refusal to lift the raw referencensg in the original definition ofog is a significant
difference from TH, whose scoping rules would have caused to be lifted without an explicit
call to CELIift . To explain this difference, assume tlog function is rewritten to include the
following fragment:
return ||
msg := "Debug: " + $<<CELlift(msg)>>
Sys.printin(msg)
In a sense, the quasi-quotes mechanism can be considergrbthuce its own block: the assignment
to the msg variable forces it to be local to the quasi-quote block. Tieeds to be the case since
the alternative behaviour is nonsensical: if the assignmefierenced to thensg variable outside
the quasi-quotes then what would the effect of splicing endhasi-quoted expression to a different
context be? The implication of this is that referencing dalde within quasi-quotes would have a

significantly different meaning if the variable had beerigresd to within the quasi-quotes or outside

76

it. Whilst it is easy for the Converge compiler writer to deténe that a given variable was defined
outside the quasi-quotes and should be automaticallyllift€or vice versa), from a user perspective
TH's behaviour can be unnecessarily confusing. Convermgegsi-quote mechanism originally had
the same behaviour in this respect as TH, but this resultdthgile and hard to follow code. To
avoid such problems, Converge forces variables definedeuts quasi-quotes to be explicitly lifted
into it. This also maintains a simple symmetry with Convérgeain scoping rules: assigning to a

variable in a block makes it local to that block.

4.2.8. Dynamic scoping

Sometimes the quasi-quote mechanisms automatienaming of variables is not what is needed.
For example consider a functiswap(x, y) which should swap the values of the two vari-
ables passed as strings in its parameters. In such a casgamt¢he result of the splice to cap-
ture the variables in the spliced environment. Because tiasiguotes mechanism only renames
variables which it can determine statically at compile tiraay variables created via the idiom
CEl.ivar(CEl.name(x)) and spliced into the quasi-quotes will not be renamed. Thavng

succinct definition obwap takes advantage of this fact:

func swap(x, y):
x_var := CELlivar(CEl.name(x))
y_var := CElivar(CEl.name(y))
return ||
temp = $<<x_var>>
$<<x_var>> = $<<y var>>
$<<y var>> temp

1

Note that the variabléeemp within the quasi-quotewill be a-renamed and thus will be effectively
invisible to the code that it is spliced into, but that the tvasiables referred to by andy will be

scoped by their splice location. Tlavap function can be used thus:

a = 10

b =20

$<<swap('a", "b")>>
Dynamic scoping also tends to be useful when a quasi-quotedién is created piecemeal with many
separate quasi-quote expressions. In such a case, vaiéfdrlences can only be resolved success-
fully when all the resulting ITree’s are spliced togethercsi references to the function’s parameters
and so on will not be determined until that point. Since it ighly tedious to continually write
CEl.ivar(CEl.name("foo")) , Converge provides the special syn&foo which is equiva-
lent. Notice that this notation prefixes a variable namespective of the value it contains. Thus it

would not be possible to rewrite parts of ttwap function as e.gx_var = &x

77

4.2.9. Forward references and splicing

In sectiof4.Z13 we saw that when a splice annotation outgiesi-quotes is encountered, a temporary
module is created which contains all the definitions up ta,dxeluding, the definition holding the
splice annotation. This is a very useful feature since ctevtpine functions used only in one module
can be kept in that module. However this introduces a redileno involving forward references. A
forward reference is defined to be a reference to a definitibimiwa module, where the reference
occurs at an earlier point in the source file than the defimitib a splice annotation is encountered
and compiles a subset of the module, then some definitions/gw in forward references may not be
included: thus the temporary module will fail to compileading to the entire module not compiling.
Worse still, the user is likely to be presented with a highdgfaising error telling them that a particular
reference is undefined when, as far as they are concernedkfindion is staring at them within their
text editor.

Consider the following contrived example:

func f1(): return [| 7 |]

func f2(): x = f4()

func f3(): return $<<f1()>>

func f4(): pass
If 2 is included in the temporary module created when evaludkiagplice annotation if8 , then
the forward reference t@ will be unresolvable.

The solution taken by Converge ensures that, by including @minimal subset of definitions in
the temporary module, most forward references do not raisergile-time error. We saw in section
.23 that the quasi-quotes mechanism uses Convergetsalitatletermined namespaces to calculate
bound variables. That same property is now used to deteranirexpressions free variables.

When a splice annotation is encountered, the Converge temtues not immediately create a
temporary module. Firstit calculates the splice expressiee variables; any previously encountered
definition which has a name in the set of free variables is@tlula set of definitions to include. These
definitions themselves then have their free variables tatkd, and again any previously encountered
definition which has a name in the set of free variables is @dol¢he set of definitions to include.
This last step is repeated until an iteration adds no newitefia to the set. At this point, Converge
then goes back in order over all previously encountered itlefis, and if the definition is in the list
of definitions to include, it is added to the temporary modiecall that the order of definitions in
a Converge file can be significant (see secfion #.1.4): thkisskage ensures that definitions are not
reordered in the temporary module. Note also that free bi@savhich genuinely do not refer to any

definitions (i.e. a mistake on the part of the programmer) paks through this scheme unmolested

78

and will raise an appropriate error when the temporary megutompiled.

Using this method, the temporary module that is created saldi@ed for the example looks as
follows:

func f1(): return [| 7 |]

func $$splice$s(): return f1()
There are thus no unresolvable forward references in tlimpie.

There is a secondary, but significant, advantage to this adethince it reduces the number of
definitions in temporary modules it can lead to an appreeiabling in compile time, especially in

files containing multiple splice annotations.

4.2.10. Compile-time meta-programming in use

In this chapter thus far we have seen several uses of cotimpéemeta-programming. There are
many potential uses for this feature, many of which are tgolied to detail in the available space.
For example, one of the most exciting uses of the feature éas Im conjunction with Converge’s
extendable syntax feature (see seclioh 4.4), allowing faWBSLs to be expressed in an arbitrary
concrete syntax. One can see similar work involving DSLsgn [SCKO3/ COST04].

In this section | show two seemingly mundane uses of comjmile-meta-programming: condi-
tional compilation and compile-time optimization. Althglumundane in some senses, both examples

open up potential avenues not currently available to otiiganhically typed OO languages.

Conditional compilation

Whereas languages such as Java attempt to insulate theirfrgga the underlying platform an ap-
plication is running on, languages such as Python and Rubw d@he user access to many of the
lower-level features the platform provides. Many applmas rely on such low-level features being
available in some fashion. However for the developer whotbgsovide access to such features
a significant problem arises: how does one sensibly prowigess to such features when they are
available, and to remove that access when they are unaedilab

Thelog function on pag€~16 was a small example of conditional caatipih. Let us consider a
simple but realistic example that is more interesting framCO perspective. The POSI¥ntl
(File CoNTrol) feature provides low-level control of file si@iptors, for example allowing file reads
and writes to be set to be non-blocking; it is generally onbilable on UNIX-like platforms. Assume
that we wish to provide some access to fbetl feature via a method within file objects; this
method will need to call the raw function within the providémhtl module iff that module is

available on the current platform.

79

In Python for example, there are two chief ways of doing tfiise first mechanism is for kile
class to defer checking for the existence of tbetl module until thefcntl method is called,
raising an exception if the feature is not detected in theetgithg platform. Callers who wish to avoid
use of thefcntl method on platforms lacking this feature must catch the @pyate exception.
This rather heavy handed solution goes against the spidtck typing[THOUO], a practise prevalent
in languages such as Ruby and Python. In duck typing, onekstiec the presence of a method(s)
which appear to satisfy a particular API without worryingoabthe type of the object in question.
For example, for a method that requires a file object to reauwh firather than testing that the object
passed is an instance of tRde class, the method simply checks that the input object hasc
slot. Whilst perhaps unappealing from a theoretical pdintew, this approach is common in practise
due to the low-cost flexibility it leads to. To ensure thatkityping is possible in ouicntl example,

we are forced to use exception handling and the dynamicts®iaaf an appropriate sub-class:

try:
import fentl
_HAVE_FCNTL = True
except exceptions.ImportError:
_HAVE_FCNTL = False

class Core File:
..
if _HAVE_FCNTL:
class File(Core_File):
def fentl(op, arg):
return fentl.fentl(self.fileno(), op, arg)
else:

class File(Core_File):
pass

Whilst this allows for duck typing, this idiom is far from gant. The splitting of th&ile class into
a core component and sub-classes to cope with the presetiefafitl functionality is somewhat
distasteful. This example is also far from scalable: if onghes to use the same approach for more

features in the same class then the resultant code is ligddg tighly fragile and complex.

Although it appears that the above idiom can be encodedljatgg is’ in Converge, we imme-
diately hit a problem due to the fact that module imports aa¢ically determined. Thus a direct
Converge analogue would compile correctly only on platfommith afcntl module. However by
using compile-time meta-programming one can create avaeui which functions correctly on all

platforms and which cuts out the ugly dynamic sub-classtele

The core feature here is that class fields are permissibieesiolcations (see sectidn 4.P.3). A
splice which returns an ITree that is a function will havet thiction incorporated into the class; if
the splice returnpass as an ITree then the class is unaffected. So at compile-tieniérst detect for

the presence of fcntl module (theVM.loaded _module _names function returns a list con-

80

taining the names of all loaded modules); if it is detected splice in an appropriafentl method
otherwise we splice in the no-op. This example make use oftitberto unencountered features.
Firstly, using anf construct as an expression requires a different syntax ¢t around parsing
limitations associated with indentation based grammaing),construct evaluates to the value of the
final expression in whichever branch is taken, failing if marzh is taken. Secondly the modified
Oxford quotedd| ...|] — declaration quasi-quotes act like normal quasi-quotes except they
do nota-rename variables; declaration quotes are typically mestul at the top-level of a module.
The Converge example is as follows:

$<FdifI VM.loaded_module_names().contains("FCntl") {

import FCntl
_HAVE_FCNTL = 1

1

else {
[d] _HAVE_FCNTL := 0 |]
}>>
class File:
$<<if _HAVE_FCNTL {
(d|
func fentl(op, arg):
return FCntl.fentl(self .fileno(), op, arg)
1]

else {

}»[I pass []
Although this example is simplistic in many ways, it showattbompile-time meta-programming can
provide a conceptually neater solution than any purelytime-alternative since it allows related code
fragments to be kept together. It also provides a potentiatien to related problems. For example
portability related code in dynamically typed OO languagéen consists of manif statements
which perform different actions depending on a conditioriclvhrelates to querying the platform in
use. Such code can become a performance bottleneck if éadlgakbntly within a program. The use
of compile-time meta-programming can lead to a zero-castime overhead. Perhaps significantly,
the ability to tune a program at compile-time for portagilturposes is the largest single use of the
C preprocessol [EBN02] — compile-time meta-programminthefsort found in Converge not only
opens similar doors for dynamically typed OO languages,aliotvs the process to occur in a far

safer, more consistent and more powerful environment theiCtpreprocessor.

4.2.11. Run-time efficiency

In this section | present the Converge equivalent of the Tidmte-timeprintf function given in
[SJO2]. Such a function takes a format string suctfss has %d %s" and returns a quasi-quoted

function which takes an argument péf Specifier and intermingles that argument with the main text

81

string. For our purposes, we deal with decimal numBédand strings

The motivation for a THorintf is that such a function is not expressible in base HaskeH. Al
though Converge functions can take a variable number ofaegts (as Python, but unlike Haskell),
having a compile-time version still has two benefits overutstime version: any errors in the format

string are caught at compile-time; an efficiency boost.

This example assumes the existence of a funajit format which given a string such as
"%s has %d %s" returns a list of the forfiPRINTF _STRING, " has ", PRINTF _INT,
" " PRINTF _STRING] wherePRINTF_STRINGandPRINTF_INT are constants.

First we define the maiprintf function which creates the appropriate humber of parameter
for the format string (of the fornpO, pl etc.). Parameters must be created by@td interface.
An iparam has two components: a variable, and a default value (therlaftn be set towll
to signify the parameter is mandatory and has no defaulteyalprintf ~ then returns an anony-
mous quasi-quoted function which contains the parameseida spliced-in expression returned by
printf _expr :

func printf(format):
split := split_format(format)
params = []
i =0
for part := split.iterate():
if part == PRINTF_INT | part == PRINTF_STRING:
params.append(CEl.iparam(CEl.ivar(CElL.name("p" + i.to _str())), null))
i+=1
return |
func ($<<params>>):
Sys.printin($<<printf_expr(split, 0)>>)
1]

printf ~_expr is a recursive function which takes two parameters: a ligtagenting the parts of

the format string yet to be processed; an integer which fsggnivhich parameter of the quasi-quoted

function has been reached.

func printf_expr(split, param_i):
if splitlen() == O:
return [| " |]
param := CElivar(CElL.name("p" + param_i.to_str()))
if split[0].conforms_to(String):

return [| $<<CELlift(split[0])>> + $<<printf_expr(spli t[1:], param_i)>> |]
elif splitf0] == PRINTF_INT:

return [| $<<param>>.to_str() + $<<printf_expr(split[1:], param_i + 1)>> |[]
elif splitf0] == PRINTF_STRING:

return [| $<<param>> + $<<printf_expr(split[l :], param_i + 1)>>]

printf _expr recursively calls itself, each time removing the first eletrfeom the format string
list, and incrementing thparam _i variable iff a parameter has been processed. This lattelitomm
is invoked when a string or integer ‘%’ specifier is encouatierraw text in the input is included as
is, and as it does not involve any of the functions’ paransetoes not incrememiaram i . When

the format string list is empty, the recursion starts to urdyi

82

When the result oprintf _expr is spliced into the quasi-quoted function, the dynamically
scoped references to parameter namgwimf expr become bound to the quasi-quoted func-
tions’ parameters. As an example of calling this functi§rgprintf("%s has %d %s")>>
generates the following function:

func (p0, pl, p2):
Sys.printin(p0 + " has " + pl.to_str() + " " + p2 + ™)

so that evaluating the following:

$<<printf("%s has %d %s")>>("England”, 39, "traditional ¢ ounties")
results inEngland has 39 traditional counties being printed to screen.

This definition ofprintf is simplistic and lacks error reporting, partly becauss iniended to
be written in a similar spirit to its TH equivalent. Convergemes with a more complete compile-
time printf function as an example, which uses an iterative solutioh mibre compile-time and
run-time error-checking. Simple benchmarking of the tattection reveals that it runs nearly an
order of magnitude faster than its run-time equivalent potentially significant gain when a tight

loop repeatedly callprintf

4.2.12. Compile-time meta-programming costs

Although compile-time meta-programming has a number okfiem; it would be naive to assume
that it has no costs associated with it. However although/€uge’s features have been used to build
several small programs, and two systems of several thougaesl of code each, it will require a
wider range of experience from multiple people working ifiesfent domains to make truly informed
comments in this area.

One thing is clear from experience with LISP: compile-timetaaprogramming in its rawest form
is not likely to be grasped by every potential developer [@8)e To use it to its fullest potential
requires a deeper understanding of the host language thay degelopers are traditionally used to;
indeed, it is quite possible that it requires a greater degfeunderstanding than many developers
are prepared to learn. Whilst features such as extendablexs{see section 4.4) which are layered
on top of compile-time meta-programming may smooth off mahthe usability rough edges, fun-
damentally the power that compile-time meta-programmixtgreds to the user comes at the cost of
increased time to learn and master.

In Converge one issue that arises is that code which cotlyindgos in and out of the meta-
programming constructs can become rather messy and diffwukad on screen if over-used in

any one area of code. This is due in no small part to the syateshsiderations that necessitate a

5This large differential is in part due to the fact that therent Converge VM imposes a relatively high overhead on
function application.

83

move away from the clean Python-esque syntax to somethosgicto the C family of languages.
It is possible that the integration of similar features intber languages with a C-like syntax would

lead to less obvious syntactic seams.

4.2.13. Error reporting

Perhaps the most significant unresolved issue in compile-tneta-programming systems relates
to error reporting[[COST04]. Although Converge does noteheemplete solutions to all issues
surrounding error reporting, it does contain some rudicmgnteatures which may give insight into
the form of more powerful error reporting features both im@mge and other compile-time meta-
programming systems.

The first aspect of Converge’s error reporting facilitielates to exceptions. When an exception
is raised, detailed stack traces are printed out allowieguger to inspect the sequence of calls that
led to the exception being raised. These stack traces differ those found in e.g. Python in that
each level in the stack trace displays the file name, line murabd column number that led to the
error. Displaying the column number allows users to makeafigbe fine-grained information to
more quickly narrow down the precise source of an exceptiGonverge is able to display such
detailed information because when it parses text, it stiredile name, line number and column
number of each token. Tokens are ordered into parse treese paes are converted into ASTS;
ASTs are eventually converted into VM instructions. At eacint in this conversion, information
about the source code elements is retained. Thus every MMi@ti®n in a binary Converge program
has a corresponding debugging entry which records whichlifie number and column number the
VM instruction relates to. Whilst this does require moraat@e space than simpler forms of error
information, the amount of space required is insignificahemthe vast storage resources of modern
hardware are considered.

Whilst the base language needs to record the related soffset of each VM instruction, the
source file a VM instruction relates to is required only duedmpile-time meta-programming. Con-
sider a fileA.cv :

func f():
return [| 2 + "3" |]

and a file B.cv:
import A

func main():
$<<Af()>>

When the quasi-quoted codeAnf is spliced in, and then executed an exception will be raibedia

the attempted addition of an integer and a string. The eiaephhat results from runnin® is as

84

follows:

Traceback (most recent call last):

File "A.cv", line 2, column 13, in main

Type_Exception: Expected instance of Int, but got instance of String.

The fact that thed module is pinpointed as the source of the exception mallyitseem surprising,
since the code raising the exception will have been splioéal theB module. This is however a
deliberate design choice in Converge. Although the codm f#of has been spliced intB.main
whenB is run the quasi-quoted code retains the information aliswriginal source file, and not its
splice location. To the best of my knowledge, this approactrtor reporting in the face of compile-
time meta-programming is unique. As points of comparisdi,ignot able to produce any detailed
information during a stack-trace and SCM Scheme [Jaf03jqiirts the source file and line number
of run-time errors as that of the macro call site. In SCM Sabhénthe code that a macro produces
contains an error, all the user can work out is which macrolevbave led to the problem — the user
has no way of knowing which part of the macro may be at fault.

Converge allows customization of the error-reporting infation stored about a given ITree. Firstly
Converge adds a feature not present in TH: nested quasgjuétn outer quasi-quote returns the
ITree of the code which would create the ITree of the nestesigguote. For example the following
nested code:

Sys.printin(f] [| 2 + "3" [] [1.pp0)
results in the following output:

CEl.ibinary_add(CELl.iint(2, "ct.cv", 484), CEl.istring ("3", "ct.cv", 488),
"ct.cv", 486)

Nested quasi-quotes provide a facility which allows useranalyse the ITrees that plain quasi-
guotes generate: one can see in the above that each ITreentleomtains a reference to the file it
was contained withindt.cv in this case) and to the offset within the filé84 and so on). The
CEI module provides a functiosrc _info _to var which given an ITree representing quasi-
quoted code copies the ITReeeplacing the source code file and offsets with variaBles file
andsrc _offset . This new ITree is then embedded in a quasi-quoted functibichwakes two
argumentssrc _file andsrc offset . When the user splices in and then calls this function,
they update the ITree’s relation to source code files anetsifdJsing this function in the following
fashion:

Sys.printin(CEl.src_info_to_var([| [| 2 + "3" |1 [1)-pp())
results in the following output:

unbound_func (src_file, src_offset){
return CEl.ibinary_add(CELiint(2, src_file, src_offse t),

8In the current implementation, tteec _info _to _var actually mutates ITrees, but for reasons explained in@ecti
323 this will not be possible in the future.

85

CEl.istring("3", src_file, src_offset), src_file, src_o ffset)

}

In practice when one wishes to customise the claimed latafiguasi-quoted code, the nested quasi-
guotes need to be cancelled out by a splice. For example aregehsource information to be offset

77 in the filent.cv we would use the following code:

return $<<CEl.src_info_to_var([] [| 2 + "3" [] |], "nt.cv", 77>>
Whilst this appears somewhat clumsy, it is worth noting thatdding only the simple concept of
nested quasi-quotes, complex manipulation of the met&syis possible.

Converge’s current approach is not without its limitatiokis chief problem is that it can only relate
one source code location to any given VM instruction. Thethus an ‘either / or’ situation in that the
user can choose to record either the definition point of tlasigguoted code, or change it to elsewhere
(e.g. to record the splice point). It would be of considesabénefit to the user if it is possible to
record all locations which a given VM instruction relates fassuming the appropriate changes to
the compiler and VM, then the only user-visible change wdaiddhatsrc _info _to _var would
appendsrc _file andsrc _offset information within a given ITree, rather than overwritiriget

information it already possessed.

4.2.14. Related work

Perhaps surprisingly, the template system in C++ has baexdfto be a fairly effective, if crude,
mechanism for performing compile-time meta-programmpigl95,[COST04]. The template system
can be seen as an ad-hoc functional language which is iatetpat compile-time. However this
approach is inherently limited compared to the other apgres described in this section.

The dynamic OO language Dylan — perhaps one of the closagtdges in spirit to Converge — has
a similar macro system_[BPPB9] to Scheme. In both languaga® tis a dichotomy between macro
code and normal code; this is particularly pronounced inaDylvhere the macro language is quite
different from the main Dylan language. As explained in titedduction, languages such as Scheme
need to be able to identify macros as distinct from normattions (although Bawden has suggested
a way to make macros first-class citizehs [Baw00]). The aidggnof explicitly identifying macros
is that there is no added syntax for calling a macro: macts @bk like normal function calls. Of
course, this could just as easily be considered a disady@ntamacro call is in many senses rather
different than a function call. In both schemes, macros gatuated by a macro expander based on
patterns — neither executes arbitrary code during macraresipn. This means that their facilities
are limited in some respects — furthermore, overuse of Selsemacros can lead to complex and
confusing ‘language towers” [Que96]. Since it can execubirary code at compile-time Converge

does not suffer from the same macro expansion limitationsywhether moving the syntax burden

86

from the point of macro definition to call site will preventettomprehension problems associated
with Scheme is an open question.

Whilst there are several proposals to add macros of one sartather to existing languages (e.g.
for Java alone one can find proposals from Bachrach and Ptbgyfdava macro systern [BP01] and
Tatsuboriet. al[TCIK99]), the lack of integration with their target langgmthwarts practical take-up.

Nemerle [SMOU04] is a statically typed OO language, in th@J&# vein, which includes a macro
system mixing elements of Scheme and TH’s systems. Maceosdrfirst-class citizens, but AST'’s
are built in a manner reminiscent of TH. The disadvantagdisfapproach is that calculations often
need to be arbitrarily pushed into normal functions if thegd to be performed at compile-time.

Comparisons between Converge and TH have been made thrudubfssection — | do not repeat
them here. MetaML is TH’s most obvious forebear and much eftémminology in Converge has
come from MetaML via TH. MetaML differs from TH and Convergglheing a multi-stage language.
Using its ‘run’ operator, code can be constructed and rua & interpreter) at run-time, whilst
still benefiting from MetaML's type guarantees that all gented programs are type-correct. The
downside of MetaML is that new definitions can not be intrasthinto programs. The MacroML
proposall[GSTU1] aims to provide such a facility but — in erideguarantee type-correctness — forbids
inspection of code fragments which limits the features eggivity.

Significantly, with the exception of Dylan, | know of no othdynamically typed OO language in

the vein of Converge which supports any form of compile-tmmeta-programming natively.

4.3. Implications for other languages and their implementa tions

| believe that Converge shows that compile-time meta-puogning facilities can be added in a seam-
less fashion to a dynamically-typed OO language and thét fwilities provide useful functionality
not available previously in such languages. In this sedtifirst pinpoint the relatively minimal re-
quirements on language design necessary to allow the sdfpraatical integration of compile-time
meta-programming facilities. Since the implementatiorswéh a facility is quite different from a
normal language compiler, | then outline the makeup of thev€me compiler to demonstrate how
an implementation of such features may look in practicealRin discuss the requirements on the

interface between user code and the languages’ compiler.

4.3.1. Language design implications

Although Converge’s compile-time meta-programming fies have benefited slightly from being

incorporated in the early stages of the language desigre iheurprisingly little coupling between the

87

base language and the compile-time meta-programmingreoeotst The implications on the design

of similar languages can thus be boiled down to the follovtimg main requirements:

1. It must be possible to determine all namespaces statieadtl also to resolve variable refer-
ences between namespaces statically. This requiremeitdli$or ensuring that scoping rules
in the presence of compile-time meta-programming are sadepeactical (see sectidn 4.P.5).
Slightly less importantly, this requirement also allowsdtions called at compile-time to be
stored in the same module as splices which call them whilsidang the forward reference

problem (see sectidn 4.2.9).

2. Variables within namespaces other than the outermostilmodmespace must herenameable
without affecting the programs semantics. This requirdnerital to avoid the problem of

variable capture.

Note that there is an important, but non-obvious, coroltarthe second point: when variables and
slot names overlap them-renaming can not take place. In section 4.2.5 we saw thapimverge,
top-level module definitions can not be renamed becauseatiedble names are also the slot names of
the module object. Since Converge forces all accessesss fiddds via theelf variable, Converge
neatly sidesteps another potential place where this prololey arise. Fortunately, whilst many
statically typed languages allow class fields to be treagatbamal variables (i.e. making tiself.
prefix optional) most dynamically typed languages take alaimapproach to Converge and should
be equally immune to this issue in that context.

Only two constructs in Converge are dedicated to compitetmeta-programming. Practically

speaking both constructs would need to be added to othendges:

1. A splicing mechanism. This is vital since it is the solerusechanism for evaluating expres-

sions at compile-time.

2. A guasi-quoting mechanism to build up AST's. Although tsacfacility is not strictly nec-
essary, experience suggests that systems without suchiliey feend towards the unusable

[WC93].

4.3.2. Compiler structure

Typical language compilers follow a predictable struct@@arser creates a parse tree; the parse tree
may be converted into an AST; the parse tree or AST is usedrtergte target code (be that VM
bytecode, machine code or an intermediate language). itgnoptional components such as opti-

mizers, one can see that normal compilers need only two ee thrajor components (depending on

88

$
ITree . Bytecode
Generation Generation
i -
Splice
$ Mode

Figure 4.2.: Converge compiler states.

[

quotes Mode

the inclusion or omission of an explicit AST generator). brtantly the process of compilation in-
volves an entirely linear data flow from one component to #.nCompile-time meta-programming
however necessitates a different compiler structure, fiviéhmajor components and a non-linear data
flow between its components. In this section | detail thecstme of the Converge compiler, which
hopefully serves as a practical example for compilers foeolanguages. Whether existing language
compilers can be retro-fitted to conform to such a structoreyhether a new compiler would need
to be written can only be determined on a case-by-case Wamigver in either case this general
structure serves as an example.

Figure[42 shows a (slightly non-standard) state-machépeesenting the most important states of
the Converge compiler. Large arrows indicate a transitisben compiler states; small arrows indi-
cate a corresponding return transition from one state tthan¢in such cases, the compiler transitions
to a state to perform a particular action and, when comptetarns to its previous state to carry on
as before). Each of these states also corresponds to actlstimponent within the compiler.

The stages of the Converge compiler can be described thus:

1. Parsing. The compiler parses an input file into a parse tree. Once aigpthe compiler

transitions to the next state.

2. ITree Generation. The compiler converts the parse tree into an ITree; thiestagtinues until
the complete parse tree has been converted into an ITrege Hiree's are exposed directly to
the user, it is vital that the parse tree is converted intaraéd that the user can manipulate in

a practical mannér

a) Splice mode / bytecode generationWhen it encounters a splice annotation in the parse
tree, the compiler creates a temporary ITree representimgdule. It then transitions
temporarily to the bytecode generation state to compile ddmpiled temporary module
is injected into the running VM and executed; the result efdplice is used in place of

the annotation itself when creating the ITree.

"An early, and naive, prototype of the Converge compileroerg parse trees directly to the user. This quickly lead to
spaghetti code.

89

b) Quasi-quotes mode / splice modeAs the ITree generator encounters quasi-quotes in
the parse tree, it transitions to the quasi-quote mode. iQQuase mode creates an ITree

respecting the scoping rules and other features of sdciibB.4

If, whilst processing a quasi-quoted expression, a splicetation is encountered, the
compiler enters the splice mode state. In this state, treegese is converted to an ITree
in a manner mostly similar to the normal ITree Generatiotestaf, whilst processing

a splice annotation, a quasi-quoted expression is enaaahtéhe compiler enters the
guasi-quotes mode state again. If, whilst processing a-guased expression, a nested

guasi-quoted expression is encountered the compilersateew quasi-quotes mode.

3. Bytecode generation.The complete ITree is converted into bytecode and writtedidk.

4.3.3. Compiler interface

Converge provides th€El module which user code can use to interact with the languag®iter.

Similar implementations will require a similar interfaaeallow two important activities:

1. The creation of fresh variable names (see seffionl4.Z163$.is vital to provide a mechanism
for the user to generate unique names which will not clash wther names, and thus will
prevent unintended variable capture. To ensure that alhfreames are unique, most practical
implementations will probably choose to inspect and resthie variable names that a user
can use within ITree’s via an analogue to Convergeime interface; this is purely to prevent
the user inadvertently using a name which the compiler hasageed (or might in the future

guarantee) to be unique.

2. The creation of arbitrary AST'’s. Since it is extremelyfidiilt to make a quasi-quote mech-
anisms completely general without making it prohibitivelymplex to use, there are likely to
be valid AST’s which are not completely expressible via thagj-quotes mechanism. There-
fore the user will require a mechanism to allow them to creabitrary AST fragments via a

more-or-less traditional meta-programming interface 941C

Abstract syntax trees

One aspect of Converge’s design that has proved to be motiamp than expected, is the issue of
AST design. In typical languages, the particular AST usedhleycompiler is never exposed in any
way to the user. Even in Converge, for many users the paatiewf the ITree’s they generate via the

guasi-quotes mechanism are largely irrelevant. Howewsehisers who find themselves needing to

90

generate arbitrary ITree’s via ti@El interface, and especially those (admittedly few) who penfo
computations based on ITree’s, find themselves disprapatily affected by decisions surrounding
the ITree’s representation.

At the highest level, there are two main choices surroundi@d’s. Firstly, should it be represented
as an homogeneous, or heterogeneous tree? Secondly ¢hA8T be mutable or immutable? The
first question is relatively easy to answer: my experienggyests that homogeneous trees are not a
practical representation of a rich AST. Whilst parse treesnaturally homogeneous, the conversion
to an AST leads to a more structured and detailed tree thatisailly heterogeneous.

Let us then consider the issue of AST mutability. Initiallpr@erge supported mutable AST's;
whilst this feature has proved useful from time to time, it laéso proved somewhat more dangerous
than expected. This is because one often naturally cregfi®nces to a given AST fragment from
more than one node. Changing a node which is referenced by than one other node can then
result in unexpected changes, which all too frequently feahthemselves in hard to debug ways.
Since it is not possible to check for this problem in the gahease, the user is ultimately responsible
for ensuring it does not occur; in practise this has proveletainrealistic, and gradually all ITree-
mutating code has been banished from Converge code. Fursiens of Converge will force ITree's

to be immutable, and | would recommend other languages @entiis point carefully.

4.4. Syntax extension for DSLs

Converge has a simple but powerful facility allowing user®ibed arbitrary sequences of tokens
within Converge source files. At compile-time these tokamspassed to a designated user function,
which is expected to return an AST. This allows the user terekthe language’s syntax in an arbitrary
fashion, meaning that DSLs can be embedded within normalé€ge code.

A DSL fragment is an indented block containing an arbitraguence of tokens. The DSL block is
introduced by a variant on the splice synt& expr > whereexpr should evaluate to a function
(the DSL implementation functign The DSL function will be called at compile-time with a list
tokens, and is expected to return an AST which will replaceD$SL block in the same way as a
normal splice. Compile-time meta-programming is thus tleemanism which facilitates embedding
DSLs.

An example DSL fragment is as follows. Colloquially this thas referred to as ‘dM.model-
_class ™"
import TM.TM

$<TM.model_class>:
abstract class ML1_Element {

91

name : String;
inv_nonempty_name:

name != null and name.len() > 0

}
Note that the DSL fragment is written in an entirely differegntax than Converge itself.

Currently DSL blocks are automatically tokenized by the @wge compiler using its default to-
kenization rules — this is not a fundamental requirementeftechnique, but a peculiarity of the
current implementation. More sophisticated implemeategimight choose to defer tokenization to
the DSL implementation function. However using the Congetgkenizer has the advantage that
normal Converge code can be embedded inside the DSL itselfrasg an appropriate link from the

DSLs grammar to the Converge grammar.

4.4.1. DSL implementation functions

DSL implementation functions follow a largely similar semqae of steps in order to translate the

input tokens into an ITree:

1. Alter the input tokens as necessary. Since DSLs often egededs that are not part of the
main Converge grammar, such alterations mostly take tha fifrreplacinglD tokens with

specific keyword tokens.
2. Parse the input tokens according to the DSL's grammatr.
3. Traverse the parse tree, translating it into an ITree.

SectioZb explores these steps in greater detail via aetenexample.

4.4.2. Addinga sw t ch statement

In this subsection, | detail a simple Converge DSL whichvedlswitch statements to be embedded

in Converge code. A simple example of theitch DSL in use is as follows:

$<switch>:
switch x:
case 2:
Sys.printin("2")
case 4.
Sys.printin("4")
default:
Sys.printin("default")

Pre-parsing and grammar

Before theswitch DSL can parse its input, it first iterates through the inpletes searching for

tokens which have typ®> and value any o$witch ,case , ordefault . Such tokens are replaced

92

© 0 N O s W NP

NNNRNNRERR R B B 13 B3 p o
E O NP OO ®®NO® O H WN B O

by a keyword token, whose type is tH2's value. The grammar for this DSL is as follows:

switch = "SWITCH" "ID" ":" "INDENT" clauses default "DEDE NT"
clauses ::= { clause "NEWLINE" } * clause
clause = "CASE" expr ™" "INDENT" expr_body "DEDENT"

default ::= "NEWLINE" "DEFAULT" ":" "INDENT" expr_body "DE DENT"

References to thexpr _body grammar rule reference the main Converge grammar.

Traversing the parse tree

Since theswitch DSL references the main Converge grammar, the DSL exteedSdhverge com-
piler (via thelModule Generator module) itself, needing only to add simple traversal furtdi
for the four grammar rules added by the DSL. The main part bk Inplementation function is con-
cerned with traversing the parse tree, and translatingdtdan appropriate ITree. The CPK provides a
simple traversal class (essentially a Converge equivalhiat found in the SPARK parser [AHD2])
which provides the basis for most such translations. Useesl ronly subclass th&raverser
class and create a function prefixed by__nane for each rule in the grammar. THeaverser
class provides preorder function will traverse an input parse tree in preorder fashcalling the
appropriate t name function for each node encountered in the tree. Note thdi eac nane
function can choose whether to invoke ttveorder rule on sub-nodes, or whether it is capable
of processing the sub-nodes itself. Tiodule _Generator class is a sub-class of the CPK’s
Traverser class. Although subclassing of large and complex classefteés thought of as being
dangerous, thtModule _Generator module has been specifically designed with sub-classing of
this sort in mind.
The complete code for thewitch translation is as follows:
class Switch_Translator(IModule_Generator._IModule_G enerator)
func _t_switch(node):
/I switch = "SWITCH" "ID" ":* "INDENT" clauses default "DE DENT"
self._var := CEl.ivar(CEl.name(node[2].value))
clauses := self.preorder(node[5])
default := self.preorder(node[6])
return return CELiif(clauses, default)
func _t_clauses(node):
/I clauses ::= { clause "NEWLINE" } * clause
1 =
i=1
clauses =]
while i < node.len():
clauses.append(self.preorder(nodeli]))
i += 2
return clauses
func _t_clause(node):
/I clause ::= "CASE" expr "" "INDENT" expr_body "DEDENT"
return CEl.iclause([| $<<self._var>> == $<<self.preorde r¢ \

node[2])>> |], self.preorder(node[5]))

func _t_default(node):

93

25
26
27
28
29
30

/I default ::= "NEWLINE" "DEFAULT" ™" "INDENT" expr_body " DEDENT"
1 =
if node.len() == 1:

return [| pass |[]
else:
return self.preorder(node[5])

The translation is straightforward. Line 4 records theafale which is being ‘switched’. Lines 5 -7
translate theswitch statement into a singlé statement; the switchatefault clause becomes
theelif clause. Lines 21 — 22 translate each clause irsthigch statement into an ITree clause
which compares the ‘switched’ variable with the value of éixpression in the clause. Lines 27 — 30

translate thelefault clause; if no such clause is specified, the translationmstiirepass no-op.

4.4.3. Related work

Real-world implementations of a similar concept are ssipgly rare. The Camlp4 pre-processor
[dRO3J] allows the normal OCaml grammar to be arbitrarilyeexted, and is an example of a hetero-
geneous syntax extension system in that the system doingxtbasion is distinct from the system
being extended. The MetaBorg systeém [BV04] is a heterogenegstem that can be applied to any
language; more sophisticated than the Camlp4 pre-procdssm an external point of view it more
closely resembles Converge’s functionality, althoughithplementations and underlying philoso-
phies are still very different.

I am currently aware of only two homogeneous syntax extensistems apart from Converge.
Nemerle [SMOUOH4] allows limited syntax extension via its mescheme. The commercial XMF tool
[CESWO04] presents only a small core grammar, with many nblanguage concepts being grammar
extensions on top of the core grammar. Grammar extensiensoanpiled down into XMF’s AST.
XMF is thus much closer in spirit to Converge, although tharagle grammar extensions available
suggest that XMF’s compile-time facilities may be less pdulehan Converge’s, seemingly being
based on a simplified version of TH’s features. If true, tha/rfimit the complexity of the grammar

extensions.

4.5. Modelling language DSL

This section presents an example of a Converge DBLfor expressing typed modelling languages;
modelling languages can be instantiated create modelds tuirent simplistic form, TM operates
with a fixed number of meta-levels in that it defines modellamgguages that can create models, but
those models are terminal instances (in ObjVLisp’s teraigy) — that is, they can not be used to
create new objects.

This section serves two purposes. Firstly it is an exampléarfverge’s syntax extension system,

94

type Classifier

name : String

i

[|
PrimitiveDataType | Class

name : String

Attribute .

is_primary : bool * {ordered}
name : String

Figure 4.3.: ‘Simple UML' model.

and fleshes out the method of secfion4.4.1. Secondly the D§uéstion is used in the remainder of

this thesis.

4.5.1. Example of use

The TM DSL is housed within the packa@®} the DSL implementation functiomodel _class is
contained within th& Mmodule within the package. The following fragment uses tB& [express
a model of a simplified UML modelling language as shown in fefr3:

import TM.TM

$<TM.model_class>:

abstract class Classifier {
name : String;

}

class PrimitiveDataType extends Classifier { }

class Class extends Classifier {
attrs : Seq(Attribute);

inv unique_names:

attrs->forAll(al a2 |
al != a2 implies al.name != a2.name)

}

class Attribute {
name : String;
type : Classifier;
is_primary : bool;
Note that although this particular example shows a modehoddelling language, the DSL is capable
of expressing any type of model — the example here is taken fectiol 5.315.

TheTM.model class DSL implementation function translates each class in thdehmto a
function in Converge which creates model objects. As a lisefivenience, each constructor function
takes arguments which correspond to the order in whictbates are specified in the model class. If
a model class has parents, their attributes come first, and secursively. Model objects can have

their slots accessed by name. Note that since the moddimgubge is typed, setting attributes either

95

via the constructor function or through assigning to a sdotds the value to be of the correct type.
Types can be of any model class (the DSL allows forward rafeyg),int , String , bool (where
true and false are represented by 1 and O respectively),goesees or sets of the preceding types.
Note that sequences and sets can be nested arbitrarily.| ladses can contain invariants which are
written in OCL,; invariants are checked after an object hanhagitialized with values, and on every
subsequent slot update. Currently only a subset of OCL limpgemented, but the subset covers
several different areas of OCL; implementing full OCL 1.xwabbe a relatively simple extension.
Assuming the above is held in a fiBimple _UML.cv, one can then use the Simple UML mod-
elling language to create models. The following examplate® model classd3og and Person
with Dog having an attribut®wner of typePerson :
person := Simple_UML.Class("Person")
dog := Simple_UML.Class("Dog")
dog.attrs.append(Simple_UML.Attribute("owner", perso n, 0))
One can arbitrarily manipulate models in the same way aslatdrobjects:
dog.name := "Doggy"
Attempting to update a model in a way that would conflict withtype information results in an
exception being raised. For example, attempting to assigntager to thedog model class’ hame
raises the following exception:
Traceback (most recent call last):
File "Exl.cv", line 42, column 4, in main
File "TM/TM.cv", line 162, column 5, in set_slot
Exception: Instance of 'Class’ expected object of type 'Str ing’ for slot 'name’.
In similar fashion, if one violates thenique names constraint by adding two attributes called
owner to theDog model class, the following exception is raised:
Traceback (most recent call last):
File "Exl.cv", line 45, column 17, in main
File "TM/TM.cv", line 327, column 31, in append
File "TM/TM.cv", line 407, column 3, in _class_class_check _invs
Exception: Invariant 'unique_names’ violated.
As can be seen, the result of using til.model class DSL is a natural embedding of an ar-
bitrary modelling language within Converge. Furthermdre tecording of type information using
the modelling language DSL, allows the enforcement of syph information providing guarantees
about models that would not have been the case if they weldeingmted as normal Converge classes.

In the following sections | outline how this DSL is implemedt

4.5.2. Data model

TM provides its own ObjVLisp style data model which is simita, but distinct from, the Converge
data model of section’4.1.4. TM needs to provide a new dateehsince the default Converge data
model is inherently untyped; whilst figute¥.1 showed theecdata model with types, such type

96

MObject
mod_id : String

initialize(*MObject) : void
to_string() : String

of super_class
N
MClass
attrs : Dict{String : MObject}
invariants : Seq{MObject}

is_abstract : bool
methods : Dict{String : MObject

name : String
check_invs() : void
initialize(*MObject) : void
new_(*MObject) : MObject

Figure 4.4..TMdata model.

information is purely for the benefit of the reader. In costiyghe TM data model is inherently typed,
and the type information is used to enforce the correctnessodels. The only exception to this is
that functions are currently untyped; it would be relativeimple to extend the implementation to
record and enforce functions’ type information.

Figure[Z% shows the TM data model. As in Converge, a bogpisitng phase is needed to set up
the meta-circular data modé¥lObject andMClass are so named to avoid clashing with the built-
in classeObject andClass . Similarly, method and attribute names which might confiictbe
confused with, those found in normal Converge classes areaalifferently. For exampleit
becomesnitialize ,to _str becomedo _string andinstance _of becomesf. For
brevity, and for easy interaction with external code, TMgloet directly replicate all built-in Con-
verge types such as strings; built-in Converge types aadalenternally as instances MfObject .

Once cosmetic differences between the two are ignored, sopertant differences in the TM
and Converge data models become apparent. Most importhetlyM data model has the standard
statically typed OO languages notions of separate methondsatiributes. TM mclasses are also
different in that they can be abstract (i.e. can not be inistadl) and have at most one super class.
MObject classes possessrad id slot which is a unique identifier, and which is typedsisng
to allow flexibility over the format of identifiers. Thmod id slot is the sole factor in determining
whether two model elements are equal or not; because thisifide is immutable, it is used as the
objects hash, allowing model elements to be placed withiv€me sets.

As all of this might suggest, the TM data model is intended titaim the data model found at
the core of modelling methodologies e.g. MOETOMGOOQ]. Simeethods and attributes are housed
separately within classes, model instances require onligt per attribute; invoking a method on an
object searches the objeds class (and its superclasses) for an appropriate method.isTachieved
by making use of the Converge MOP (see sedfion¥.1.7). Afthdhbe actual implementation is rela-

tively complex, a simplified version demonstrates the salmints. All model objects are instances

97

of the Converge classRaw Object which is initialized with a blank slot per attribute of a mbde
class. The Converge MOP is overridden via a custggh _slot function in the_ Raw_Object
class. If a slot name matches an attribute slot, that valuetisned. Otherwise the model objects
of class and, if necessary its superclasses, are searcheanfethad of the appropriate name. Fi-
nally, if a method is not found then if the slot name matched i a normal Converge slot in the
~Raw Object instance, the value is returned; otherwise an exceptionised. The following,
much simplified, version of the code shows the skeleton of tRaw Object class and part of its
MOP:

class _Raw_Object:
func init(attr_names):
self._attr_slots := Dict{}
for attr_name := attr_names.iterate():
self._attr_slots[attr_name] := null

func get_slot(name):
if self._attr_slots.contains(name):
return self._attr_slots[name]
else:
class_ := self._attr_slots["of"]
while 1:
if class_.methods.contains(name):
return Func_Binding(self, class_.methods[name])
if (class_ = class_.super_class) == null:
break
if exbi Object.has_slot(hame):
return exbi Object.get_slot(name)
else:
raise Exceptions.Slot_Exception(Strings.format(\
“"No such model / Converge slot '%s™, name))

© O N O O b W NP

NN PR PR R R B B B PR
P O © ®~NO® 0~ WNRPR O

A few notes are in order. Firstly thelass _ variable on line 11 is so named sinclss is a
reserved keyword in Converge; by convention variable naanesuffixed by * * if they would other-
wise clash with a reserved word. Note that definitions préfixg‘ ' are conventionally considered
to be private to the module or class they are contained withimline 14, théd=unc _Binding class
creates a binding which, when invoked, will call the Conedignctionclass .methods[name]
with its self variable bound tself (i.e. the_Raw_Object instance; see secti@n 4.2 for more
details about functions and function bindings). The aptiit create function bindings in this fashion
is an important feature of Converge, allowing a large deabwitrol over the behaviour of objects.
The TM data model can be considered to be a suitable templiasei§gesting how more advanced
typed modelling languages — perhaps including packagespaokiage inheritance [ACEDZ], or

allowing classes to inherit from more than one superclasightrbe represented in a Converge DSL.

4.5.3. Pre-parsing and grammar

At a high-level, the translation of TM is fairly simple: eagtodel class is converted into an object ca-

pable of creating model instances. BeforeTihd.model _class DSL can parse its input, it first it-

98

erates through the input tokens searching for tokens wiaeh typdD and value any ofbstract
and, at , collect , extends , forAll ,implies ,inv , Seq, Set. Such tokens are replaced
by a keyword token, whose type is tH2's value. Furthermore since tfiévl.model class DSL
is intended to emulate typed languages such as C and Jawepléments a white space insensi-
tive grammar; thus alINDENT, DEDENTandNEWLINEtokens are removed from the input. The

modified token list is then parsed according to the follongngmmar:

top_level »= { class } *
class = claﬁs"_abstract "CLASS" "ID" class_super "{" { cla ss_field } =
class_abstract ::= "ABST}RACT"
class_super ::=“"_EXTENDS" "ID"
class_field u= field_type
= invariant
field_type u= "ID" ™" type "
type n= """

"SEQ" (" type ")’
"SET" "(" type)"

invariant = "INV" "ID" ™" expr

expr = int
= string
= slot_lookup %precedence 20
= application %precedence 15
= binary %precedence 10
= seq
= set
= "ID"

int = "INT

string = "STRING"

slot_lookup n= expr "." "ID"
u= expr """ ">" forall
n= expr "' ">" at
= expr "-" ">" collect

forall = "FORALL" "(" "ID" "|" expr ")"
= "FORALL" "(" "ID" "ID" "|" expr ")"

at n= AT (M expr M)

collect = "COLLECT" "(" "ID" "ID" "=" expr "|" expr ")"

application w= expr "(" expr { ")" expr } *)"
u= expr (" "M

binary = expr "+" expr %precedence 30
= expr "-" expr %precedence 30
= expr ">" expr %precedence 20
= expr "<" expr %precedence 20
= expr "==" expr %precedence 20
= expr "I=" expr %precedence 20
= expr "IMPLIES" expr %precedence 10
= expr "AND" expr %precedence 10

seq = "SEQ" "{" expr "." expr "}"
= "SEQ" "{" expr { "," expr } * "
= "SEQ" "{" "}"

99

set n= "SET{" expr { "," expr } * "
= "SET{" "V

Most of this grammar is straightforward, although it is viortoting a few peculiarities that result
from the fact that tokenization is performed by the Convemnjenizer. For exampleSet {’ is a
single token (since&et {... } builds up a set in normal Converge). The equivalent notafion
sequences is represented by two tokeB&q’ (a new keyword introduced by the DSL) followed by
‘{’. Fortunately in practise, such idiosyncrasies are lgrgp@den from, and irrelevant to, the DSL'’s

users.

4.5.4. Traversing the parse tree

For example, th@M.model class function defines a traversal clabtodel Class Crea-
tor which translates the DSLs parse tree. An idealized versidheobeginning of this class looks

as follows:

import CPK.Traverser

class Model_Class_Creator(Traverser.Traverser):
func translate():
return self.preorder()

func _t top_level(node):
/I top_level ::= { class } *
classes = []
for class_node := node[l :].iterate()
classes.extend(self.preorder(class_node))
return classes

func _t_class(node):

/I class ::= class_abstract "CLASS" "ID" class_super "{" { c lass_field } *
i "1
-r.e.turn [l

class $<<CEl.name(node[3].value)>>:

4.5.5. Translating

The actual translation of the parse tree to a ITree involvashmepetition, and contains implemen-
tation details which are irrelevant to this thesis. The fiGint to note about the translation is that
the resulting ITree largely follows the structure of thegeatree. Having the translation follow the
structure of the parse tree is desirable because it sigmiljclowers the conceptual burden involved
in creating and comprehending the translation.

In this subsection I highlight some interesting aspectéeftanslation; interested readers can use

this as a step to exploring the full translation in fdpackage.

100

OCL expressions

Translating the OCL subset into Converge is a simple placgax in the translation because it is
mostly simple and repetitive. For example, converting hyirexpressions from OCL into Converge

is mostly a direct translation as the elidetl _binary traversal function shows:

func _t_binary(node):

/I binary = expr "+" expr
1 = expr "<" expr
1 = expr "==" expr

Ilhs := self.preorder(node[1])
rhs := self.preorder(node[3])

if node[2].type == "+"
return [| $<<lhs>> + $<<rhs>> |]
elif node[2].type == ">"

return [| $<<lhs>> > $<<rhs>> |[]
elif node[2].type == "=="
return [|
func ocl_equals() {
lhs = $<<lhs>>
if lhs.conforms_to(Int) | Ihs.conforms_to(String):
return lhs == $<<rhs>>
else:
return lhs is $<<rhs>>
10

1]
Note that there is a slight complexity in translating the operator, since OCL defines equality
between objects to be based on their value if they are a prétitpe, and on their identity if they are
a model element. Whilst this is simple to encode as a sequireressions, it slightly complicates
the t class traversal function, which is expected to return only a rglasi-quoted expression.
In order to work around this limitation the required sequeeatinstructions are grouped together with
a function; the quasi-quotes returns the invocation offim&tion which is thus a single expression.

This idiom occurs frequently in such translations.

Forward references

Forward references between model classes might appedghtysmuddy the structure of the trans-
lation. Consider the following example:

$<TM.model_class>:
class Dog {
owner : Person;

}

class Person {
name : String;

age : int;
}
With a naive translation, the result might look similarte following Converge code:
class Dog:
attributes := Dict{"owner" : Person}
name := "Dog"

class Person:

101

attributes := Dict{"name" : String, "age" : Integer}
name = "Person"

Such code would compile correctly, but lead to an exceptieimd raised at run-time since the
Person class will not have assigned a value to erson variable when it is accessed in the
Dog class. A standard approach to this problem would be to makatthibutes field a func-
tion; by placing the reference ®erson a function, the variable access would be deferred untit afte
thePerson variable contained a value.

The TM.model class DSL takes an alternative approach which is simplistic aniijsivnot
generally applicable, effective. THEM module keeps a record of all model classes encountered.
When a new model class is created (i.e. when importing a nemighining aTM.model class
block), it registers itself with th&@Mmodule. Rather than directly referring to model classgse ty
references are strings of the target model class name — wimerdal class needs to be retrieved, its
name is looked up in th&Mmodules’ registry, and the appropriate object returnedusTiorward
references are a non-issue, since references are onlyedsshen necessary.

The reason th&M.model _class DSL takes this approach is that all model classes live in the
same namespace; when we come to transforming model eleihaids brevity that model classes

do not need to be prefixed by a package or module name.

Model class translation

The suggestion up to this point has largely been that modskek have been directly translated to
normal Converge classes. In fact, model classes are imstasfctheMClass class. Whilst this
would suggest that we can use thetaclass keyword shown in sectidn4.1.4, this is not possible
sinceMClass requires more information than a normal Converge classnidbConverge classes
take only three parametensme, supers, fields whereas a model class requires information
about whether it is abstract, its invariants and so on. Theglkass object must be created manually.
Usingbound _func keyword allows an appropriate bound functions to be exprkssitside a class.

A much elided, and slightly simplified, version of thé _class traversal function is as follows:

is _abstract = bool
class _name := String
super _ := String or null
attrs = Di ct {nane : type}
invariants = Li st of tuples [name, function]
operations := Li st of tuples [nane, function]
init _func var := CElivar(CElfresh _name())
return [d|
bound _func initialize(*args):
super _attrs := _all _attrs($<<super _>> 1)
if args.len() > (super _attrs.len() + $<<CElL.lift(attrs.len())>>):
raise Exceptions.Parameters _Exception("Too many args")
super _args _pos := Maths.min(super _attrs.len(), args.len())

102

Func _Binding(self, $<<super _>>.methods["initialize"]).apply(\
args[: super _args _pos])
$<<init _func _body>>

$<<CEl.ivar(CEl.name(class _name))>> := MClass($<<is _abstract>>, \
$<<CELlift(class _name)>>, $<<super _>>, $<<CEl.lift(attrs)>>, \
$<<CEl.idict(operations + [[CELlift("initialize"),
init _func _var]])>>, $<<CElLilist(invariants)>>)

I
The t class traversal function first evaluates and transforms the ldeshthe model class, plac-
ing information such as whether the class is abstract inppogpiately named variables. Finally it
returns quasi-quoted code which contains two things: atimmdo initialize model class instances,
and finally the instantiation d¥IClass itself. The arguments thaiClass itself requires are hope-

fully obvious due to the names of the variables passed tatlitisnexample.

Summary of translation

Whilst this section has tersely presented the translatiaTdl.model _class block, | hope that
it shows enough detail to suggest that the bulk of the tréinslés simple work, with only one or two
areas requiring the use of more esoteric Converge featéygsendix[D.1 shows the pretty printed

ITree resulting from the translation of the example in sedf.5.1.

4.5.6. Diagrammatic visualization

A useful additional feature of TM is its ability to visualimeodelling languages and model languages
as diagrams. Visualization makes use of the fact that the @td thodel is fully reflective, making
the traversal and querying of objects trivial. THesualizer module defines several visualiza-
tion functions, all of which use the GraphViz package [GN@®kreate diagrams. For example,
thevisualize ~_modelling _language function takes a list of model classes, and visualizes
them as a standard class diagram. Fidure 4.5 shows the digansaalization of the Simple UML
modelling language originally shown in figure4.3. Note tthet modelling language visualization

function explicitly shows that all model classes are sutsea oMObject .

The Visualizer is also able to visualize arbitrary model&)/&. object diagrams. Figuile4.6 shows

the resulting visualization of the model in the followingdeo

person := Simple_UML.Class("Person")
dog := Simple_UML.Class("Dog")
dog.attrs.append(Simple_UML.Attribute("owner", perso n, 0))

Visualizer.visualize_model([Person, Dog])

103

MObject
mod_id : String i
to_string()

initialize()

Classifier

name : String

initialize()

/

PrimitiveDataType Class

type

initialize() initialize()

attrs
* ordered

Attribute

name : String

initialize()

Figure 4.5.; ‘'Simple UML modelling language visualized.

4.6. Future work

Because the core of Converge is a mix of established langudiye core language is largely stable
syntactically and semantically. The implementation of¢cbmpile-time meta-programming facilities
is currently less than satisfactory in one or two areas,seriinently usable. One feature in particular
that appears to confuse new users to the language relatks tetty different effects of the splice
annotation. The syntax, inherited from Template Haske#lans tha$ behaves very differently when
inside (a simple replacement of the splice annotation) andide (cause compile-time evaluation)

guasi-quotes. A simple change of syntax may suffice to sbigeproblem, or it may be considered

:Class

mod_id = "9"
name = "Dog"

attrs

‘Attribute

mod_id = "10"
is_primary =0
name = "owner"

pe

:Class

mod_id = "8"
name = "Person"

Figure 4.6.: A ‘Simple UML model language visualized.

104

to be an inevitable part of the learning curve that compiteetmeta-programming presents.

Although Converge’s error reporting facilities are at teas good as any comparable language,
there is still room for considerable improvement from theraspoint of view. Although section
213 used nested quasi-quotes to customise error reppamtsy be necessary to find a lighter weight
technique if DSL authors are to be encouraged to provide dpiglity error reporting.

The syntax extension feature presents the greatest opjigrtar future work. The most obvious
improvement would be to allow the user to provide their owketozation facility. This may result in
simply passing a single string to the DSL implementatiorcfiom, or it may involve a more sophis-
ticated interaction between the Converge tokenizer ansepand the DSL tokenizer and parser. For
example parsing algorithms such as Pack Rat parsing [Faifa®y the conflation of tokenizing and
parsing in a way that might lend themselves to syntax ex@ensi

Section[5.b shows how — currently slightly inelegantly — BSian incorporate normal Converge
code within them. Improving the mechanism for weaving theedanguage and DSL extensions in

arbitrary ways will be important if this feature is to be exiptd to its full potential.

4.7. Summary

In this chapter, | first presented the core of the Converggraroming language. The core lan-
guage is a largely standard dynamically typed OO languatienl detailed Converge’s compile-time
meta-programming facility, which allows users to extenel ldmguage in an arbitrary fashion; | also
explained how similar functionality may be added to othemaipically typed OO languages. | then
used Converge’s compile-time meta-programming facititadd a syntax extension facility to Con-
verge. The syntax extension feature allows users who extenidnguage to present their extensions
to other users in a syntactically seamless fashion. Fihalmonstrated the syntax extension feature

by showing how a powerful typed modelling language can beesltibéd within Converge.

105

Chapter 5.
A rule based model transformation system

This chapter presents a unidirectional stateless mod#ftvamation language MT, implemented as
a DSL within Converge. MT serves as an example of a non-traziample of a DSL implemented
as Converge, exercising many parts of Converge and showamy rof the idioms common when
developing DSLs in Converge.

MT shares several aspects in common with model transfoomdéinguages such as the QVT-
Partners approach [QVTO3b]. That is, it is a rule-basedesysutilising patterns. However there
are a number of advances over, and significant differenoes, forevious approaches. Some of these
are a side-effect of implementing MT as a DSL within Convegame are the result of experimen-
tation with a concrete, but malleable, implementation. &mmple, MT allows normal Converge
imperative expressions to be embedded within it. MT’s imp#atation is interesting for other rea-
sons, particularly its exploitation of a number Convergelger unique features, such as goal-directed
evaluation.

This chapter comes in three main parts. Firstly the chaptemsing example is introduced, fol-
lowed by an introduction to the QVT-Partners model transftion approach. The QVT-Partners
approach is then used as the basis for the MT language, whiotréduced partly through example.
Finally the implementation of the MT language as a DSL in Goge is discussed in more detail. In
the wider context of this thesis, MT is a necessary step wswe change propagating transformation

language presented in chagier 6.

5.1. Running example

This chapter makes use of a simple running example of a ttemstion from a UML like modelling
language to a model of relational databases. The chiefmdasasing this example is the ability to
compare the result with its implementation in other modahsformation approaches (e.g._IDIC03,

O0QV03,[QVT034a]. The example also has the virtue that it capdsély considered in ‘simple’ and

Table columns COIumn

« {ordered} name : String
type : String

name : String

Figure 5.1.: Simplified relational database meta-model.

:Class type :Class

name = "Dog" name = "Person"

attrs attrs attrs attrs
:Attribute :Attribute :Attribute :Attribute
name = "name" name = "owner" name = "name" name = "age"

type type type\L type

:PrimitiveDataType :PrimitiveDataType

name = "String" name = "int"

Figure 5.2.: An example of a source simple UML model.

‘advanced’ variants. Whilst the advanced variant doescisea reasonable humber of features of
any given model transformation approach, it is still of aprapriate size for this thesis.

The original example is defined in [QVT03a]. The simple vatri@ as follows. The meta-model
for a simple UML modelling language was previously given mufie[438. A corresponding meta-
model for simplified relational databases is given in figur® 3n essence, the transformation takes
in a Class and transforms it to &able of the same name.Attribute ’s whose type is a
PrimitiveDataType (e.g. string, integer) are transformed to a column of theesaame and
the same primitive data typdttribute ’'s whose type is &lass (i.e. the type refers to another
user class) are transformed to a number of columns: theforamstion recursively ‘drills down’
through a class’s non-primitively typed attributes urtiledaches attributes with primitive datatypes.
At each point in the recursion the name of the current classgalith a‘ ’ character is appended to
the column name. The net result of this is that non-primitieéa types are flattened.

Consider the source model of figurel5.2 (trivially adaptexfrsectio’4.515). Assuming that the
Dog class is used as the input class, an implementation of thisfiormation should produce the
relational database model as in figlrd 5.3.

This is the core of the example that will be used throughastahapter. As the chapter progresses,

:Table

name = "Dog"

columns \; columns columns]/

:Column :Column :Column
name = "name" name = "owner_name" name = "owner_age"
type = "String" type = "String" type = "int"

Figure 5.3.: An example of a target relational database imode

107

| will progressively add complexity to the example.

5.2. The QVT-Partners model transformations approach

The QVT-Partners approach was outlined in sedfion 3 3.4@hi section, | explain some relevant
aspects of the approach in more detail, since the MT langsiagiees several factors in common with
the QVT-Partners approach. Whilst the QVT-Partners amprbas the concept of ‘specification’ and
‘implementation’ transformations (known esationsandmappingsespectively), for the purposes
of this chapter, transformation specifications are largeflevant and are consequently ignored. The
QVT-Partners approach also defines a diagrammatic syntaixaiosformations which is similarly

ignored.

5.2.1. Overview

A transformation in the QVT-Partners approach consistsrafraber of mappings. A mapping con-
sists of one or more sourc®mainganalogous to a function parameter) and a target imperatidg.
Each domain consists of one or mgratternsto match against. Patterns are written in a language
designed to make expressing constraints over models stictliey are analogous to textual regular
expressions as found in e.g. Perl [WCOO00]. Imperative sodansist of a single expression in an
extended OCL variant that is capable of side effects. Usiagnieta-models presented in the previous

section, a simple mapping for transforming a class to a tabldd look as follows:

mapping Class_To_Table {
domain {
(Class)[name = n, attrs = A]

body {
let
columns = A->collect(attr columns = Set{} |
columns + Attr_To_Column(attr))
in
(Table)[name = n, columns = columns]
end

}
}

The intuitive meaning of this is hopefully fairly straigbtivard. TheClass _To_Table rule will
match against £€lass model element, with the pattern binding whatever name tagsdhas to the
variablen and whatever attributes it has to the variahler he imperative body then creates a corre-
spondingTable whose name matches the source class. It should be notedttimatgn theTable
expression in the body appears to be a pattern, this is somgatha syntactic illusion: the pattern-

esque syntax is simply syntactic sugar for object creatimh sdot updating.Attr ~ To Column

The author of this thesis takes full responsibility for hexigion to use these names — given their multiple overloaded
meanings in the wider field, in retrospect they were not ths pessible choices.

108

refers to another mapping, which is used to transform eadbuwt in the source class into one or

more database columns which are then placed within thettale.

5.2.2. Pattern language

In the context of this thesis, the most important novel aspéthe QVT-Partners approach is its
pattern language. Its aim is to provide a concise textuadtinot for expressing constraints over
models, thereby reducing the time needed to write and to osimepd a transformation. In this
subsection, | provide a brief background of patterns beiftiamally explaining the QVT-Partners
pattern language.

Many computer users are familiar with textual pattern lamgs e.g. via operating system com-
mands such ds =*.txt . One can obtain a crude gauge of the popularity of textuailaegxpres-
sions by the fact that suitable libraries are found as standanany modern programming languages
such as Perl, Python and Ruby. However whilst pattern lagegiare commonly thought of as be-
ing suitable only for matching against text, they can be useghatch against other, much richer,
datatypes. For example program transformation pattersmagainst complex AST’$ [Big98]. In-
tuitively, designing a pattern language involves a compserbetween providing a concise notation
for capturing common constraints, and providing a compjlageneral mechanism — the more cases
a pattern language can express, the less concise it is likddg. Many pattern languages are thus
tailored for the common case as opposed to the general caseialregular expressions, for exam-
ple, are typically defined as finite-state automata whichncarexpress a seemingly simple constraint
such as ensuring that a string contains balanced open asel lofackets It is therefore desirable
that when a pattern languages’ expressive limit is reachedjtable escape mechanism into a more
powerful, if verbose, system is available.

The QVT-Partners approach provides a specific pattern &geyfor expressing constraints over
models. The QVT-Partners approach is important in thiseetsipecause, as noted in chajifer 3, most
current model transformation approaches do not providiegatanguages. Although it could be
argued that graph transformation approaches utilise rpad@guages, their matching facilities are
relatively simplistic, particularly when compared to it regular expressions; many approaches
allow nodes to only match fixed numbers of nodes and edges.thEopurposes of this thesis, |
therefore do not consider graph transformation approachieave pattern languages.

The QVT-Partners approach provides a small pattern largffeagxpressing constraints over mod-

els. A slightly simplified version of the grammar for the gatt language is as follows:

2Note that some implementations of regular expressions @ienyer ‘regular’ in the formal sense of that word. For
example, modern Perl contains an experimental featurehad@in express the balanced brackets constraint.

109

(pattern) =t

| (set pattern
| (seq pattern
| (obj_pattern
|«

expressiof

(set pattery = '{'[(patter* (‘| " (patter})]* }

(set patterry == ‘[*[(pattern* (']’ (patter)] ']’

(obj_patterry == ‘(" (var)[*,’ (var)]*)’ ‘[’ [(field_patterr) (‘, * (field_patterr)*] ‘]’
(field_patter == (var) ‘=" (patterr}

(var) = D

‘ :_1
The reference to the rulexpressionis a reference to a rule which contains the extended OCL

variants’ grammar.

The QVT-Partners approach identifies three main types ¢éqpet set, sequence, and object pat-
terns. Although not explicitly noted as such, variablesattgrns are essentially patterns themselves.
To ensure consistency with the rest of this chapter, | refebject patterns asodel element patterns
All types of pattern share in common one thing: given a paldicmodel element, they will either

succeed or fail to match against it.

Set and sequence patterns are similar to those used indnmgrameters in functional and logic
programming languages such as Haskell and Prolog. For dzaemget patteriSet {1, 6 | R}
will match successfully against a set that contains at leestitems1 and6; a new set containing
all of the original sets items other thdnand6 will be bound toR. Intuitively, variable names mean
‘match anything and bind’; henceforth these will be refdri@ asvariable bindings If the same vari-
able name appears more than once in the same scope, altiEs@ithat variable name must match
against equivalent objects (the definition of object edquaiti the QVT-Partners approach is inher-
ited from the MOF[[OMGOQD]). The special variable *matches against anything and immediately

discards the result; multiple instances of do not need to match against equivalent objects.

Although relatively simple, model element patterns are lthekbone of the pattern language.
Model element patterns specify the type that matching metihents must conform to, and an
optional ‘self’ variable which will be bound to the elemenatthed against. The model element then
specifies a number of slots and a pattern against which eatinghe model element must match

against. The terse power of model element patterns is bestrtitrated by example. Consider first

110

the following model element pattern:

(Dog, d)[name = n, owner = (Person)[name = "Fred"]]
This pattern will match successfully against a model eléménich is of typeDog and whose owner
is Fred. After the match the variabte will point to the particularDog element matched, ana
will contain the dog’s name. This pattern is approximatedyiealent to the following Converge-
esque pseudo-code function which returns a dictionaryradibgs if the source element is matched

successfully, failing otherwise:
func match(element):
if not element.conforms_to(Dog):
return fail
d = element
n := element.name
if not element.owner.conforms_to(Person):
return fail
if element.owner.name != "Fred":
return fail
return Dict{"d" : d, "n" : n}
Although it may seem more logical to have used OCL to exptassit should be noted that express-
ing the creation and update of bindings in OCL would requomplex encodings. Partly due to this
difficulty, the QVT-Partners approach defines a new calcimusder to have a suitable semantic do-
main. The calculus is given an operational semantics, aedttli implements several pattern match-
ing primitives; it can be seen to be similar to the imperatigect calculus of Abadi and Cardelli
[AC96] extended with pattern matching. Using Converge geetode as the target translation of the
example pattern avoids the need to define and explain theleslc
As this example translation clearly shows, the model elépattern is not only considerably terser
than its equivalent pseudo-code, but is arguably easiesrtipeehend. Since the pseudo-code has to
explicitly embed certain aspects of the model transforomate.g. theeturn fail statements) the
important aspects of the pattern are obscured. This is gimmcasting of the problem of expressing
model transformations in GPLs. Even though the patterndagg is simple, it neatly solves many

such problems.

5.2.3. Complete example

The running example expressed in the QVT-Partners appiisachfollows:

mapping Class_To_Table {
domain {
(Class)[name = n, attrs = A]

body {
let
columns = A->collect(attr columns = Set{} |
columns + or(Primitive_Type_Attr_To_Column(™, attr),
User_Type_Attr_To_Column(", attr))

111

(Table)[name = n, columns = columns]

end
}
}
mapping User_Type_Attr_To_Column {
domain {

(String, prefix)[]

domain {
(Attribute)[name = n, type = (Class)[name = ct, attributes

All

body {
let
new_prefix =

if prefix == " then
n

else
prefix + "_" + n

end

in
for A->collect(attr attrs = Set{} |
attrs + or(Primitive_Type_Attr_To_Column(new_prefix, a ttr),
User_Type_Attr_To_Column(new_prefix, attr)))
end
}
}

mapping Primitive_Type_Attr_To_Column {
domain {
(String, prefix)[]

domain {
(Attribute)[name = n, type = (PrimitiveDataType)[name = pt 1

body {
Set{(Column)[name = if prefix == "
name = n
else
name = prefix + " " + n
end,
type = pt]}

}
One feature in particular that requires explanation ithéunction used inth€lass _To Table
andUser _Type _Attr _To_Column mappings.or is not a normal function call, but is a built-in
combinatorwhich lazily executes the mappings passed as argumentstoriier until one succeeds
and produces a value. Note that unlike most rule-basedrsgstbe QVT-Partners does not provide a
function which takes an element and attempts to find a rulehlwvhill transform it. Although ther
combinator can provide the same functionality, its repkate becomes tiresome to the programmer

due to the continuous hard-coding of mapping names required

The overall structure of this transformation is fairly simpTheClass _To_Table is the top-
level mapping which takes in a class and iterates througétiitdoutes, invoking other mappings to

produce columns. Attributes are transformed in one of twgswBoth thdUser _Type _Attr _ To-

112

_Column andPrimitive ~_Type Attr _To_Column mappings take two arguments: a string
and an attribute. The string represents the current coluanmerprefix being built up as the transfor-
mation drills into user data types. Attributes which haveimiiive data type are transformed by the
Primitive ~_Type Attr _To_Column mapping into a single column. Attributes which have a
user data type are transformed by heer _ Type _Attr _To_ Column into one or more columns;
theUser Type Attr To Column mapping is the recursive mapping which drills into user data
types.

Although the example from sectiénb.1 has been successfyflyessed in the QVT-Partners ap-
proach, the result is perhaps more verbose than one may kpeeted. Indeed, somewhat surpris-
ingly, a simple GPL equivalent of this example is smaller.e@night thus reasonably expect that
expressing such a transformation in the QVT-Partners aghrbas other benefits. Since mappings
only allow the expression of unidirectional stateless<famnmations, the only potential gain over a
GPL approach is the possibility of automatically createditrg information. Unfortunately the QVT-
Partners approach does not explain how rules can creatdrseaig information in practise. Since
the GPL equivalent is likely to be more readily understooaligr wider range of people, the overall
benefits of this approach are not clear cut. In the followmgsction | outline three issues which are

indicative of the problems of the QVT-Partners approach.

5.2.4. Issues with the approach

As the verbose example in section5l2.3 may suggest, the Pavfhers approach has a number of
minor flaws and limitations which hamper practical use. Ia ffubsection | outline, in approximately
descending order, three areas which are indicative of wiher€VT-Partners falls short of its in-
tended goals. These points are instructive in understgreimeral of the design decisions made in

the MT language of sectidn’®.3.

Inappropriate imperative language

The imperative bodies of mappings are written in a so-cdéetended OCL’, which is intended to
allow users familiar with OCL the chance to reuse that kndgéein an imperative setting. This has an
immediate negative effect: extending OCL with imperatieastructs means that the often desirable
properties OCL had as a purely side-effect free languagesife Conversely when it comes to acting
as a normal GPL, the resulting language is decidedly unwisildce it lacks appropriate constructs

for common operations. For example, there is no expliciusaging mechanism: the imperative

30CL 2.0 is not in fact entirely side-effect free; however #imiations in which this property is violated are largely
irrelevant in the context of this thesis.

113

body consists of exactly one OCL constraint, and sequergangoe achieved clumsily via thet

expression.

Underpowered patterns

The pattern language defined in the QVT-Partners approaadvéed in the context of model transfor-
mations, and potentially very useful. However as the nefitisimple definition in section’5.2.2 may
suggest the pattern language is lacking in significant esjre power.

The pattern language itself is limited in two main ways:

1. Within model element patterns it is only possible to checkhe equality of slots. For example,
it is not possible to use a model element pattern to expresatmatch against an object should

succeed provided a given slot does not match a particulaeval

In order to sidestep this problem, users must add additiodl in awhen clause.

2. Model element patterns can only match against a fixed nuoflements. A model element
pattern, for example, can only match successfully againet and only one, model element.
Note that whilst set and sequence patterns can match agaitssand sequences of arbitrary
lengths, only a fixed humber of elements can be explicityiified within any given set or

sequence.

There is no general solution to this problem. Typically a meapping needs to be added so
that iteration in avhen clause can control the number of times another mapping tesstully

matched.

Scoping rules

Since a bare variable name in a slot constitutes a variahtdirtyj, the QVT-Partners approach has
fragile scoping rules, since it is difficult to distinguishvariable binding from a variable reference.
Consider the simple example of section 3.20bg, d)][...] . Dog is a reference to th®og
model class, whereasis a variable binding which will be set to the self value of tiigect which
matches the model element pattern. This means that it isssilgle to express that a model element
pattern should match against a particular element. For plearin a meta-circular system where a
classMis an instance of th&ingleton meta-class, the model element patt€gingleton,
M)[...] will create a local variabléM rather than ensuring that it matches against the element
pointed to byM

The QVT-Partners approach allowsmen clause to be scoped over all domains establishing a

constraint across domains since it does not create any nébkabindings. However it is not possi-

114

ble to introduce a similar clause (often call@tiere in similar approaches) scoped over all domains
which introduces new variable binding without introducimbiguities. Consider the following ex-
ample: should the in the pattern bind the value sfot to the variable, or should it ensure that

slot contains the value introduced in thdere clause?

mapping X {
domain {
(E)[slot = x]

where {
X =5
}
}

In the QVT-Partners approach, scoping ambiguities aredadoby disallowing several potentially
useful features that may introduce new variable bindingswéVer the end result is that whilst ex-
pressions such as {{Dog, d)I[...] are statically resolvable, they are confusing for usersee Th
overall effect of the scoping rules are to severely limit gossibilities for extending or embedding

the language.

5.2.5. Summary

The QVT-Partners approach provides a number of innovatongpared to other model transforma-
tion approaches, most notably the use of patterns. Howaweraictise the simplistic nature of the
approach means that it falls somewhat short in its aim tevalisers to express model transformations
more easily than in GPLs.

In the next section of this chapter, | define a new model taanshtion language MT which takes
elements of the QVT-Partners approach, adding extra fessfand addressing some of the approaches

flaws.

5.3. The MT Language

The MT language is a new unidirectional stateless modestoamation language, implemented as a
DSL within Converge. MT transforms instances of the typediaiiing language TM (sectidn4.5)
into new instances of TM. In essence, MT defines a natural ddibg of model transformations
within Converge, using declarative patterns to match agarodel elements in a terse but powerful
way, whilst allowing normal imperative Converge code to b#edded within rules.

Because MT is implemented as a DSL within Converge, it hastexias a concrete implementa-
tion from shortly after its original design was sketched. othis has proved to be significant, since

practical experience with the approach has been rapidlyo&stt into the implementation. Rapid

115

development has been facilitated by the flexible envirortnpeavided by Converge. The ability
to experiment with the implementation has ultimately led kéTcontain a number of insights and
distinct differences from other approaches. Such insiggnigle from a more sophisticated pattern
language to suitable ways to visualize model transformatitn the wider context of this thesis, MT
is also important as the basis of the change propagatingidayegpresented in chaplér 6.

In this section I first highlight the main features of MT, themesent an MT version of the running
example, before showing how MT transformations are run acfge. This section is intended to

present the basic features of MT, before more advancedrésatame described in sectibnls.5.

5.3.1. Basic details

An MT transformation has a name and consists of one or moes,rtthe ordering of which is sig-
nificant. Rules are effectively functions which define a fixeanber of parameters and which either
succeed or fail depending on whether the rule matches agmes arguments. Rules and functions
in MT are essentially synonymous as in approaches such ag§eéd.section’3.3.6). If a rule matches
successfully, one or more target elements are producedt @ddid to have executed; if it fails to
match successfully, nothing is produced. Rules are corgiaé. a source matching clause contain-
ing one or more source patterns; an optional when clauseesdhrce matching clause; a target
producing clause consisting of one or more expressionsaaraptional where clause for the target
production clause.

An MT transformation takes in one or more source element&ghwdre referred to as theot set
of source elements. The transformation then attempts tsfsem each element in the root set of
source elements using one of the transformations ruleghndre tried in the order they are defined.
If no rule matches a given element, an exception is raisedranttansformation is aborted.

The general form of an MT transformation is as follows:
import MT.MT

$<MT.mt>:
transformation transformti on nanme

rule rul e nane:
srcp:
pattern;

pattern,

src _when:
expr

tgtp:
expr 1

expr ,

tgt where:

116

expr 1
é%pr"
Thesrcp andsrcp _when clauses are collectively said to form teeurce model clauses
similarly thetgtp andtgtp _when clauses are collectively said to form tkerget model
clauses

Transformations are translated by MT into a Converge clagstive name of the transformation;
rules are translated to functions of the same name withicldss. In order to run a transformation,
the transformation class is instantiated; each class carstamtiated multiple times. Transformation
classes have additional functions for e.g. extractingrigpmformation (see sectidn 5.8.6).

Transformation rules contain normal Converge code in esgioes; such expressions can reference
variables outside of the model transformation DSL fragm&hts is an important aspect of MT since
it allows users to use normal Converge functions arbiyaehd without penalty. In other words,
when the model transformation language itself is inadexjimed particular respect, a normal reusable
Converge function can be defined outside of the model tramsftion, but which can be called from
within any model transformation.

MT transformations hold a record of tracing information,igrhis automatically created as trans-
formation rules are executed. Each rule executed adds araees tEach trace is a tuple, encoded
as a Converge list, of the forfh source el ements], [target el enents]] . The source
elements that are stored in the tracing information do noesgarily constitute the entire universe
of elements passed via parameters to the transformatiodefylt, only elements matched by non-
nested model element patterns are recorded in the tradomgnation. Sectiof’5.412 details the default
tracing creation mechanism, and explains how it can be anggder overridden.

A simple example of a transformation and a rule is as follows:

$<MT.mt>:
transformation Classes_To_Tables

rule Class_To_Table:

srcp:
(Class, <c>)[name == <n>, attrs == <A>]
tgtp:
(Table)[name := n, cols := columns]
tgt_where:
columns :=]
for attr := A.iterate():
columns.extend(self.transform([""], [attr]).flatten()

This rule is the MT analogue of the rule in sectfon3.2.1. Nates normal Converge code is inter-
spersed amongst the MT DSL (see sedfion 516.12 for impleatientinformation). Since transforma-
tions are translated to Converge classes, to access faadmbernal’ to the transformation, one must

use theself. prefix. Thetransform function, for example, takes source elements and tries each

117

rule in the transformation in succession until it finds ondchtsuccessfully matches the elements
and produces values. If theansform function does not find a suitable rule then, by default, an
exception is raised. Thegansform function is also used internally by the transformation as th
mechanism used to transform the root set of source modekeksmSectiol 5.59.3 shows an example
of a rule that can guarantee that thensform rule can be made to succeed on any given input.

In the following subsections | explain in more detail howesuimatch and produce elements, in-

cluding a detailed examination of the pattern language atigqm multiplicities.

5.3.2. Matching source elements with patterns

Each pattern in thercp clause of a rule corresponds to a domain in the QVT-Partpgn®ach. Ar-
guments must be passed as lists rather than sets; whilst&riveals can be placed into Converge sets
(sectionZ5R), users may wish to transform non-hashdbiaemts such as lists. Each list contains
the top-level model elements which each pattern can mataimstg Elements can exist, directly or
indirectly — that is, as top-level elements, or by being hedte via the graph that constitutes a model
— in one or more arguments. In order to avoid the problemsdniatsectior’5.2}4, variable bindings
are surrounded by angled brackets and ‘>’ to distinguish them from normal Converge variable
references.

The matching algorithm used by MT is intentionally simpleach pattern in turn attempts to
match against the top-level source elements passed in thepjate argument. Each time a pattern
matches it produces variable bindings which are availablalltsubsequent patterns. If a pattern
fails to match, control backtracks to previous patterngtf@morder of most recently called), which
attempt to generate another match given the variable lgsdind arguments available to them. The
generation of an alternative match causes new variablérngiado produce, which allows the rule to
attempt another match of later patterns. he when clause, if it exists, is tried once all patterns
have been matched successfully; itis essentially a guamdpatterns. If it fails, patterns are requested
to generate new matches exactly as in the failure of a patterratch. The implementation details of
such behaviour are largely hidden from the user by the usatténns.

The order that patterns are defined in #rep clause is significant, for two separate reasons.
Most obviously it is necessary to ensure that users’ segueaiéable bindings and references to the
bound variables correctly. However there is a second redsanwhilst less obvious, is critical to
the performance of larger transformations. Making the oadgatterns significant allows users to
make use of their domain knowledge to order them in an efficigty. Consider a rule which has
two independent patternsandy wherex tends to match against many source elementsy bhgainst

few. Placingx first in thesrcp clause means that wherfails x will try to produce more values; if

118

x can produce multiple matchegmay be executed many times unnecessarily. i$f placed first in
thesrcp clause then if it fails to match against its input the ruldsfarithout ever trying to matck.
Sensible ordering of patterns in this way can lead to a sigifiboost in performance as unnecessary
matches are not evaluated.

Each pattern is translated to a Converge generator, whahdas a natural mechanism for lazily
generating all possible matches. Translated patternsoajeiced to make use of Converge’s back-
tracking abilities. Note that therc _ when clause, if it exists, must be a single Converge expression

which either succeeds or fails given variable bindings cged by patterns in thercp clause.

5.3.3. Pattern language

MT'’s pattern language is a super-set of that found in the @ditners approach. MT defines a
number ofpattern expressionsmodel element patterns, set patterns, variable bindigd,normal
Converge expressions. Patterns written in the latter laggwan be directly translated into MT with
only minor syntactic changes.

There are two significant differences between the two paterguages. Firstly — as noted in the
section 5.3 — variable bindings in MT must be surroundedryled brackets to ensure harmony
between MT and Converge’s scoping rules. Secondly, moeeheht patterns in MT can contain
comparisons other than equality between slots; hencetloetie are known adot comparisonsAny
of the standard Converge comparison operators can be uskxd @omparisons (see section411.5 for
a list of comparison operators). A model element pattern ihidfsaid to consist of zero or more slot
comparisons.

As a trivial example of slot comparisons, one can take theahelkment pattern example from
sectiof5.ZP (making the necessary minor syntactic matiifias), and change it to find dogs whose

owner is not Fred:

(Dog, <d>)[name == <n>, owner == (Person)[name != "Fred"]
This same example would necessitate an OCL constrainivhen clause in the QVT-Partners ap-
proach.

Allowing different types of slot comparison in model elerhpatterns opens up new possibilities.
Since MT allows the same slot name to appear in more than ohea@hparison, one can test a slot

for multiple conditions as in the following model elementtpen:
(Person)[age >= 18, age <= 25]

There is one other additional feature in the MT pattern laiggu Since model elements are Con-
verge objects, slot comparison is not entirely synonymoitls attribute comparison, since slots may

contain functions. MT's model element patterns therefoowipes support for functions as shown in

119

the following example:
(Person)[calc_wage() > 18000]

Functions in slot comparisons can be passed an arbitranpeuof arguments passed to them; all
arguments are normal Converge expressions.
Pattern multiplicities are not considered to be a part ofctire pattern language, but are a signifi-

cant enhancement in MT over the QVT-Partners approach;ateegletailed in sectidn 5.5.2.

5.3.4. Producing target elements

When an MT rule executes it produces one or more target elsmAn exception is raised if a rule
executes but fails to produce any elements. The number wfegles produced is determined by the
number of expressions in thigtp clause. If thegtp clause has a single expression, then the rule
produces a single element; if it contains more than one egjme, then the rule produces a list whose
length is the same as the number of expressions ingipe clause. Each expression is a hormal
Converge expression, but with an important addition. The ML admitsmodel element expres-
sionsby extending the Converge grammar rabgr (see sectioi’5.6.13 for implementation details).
Model element expressions differ from model element pasgtéoth conceptually and syntactically.
Conceptually a model element expression is an imperatieational action. There is therefore no
concept of a ‘self’ variable in a model expression. Furth@emto reinforce the notion that model

expressions are imperative actions, slot assignmentshesearmal Converge assignment operator

Expressions ingtp have an optionafor suffix which allows a single expression to generate
multiple values. If one ignores the obvious syntactic défee of the relative location of the keyword,
the for suffix works largely as its normal Converge counterpartjnigila single expression and
continuously pumping it for values until it fails. Variaklelefined in thdor suffix are scoped only
over the single expression in ttggp clause that it suffixes. Assumi@@OLSis a list, a typical usage

of this feature is as follows:

(Column)[name := col.name] for col := COLS.iterate()
Note that if the above example was the only expressiorntgga , the result of the rule would be a list
of lengthCOLS.len() . However, if the expression was the first of two itg#p , the rule would
produce a list of length two, with the first element being adislengthCOLS.len() . Sectio 5B
suggests a possible extension to MT which would allow a mlgroduce a number of elements not
solely determined by the number of expressions itgts .

Thetgt _where clause, if it exists, is a sequence of Converge expressidiicshvare executed

before thetgtp clause. Variables in thigt _where clause are automatically scoped over the

120

tgtp clause. Unlike thesrc when clause, there is no notion of success or failure with the
tgt _where clause, which is simply a helper function for ttggp clause. Note that expressions

inthetgt _where clause can contain model element expressions.

© 00 N O U B~ W NP

B W W W W WWWWWwWNNNNNNDNNRNDNNIERERRRPRR PR P R
O © ® N o G0 R WN P O O© ® N 00 B WNPFP O © 0 ~NO® O N WNR O

5.3.5. Example

The following is a complete Converge module which impleraghé running example:

import Sys
import Relational, Simple_UML
import MT.MT

func concat_name(prefix, name):
if prefix == ""
return name
else:
return prefix + " " + name

$<MT.mt>:
transformation Classes _To_Tables

rule Class_To_Table:

srcp:
(Class, <c>)[name == <n>, attrs == <A>]
tgtp:
(Table)[name := n, cols := columns]
tgt_where:
columns = []
for attr := A.iterate():
columns.extend(self.transform([""], [attr]).flatten(

rule User_Type_Attr_To_Column:
srcp:
(String, <prefix>)[]

(Attribute)[name == <n>, type == (Class)[name == <cn>, attr

tgtp:
self.transform([concat_name(prefix, n)], [ca]) for ca :=

rule Primitive_Type_Attr_To_Column:
srcp:
(String, <prefix>)[]
(Attribute)[name == <n>, type == (PrimitiveDataType)[nam

tgtp:
[(Column)[name := concat_name(prefix, n), type := pn]]

)

s == <CA>]]

CA.iterate()

e == <pn>]

The overall structure of this transformation is delibesagmilar to the version in the QVT-Partners

approach of section’5.2.3. One important difference is tihatrepetitive code which builds up the

column prefix is factored out into a normal top-level funot@oncat ~name.

A slight difference between the MT transformation and theTcRartners approach equivalent is
that theUser _Type _Attr _To_Column in the former rule produces a nested list, the innermost
list containing a list of columns. The outer list will be ohigthCA.len() , with each entry in the list
being of arbitrary length. Consequently tegten function call in line 24 is necessary to remove

the nesting that will be present if théser _Type _Attr _To_ Column rule is called.

121

5.3.6. Running a transformation

Details of how to run a model transformation, including dstauch as the format of its inputs and
outputs and so on, are surprisingly absent from descriptafrthe majority of model transforma-
tion approaches. Since this has implications for the desfghe model transformation languages
presented in this thesis, it is important to be explicit admw transformations are run. In this sub-

section | detail the process of running a MT transformation.

Running a transformation in MT involves instantiating an8formation class and passing it model
elements. The transformation then executes, attemptifipdaa rule to transform each element in
the root set of source elements. If the transformation isesgful in transforming the root set of
elements, a transformation object will be returned. Thasfi@mation object can then be queried
to find the target model elements produced and the corresppirdcing information. The format
of MT’s inputs and outputs is simple. Source elements mush&@nces of elements defined in a
TM.model _class block (see section’4.3.2, and note that built-in Convergegysuch as strings
and ints are defined to be valid TM model elements). Similtatget elements will be TM model

elements.

The following example creates a simple input model and tixecwges the€Classes To Tab-
les transformation:

dog := Simple_UML.Class("Dog")
person := Simple_UML.Class("Person")

dog.attrs.append(Simple_UML.Attribute("name”, Simple _UML.String))
dog.attrs.append(Simple_UML.Attribute("owner", perso n))
person.attrs.append(Simple_UML.Attribute("hame”, Sim ple_UML.String))
person.attrs.append(Simple_UML.Attribute("age”, Simp le_UML.Integer))

transformation := Classes_To_Tables(dog)

The target elements produced by the transformation candessed via thget _target function.
Since both the source and target elements are TM model etepwre can apply the standard TM
visualization to our example. The source model is shown iaréfg.4, with the target model in
figure[25. Note that the colours given to the source and tangelels will be used in the remainder
of this thesis: source elements are shown in blue, targetezies in green. To emphasise that all
such visualization’s are the result of a real, running systiigure[5.6 shows an MT transformation

executing on an OpenBSD machine.

If an element passed to theansform function can not be transformed by any of the available
rules, an exception is raised showing the offending eleagand the transformation is aborted. Users
may catch such an exception if desired, however one maymaboask why the transformation does

not attempt to recover gracefully in such instances. Uunfately this seems to be unrealistic in the

122

:Class

mod_id = "10"
name = "Dog"
jattrs \EII'S
:Attribute
mod_id = "13"
name = "owner"

:Attribute

mod_id = "12" pe
name = "name"

:Class

mod_id = "11"
name = "Person”

pe ft’crs ttrs

:Attribute :Attribute
mod_id = "14" mod_id = "15"
name = "name” name = "age"
llépe ype
:PrimitiveDataType :PrimitiveDataType
mod_id ="9" mod_id ="8"
name = "String" name = "Integer"

Figure 5.4.: Source model.

general case for the following reason. Sincett@sform function is called with the expectation
that it will return a result, when it fails to find a suitabldeo transform a given element it is unable
to fulfil the callers expectation that an element will be read. In order to maintain this expectation,
transform could conceivably return a ‘dummy’ target element as a plaltker. However such
a dummy element would be unlikely to satisfy the constraimtghe target meta-model, and would
thus generally cause an exception to be raised. In the, piyobaall, number of situations where the
dummy element did not cause an error, it is then less tham tlaathe resulting target model will
be of significant use to the user. Secfion3.5.3 shows an dravfip ‘default’ rule which guarantees

that thetransform function can not fail.

5.4. Tracing information

In this section | describe how MT deals with tracing inforioat First | show how tracing information
is visualized, then describe the standard mechanism fatinggit, before showing how the user can

augment or override the default tracing information create

123

:Table

mod_id = "19"

name = "Dog"
cols cols k
:Column :Column :Column
mod_id = "16" mod_id ="17" mod_id ="18"
type = "String" type = "String" type = "Integer"
name = "name" name = "owner_name"| name = "owner_age"

Figure 5.5.: Target model.

5.4.1. Visualizing tracing information

Section5.3J6 showed how a MT transformation can be run, aed the default visualization capa-
bilities of TM to visualize the source and target models afaasformation. However, MT transfor-
mation instances also store tracing information (see@d&i3.1) relating source and target elements.
Visualizing tracing information is an interesting chatien and one that has hitherto received scant
attention in the context of model transformations. Work i@té visualization in areas such as ob-
ject orientated systems (e.d._[BHOQ]) is of little use in tomtext of model transformations due to
the different nature of what is being visualized. Egyed watés the use of tracing information in the
context of modelling, but explains neither how to generatdsualize such information [EgyD1]. MT
and TM cooperate together to present a simple visualizatfdracing information that also allows
users to build up a detailed picture of how the transfornmagixecuted.

In order to visualize tracing information, one needs to usided how this information is stored.
Transformation instances contain two separate lists adldgngth related to tracing information. The
first list contains tuples (encoded as lists) relating seard target elements. The second list contains
the name of the transformation rule which created the coomding entry in the first list. The fact
that they are stored separately is a simple implementataild— conceptually these two lists can
be considered to constitute one single piece of information

TheTM.Visualizer module defines a functiovisualize trace(transformation)
which takes a transformation instance and visualizes itpteta with tracing information. The result
of visualizing the tracing information for the example mbdésection[5.36 can be seen in figure
E4. The original source model is on the left in blue, with tugyet model on the right in green. The
black lines between source and target elements are thes tbeteeen source and target elements.
Individual traces always run from a single source elemeatgimgle target element. Each trace has a
name of the formnwherenis an integer starting from 1. The integer values reflectridgets position
in the execution sequence; trace numbers can be compared emother to determine whether a rule

execution happened earlier or later in the execution semguefrace names can be looked up in the

124

& gv: T £
File 5tg ‘ li ‘ File State ‘PageHPunrait 1414 |BBuxH Trace H Thu hday 18 20:20:13 2005 |
‘ \ariahle Size ‘ Vi ‘ \ariabile Size
dneal Class Tracmg
‘ oo | ’—E o Class_To_Table: tl
—_ mod_id ="10" " 5
5, e r g 2
Print Al e Do Primitive_Type_Attr_To_Column: 12, t4, 5
Print Marked User_Type_Attr_To_Column: 3
I EER rer
‘ ‘ariakle Size Sawe Marked e
e Attribute
Prinit &1 mod_id = "13"
e name = "owner'
Save Al
Save Morked E H A ! \Pe
Class
mod_id ="11"
‘ name = "Person”
Redlisplay A \ .
I,,’jj - 3 TS s
CAttibure able cAtribute CAtribure
—h— Adtrib Tabl b Attrib
mod_id ="12" mod_id ="19" mod_id ="14" mod_id = "15"
name = "name” name = "Dog" name = “name" name = "age”
2 colNype cols type cols M4 5 vpe
2 A
Aol ‘Primitive DataType e Lo ‘PrimitiveDataType
od_id = "16 d_id = "1§’
”'I‘--_',\ ,“_, mod_id="9" ”“:.‘- misil mod_id = "8"
fypea AR name = "String” N name = "late ger”
a name = "name name = "owner_age
\ JL\ pe type 14 5 ools s
& Column Column
:Primitive DataType PrimitiveDataType
mod_id = 9" mod_id = "8" AT i
W W " e = "String type Integer
name = “String name = "Integer .
name = "oWner_name name = "oMner_nge
@ iEOutpuLPamern,Crmmr.c IX[I(m@duoje{~,’srcjounve- ||§]nv:"rmm l&]gv:Tm:e <2> E@gv: _anonymous_0 | @é{‘ H:ED

Figure 5.6.: MT running.

‘Tracing’ table at the top right of figure. The tracing tablntains the name of each rule which was
executed at least once during the transformation. Agaimsh eule name are the names of traces;
each trace name represents an execution of that rule. Naite #fingle rule execution can create more

than one trace; however each trace created in a single éxeevitl share the same name.

Although the visualization of tracing information may sesmple, it allows one to infer a great
deal of useful information about the execution of a transftion. This information is useful both
for analysis and debugging of a transformation. At a simplell, one can use the names of trac-
ing information to determine which rule consumed which sewlements and produced which tar-
get elements. For example the ‘t1’ trace from the sourcesdiaghe target table is a result of the
Class To Table rule. One can also deduce from this traces name that it was#uwdt of the
first rule execution in the system. Similarly since two tsasbare the name ‘t4’, one can determine
that arule —in this casdser Type Attr To Column — created more than one target element

in a single execution.

Although this subsection has talked about how tracing mdion is stored and visualized, and

125

Tracing

:Class
Class_To_Table: t1
mod_id = "10" Lo
name = "Dog" Primitive_Type_Attr_To_Column: t2, t4, t5|

User_Type_Attr_To_Column: t3

attrs jattrs

:Attribute

mod_id = 13"
name = "owner"

:Attribute

mod_id = "12" type
name = "name"

:Class

mod_id ="11"
name = "Person"

attrs attrs 2 \t3 t3
:Attribute :Attribute :Table
mod_id ="14" mod_id = "15" mod_id ="19"
name = "name" name = "age" name = "Dog"
type type t4 5 cols ols cols
N
:PrimitiveDataType :PrimitiveDataType ‘Column ‘Column N ‘Column

name = "String" name = "Integer" yp - 9 o yp . g N P o g "
name = "owner_name name = "owner_age name = "name

Figure 5.7.: Visualizing tracing information.

what the visualization can be used for, it has not discussedthe tracing information is created.

Sectio 5. 4R explains how tracing information is creased] how users can control its creation.

Alternative visualizations

The tracing information in figurE“3.7 is visualized with thmusce and target models formatted ex-
actly as they were when presented individually in figlirekahd5.5. Whilst this visualization works
well for small transformations, larger transformationghagreater volumes of tracing information
tend to become unreadable as the strict formatting of thececand target models forces traces to
overlap with each other. There is thus an alternative formigfalization available via the visual-
izersvisualize trace clustered 4 function where the source and target elements can be
formatted directly alongside one another. Figurd 5.8 shiwesalternative visualization. Note that

the diagram colouring now becomes critical to distinguishree and target model elements from one

“The ‘clustered’ part of this function name reflects the metra used in GraphViz to enable this layout.

126

Tracing
:Class
Class_To_Table: t1
mod_id = "10" P .
name = "Dog" Primitive_Type_Attr_To_Column: t2, t4, t5
User_Type_Attr_To_Column: t3
ttrs
‘Attribute
mod_id = "13"
name = "owner"
attrs 1 &e
:Class
mod_id = "11"
name = "Person"
pttrs
:Attribute :Table :Attribute ‘Attribute
mod_id = "12" mod_id = "19" mod_id = "14" mod_id = "15"
name = "name" name = "Dog" name = "name" name = "age"

f

cold\type cols type cols A4 5
-Column :PrimitiveDataType ‘Column “Column :PrimitiveDataType
T T
yp o 9 . name = "String" yp . 9 , yp o 9 N name = "Integer”
name = "name name = "owner_name name = "owner_age

Figure 5.8.: Visualizing tracing information with the frigyout of source and target model elements.

another. Due to its general lack of cluttering, this is gaftgthe preferred visualization when tracing

information is involved, and is used in the remainder of thesis.

5.4.2. Standard tracing information creation mechanism

Section[5.411 showed how MT and TM can visualize the traarigrimation automatically created

by MT transformations. In this subsection | outline how tkdadlt tracing information is created by

MT. Most, if not all, model transformation approaches angantly somewhat vague on this subject.
There is therefore little prior art to use as a basis, or pairtomparison, for any such mechanism.
MT takes a simple approach to the problem to ensure that itavi@ur is predictable from a users

perspective — this is vital to ensure that users can makeni&d choices about when and where to
add or override tracing information (see secfion3.4.3).

As standard, tracing information in a rule is created betwadkesource elements matched by non-
nested model element patterns, and all target elementageddy model element expressions, nested
or otherwise. Non-nested model element patterns are ddfrfeelthose which are not nested within
another model element pattern. For example in the followmoglel element pattern, tracing informa-

tion will be created only from instances of tB®g model class:

127

(Dog, <d>)[name == <n>, owner == (Person)[name != "Fred"]]
It may initially seem somewhat arbitrary to try to minimisetsource elements used in tracing infor-
mation whilst maximising the target elements used. Theoreésr minimising the source elements
used is due to a simple observation: individual source aisrare often matched in more than one
rule execution. This then causes some source elements hels®trce for large numbers of traces
which can obscure the result of the transformation. Emgliidservations of MT transformations
suggest that when model elements are matched via nested sledeent patterns, they are also
matched as a non-nested model element pattern during atepale execution. In the case of target
elements, a different challenge emerges. Rather thargttgicreate an ‘optimum’ amount of traces
one wishes to ensure that, as far as is practical, everyttelgment has at least one trace associated
with it. Since target element expressions are inherenttglised to individual rule executions it is
highly unusual for an element created by such an expressiba the target of more than one trace.
Thus it is important to ensure that nested target elememesgjpns have traces associated with them.
Section5.6.715 shows how nested model element patternsecaratle to contribute towards tracing
information if desired (that section also shows the largmiper of extra, largely uninteresting, traces
created).

The standard tracing information mechanism can be seerastipe by comparing the visualized

trace information of figurE-5l8 with the transformation tbegated it in section’5.3.5.

5.4.3. Augmenting or overriding the standard mechanism

Whilst the standard tracing creation mechanism performié iwenany cases, users may wish to
augment, or override, the default tracing information tada Users may wish to add extra tracing
information to emphasise certain relationships withinaasformation, or to remove certain tracing
information that unnecessarily clutters the transfororatiisualization. MT provides a simple capa-
bility for augmenting, or overriding, the default tracingformation created by the standard mecha-
nism.

For example, using the MT example presented in seffionl88&bbase, imagine that one wishes
to add extra traces between the source class and all tatgetre® In order to achieve this one makes
use of the optionaracing _add clause on MT rules. This clause must contain a single Converg
expression which evaluates to a tuple relating source agéttanodel elements. The tuple is then
added to the tracing information created automaticallyH®yrule. The newClass To Table

rule looks as follows:
rule Class_To_Table:

srcp:
(Class, <c>)[name == <n>, attrs == <A>]

128

Tracing
:Class
Class_To_Table: t1
mod_id = "10" Lo .
name = "Dog" Primitive_Type_Attr_To_Column: t2, t4, t5
User_Type_Attr_To_Column: t3
attrs 4’5
4
:Attribute :Attribute :Table
mod_id = "13" mod_id = "12" mod_id = "19" 1
name = "owner" name = "name" name = "Dog"

AN z

\'4

\v

Class :Column
name = "Person” ype=onng
name = "name

3 cols % }/ﬁrs

B3 fype
:Attribute :Attribute
mod_id = "14" mod_id = "15"
name = "name" name = "age"
/ type fype 5
‘Column :PrimitiveDataType :PrimitiveDataType ‘Column
Imog_*ld"S:tri:h7 " mod_id ="8" mod_id ="9" Imog_*lq'lztemer”
yp - 9 , name = "Integer" name = "String" yp . 9 "
name = "owner_name name = "owner_age

Figure 5.9.: Augmenting the default tracing information.

tgtp:
(Table)[name := n, cols := columns]
tgt_where:
columns := []
for attr := A.iterate():
columns.extend(self.transform([""], [attr]).flatten()

tracing_add:
[[c], columns]

Note that since is a single element it needs to be placed within a list to eraafalid trace tuple. The
tuple in thetracing add clause is then added to the tracing information automdficatated by
the rule — hence the new traces have the same tracing numitbigicase ‘t1’) as the default traces
for the rule execution. Figufe—3.9 shows the resulting Vizaton of the transformation with the
extra tracing information added in.

In some circumstances, users may wish to entirely overhdealéfault tracing information, rather

than simply augmenting it. Thigacing override clause in a rule turns off the rules default

tracing generation, replacing it with the tuple returnedthg single Converge expression in the
clause.tracing _add andtracing _override are thus mutually exclusive clauses within a
rule. Whilst maintaining the additional tracing infornmticreated by the modifiedlass _To_Ta-

ble rule, assume one now wishes the other two rules in the tranatmn to be prevented from

generating any tracing information at all. In order to aghi¢his,tracing _override clauses

129

which contain tuples relating the empty set of source elésterthe empty list of target elements are

defined. The modified rules are as follows:

rule User_Type_Attr_To_Column:

srcp:

(String, <prefix>)][]

(Attribute)[name == <n>, type == (Class)[name == <cn>, attr s == <CA>]|
tgtp:

self.transform([concat_name(prefix, n)], [ca]) for ca := CA.iterate()

tracing_override:

[0 m
rule Primitive_Type_Attr_To_Column:
srcp:
(String, <prefix>)][]
(Attribute)[name == <n>, type == (PrimitiveDataType)[nam e == <pn>]]
tgtp:

[(Column)[name := concat_name(prefix, n), type := pn]]

tracing_override:

[m
The result of running the transformation with its three suddtered can be seen in figlire 3.10. As this
example shows, users can completely customise the tratiogriation created by MT to their own

needs.

5.5. Towards more sophisticated transformations

The previous section introduced the basics of the MT langueig a simple version of the running
example. In this section, | delve into some of the more adsdraspects of the MT language which
allow more complex and sophisticated transformations texmressed. In order to explore these

aspects fully, I first present a more complex version of tmming example.

5.5.1. Extending the running example

In this subsection | define the ‘advanced’ variant of the mgrexample. The overall idea is, as
before, to translate UML class models into relational das@bmodels. In order to make the example
more challenging, the ‘Simple UML meta-model is extendedeveral ways as can be seen in figure

ET1. These extensions extend the required transformasidollows:

e Associations are added to the meta-model. Associationa adphificant degree of complexity
to the meta-model because a class’s ‘real’ attributes dezrdaned by the union of the attributes

it directly links to, and the associations for which it is aiszte.

e Attributes can be marked as being part of a class’s primayybkehaving theis _ primary

attribute set to true. Note that associations play no patetermining a class’s primary key.

130

att)

:Attribute

mod_id = "13"
name = "owner"

:Attribute

mod_id ="12"

name = "name"

type

:Class

mod_id = "10"
name = "Dog"

Tracing
Class_To_Table: t1

attrs

X

:Table

mod_id = "19"
name = "Dog"

/s \:s

:Column :Column :Column
:Class
o wqqn mod_id ="16" mod_id ="18" mod_id ="17"
mod_id = "11 type = "String" type = "Integer” type = "String"
name = "Person" ype = > g } ype = r 9 il ype = > 9 |
name = "name name = "owner_age name = "owner_name

type attrs attrs
:Attribute :Attribute
mod_id = "14" mod_id = "15"
name = "name" name = "age"
/ype fype

:PrimitiveDataType :PrimitiveDataType

mod_id ="9"
name = "String"

mod_id ="8"
name = "Integer"

Figure 5.10.: Augmenting and overriding the default trgdimformation.

e Classes which have thie persistent attribute set to true will be converted to tables;
references to such classes (via attribute types or aseocatvill result in the classes primary
key attributes being to converted to columns used as a foikady. Class’s which do not have
theis _persistent attribute set to true will not be transformed into tables] anll have

their attributes drilled into, as in the simple transforioat

The relational database meta-model is also extended, asshdigure[5.1R. The extended meta-
model allows tables to define primary keys and foreign keyeteNhat, since the TM data model
allows nested data types to be expressed, foreign keys firedieas a sequence of sequences of

columns.

5.5.2. Pattern multiplicities

One of the problems noted in sectibn512.4 with the QVT-Ragtmpproach is that model element
patterns can only match against a fixed number of elementsneSery simple transformations

naturally consist only of rules which match against a fixethbar of elements in the source model.

131

MObject
mod_id : String i
to_string()

initialize()

name : String

Classifier

initialize()

T

PrimitiveDataType Association

initialize() initialize()

fesisrc ype

Class

is_persistent : bool

initialize()

attrs
* ordered

A

Attribute

is_primary : bool
name : String

initialize()

Figure 5.11.: Extended ‘Simple UML meta-model.

However, many, if not most, non-trivial transformationstzon rules which need to match against an
arbitrary number of source elements. Expressing suchftnamations in the QVT-Partners approach

can be cumbersome.

To solve this problem, MT adapts the concept of multiplgtfound in many textual regular ex-
pression languages. Each source pattern in MT can optjobalfiven amultiplicity. Multiplicities
specify how often a given source pattern can, or must, magahst its source elements. Multiplici-
ties are therefore a constraint on the universe of modelaiépassed in the parameter correspond-
ing to the patterns position in trecp clause. Each pattern insacp clause can optionally be
suffixed with a multiplicity and an associated variable fliigd The following example of a pattern
multiplicity will match zero or more associations, assignithe result of the match to tlessocs

variable:

(Association, <assoc>)[name == n] : * <assocs>

The syntax for multiplicities is inspired by Perl’'s regukaxpression languages. The following

multiplicities, and possible qualifiers, are defined in MT:

132

MObject
mod_id : String f
to_string()

initialize()

Table

fkeys : Seq(Seq(Column))
name : String

initialize()

pkey cols
*ordered * ordered

Column

type : String
name : String

initialize()

Figure 5.12.: Extended relational database meta-model.

m Must match exactlyn source elements.

* Will match against zero or more source elements.

* | Must match against every source element.

* ? Will match against the minimum possible number of sourcenelas.

m .. n Must match no less tham, and no more than source elements.

m .. n ? | Will match against the minimum number of source elementg arelements have

been matched, but will not exceadnatches.
m .. * Must match no less tham elements.
m .. * ? | Will match against the minimum number of source elementg arelements have

been matched.

As with Perl textual regular expressions, multiplicitiesfalilt to ‘greedy’ matching — that is, they
will match their pattern against the maximum number of elet:¢hat causes the multiplicity to
be satisfied. When backtracking insecp clause calls upon a multiplicity to provide alternative
matches, it then returns matches of lesser lengths. Theepoo€ greedy and non-greedy matching
is however much simpler in the case of textual regular egwas since text is an inherently ordered
data type. Thus the length of matches is calculated by deteamgnhow many characters past a
fixed starting point a match extends. In contrast to this, ehetements have no order with respect
to one another, and thus MT has to take a very different appro@ the concepts of greedy and
non-greedy matches. MT defines the length of a multipligitieatch as the number of times the
multiplicity matched; however since model elements areond¢red, this does not present an obvious

way of returning successively smaller matches. In ordeesolve this problem in the case of greedy

133

matching, MT creates the powerset of matches, and iteratsitp successively returning sets with
smaller number of elements when called upon to do so. Noteathést MT guarantees that with
greedy matchingmatch,,| > |match, 1|, it makes no guarantees about the order that sets of equal

size in the powerset will be returned.

The? qualifier reverses the default greedy matching behavidigmgting to match the minimum
number of elements that causes the multiplicity to be satisBuccessively returning sets of greater
size from the powerset when called upon to do so. Trgualifier is the ‘complete’ qualifier which
ensures that the pattern matches successfully against maael element passed in the patterns
appropriate argument. Whilst tiequalifier, in a slightly different form, is standard in mosktual

regular expression languages, thqualifier is specific to MT.

Variable bindings in the presence of multiplicities

Variable bindings in patterns suffixed by multiplicitiesekto be treated differently from variables
in bare patterns. When a multiplicity is satisfied, its ag&sted variable binding is assigned a list of
dictionaries. Each dictionary contains the variable bigdifrom a particular match of the pattern.
The need for different treatment of variable bindings iasithd outside multiplicities is most easily
shown by examining what would happen if they were treatedtidally. Consider the following

incorrect MT code:

(Association)[src == (Class)[name = n]] : * <assocs>
(Class, <c>)[name == n]

A first glance may suggest that when the rule these patteena part of runs¢ will be set to the
class which has the same name as the associations souseHibagever, the example is nonsensical
sincen has no single value. Indeedmay have no value at all, since it will be bound to zero or more
class names as the multiplicity attempts to match the mattdim as many times as possible. As this
example shows) has no meaning outside of the multiplicity it is bound in; lever it clearly has a
meaning in the context of the multiplicity.

In order to resolve this quandary, MT takes a two stage approdithin multiplicities, local vari-
able bindings are accessed as normal. At the end of eachssfidlcamatch, MT creates a dictionary
relating variable binding names to their bound values. T$teof these values is then assigned to
the variable binding associated with the multiplicity. Bhhe variable bindings for each individual
match can be accessed. To illustrate this, | reuse the atiginltiplicities example:

(Association)[src == (Class)[name = <n>]] : * <assocs>

Printing theassocs variable would lead to output along the following lines:

[Dict{"n" : "orders"}, Dict{"n" : "parts"}]

134

The MTmodule provides a convenience functionult _extract(bindings, name) which
iterates over a list of dictionaries, as generated by a pligitly, and extracts the particular binding
name from each dictionary, returning a list. A standard idiom iff I to use this function with a self
variable binding in a model element pattern, which allowseruo determine all the model elements

matched by a particular pattern multiplicity.

5.5.3. Extended example

In this subsection | show the MT version of the extended examphe added complexity in this

version of the transformation over the original simplersi@n is due to three considerations:

1. Classes can not be transformed in isolation — all assoesafor which a class is the source must

be considered in order that the table that results from & castains all necessary columns.

2. Classes which are marked as persistent must be transfaubstantially different from those

not marked as persistent.

3. Foreign keys and primary keys reference columns. It iomaot that the column model ele-

ments pointed to by a table are the appropriate model elemamd not duplicates.

The MT example is as follows:
$<MT.mt>:
transformation Classes_To_Tables

rule Persistent_Class_To_Table:
srcp:

(Class, <c>)[name == <n>, attrs == <attrs>, is_persistent = = 1]

(Association, <assoc>)[src == c] : * <assocs>
tgtp:

(Table)[name := n, cols := cols, pkey := pkeys, fkeys := fkeys]
tgt_where:

cols = []

pkeys := []

fkeys =]

for aa := (attrs + MT.mult_extract(assocs, "assoc")).iter ate():

a_cols, a_pkeys, a_fkeys := self.transform([""], [aa])
cols.extend(a_cols)

pkeys.extend(a_pkeys)

fkeys.extend(a_fkeys)

rule Primary_Primitive_Type_Attribute_To_Columns:

srcp:
(String, <prefix>)[]
(Attribute)[name == <attr_name>, type == (PrimitiveDataT ype)[name ==
<type_name>], is_primary == 1]
tgtp:
[col]
[col]
I
tgt_where:

135

col := (Column)[name := concat_name(prefix, attr_name), t
type_name]

rule Non_Primary_Primitive_Type_Attribute_To_Columns
srcp:
(String, <prefix>)[]
(Attribute)[name == <attr_name>, type == (PrimitiveDataT
<type_name>], is_primary == 0]

tgtp:
[(Column)[name := concat_name(prefix, attr_name), type :
I
I

rule Persistent_User_Type_Attribute_To_Columns:
srcp:
(String, <prefix>)[]
(Attribute, <attr>)[name == <attr_name>, type == (Class, <

[name == <class_name>, attrs == <attrs>, is_persistent ==

tgtp:
cols

I

[cols]

tgt_where:
cols = []
for attr := attrs.iterate():
a_cols, a_pkeys, a_fkeys := self.transform([concat_name
attr_name)], [attr])
cols.extend(a_pkeys)

rule Non_Persistent_User_Type_Attribute_To_Columns:

srcp:
(String, <prefix>)[]
(Attribute, <attr>)[name == <attr_name>, type == (Class, <
[name == <class_name>, attrs == <attrs>, is_persistent ==
tgtp:
cols
I
I
tgt_where:
cols = []

for attr := attrs.iterate():
a_cols, a_pkeys, a_fkeys := self.transform([concat_name
attr_name)], [attr])
cols.extend(a_cols)

rule Persistent_Association_To_Columns:
srcp:
(String, <prefix>)[]
(Association)[name == <attr_name>, dest == (Class, <class
<class_name>, attrs == <attrs>, is_persistent == 1]]

tgtp:
cols

I

[cols]

tgt_where:
cols = []
for attr := attrs.iterate():
a_cols, a_pkeys, a_fkeys := self.transform([concat_name
attr_name)], [attr])
cols.extend(a_pkeys)

rule Association_Non_Persistent_Class_To_Columns:

136

ype =\

ype)[name

= type_name]]

class_>) \

1l

(prefix, \

class_>) \

1l

(prefix, \

_>)[name

(prefix, \

srcp:
(String, <prefix>)[]

(Association)[name == <attr_name>, dest == (Class, <class _>)[name ==
<class_name>, attrs == <attrs>, is_persistent == 0]]
(Association, <assoc>)[src == class_] : * <ass0Cs>
tgtp:
cols
fl
fkeys
tgt_where:
cols = []
fkeys = []
for aa = (attrs + MT.mult_extract(assocs, "assoc")).iter ate():
a_cols, a_pkeys, a_fkeys := self.transform([concat_name (prefix, \

attr_name)], [aa])
cols.extend(a_cols)

rule Default:
srcp:
(MObiject)(]

tgtp:
null

In order to run this transformation, a list of top-level elmts (classes and associations) should be
passed to it. Unlike the simple version of the example, tier® need to designate one particular
class as being the ‘start’ class for the transformation. dutput of the transformation will consist of

a number of tables.

One feature in particular requires explanation to makeesefishis transformation. Many of the
rules have more patterns than there are arguments passedransform function. For example,
the Association ~ Non_Persistent ~ Class To Columns rule defines three patterns but
thetransform function is never called with more than two arguments — it Mfdlius seem impos-
sible for this rule to ever execute. However, MT defines thia¢mva rule is passed fewer arguments
than it has parameters, the root set of source elementsstitsitdd for each missing argument. This
is effectively an escape mechanism allowing rules acce$®toomplete source graph. Although this
might seem an arbitrary design choice, without such a méstmainansformations such as this would

be complicated by the need to pass the root set of source mighoesevery rule execution.

The overall structure of this transformation is hopefuljatively straightforward. Theersis-
tent _Class _To_Table rule ensures that each class marked as being persisterg sotiice
model is transformed into a table in the target model. Itsak@ersistent class, and finds all of the
associations for which the class is a source; it then iter@ter the union of the classes’ attributes and
associations for which it is a source, transforming them atlumns. All of the other rules take in a
string prefix (representing the column prefix being consédi@s the transformation drills into user
types), and an attribute or association (and, in the caskeoA¢sociation =~ Non_ Persist-

ent _Class _To_Columns rule, an additional set of associations) and produces tihiags: a

137

list of normal table columns; a list of primary key columndjsa of foreign key columns. The final
rule in the transformatio®efault is a ‘catch all’ rule that takes in model elements from thetroo
set which not matched by other rules — non-persistent damse associations — and transforms them
into thenull object; this causes MT to discard the result of the transétion rule, and not create
any tracing information. ThBefault rule is necessary to ensure that such elements in the root set
of source elements do not cause the transformation to r&ismanot transform exception.
Figure[5.IB shows a visualization of a particular executibthe transformation. The size of the
source model has been increased to the maximum that candiblgesisualized on paper, to provide
some reassurance that MT can cope with transformationsndeyemall handful of elements. Note
that when freed of paper-based space constraints, andstiization technique can easily cope with

much larger source models.

5.5.4. Pruning the target model

One thing not immediately obvious from viewing figure3.13hat the final target model is not a
union of the model elements produced in every rule executiofact, if one were to take the union of
model elements produced by every rule execution, the tangeiel would contain many superfluous
model elements. The reason for this can be seen by examimirg auch afersistent Ass-
ociation _To_Columns . This rule calls tharansform function but then effectively discards
some of the model elements produced by this call (the rulei@stipn cares only about primary key
columns, and ignores non-primary key columns). Knowingd,tha an implementation detail, TM
assigns each new model element a unique and monotonicafiyaising identifier, one can see from
figure[5.IB, that some elements have been discarded, due mmthcontiguous model identifiers in
target model elements. For example, the lowest identifieaftarget model element is 29 and the
highest 47, but identifiers such as 42 are missing in the figtinese are elements that were produced
by a rule execution, but discarded by other rules.

MT’s approach to achieving the final target model involvestfjrtaking the model elements pro-
duced by transforming each element in the root source gbertthen uses these elements as the root
nodes in a simple graph walking scheme. Only target modeleiés which are reachable from these
elements are considered to be in the eventual target moded. tNat scheme does allow the eventual

target model to consist of unconnected subgraphs.

5.5.5. Combinators

One of the most interesting features in the QVT-Partnerscamh are combinators. Sectibn512.3

showed theor combinator; the QVT-Partners approach also defameb andnot combinators. The

138

:Association

mod_id = "28"
name = "address”

Tracing
Persistent_Class_To_Table: t1, t12, t19
Primary_Primitive_Type_Attribute_To_Columns: t2, t4, t5, t13, t14, 016,
Persistent_Association_To_Columns: t3, t15
Association_Non_Persistent_Class_To_Columns: t6
Non_Primary_Primitive_Type_Attribute_To_Columns: t7, t8, t9, t10, 17,18, t21, t22

:Association

:Association

mod_id = "27"

name = "parts”

dest src
:Class
mod_i t1| mod_id ="11"
name = "Address” name = "Customer”
is_persistent = 0 is_persistent = 1
6 attrs/ attrs attrs attrs attrs 6 |t6 t6 6 It
)
©
- - - - - - v
:Attribute :Attribute :Attribute ‘Attribute :Attribute :Attribute “Table
mod_id = "21" mod_id="22" || mod_id="23" || mod_id = "24" mod_id = "25" mod_id = "12" p—
: - : - : n : - : - : - mod_id = "37'
is_primary =0 is_primary =0 is_primary = 0 is_primary =0 is_primary =0 is_primary = 1 - M
! " " " . " B " " o " «| | name = "Customer’
name = "house name = "addr2' name = "addr3' name = "county’ name = "postcode name = "name'
7 type type type / typ c\i8 type. typRI9 coNt10 coms\t11, cols cols\t2 olgpke) type, fkeys
N L N V4
:Column :PrimitiveDaIaType$ Column :Column :Column :Column :Column
mod_id = "32" mod id = 10" mod_id = "33" mod_id = "34" mod_id = "35" mod_id = "36" mod_id = "29" cols
type = "String" name 7,.5""_' N type = "String" type tring” type = "String" type = "String" type = "String"
name = "address__housg"| 9 name = "address__addr2[| name = "address__addr3| | name ="address__county[| name = "address__postcode|| name = "name"
:Column
mod_id = "30"
type = "Integer”
name = "orders__date"|

Figure 5.13.: An example execution of the extended transition.

15

est dest rc
t12
name =
is_persistent = 1 is_persistent = 1
attrs 19 attrs. ttrs attrs attrs. 12
:Attribute :Table :Attribute ‘Attribute :Attribute :Attribute
3 t3 | mod_id="18" || mod_id="47" || mod_id="17" || mod_id="19" || mod_id="14" || mod_id = "15"
is_primary = 0 fkeys =] is_primary = 1 is_primary =0 is_primary = 1 is_primary = 1 "
" " "Part” g worice” "Hate" B «f| name = "Order
name = "name name = "Part name = "id name = "price’ name = "date name = "order_num
L1
t21 cols colpkey 20 \cols 22 Yype pe » type 113 {14 /ikeys [colspkey key §ols
:Column :Column :Column ‘PrimitiveDataType :Column :Column
ols | | mod_id mod_id = "44" mod_id = "46" o 5 \t1e |cols mod_id = "39"
- - it " mod_id ="9' . N
type = "String’ type = "Integer - . " Integer’ type teger’
—n " — g —n " name = "Integer’ —n " - "
name = "name name = "id name = "price name = "date name = "order_num'
N
:Column :Column
type = "Integer”
name = "orders__order_num! name = "parts__id"

combinators work largely as one might expect given their esmniror example thand combinator

takes two or more rule invocations, and succeeds only if @acitation succeeds.

Since MT rules are able to utilise the standard Convergenstof success and failure, the base
combinators from the QVT-Partners approach can be encoidectlg in MT using thenot , dis-
junction and conjunction operators faot , or , andand respectively. The following contrived
transformation rule will match against a class iff one o#itisibutes can be transformed by one or the

other of theR1 or R2 rules:

rule X:
srcp:
(Class)[attributes = {a | O}]

src_when:
self.R1(a) | self.R2(a)

The QVT-Partners approach defines extra semantics foarnkiecombinator which automatically
merges together the outputs of different rules. In the gdroase, | believe that such functionality is
undesirable since the merging of outputs can only sensiblyatermined at the fine-grained level by
transformation writers themselves. However building argimey’ combinator on top of the existing
functionality is relatively simple, since it merely inv@s storing and then merging the result of each

expression in a conjunction.

Although the treatment of combinators in MT is currently glistic, the direct encoding of these
features in terms of primitive Converge features is intiangs Whereas the QVT-Partners combina-
tors are new primitives in the language, MT is able to disedtilise Converge features. | believe
a fruitful area of future research will be to investigate mpowerful combinators, with a view to
including the most useful in a standard library. Work suchhag of Bézivin on model unification

[BO5], and Chivers and Paige [CP05] may have relevance to viestigation of combinators.

5.6. Implementation

In this section | discuss some of the most interesting aspedhe MT implementation. Since the
implementation follows the typical structure of DSL implentation functions as outlined in section
.47 — and as seen concretely in TM (seckian 4.5) — many &spethe implementation have already
been presented elsewhere in this thesis. In this sectiotlih®the novel aspects of the implementa-
tion, relative to what has already been presented. AppdBidbcontains the MT grammar which is

referenced throughout this section.

140

5.6.1. Outline of the implementation

The translation of aMT.MTblock into Converge is relatively straight forward at a highel. An MT
transformation is translated to a single class with a nurobstandard functions (e.gransform
andget target , as seen earlier), fields for holding tracing informatiod ap on, and a function
for each rule in the transformation. The translation resdhg names of all transformation rules as a
listinthe rule names field within the transformation class; the list retains thies’ order in the
source file.

The following subsections show how rules are translatedtlaadiefinitions of the standard func-

tions.

5.6.2. Translating rules

The translation of a rule into a function conceptually faltothe path outlined by example in section
E3. The translated function takes a variable numbergiraents, each of which must be a list
containing the ‘universe’ of elements which each patterthérule can match against. If the trans-
lated source model clauses fail to match against the argisnpassed to the translated function, the
rule fails. If these clauses succeed, they return the sebdkirelements matched by model element
patterns, and a dictionary of bindings. The dictionary efdings is passed to the translategp
andtgtp _where clauses which produce and return a list of target elemertis. iatched model
element patterns and target elements are then used to areaitable tuple for the transformations
tracing execution, before the rule returns the target etsnaroduced.

A simplified version of the outer translation of a rule is aléofos:

1 func _t_mt_rule(node):
2 /I mt_rule ::= "RULE" "ID" ":" "INDENT" mt_src "NEWLINE" mt_ out "DEDENT"
3 return |
4 bound_func $<<CEl.name(node[2].value)>>(* 0bjs):
5 if not mep_objects, bindings := $<<self.preorder(node[5])>>.apply(objs):
6 return fail
7
8 if not target_elements := $<<self.preorder(node[7])>>(b indings):
9 raise Exceptions.Exception(Strings.format(\${}<<CElI. lift(\
"Failed to generate anything for '%s’.")>>, objs.to_str())

PP e
N P O

self._tracing.append([mep_objects, target_elements])

B
» oW

return target_elements

[
3]

1

Line 5 translates the rules source model clauses; notefttiet source model clauses fail, the entire
rule fails. If the source model clauses succeed, then thslation of the target model clauses in line
8 is executed. Failure of the target model clauses is deerfegdlarror, and an exception is raised.
Note that there is no concept of backtracking between tlgetand source model clauses — once the

source model clause has successfully matched, the targhl tlauses are executed. The final part

141

of the rule in line 12 creates the necessary tracing infdonat

The translation of a rules source model clauses containgetigb to ensure that backtracking
amongst patterns works correctly; this is explored in th@ooming subsections. Since the target model
clauses are already fairly standard imperative code (Witratddition of model element expressions),
their translation is largely uninteresting and consedyeslided. However, the translation of all
clauses is complicated by the need to embed normal Converg and to ensure that there are no

unintended interactions between translated and embeddied(see sectios5.6112 dnd 5.6.14).

5.6.3. Translating a rules source model clauses

A rule potentially contains two source model clauses:sifop andsrcp _when clauses, the latter
of which is optional. Each pattern in tlsecp clause is translated into a generator function which
takes in a list of model elements, and a Converge diction&yiralings. Each time the pattern
matches successfully it returns a list containing thremstea list of the model elements matched by
model element patterns, a dictionary of new bindings, aatject the pattern evaluated to. The last
of these is largely an internal detail needed to support &s¢img of patterns. Sectién 5.5.4 contains
more detail on the translation of patterns.

Since each pattern is a generator, it needs to be placedhwaithi construct to ensure that possible
matches can be generated. When more than one pattern iatgreasrcp clause, patterns must be
translated ‘inside out’ into nestddr constructs; that is, the first pattern will be the outernfost
construct, and the last pattern the innermost. This sligtdmplicates the translation, which iterates
over the patterns in the order they are presented in the paesdn order to achieve the desired effect,
a standard idiom is used. Patterns are first translated tapotary list. The translatestcp _when
clause, if it exists, is used as the innermost construct.tdin@orary listis then iterated over in reverse
order with each iteration placing the result of the previbeisation inside dor construct. This idiom
is highly useful, and also shows a simple example of a DSlstation where the translated code does
not directly reflect the order of its source. Noting that ssligerate function iterates in reverse

order over the list, the simplified version of this tranglatis as follows:

translated patterns = [ordered transl ated patterns]
patterns _expr := [| $<<self.preorder(src_when cl ause)>> |]
for translated _pattern := translated _ patterns.riterate():
patterns _expr = [|
for $<<translated _pattern>>:

$<<patterns expr>>

1]
This simple translation only deals with part of the problesmsed when the failure of a pattern leads
to backtracking to an earlier clause. As each pattern mgtdhesturns a list containing three items:

a list of the model elements matched by model element patterdictionary of new bindings, and

142

the object the pattern evaluated to. As each pattern isrtyg clause is matched, the rules records
of matched model element patterns and variable bindings.gi¥hen a pattern fails, the list of
elements it matched by model element patterns and variaiudinlgs it created need to be ‘undone’
from the rules’ records. Since the failure of one pattern geyse the failure of an arbitrary number
of preceding patterns, the ‘undo’ mechanism also needs tk t@@n arbitrary depth.

MT makes use of Converge’s variable capturing and scopileg to implement a simple and effi-
cient undoing mechanism. Each rule defines two variaflasched _mp_elems andbindings
which store the rules evolving list of matched model pateaments and variable bindings. These
variables are available to each translated pattern. EaoBlated pattern then defines two variables
private to that pattern (hidden via Converge’s scopingsigee sectidn4.2.5), namexdtched _mp-
_elems _backup andbindings _backup . As the names of these variables may suggest, they
are used to store the values of tmatched mp elems andbindings variables as they were
before the pattern is matched; if the pattern did not matchessfully or is required to generate new

matches, they are used to restore their value. A slighttiedliversion of the translation function is as

follows:
func _t mt src(node):
/I mt _src = mt _srcp mt _srcc
/I mt _srcp = "SRCP" ™" "INDENT" pt _spattern { "NEWLINE" pt _spattern = }*
I "DEDENT"
translated _patterns := [ordered transl ated patterns]
if node[2].len() > 1:
/I mt srcc := "NEWLINE" "SRC WHEN" ":" "INDENT" expr "DEDENT"

patterns _expr := [
if $<<self.preorder(node[2][5])>>:

return [&matched _mp_elems, &bindings]
I
else:
/I mt _srcc =
patterns _expr := [| return [&matched _mp_elems, &bindings] |[]
for i := (translated _patterns.len() - 1).to(-1, -1):

patterns _expr = ||
if $<<CELIlift(i)>> < &args.len():
elements := &args[$<<CELlift(i)>>]
else:
elements = &self. _root _set

matched _mp_elems _backup := &matched _mp elems
bindings backup := &bindings

for new _matched _mp elems, new _bindings, matched _elem = \
$<<translated _patterns[i]>>(&bindings, elements):
&matched mp elems := &matched mp elems + new matched mp elems
&bindings := &bindings + new _bindings

$<<patterns _expr>>
&matched _mp_elems := matched _mp_elems _backup

&bindings := bindings _backup
1]
return ||
func (=*args):
if args.len() > $<<CEl.lift(translated _patterns.len())>>:
return fail

143

0 N o g b~ WN PP

matched _mp_elems := Set {}
bindings := Dict {}

$<<patterns _expr>>

return fail

5.6.4. Translating patterns

In this subsection | show how patterns are translated in M@ tfianslation of pattern multiplicities is
detailed in sectiof 5.6.10). Each pattern is translatemlargenerator function which takes in a list of
model elements, and a Converge dictionary of bindings. Hawhthe pattern matches successfully it
returns a list containing three items: a list of the modefredats matched by model element patterns,
a dictionary of new bindings, and the object the patternuated to.

Patterns can be any one of a number of pattern expressiordel glement patterns, set patterns,
variable bindings, and normal Converge expressions. rRagtgressions may arbitrarily nest other
pattern expressions. Each pattern expression is tradglate generator which can generate zero or
matches against given model elements. The translatiomiplicated by the fact that nested pattern
expressions are also generators; therefore when a patteskéed by backtracking to generate new
matches, the backtracking may need to resume several e@fsin a nested pattern expression.

All translated pattern expressions contain a wrapper witérhtes over the objects passed to the
pattern and passes them one at a time to the pattern expresSince the pattern expression is a
generator, its result is immediately yielded to the traeslgpatterns caller. Noting thgield in

Converge is an expression, the outer translation is asifsilo

func _t pt_spattern(node):
/| pt_spattern ::= pt_spattern_expr

return ||
func (bindings, elements):
for element := elements.iterate() & yield $<<self.preorde r(node[1])>> \

(bindings, element)

return fail

I

In the following subsections | detail how each type of patExpression is translated by MT.

5.6.5. Translating variable bindings

As befits the simplest type of pattern expression, MT's fetits of variable bindings is simple:

func _t_pt_svar(node):
/I pt_svar ;= "<" "ID" ">"

self._pattern_vars.add(node[2].value)
var_str := CELlift(node[2].value)
return |
func (bindings, element):
if bindings.contains($<<var_str>>) & not bindings[$<<va r_str>>] ==

144

10
11
12

element:
return fail
' return [Set{}, Dict{$<<var_str>> : element}, element]

Lines 8 — 10 check to see whether the variable in question Ineadg been bound; if it has, the
value of the existing binding is compared against the eléineing matched to ensure equality. If the
original and new binding values are not equal, the variabidibg fails. As such, this behaviour is
largely redundant in MT since exactly the same effect canchéeaed by having an initial variable
binding followed by references to that variable. This betawis maintained for the sake of ensuring
backwards compatibility with the QVT-Partners approach.

As the MT translation encounters variable bindings, it attdgn to the set of known variable
bindings in the translations’ pattern _vars field (line 4). This information is used in two dif-
ferent ways. Firstly the set of variable bindings is usedetzdnine the valid variable references for
subsequent patterns and clauses in a rule; this is necesragyvariable bindings in patterns with
multiplicities are dealt with differently (see sectidn®3. and’5.6.70). Secondly variables in a Con-
verge expression which reference a variable binding nebd teanslated into a dictionary lookup on

the current set of known bindings (see seclion 516.12).

5.6.6. Translating model element patterns

The translation of model patterns is the largest indivichet of MT’s translation, but can be split
into two parts: matching the model element type and dealiitig the self variable; matching against
model element slots. The former part is relatively simplae Tatter part is complicated by the need
to deal with nested pattern expressions. In this subsetfiiost present a simplified translation of
model element patterns which does not deal with nestedrpatteressions, before presenting the

complete translation.

A simplified translation

In order to understand the translation of model elemenepat | first consider a simplified variant.
The model element patterns in this simple variant can natagomny reference to the self variable,
and slot comparisons with nested pattern expressions milie evaluated once. If a slot comparison
fails, the entire pattern fails immediately. In the intésesf brevity, only equality and inequality slot
comparisons are translated. This subset still encompassember of interesting and useful model

element patterns such as the following:

(Dog)[name == <n>, owner == (Person)[name != "Fred"]]

The simplified translation is as follows:

145

© ©® N O O~ WN P

A A B B B B D DB DB W WWWWWWWWWNNNDNDNDNDNDNDDNDNERERRRR P RPB RP PP
W N O g b WNPFP OO N OO BA WNRPO O ®WNOOUBAWNIROOO®SNOOOOGBAWNRO

func t pt smodel pattern(node):
/l pt _smodel _pattern = "(" pt _smodel _pattern _self)" "[" pt _sobj _slot
1 pt _smodel _pattern _comparison pt _spattern _expr { ""
1 pt _sobj _slot pt _smodel _pattern _comparison
1 pt _spattern _expr }x "
1 = (" pt _smodel pattern _self)" """
/l pt _sobj pattern self ::= "ID"

type _match := [|
if not TM.type _match($<<CEl.lift((node[2][1].value)>>, &element):
return fail

I

slot _comparisons = []
while i < node.len() & node[i].conforms _to(List) & node[i][0] == \
"pt _sobj _slot™
slot _name := nodeli]
slot _comparison := node[i + 1]
slot _pattern := node[i + 2]

if slot _comparison[l].type == "=="

slot _condition := CEl.ieq _comparison
elif slot _comparison[1].type == "I=":
slot _condition := CEl.ineq _comparison

slot comparisons.append([|

slot _element := &element.$<<CEl.name(slot _name[1].value)>>

if not new matched mep elems, new _bindings, matched _elem = \
$<<self.preorder(slot _ pattern)>>(bindings, &slot _element):
return fail

if not $<<slot _condition([| &slot _element |], [| matched _elem [])>>:
return fail

&local _bindings += new _bindings

1)
i += 4

return ||
func (bindings, element):

local _bindings := Dict {3
$<<type match>>
$<<slot _comparisons>>

return [Set {element }, local _bindings, element]

I

Lines 9 to 12 deal with ensuring the model element to be mdtehef the correct type. Lines 26
to 34 shown the heart of the translation of slot comparistirte 27 extracts the value of the model
elements slot. Line 28 evaluates the slots pattern; if this glattern fails for any reason, the entire
model pattern fails. The hitherto unused third elemenhénib referred to as ‘the object the pattern
evaluated to’, returned by the pattern expression is thempaoed to the value of the model elements
slot obtained in line 27, using the slot comparison operalfothe comparison operator fails, then
the entire model pattern fails. As can be seen in line 48, agineldment pattern ignores any model

elements matched by nested model element patterns.

The clumsy term ‘the object the pattern evaluated to’ is usedause conceptually there are

two distinct ways in which a pattern expression evaluatesnv€rge expressions used as patterns

146

(e.g. "Fred" ; see sectiol’5.8.8) simply evaluate to an object which mesthecked against the
model elements slot. However other types of pattern exijgresssuch as the model element pattern
(Person)[name != "Fred"] , are passed the value of the model elements slot and asked to
match against it; they then return the value of the model etemslot unchanged. In other words,
some types of pattern expressions (Converge expressigailgnte to a new object whilst some return
the object passed to them (e.g. model element patternsg tNat even in the latter case it is neces-
sary to check the slot comparison after the evaluation, soeflement patterns such as the following
(which is functionally equivalent to the previous exammealuate correctly:

(Dog)[name == <n>, owner != (Person)[name == "Fred"]]

Ensuring the complete evaluation of nested pattern express ions

The preceding translation of model element patterns cemtane major flaw: it does not correctly
deal with nested pattern expressions that may generateth@rene match. Consider the following
pattern:

(Dog)[name == <n>, allowable_foods == Set{<x> | <Y>}]
The set patterrSet {<x> | <Y> } will potentially generate a match for every element in a set
matched against it. If, for example, the rule this patteqmeig of contains arc _when clause along
the lines ofx == "Biscuit" then it is vital that the set pattern generates all possitdeches to
ensure that a correct match can be found (if one exists). drpthvious translation of model ele-
ments, unless the nested set pattern happened to stumbss dlee correct combination during its

first iteration, then the entire rule this is a part of wouldl fa

In the general case, pattern expressions may be nestedtioitaargt depth within one another. MT
thus needs to ensure that all pattern expressions, no rhattetieep they are nested, can generate all
their possible matches. For model element patterns, isis @tsirable that the pattern expressions
in slot comparisons generate multiple matches in a prdaetashion. Pattern expressions are thus
evaluated in a deliberately similar fashion to patterns 8ra clause in the order that they were
defined, from left to right. If a model element pattern is resped to generate more matches, the right
most pattern expression will generate a further match isipdes. When a pattern expression within a
model element pattern generates all its possible matdiepattern expression to its left generates a
new match, which causes the control flow to return to its rightising that pattern to generate a new
match. When all pattern expressions within a model elemattéim have generated all their matches,
then the model element pattern itself fails. In common wiktgrns in asrcp clause, MT ensures

that each time a pattern expression fails, the appropraiable bindings are ‘undone’.

147

46

In order to cope with arbitrary levels of nested pattern egpions, one might reasonably expect

a significant degree of complexity to be needed in the tréinsla- indexes within lists needing to

be passed around and stored, and so on. However by carefoff @@@nverge generators and the

conjunction operator, the desired effect can be achievédanielatively small amount of code. Con-

sidering the same marginally simplified variant of modehedat patterns as previously (references

to the self variable not allowed; only a subset of slot corigoar operators dealt with), the translation

is as follows:
func _t_pt_smodel_pattern(node):
type_match := [|
if not TM.type_match(\$<<CEl.lift((node[2][1].value)>>
return fail
I
returns_vars := []
current_bindings_var := CEl.ivar(CEl.fresh_name())
conjunction := [[| $<<current_bindings_var>> := &binding

while i < node.len() & nodeli].conforms_to(List) & node[i]

"pt_sobj_slot":

slot_name := nodel[i]
slot_comparison := node[i + 1]
slot_pattern := node[i + 2]

if slot_comparison[1].type == "=="
slot_condition := CEl.ieq_comparison

elif slot_comparison[1].type == "I=":
slot_condition := CEl.ineq_comparison

next_bindings_var := CEl.ivar(CEl.fresh_name())

return_var := CEl.ivar(CElfresh_name())

returns_vars.append(return_var)

conjunction.append([| $<<return_var>> = $<<func_>>(\
$<<current_bindings_var>>) [])

conjunction.append([] $<<next_bindings_var>> := \
$<<current_bindings_var>> + $<<return_var>>[1] |])

current_bindings_var := next_bindings_var

i += 4

conjunction.append([| [Set{&element}, Functional.fold

Functional.map(_elementl, $<<CElL.ilist(returns_vars)

return ||

I

func (bindings, element):
$<<type_match>>
for yield $<<CEl.iconjunction(conjunction)>>

return fail

func _adder(x, y):
return x + vy

func _elementO(x):
return x[0]

func _elementl(x):
return Xx[1]

148

, &element):

s 1l
[O] ==

I(_adder, \
>>)), &element] [])

Note that in this code adder , element0 and elementl are module level functions. These

functions are used in later translations in this chapter.

The underlying theme in this translation is that patternreggions in slot comparisons may be
generators. Pattern expressions are placed into a singjenotion expression (chiefly built up in
lines 25 — 28). The translation places the conjunction éoim@ translated pattern expressions within
afor construct (line 40), which yields a value each time a sudaksgatch of all slot comparisons
is found. Thus the translation utilizes Converge’s builgbal-directed evaluation (sectibn-4]1.3) to
ensure that all possible values — including those from degséttern expressions — for all translated

slot comparisons are evaluated.

There are two further (somewhat related) aspects of thela@on which require explanation. The
first of these relates to MT’s treatment of variable bindinggrticularly the need to ‘undo’ variable
bindings when a slot comparison fails and Converge badidrakfter each slot comparison has been
added to the conjunction, MT creates a new uniquely nameadhblar(line 22) which has assigned to
it the union of the existing variable bindings and those te@éy the pattern expression (lines 27 and
28). The pattern expression in the next slot comparison tises this union of variable bindings as
its set of currently valid bindings (line 26). When Convelggektracks, the currently valid bindings
are implicitly undone since the union of existing and newdings is performed after each translated

slot comparisons.

The second aspect relates to the value returned by a modeti@attern, which is created in lines
32 to 33. Since model element patterns ignore elements etatoy nested model element patterns
(sectionB.4R), it is not surprising that the first elemethe returned list is a set containing only
the element matched by the current model element pattera.s&tond element of the returned list
which is initially rather foreboding using as it does fliokdl andmap functions which operate as
their LISP counterparts. Before tackling it directly, wesfineed to investigate threturn _ vars
variable in the translation, which is a list containing de@goted variables. Each time a nested
pattern expression is evaluated, a meturn _ var variable is created (line 23) to which the return
value of the pattern expression is assigned (lines 25 and Pi&@ return _ var variable is then
added to theeturn _vars list (line 24). Eachreturn _var variable thus holds a standard three
element list. Thdoldl call in line 32 is then passed a list of lists at run-time; eagh-list will
be a list containing three elements, as returned by a pattgression. The elementl function
then selects the variable bindings generated from eacltsioparison; the adder function then
creates a union of these variable bindings. This union isragtact subset of the final value of,
current _bindings _ var which will include all the bindings passed to the model elehpattern

initsbindings argument. Note that whilst it may initially appear simplenakereturn _vars

149

a run-time variable to which each pattern expressionsndistris appended, this would then lead to
complications when back-tracking would require items ia list to be removed. However since
the variables imeturn _vars are known at compile-time, it would be possible to achievenals
optimization by moving théoldl call to compile-time; this is left as an exercise for the e¥ad

It is interesting to compare this translation to that usedftdterns in asrcp clause, as presented
in section[5.618. While the two transformations are esalytfunctionally equivalent, the earlier
translation is perhaps more initially appealing since itses a familiar concept (nestéal con-
structs). Although the translation in this section useddéle familiar conjunction operator, it results
in a much shorter, more idiomatic — and marginally more effiti- translation. As this may suggest,
making use of some of the less common features present ine@mean be of significant advantage

when translating DSLSs.

5.6.7. Translating set patterns

In this subsection | outline the translation of set pattebug do not delve into the code of the transla-
tion which uses the same techniques and idioms outlineckitrémslation of model element patterns.
Set patterns match against single element patterns (thake teft of the [’ character) and subset
patterns (those to the right of th’‘character) simultaneously. For each single element pathdT
iterates over the set being matched; no two single elemétarpa will be matched against the same
element simultaneously. For each subset pattern, MT é@srmaer the powerset of the set to match
against. The intersection of all subsets (including thecsetprised of all single element patterns
matched) must b@. The union of all subsets (including the set comprised ofalfle element
patterns matched) must equal the set being matched. Setrjzatihen generate an appropriate return

value whenever each single element pattern and each swtsghpmatch successfully.

5.6.8. Translating Converge expressions when used as patte rns

As outlined in sectiof’5.616, when Converge expressionsised as pattern expressions, they act in
a different fashion to other pattern expressions. Wherbamheer types of pattern expressions are
a declarative match against model elements, Converge ssipns are simply expected to evaluate
to constants (in this situation meaning integers, stringsdel elements and so on). MT therefore
defines that Converge expressions in this situation are erdjuated once — even if the particular
Converge expression is a generator, it will only ever beireduo generate a single value. Converge
expressions used as pattern expressions return a lisstingsf the empty set to represent the model
elements matched by model element patterns, an emptyrtcyiof bindings, and the constant object

the expression evaluated to.

150

© 0 N O OB~ W NP

WoWWWRNNNNRNNRNRNRNDNERERER R 2 B B 3 e
W NP O © ® N0 U A O®NROO®®NO® O & WN B O

The translation of Converge expressions in this instanas taquires only a very thin wrapping

around the actual expression itself:

func _t_pt_spattern_expr(node):

/I pt_spattern_expr ::= pt_sobj pattern
pt_sset_pattern
pt_svar
expr

=
nononl

if node[1][0] == "expr":
return ||
func (bindings, elements):
return [Set{}, Dict{}, $<<self.preorder(node[1])>>]
1]

else:
return self.preorder(node[1])

Sectior5.6.72 details how the Converge grammareyf@ is embedded in the MT grammar.

5.6.9. An example translated pattern

Having now seen the translations of variable bindings, rhelgenent patterns, set patterns and Con-

verge expressions used as pattern expressions, we are agroition to see the result of translating

a particular pattern. | use the following pattern, whicharporates all three types of pattern expres-

sions:

(Dog)[name == <n>, allowable_foods == Set{"pork" | <Y>}]

The result of translating this pattern is the following l@re

unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match("Dog", elem
return Input_Pattern_Creator.fail
for yield $$76$$:= bindings & $$78%$:= unbound_func (bindi
slot_element := element.name
for matched_mp_elems, new_bindings, matched_elem := unbo
(bindings, element){
if bindings.contains("n") & not bindings['n"] == element:
return Input_Pattern_Creator.fail
return [Set{}, Dict{"n" : element}, element]
}bindings, slot_element):
if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, matched_elem]
return Input_Pattern_Creator.fail
}HP$76%3) & $$77$$ = $B76$$ + $$78BP[1] & $$84%$:
slot_element := element.allowable_foods
for matched_mp_elems, new_bindings, matched_elem
(bindings, element){
if not element.conforms_to(Input_Pattern_Creator.Set)
return Input_Pattern_Creator.fail
if element.len() < 1:
return Input_Pattern_Creator.fail

unbo

for $$79%$ = element.iterate() & $$80$$:= unbound_func (b

elements){
return [Set{}, Dict{}, "pork"]

}bindings, $$79%$) & $$81%$$:= Input_Pattern_Creator.Fu
powerset_generator(element) & $$81$$.union(Set{$$79$$

not $$81%$$.contains($$79%$$%) & $$82$$:= unbound_func (bin

element){
if bindings.contains("Y") & not bindings['Y"] == element:
return Input_Pattern_Creator.fail
return [Set{}, Dict{"Y" : element}, element]
}bindings, $$81$%$) & $$82%3[2] == $$81$$:

151

unbound_

ngs){

und_func \

func (bindings){

und_func \

indings, \

nctional. \
}) == element & \
dings, \

34 yield [$$80$$[0] + $$82$$[0], $$80$$[1] + $$82%3[1], eleme nt]

35 return Input_Pattern_Creator.fail

36 }(bindings, slot_element):

37 if slot_element == matched_elem:

38 yield [matched_mp_elems, new_bindings, matched_elem]

39 return Input_Pattern_Creator.fail

40 HEP77%$) & $$83%F = $$77$% + $$84$5[1] & [Set{element}, \

41 Input_Pattern_Creator.Functional.foldl(Input_Patter n_Creator._adder, \
42 Input_Pattern_Creator.Functional.map(Input_Pattern_ Creator._elementl, \
43 [$$78%F, $$84%3])), element]

44 return Input_Pattern_Creator.fail

45 }bindings, element)
Despite its initial appearance as an impenetrable jumbltézafrely named identifiers, through care-
ful examination of the input pattern, and the translatioresented in this section, it is possible to
identify which parts of this ITree relate to specific partdhaf input pattern. The first step in this is to
recursively break the input pattern down into its constitygattern expressions. One can then deter-
mine which line numbers each pattern expression relatés $onple table showing this is as follows
(note that due to the recursive breakdown, outer patterresgns line numbers overlap with those

of nested pattern expressions):

Pattern Lines
(Dog)[name == <n>, allowable _foods == Set {"pork" | <Y> }] | 1-45
<n> 6—13
Set {"pork" | <Y> } 20-34
"pork" 23-26
<Y> 28 -33

5.6.10. Translating pattern multiplicities

In order to deal with patterns with multiplicities (see secf5.5.2), some additions need to be made
to the outer translation of patterns from secfion%.6.4hdéligh each of the several forms of pattern
multiplicities requires a specific translation, they allda the same general form, which can be split
into two distinct phases. In order to demonstrate this, $@mé the translation for the multiplicity

in an elided view of the t _pt _spattern function:

1 func _t_pt_spattern(node):

2 /I pt_spattern ::= pt_spattern_expr pt_spattern_qualifi er

3 /I pt_spattern_qualifier ::= ":" pt_multiplicity "<" "ID" ">t
4 /I pt_multiplicity ::= pt_multiplicity_upper_bound

5 /I pt_multiplicity_upper_bound ::= " *"

6

7 self._inside_multiplicity_pattern += 1

8 pattern = [|

9 func (bindings, elements):

10 matches := []

11 for element := elements.iterate() & matches.append($<<se If.preorder(\
12 node[1])>>(bindings, element))

13

14 powerset := Functional.powerset(matches)

152

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

powerset := Sort.sort(powerset, func (x, y) {
return x.len() < y.len()

)

for matches := powerset.riterate():
if matches.len() ==

continue

yield [Functional.foldl(_adder, Functional.map(_eleme nt0, matches)), \
Dict{$<<CEl.lift(node[2][4].value)>> : Functional.map (_element1, \
matches)}, Functional.foldl(adder, Functional.map(fun c X) {

return [x[2]]
}, matches))]

return [Set{}, Dict{$<<CEL.lift(node[2][4].value)>> : [1}, elements]
self._inside_multiplicity_pattern -= 1
return pattern

The first phase of a multiplicities execution involves maighelements. In the case of tkemulti-
plicity, this occurs in lines 10 to 12 which evaluates evargcessful match of the pattern (note that
when the pattern does not match successfully, backtraakmsgres that theppend call will not
be executed). The second phase of execution then sucdgssivens permutations of the matches.
Note that, although not the case for thenultiplicity, in some multiplicities these two phases vii#
partially intertwined. Lines 14 to 17 evaluate the powerséimatches, sorting the resulting permu-
tations into ascending order based on the number of elerimreatech. Thdor construct in line 18
then iterates over the the powerset in reverse order, yiglpermutations of lesser size as the multi-
plicity is called upon to generate new matches. The lisdgeélby the multiplicity in lines 21 to 25 is
simpler than it may first appear. Line 21 unions the elememtshed by model element patterns from
each match in the permutation. Lines 22 and 23 create a $imgling for the multiplicities variable,
assigning it a list of variable bindings, with a bindingsrgrior each match in the permutation. Lines
23 to 25 union the objects each match in the permutation ateduo.

The translation of pattern multiplicities requires a sniall important change to the translation of
variable bindings, to prevent variable bindings within tiplicities from being added to thepat-
tern _vars field. The_inside _multiplicity _pattern field within the translation tracks
whether the translation is currently processing a pattastipticity or not. The updatedt pt -

svar function thus looks as follows:

func _t_pt_svar(node):
/I pt_svar := "<" "ID" ">"

if _inside_multiplicity_pattern ==
self._pattern_vars.add(node[2].value)
var_str := CELlift(node[2].value)
return ||
func (bindings, element):
if bindings.contains($<<var_str>>) & not bindings[$<<va r_str>>] ==\
element:
return fail
return [Set{}, Dict{$<<var_str>> : element}, element]

I

5The Converg@owerset function returns a list of lists if, as in this case, it is pea list rather than a set.

153

© 00 N O B~ W NP

=
~ o

5.6.11. Standard functions

Each transformation has two standard functions of padicuhportance: thdéransform and
transform _all functions. In this subsection | show the definition of thase functions.
Thetransform function was outlined in sectidn 5.8.1. It takes a variahlenher of arguments,
each of which must be a list. Noting that function objects oan@rge have a functiompply which
takes a list of values and applies them to the function a®if there passed as individual arguments,

thetransform function looks as follows:

func transform(* elems):
for elem := elems.iterate():
if not elem.conforms_to(List):
raise Exceptions.Type_Exception(List, elem.instance_o f, elem.to_str())
for rule_name := self._rule_names.iterate():
if target := self.get_slot(rule_name).apply(elems):
return target

raise Exceptions.Exception(Strings.format("Unable to t ransform '%s’.", \
elems.to_str()))

The first action of theéransform function After is to type-check its arguments in lines 2 tol4.
then makes use of therule _names field within a transformation which records the names of a
transformations rule in the order they were defined. Itegativer the rule _names field allows
the translated rule function to be accessed viaggte slot function. Using this, théransform
function calls rules in the order in which they were definestceeding as soon as it finds a rule which
executes on the input. If no rules execute, an exceptioriseda

Thetransform _all function is a simple, but highly useful, convenience fumctbuilt on top of
thetransform function. Given a list of model elements, it transforms easing thetransform

function. The definition ofransform _all is thus simple:

func transform_all(elems):
if not elems.conforms_to(List):
raise Exceptions.Type_Exception(List, elems.instance_ of, elems.to_str())
target_elems := []
for elem := elems.iterate():
target_elems.append(self.transform([elem]))

return target_elems

5.6.12. Embedding Converge code within DSLs

When compared to other model transformation approachesobMT’s most novel aspects is its
ability to embed GPL code within it. This is possible due ton@arge’s DSL embedding features.
The ability to embed Converge code in DSLs benefits both thesSers and implementers. Users
can reuse their knowledge of standard Converge, whilst D§illémenters can reuse tried and trusted

parts of the Converge compiler. In this subsection | exptew a DSLs can embed Converge within

154

itself.

The key to embedding normal Converge code can be seen in systh apattern _expr in
the MT grammar (sectionB.1) which reference éer rule from the Converge grammar (chapter
B). The first point to note is that all rules in the MT grammae arefixed bymt ; this allows the
MT grammar to be merged with the Converge grammar with no iob&flSince CPK grammars are
currently defined in strings, merging two grammars togetheimply a case of adding two strings.
In a similar fashion to TXL (sectiof-3.3.6) there is currgnib notion of grammar namespaces nor
are any checks for conflicts between the two grammars. Asntlaig suggest, whilst the current
implementation of this feature is workable, it is one of thsd refined parts of DSL implementation
in Converge.

MT extendsIModule _Generator in much the same way as tlssvitch DSL (see section
EZ2). The MT subclass has only one non-trivial interactioth its superclass, needing to override
the _t _var function. References to variable bindings are translatealdictionary lookups on the
bindings variable (see sectidn 5.6.5); see also sedfion 4.6.14. idlacelersion of the t _var

translation function is as follows:

func _t var(node):
/I var = "ID"

if self._pattern_vars.contains(node[1].value):
return [| &bindings[$<<CEl.lift((node[1].value)>>] |]

eISree:turn exbi IModule_Generator._IModule_Generator._t_v ar(node)
In summary — despite the need to add strings representingngass together, and to subclass a
complex class residing in the depths of the Converge comgilhe process of embedding Con-
verge code in DSLs is surprisingly simple and relativelyefoé complications. However it is unclear
whether this approach would scale satisfactorily to lasgemples. | believe that in the future two
things may need to be changed to improve the situation.lf-ggsAmmars need to be properly mod-
ularised to ensure that naming problems between grammanmstdarise, and that the relationship
between grammars is clearly stated. Secondly it would b&ulus®e loosen the coupling between
DSLs and thdModule _Generator module, possibly by removing the requirement to subclass

thelModule Generator class.

5.6.13. Extending the Converge grammar

Although this section has thus far ignored the translatiba oules target clauses, the presence of
model element expressions in such clauses is worthy of exioin. As a brief recap, model element
expressions such g®og)[name := "Fido", owner := (Person)[name = "Fred"

]] create new model elements; they are syntactically simaléinpugh not identical, to model ele-

155

ment patterns. Sectidn 5.B.4 contains more details on madeient expressions. Model element
expressions can be used anywhere in a rules target claadesrtbrmal Converge expression can be
used. Although this may suggest that model element expressian only be used at the top-level
within target clauses, they can in fact be used within Cagwexxpressions themselves. For example

the following expression shows how a model element expyessn be used within a Converge list:

[(Person)[name = "Fred"]]

As this example shows, in the context of target clauses, hadelment expressions effectively embed
themselves in the the base Converge language itself.

The embedding of model element expressions is currentlyeimgnted by taking advantage of
the fact that that CPK grammars are strings, and that primtuntles can have alternatives added at
any point in the grammar. Thus in the MT grammar (sedfiod Bhéexpr rule from the Converge
grammar is extended with a new alternative by MT pointinghtedt —_mep_pattern rule. Since
theexpr translation function in the Converge compiler immediatedynds computation over to the
rule named in its alternatives, the MT translation classdeemnly to provide a simple translation
function forpt _mep_pattern

It should be noted that whilst extremely powerful, this teidue is not generally applicable. It
currently requires detailed knowledge of the Converge grnanand the Converge compilers internals
in order to ensure that extending a rule in the Converge ganmas the desired effect. | hope that

future versions of Converge will be able to provide saferpsupfor extension of this sort.

5.6.14. Unintended interactions between translated and em bedded code

One of the challenges not tackled in the TM DSL was preventimigtended variable capture from
DSL input and the translated DSL code. This problem arisesrwvem ITree derived from user input
is placed inside an ITree containing dynamically scopedises. As seen in the translations in this
section, dynamically scoped variables occur frequentiigfty via the&var syntax. Dynamically
scoped variables are highly useful in allowing ITrees to bt Ipiece meal. However whilst stati-
cally scoped variables are automatically safely rename@diwerge’s scoping rules (section412.5),
dynamically scoped variables may cause variable captutelWiee’s derived from user input. For
example, the variableindings is frequently dynamically scoped in the translations of gection;
if an MT were to use the same variable name in, for examplgt, a where clause, then unexpected
results would almost certainly arise.

To prevent this problem occurring, MT performs its owrrenaming of variables in Converge
expressions. MT takes advantage of the fact that each I'ereeeport its free and bound variables

(viatheget _free _vars andget _bound _vars functions respectively). Foreach rule, MT first

156

calculates the free and bound variables of all Convergeesgns contained in that rules clauses. For
each variable, a fresh name is then generated; a dictioraoyds the mapping between the original
and fresh names. When MT encounters Converge variablesgditsi translation, it translates them
to variables with the corresponding fresh name. By renaraihgariables from users input, MT thus
ensures that there can be no unintended variable capture.

Once all variables have been safely renamed, a rules frégbles then require extra treatment.
For example the&eoncat _name function in sectio 5315 is a free variable in the contexthaf
Classes To_ Tables transformation, since it is defined outside of the transtdrom. All in-
stances of theoncat name within a given rule will be renamed to a variable along thedirof
$$5%concat nameS. Atthis point, there is no link between the valuecohcat —nameoutside
the rule, and the value &$5%concat name$$. Thus MT adds to translated rules assignments
from the original value of variables to their fresh name egl@int. In the case of theoncat name

function, the result of the translation would look along lines of the following:

$$5%concat_name$$:= concat_name

$$5%concat_name$$(™, bindings['n"])

Assigning to variables in outer blocks

Although thea-renaming mechanism of variables in user input preventstended variable capture,
it introduces problems due to the disconnect between tlggnativariable and its fresh-named clone.
This leads to two related problems.

The first problem relates to assigning to free variablesc&fresh-named clone is made of each
free variable, assigning to free variables in an MT blocksdnet affect the value of the original
variable. MT thus mirrors the normal Converge expectatiuat wariables assigned to in a block
(where a block in MT is essentially a rule) are local to thaickl However a problem arises if one
wishes an assignment to a free variable. First, let us astheh® T allows some free variables to be
declared as nonlocal (recall that in normal Convergalocal X is a declaration that assignment
to the variablex does not create a local, but instead binds to the the first outer block which contains
an assignment of). Assignment to a free variable then becomes problematice she user will be
assigning to the variables fresh-named clone; furtherrtizeee is no way to assign to the original
variable without reintroducing the prospect of variabletose. A partial solution to this problem is
for MT to mirror the assignment of free variables to theirsfrenamed clone at the beginning of the
translated rule, with the assignment of the fresh-namekdo its free variable equivalent at the end

of the transformation. Whilst this is possible, it meang th&ing the execution of the rule the local

157

and global values of the variable may differ.

This then highlights the more general problem, which is #tadny point during the execution
of a rule the values of the original variable and its freshad clone may diverge either through
assignment to the original variable or its fresh-namedeldrhere is no solution for this problem at
the moment in Converge. Although one can devise increasisgphisticated work arounds which
reduce the potential for the problem to arise, fundamenthé cloning of variables is flawed since
there is no mechanism for atomically synchronising thee@tband original variables.

The situations in which this deficiency are exposed are &sfigrconfined to compile-time meta-
programming, although one would not normally expect to enter the problem in practise. How-
ever Converge DSLs such as MT, which embed Converge codlith DSL, greatly increases the
chances of hitting this problem due to potential clashesaiable names between embedded Con-
verge code and the DSL. A possible solution to this deficiamould be for Converge to acquire a
‘variable alias’ feature which would alias a varialdén an outer block tg in an inner block. Since
the names would merely be aliases for the same underlyingbley there could then be no synchro-
nization issues between the two. Such a feature would ideaitk in much the same way as the
nonlocal declaration; indeed, it is also implicit that aliased vhalég are nonlocal to the block in
which they are renamed. Although the Converge VM providdcgent support for such a feature,

the compiler and language have yet to be sufficiently exidnde

5.6.15. Generating tracing information from nested model p atterns

In sectiof5.4P, the standard MT tracing information dogamechanism was outlined. By default,
only non-nested model element patterns contribute to theceart of trace tuples. | asserted that
empirically this appeared to be a sensible compromise tieated sufficient tracing information
without overwhelming the user. However it is clear that tigishnigue may not be suitable for all
applications; one can easily imagine further research terchéne the most practical tracing infor-
mation creation techniques for different types of transf@tions. To this end, in this subsection |
present a simple modification to the MT translation whichnges the default tracing information
created by allowing nested model element patterns to ¢umérito the source part of trace tuples.
This serves two separate purposes. Firstly it provideseede that the default tracing information
creation mechanism achieves a useful balance in terms e@bthme of information it creates. Sec-
ond it shows that DSL implementations in Converge tend tanbereable to changes, and also that the
MT implementation itself can serve as a testbed for furthed@htransformation experimentation.
The modification to MT necessary to allow nested model egpraspatterns to contribute to the

source part of trace tuples is in fact rather simple. All tkateeded is for model element patterns

158

to return the union of all elements matched by nested modehet patterns. By default, model
element patterns only return the element they matched stgagmoring the elements matched by
nested model element patterns. However the required iafiiomis present in theeturn var
associated with each slot comparison in a model elemerrpaffhus all that is needed is to use the
same technique used to union the bindings of each slot casoparReplacing lines 31 to 32 of the

complete translation from sectifn 516.6 with the followinchieves the desired effect:

conjunction.append([| [Set{&element} + Functional.fold I(_adder, \
Functional.map(_element0, $<<CEl.ilist(returns_vars) >>)), \
Functional.foldl(_adder, Functional.map(_elementl, $< <CEL.ilist(\

returns_vars)>>)), &element] [])
Taking exactly the same source model and transformatiod imsggure[5. 1B, the result of making
this change to MT can be seen in figlire 5.14. Note that in thisvisualization, one can see that
many target elements have tracing information from mora thr@e source element; the end result is
rather harder to read than figlire 3.13, and does not add saymtify to the users understanding of the

transformation in this particular case.

5.6.16. Summary of the implementation

In this section | have presented an analysis of the majos pathe MT implementation. To demon-
strate the result of MT’s translation of a transformatioecton[D.2 shows the complete result of

translating the simple MT transformation from secfion3.3.

5.7. Related work

ChapteB gave an overview of many of the leading model toansdtion systems currently available.
As with the majority of existing systems, MT is a unidireci# stateless model transformation sys-
tem. MT’s most obvious ancestor is the QVT-Partners appr¢@&/TO03h] which pioneered the use
of patterns in model transformations. MT takes the base @%iTners pattern language and enriches
it with features such as pattern multiplicities, and vaddaslot comparisons. Furthermore, by pro-
viding a concrete implementation — and a detailed explanaif that implementation — much of the
vagueness associated with other model transformatiofsasuihie QVT-Partners approach is avoided
in MT.

A significant difference from the QVT-Partners approacmiMiT’s imperative aspects. Due to its
implementation as a Converge DSL, MT can embed normal Cgavesde within it. This contrasts
sharply with the QVT-Partners approach which is forced tiindean OCL variant with imperative
features in order to have a usable language. As explainedcios[5.2.}, this variant language

suffers from several conceptual and practical problemseliee that MT is unique in being able

159

Non_Primary_Primitive_Type_Attribute_To_Columns: t7, t8, t9, t10, if,t18, t21, t22

Tracing
Persistent_Class_To_Table: t1, t12, t19
Primary_Primitive_Type_Attribute_To_Columns: t2, t4, t5, t13, t14, 6,

Persistent_Association_To_Columns: t3, t15
Association_Non_Persistent_Class_To_Columns: t6

:Association :Association :Association
mod_id mod_id = "26"
name name = "orders”
dest Ic dest If src est
:Class :Class :Class :Class
12 mod_id = "16" mod_id = "13" t t1 | mod_id ="11" mod_id = "20"
name = "Part" name = "Order" name = "Customer" name = "Address”
is_persistent = 1 is_persistent = 1 is_persistent = 1 is_persistent = 0
= tjattrs attrs ttrs attrs attrs pttrs tirs trs
(o))
o
Table :Attribute :Attribute :Attribute :Attribute :Attribute Table :Attribute :Attribute ‘Attribute :Attribute :Attribute :Attribute
15 —aan mod_id ="19" || mod_id = "15" w9 | mod_id ="14" 5 mod_id="18" | 3\t e - mod_id = "12" mod_id = "23" mod_id = "21" t6 | mod_id ="22" mod_id = "24" mod_id © Is
mod_id = "43 : : - : - : - mod_id = "37' : - : - : - : :
. N is_primary =0 is_primary = 1 is_primary = 1 is_primary = 0 . N is_primary = 1 is_primary = 0 is_primary = 0 is_primary = 0 is_primary =0 is_primary =0
name = "Order’ ol o " o . o \ name = "Customer - " o " o " o " - " - W
name = "price’ name = "order_num' name = "date name = "name’ name = "name’ name = "addr3' name = "house name = "addr2 name = "county’ name = "postcode’
t15 fkeys type type type, type t3 3 6 keys P pe pe type type 6 16 §
NN \'4 A2
P :Table P
:PrimitiveDataType :PrimitiveDataType
(colscols | t16 | pkey cols pkey 14122 | 13 o id =g t20 | mod_id = "47" t5 4 cofs 21 cols ols t9 fkols cols \pkey t7 2 | cols| mod id = "10" 8 cols 10 cols t11
name = "Integer” fkeys name = "String"
name
6 11, 4 122 coljt20 15/ cols [pkey 4 Is 2! 9 2 110
3 N 3 A N |
Column Column :Column :Column :Column :Column Column :Column :Column :Column :Column :Column :Column Column
mod_id ="3 mod_id = "45" mod_id ="34" mod_id ="32" mod_id = "29" mod_id ="33" mod_id ="
"Integer” type = "Integer" type = "String" type = "String" type = "String" type = "String" type = "String" type = "String"
name = "parts__id" name = "date" name = "order_num" name = "price" name = "orders__order_num{ | name = "orders__date"| | name = "name" name = "address__addr3[' | name = "address__house'| name = "name" name = "address__addr2| name = "address__county| | name = "address__postcode]

Figure 5.14.: Tracing information from nested model pat&xpressions.

to embed a GPL within it. Perhaps more significant than theshdéanguage embedded within MT
transformations is the ability to call out naturally to n@nTonverge code, even if it is defined outside
of the transformation. MT users are thus not constrainedngyimitations of the particular model
transformation approach. Although this may initially appéo be a mere implementation detail,
it differentiates MT from virtually all existing model traformation approaches, which typically
present a highly constrained execution environment.

Perhaps the closest model transformation approach is theneecial XMap languagé [CESWO04],
an approach essentially based on the QVT-Partners appréaihalso means that the issues noted
in both this section, and in sectibn 512.4 with respect taQNE-Partners approach, apply equally to
XMap. XMap is however notable for its sister language XSyhdck allows changes to be propagated
in the style outlined by Tratt and Clark [TC03]. Chagiér 6 whdiow MT can be evolved into a
powerful change propagating language.

Perhaps surprisingly, given the seeming simplicity of @eki one of MT’s most distinctive fea-
tures is its automatic creation of tracing information. Magproaches neglect this problem; the few
that tackle it, such as the DSTC approach [DIC03], requiesuser to manually specify the tracing
information to be created. By using patterns defined by tlee tasautomatically derive tracing infor-
mation has not, to the best of my knowledge, been used by ey system. MT distinguishes itself
further by its simple, but effective, technique for redgcsuperfluous tracing information.

It is perhaps telling that although MT contains several echaents compared to existing ap-
proaches, it also shares many of the limitations of existipgroaches, such as a lack of rule structur-

ing mechanisms. Secti@n®.8 outlines the work that may vessme of these limitations.

5.8. Future work

Although | believe that MT is currently one of the most adweshenodel transformation languages
available, the relative immaturity of the area means thah@ approach can claim to present a
definitive solution.

Perhaps the most pressing question for every model tranafmm approach, including MT, is
with regards to scalability. Although MT has been used toresp transformations of the order of
magnitude of the low tens of rules, it is clear that in ordemiake larger transformations feasible,
new techniques for structuring and combining rules will bguired. For example, currently all
the rules in a MT transformation exist in a single namesp#ure is no notion of ‘transformation
modules’. Similarly at the moment all rules exist at the sdewel; that is, given an element to

transform, rules are tried in order. Complex transformregtiwill require more selective mechanisms

161

to determine which rules can be executed, both for struwweificiency reasons. At the moment, a
transformations execution time has a worst case propaiti@m? wheren is the number of rules
in the transformation; authors of larger transformatiores/mequire that their domain knowledge is
used to narrow down the number of rules used to transforrngiements. | believe that analysing
work on combinators in functional languages may lead to nesights on how to better structure
transformatior,

The desirable for scalability is a concrete manifestatiba more nebulous problem surrounding
model transformations: their usability. Whilst one cansgire advanced tools to users, it is vital that
the tools be relatively easy to use. | believe there is sicanifi work to be done in presenting model
transformation languages to different users. MT couldeseruseful purpose here in allowing model
transformation languages to be easily tailored for diffiesudiences.

In terms of ‘nitty gritty’ details, there are several asggeot MT that could usefully be improved.
For example, one irritation encountered in this chapteatesl to thdor suffix of expressions in a
rulestgtp clause. Currently rules can generally only produce as mamyevel elements as they
have expressions in thgtp clause. This can occasionally lead to cumbersome or damgevork
arounds being employed. It would be useful to have a vaf@nt suffix which would ‘fold in’ the
elements produced by its expression as if they had beengeddy top-levetgtp . As befits a new,

small language similar examples can easily be found els@nhéT.

5.9. Summary

In this chapter | presented the MT model transformation laigg. | started by examining the QVT-
Partners approach, from which MT is partly derived, in depttentifying the strengths and weak-
nesses of this approach explains some of the underlyingmlekicisions taken with MT. | then
explored MT’s basic features, including its novel visuatian abilities of transformations, including
automatically generated tracing information. | then exgibsome of MT’s more advanced features
such as pattern multiplicities, which allowed a sophisédamodel transformation to be concisely
expressed. | then finished the chapter by examining in dégttranslation of an MT transformation
into MT.

| believe that MT is the first model transformation approagiptesent a detailed analysis of its
implementation. In so doing, | hope that MT serves two puesos demonstration of implementing
a non-trivial DSL in Converge; a demonstration of practid@dms for implementing model transfor-

mation engines. As the source code for MT is freely availddh®pe that it will allow others to take

5This suggestion is partly a result of a conversation withnBard Rumpe, made during a visit to the Technische Univer-
sitat Braunschweig in February 2005.

162

MT and alter it for their own purposes. In this way, | hope thit aids further experimentation into
differing model transformation techniques.

MT’s implementation is also notable for its relative brgvitThrough careful use of Converge
idioms such as generators and the use of goal-directedatiaiu | assert that much of the tedious
machinery that would be needed if MT were to be implementedstandard GPL has been avoided.
Although it is outside of the scope of this thesis to presemtimumbers to back up this claim, |
believe that MT provides compelling evidence that the sagipidisparate influences on Converge
(such as Icon’s goal-directed evaluation, ObjVLisp's daadel, and Template Haskell’s compile-
time meta-programming) coalesce to form a natural and higbierful development environment.

In the following chapter MT is used as the basis for a changpamating transformation language.

163

Chapter 6.

A change propagating model transformation

system

This chapter builds upon the MT language defined in the puasvahapter, creating a new unidirec-
tional change propagating model transformation languad&. Rotivation for change propagating
transformations was given in sectibn 212.3. Alanen andeBagorovide a useful overview of change
propagating transformations, which also explains sombetategories of changes that can be prop-
agated[[AP04]. Change propagating transformations intecconsiderable complexity compared
to stateless transformations. It is my belief that no onea@ggh to change propagation is likely
to prove sufficient for all purposes. Furthermore due to #uk lof focus on this particular area of
model transformations, much exploration will be necessargetermine when different approaches
are most applicable. The aim of this chapter is to outlineesofithe possibilities for change propa-
gating approaches, and to present a particular unidiredtichange propagating solution, PMT. PMT
is intended to provide support for use cases similar to thtined in sectiol 2.2]3.

As noted in chaptdrl 3, although several model transformatfproaches mention change propa-
gating transformations few actually provide such a medmaniFor the purposes of this thesis, only
three approaches are potentially of interest: BOTL [BM@8hann and Egyed’s approac¢h [JE04],
and XMOF [CS0B]. Both BOTL and XMOF are of limited interestjedto their differing aims com-
pared to PMT. Since BOTL restricts itself to bijective trimimations, | discount it, since | believe
that bijective transformations constitute only a smallgamion of useful transformations (see sec-
tion[3:3:4). XMOF is also of limited interest since it is pyodocumented, and aims to provide a
solution for bidirectional change propagating model tfamsations, which introduces an extra set of
challenges above and beyond those presented by unidiratttbange propagating model transfor-
mations. Johann and Egyed’s approach is the most integesttithe three, as it tackles unidirectional
change propagating model transformations; however itagxplonly one aspect of its approach in

detail, and furthermore is incapable of propagating sonmoiant types of changes.

It is an explicit aim of PMT to facilitate change propagatiorany type of model transformation.
However it is important to note that PMT is not as mature oblstas MT — by its nature PMT is
much more of an experiment than MT. Nevertheless | hope lifathapter serves as a useful step on
the path towards mature change propagating model tranafamsolutions.

This chapter begins with an overview of some of the highlletategies and design decisions
relevant to change propagation. PMT itself is then intredijand via example it is shown how it
allows change propagating transformations to be expressadw how PMT relates source and target
models, and how it is capable of propagating changes theatiether approaches. | also detail PMT's
support for expressing change propagating transformapexifications. Finally | detail some of the
relevant parts of PMT's implementation; since PMT is ablesiose much of MT’s implementation,

this chapter places less emphasis on the implementatiorirthbe previous chapter.

6.1. Change propagation

Whilst sectio 2213 motivated change propagating modakformations, it gave very little hint as to
how such transformations might be realised. The intentfdhis section is to outline the background
of change propagations, and some of the overall designidesipossible when implementing a
change propagating model transformation approach. Natd tnly consider these design decisions

in the context of unidirectional change propagating trameftions.

6.1.1. Change propagation compared to incremental transfo rmation

Incremental transformation (sometimes known as increate@tmputation) is a well studied field
(see IRR9RB] for an overview of some of the available liter@tu The most widespread, and one of
the simplest, examples of incremental transformation ade compilation systems. For example the
UNIX make command takes a list of source code files, and compiles oonletlwhich have been
modified since the last execution miake.

Incremental transformation initially appears to be vemikir to change propagation. Both ap-
proaches provide support for taking a source item and waméfig it into an appropriate target item;
subsequent changes made to the source item then causerigipropdates on the target item. How-
ever incremental transformation approaches assume thdathet item will be unmodified by the
user when they update it. Incremental transformation ne¢dherefore concern itself with many
of the issues that affect change propagation in the confettti® thesis, chiefly how to propagate
changes non-destructively into the target model. This @sden clearly in the code compilation

system example; any modifications the user may make to theioaf the compiler will be lost the

165

next time the code compilation system discovers it needsdompile the associated source file.

There is thus a fundamental difference between the two appss, since an incremental transfor-
mation approach is able to make assumptions about its emwént that conflict with the use case
outlined in sectiolZ213. For the purposes of this thedignge propagation is therefore largely

treated as a new subject with respect to incremental tramaton systems.

6.1.2. Manual or automatic change propagation

Tratt and Clark outline a framework intended to allow urediional stateless transformations to be
associated with one or modelta transformationsvhich can propagate changés [TC03]. The execu-
tion sequence of such transformations is as follows. Theinattional stateless transformation takes
in a source model and produces a target model as normal. @idrgechanges made to the source
model are extracted as change deltas to the source modede Te#ias are then passed to an appro-
priate delta transformation which is expected to propatie@ehange represented by the delta to the
target model. In general each different type of change wijuire a different delta transformation to
be created. Note that the framework itself does not impasiacilitate, a particular change propaga-
tion mechanism is left open in this framework. An examplehid framework can be seen in the XMF
tool which includes a change propagation framework withdiagided delta transformation language

XSync, to accompany a unidirectional stateless modelfivamsition language XMap [CESWD4].

The concept of delta transformations is an interesting priedit it provides a means of integrating
legacy, or otherwise incapable, transformations into angharopagating transformation. However
it has two inherent problems. Firstly there is an inevitatlileconnect between the core unidirec-
tional stateless transformation, and the delta transfiioms all of which must be created by hand.
Secondly there is, in general, no bound on the number of taltsformations needed to cope with
change deltas. For this reason | classify this frameworkasual change propagation, since the code

to perform change propagation must be manually created.

Manual change propagation contrasts with automatic chprapagation, where a transformation
can propagate changes without additional code needing aolded. Some approaches choose a hy-
brid approach, being able to automatically propagate sdraeges whilst requiring manual assistance
to propagate others. For example, OptimalJ is able to paipaghanges between some of its sim-
ple models automatically, but can require assistance whapagating changes between a complex

model and its textual representation [0J04].

166

6.1.3. Propagating changes in batch or immediate mode

There are two potential modes of operation for running chargpagating transformations: ‘batch’
and ‘immediate’ mode. These two modes refer to the numbenarfiges that are propagated in each
step.

Batch change propagation takes a number of changes fronotineesmodel and propagates them
to the target model only when explicitly requested to do sah®syuser. The advantage of batch
change propagation is that the user is in complete contrelhein changes are propagated. Batch
change propagation can be considered to be similar to comilzdion — users typically make
multiple edits to a source code file before choosing to coenpilSince change propagation may be
a relatively slow activity, it is beneficial to the user if fhean schedule change propagation at a time
convenient to them. On the other hand, the user may congideronvenient to have to manually
force changes to be propagated.

The concept of immediate change propagating transformaimdefined in([CS03]. An immedi-
ate change propagating transformation propagates chémges target model as soon as the source
model is changed. Unlike a batch mode change propagatingfaranation, which implicitly propa-
gates multiple changes when run, an immediate mode chapngagmating transformation propagates
small changes, which can be viewed as being semi-atomicadVentage of immediate mode prop-
agation is that the source and target models involved inrtirestormation are always synchronised
with each other. However there are a number of potentiabidasstages to immediate change propa-
gating transformations.

From the users point of view, immediate change propagatiap imroduce a lag every time the
user makes a change to the source model, whilst the systqgragates the appropriate changes to the
target model. During this lag, the system can choose tordithk the source model, thus preventing
the user making changes to it, or to place changes to theesouvdel into an ordered queue. In the
former case, the user is likely to become highly frustratedhe latter case, the advantage of syn-
chronised source and target models is lost, albeit temiporurthermore, the process of changing a
model frequently involves passing through one or more inégliate stages. Each intermediate stage
may see elements being temporarily deleted, renamed and. st the changes from these inter-
mediate stages are propagated, it is possible that in¢oaed irreversible, changes may be made
to the target model. Consider a tool which allows a user t¢ ‘@unodel element to a clipboard,
who then intends to paste the element to another part of tlokehfater. If such a change is propa-
gated immediately, it will lead to the deletion of targetrats. Such elements may contain manual
changes or additions in the target model; when the elemeatdléted, the manual changes will be

lost and will not be replaced when the source element is éoagtack into the model. Since only

167

the user can know the intended end goal of their sequenceiohgcimmediate change propagating

transformations pose an extra set of challenges for suctagos.

6.1.4. Relating source and target elements by key, trace, or identifier

One of the chief challenges when propagating changes isd@finechanism for relating, or distin-
guishing, the specific target elements created by a giverrelative to specific source elements. The
distinguishing of elements is vital to ensure that targetrants are modified, created or deleted cor-
rectly during change propagation. This problem is largeaki@vant during the initial run of a change
propagating transformation, but is vital when subseqyegmtbpagating changes; this problem was
outlined by example in sectign 2.2.3.

Johann and Egyed present a basic, high-level overview®§tiject, describing the distinguishing
of elements by key and by identifiér [JEO4]. For the purposékisthesis | identify three chief ways
of relating or distinguishing which target elements aratedl to specific source elements: by key, by

trace, and by identifier. | now outline these three possigdiin more detail.

Distinguishing target elements by key

A simple mechanism for distinguishing elements is to do stheir key i.e. a collection of attributes
which, collectively, uniquely identify any given elementising this mechanism for change propa-
gation is advocated by the DSTC QVT approach |DIC03]. By négg elements to be defined in
keys, this mechanism implicitly adds an extra burden on #e gince all elements in a model must
be augmented with a key definition. Although this is oftewi#fi it is an extra burden, and can be
difficult when elements have no natural key.

The essential idea of propagating by key is that when chaingesan element need to be propa-
gated, the source element is transformed (possibly to adeanplocation), and the key of the target
element is extracted. This then allows the changed partsedfarget element to be merged with an
existing target element with the same key. However this mézat modifying the values of attributes
involved in a key confuses the propagation algorithm. Girsthe transformation from and to a
simple modelling language where the key o€Ckss is its name attribute. If a class namexl is
transformed to a class also namedhen many changes made to the source model (e.g. adding at-
tributes) can be trivially propagated to the relevant taejement by transforming the source models
key and finding the target element with the appropriate kegwéver if the source element is re-
named toy then the key relationship between the source elemarid target element is broken;
the change propagation algorithm will assume that the aeletarget element has been deleted, and

will recreate it from scratch.

168

Although not mentioned in the DSTC QVT approach, one teamigghich may potentially im-
prove the coverage of this technique is to use the previonsrgéon of a source element to calculate
the key of the appropriate target element. This allows chang be propagated successfully even
when source elements have had the values of attributesveédvah their key altered. However it is
unable to cope when manual changes are made to a target &ékasn

In the general case, propagation by key is insufficient. Hewé& may be combined with other

propagation techniques to increase coverage.

Relating target elements via tracing information

Using the tracing information created by a transformat&ee(sectioi’5l4) to relate source and target
elements seems a good candidate, particularly as the iafammalready exists. However, as shown
in MT, there are various different tracing information diea mechanisms. The success of a change
propagation algorithm then depends on factors such as trezage and granularity of the recorded
tracing information. For example, while the default tracinformation generated by MT records
which target elements were created by a rule from specificceoelements, it does not generate
enough information to know which part of the rule createdchttarget element. Such information
may be vital for an accurate change propagation algorithm.
There is thus a potential tension between the different aééscing information. The type of

tracing information desirable for change propagation maydry different from that required by a
user to understand transformations on their model. Howessuming that it is suitably detailed,

tracing information is sufficient as the sole means of digtish elements for change propagation.

Distinguishing target elements by identifier

A technique that can ultimately be seen as a slight variatiordistinguishing target elements by
tracing information was detailed by this author[in [TriaC&id independently by Johann and Egyed
in [JEO4]. When a target element is created it is given antifienwhich contains, at a minimum,
the concatenated identifiers of all the source elementshabitto the creation of the target element.
Henceforth | refer to this as tharget element identifierNote that the target element identifier may
be in addition to an elements standard identifier, and thateytually there is no requirement that
this new identifier be a single field.

Conceptually this technique does not add any additionalepaver using tracing information
to distinguish elements; it is an alternative way of stortraicing information. Indeed, a simple
concatenation of the source elements identifiers meanghbaarget element identifier is merely

an alternative way of storing information that can in thebeydirectly derived from suitably fine-

169

grained tracing information. However extra informatiomdze easily stored in the target element
identifier, if required, to allow a transformation to encadformation which may not be present in

tracing information. This then allows tracing informatittnbe used for other purposes. Furthermore
this then means that tracing information need neither hamgpete coverage, nor be fine-grained; as

such, tracing information can be recorded in a fashion wgiees it the greatest utility to the user.

6.1.5. Correctness checking and conflict resolution

Some changes made to a source model may not be able to be segbagccessfully to the target
model. For example, when propagating an element newly atiddéak source model, a conflict may
arise with an element already present in the target modeareTére three main strategies that can be

taken in such cases:

1. Propagate all changes regardless of correctness argliticcepting that the resulting target

model may not match expectations, and may even be ill-formed

2. Check for the correctness of changes before propagdiam;trefuse to propagate changes

which will violate correctness conditions.

3. Propagate all changes which do not violate correctnesditdans; note those which violate

such conditions and request manual intervention from tkee us

Whilst the first strategy requires little extra support, lie ttases of the second and third strategies
change propagating model transformation approaches badecide upon the form of correctness

checking, its completeness, and its ability to be contdollg users.

6.2. PMT

PMT’s implementation began as a fork of MT, and can be consitimitially to be a superset of MT.
Most valid MT transformations can be moved into PMT withogntsictic change — when used as a
stateless model transformation language, PMT perforrgslhaas MT. When compared to the design
decisions detailed in secti@nB.1, PMT can be said to be y dwitomatic, batch change propagation
approach, which distinguishes target elements by theittifilers, and which has user controllable
correctness checking built in. The details of this broadnaegy will be filled in as this chapter
progresses.

Despite many similarities, the sequence of running a PMistamation is fundamentally dif-
ferent from MT. An MT transformation is initialized with ornar more source elements which are

immediately transformed into target elements. In cont@®MT transformation is initialized with

170

a source model, a (possibly empty) target model, and a (@gssimpty) set of tracing informa-
tion. Unlike MT, source elements are not immediately trarmsed after initialization, waiting for
the transformation to be executed by the user. Since nomes, jpa all, of the target model may be
present after the initialization of the PMT transformatidime concept of rule execution in PMT is
markedly different in MT. In MT, when a rules source clauseatch its input, the execution of the
rule implies the production of new target elements. In PMiiewa rules source clauses match its
input, the execution of the rule implies that the target nhiglenodified to make it conformant with
respect to the transformation. Although from a naive uperspective there is a difference between
the initial execution of a PMT transformation — which apsetar populate an empty target model —
and subsequent executions which propagate changes, frol's Plgrspective there is no difference
between the initial and subsequent executions.

Put crudely, the difference between MT and PMT is that thenfaris an imperative model trans-
formation language whilst the latter is declarative. Cahaally, the execution of a PMT rule is
fundamentally different from MT. When a PMT rule is execytidittempts to make the necessary
changes to the target model to satisfy the rules declatalibis may require elements being added,
altered and deleted from the target model. The way in whiehrétationship between source and
target elements is specified, and the process by which thateipd the target model occurs are the

two defining aspects of PMT.

6.2.1. A PMT transformation’s stages

The stages of a PMT transformation are as follows:

1. Take a source model, and an empty target model and tramgifiersource model. This stage — if
taken in isolation and viewed as a black box — is essentidéptical to an MT transformation.
After the transformation has executed, the source andttargdels, together with the tracing

information created, are stored in some fashion.

2. The user may make arbitrary changes to both the sourceaaget models, independent from

one another.

3. The user then requests that the changes they have madestmutice model are propagated non-
destructively to the target model. The transformation isitialized with the updated source
and target models, and the tracing information from the iptesvexecution. The execution of
the transformation then propagates changes from the sowdel to the target model. After
the transformation has executed, the source and targetlsnaogether with the new tracing

information created are once again stored.

171

MObject

mod_id : String

to_string()
initialize()

T

ML1_Element

name : String

initialize()

elements

*

ML1_Package

parents
ordered

allElements()
initialize()

ML1_Association

multiplicity : int

initialize()

0 Jrom

ML1_Class
jparents
ordered
initialize()

Figure 6.1.: The ML1 modelling language.

At this point, the sequence moves back to stage 2.

6.2.2. Example

This subsection presents a simple example of change priagagahich is based on the change
propagation example from sectibn2]2.3. That example stidleconceptual problems of a change
propagating transformation from the ML2 to the ML1 modallianguage. The metamodels of the

ML1 and ML2 modelling languages are shown in figures 6.1[aBdéspectively.

© 00 N O g B~ W NP

NN R R R R R R R R
P O © ® N O Ul A WN R O

The transformation itself is as follows:

$<PMT.mt>:
transformation ML2_to ML1

rule Package To_Package:
srcp:
(ML2_Package)[name == <n>, elements ==

tgtp:

tgt_where:
tgt_elements := Set{}
for x := elements.iterate():
tgt_element := self.transform([x])
if tgt_element.conforms_to(List):
tgt_elements.extend(Set(tgt_element))
else:
tgt_elements.add(tgt_element)

rule Class_To_Class:
srcp:

172

<elements>]

(ML1_Package)[name := n, elements :>= tgt_elements]

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
a2
43

MObject

mod_id : String

to_string()
initialize()

T

ML2_Element

name : String

initialize()
A

element

*

ML2_Package

initialize()

ML2_Association

end2_name : String
endl_name : String
end2_multiplicity : int
end1_multiplicity : int
end2_directed : bool
endl_directed : bool

initialize()

fnd?lndl
y

ML2_Class
jparents
ordered
initialize()

Figure 6.2.: The ML2 modelling language.

(ML2_Class)[name == <n>]

tgtp:
(ML1_Class)[name := n]

rule Association_To_Association:
srcp:

(ML2_Association)[name == <n>, endl == <endl>, end2 ==

endl_directed == 0, end2_directed == 0, \

end1l_multiplicity == <endl_multiplicity>, \

end2_multiplicity == <end2_multiplicity>, endl_name == <

end2_name == <end2_name>]

tgtp:
(ML1_Association)[name := end2_name, from
multiplicity := end2_multiplicity]
(ML1_Association)[name := endl_name, from
multiplicity := end1_multiplicity]

tgt_where:
tgt_endl := self.transform([end1])
tgt_end2 := self.transform([end2])

= tgt_endl, to

= tgt_end2, to

2>\

endl _name>, \

= tgt_end2, \

= tgt_endl, \

This is an intentionally simple transformation which, irtinterests of brevity, ignores parent pack-

ages and only handles associations which are navigablgtaehds. Since converting ML2 classes

and packages to ML1 classes and packages is exceedinidy, tfie Package _To_Package and

Class _To_Class rules are simple (lines 12 - 18 are a largely inconsequeintiplementation

detail that essentially normalizes the return value frolreotransformation rules). Thgssocia-

tion _To_Association rule is slightly more complex, although it only deals witlsasiations

173

:ML2_Package

mod_id = "13"
name = "Personnel”

elements

:ML2_Association

mod_id = "12"
name = "PE"
end2_name = "manager"
endl_name = "employees]
end2_multiplicity = 1
endl_multiplicity = -1
end2_directed = 0
endl_directed = 0

ﬁdz \xn‘dl

:ML2_Class :ML2_Class

elements

mod_id = "11" mod_id = "10"
name = "Manager" name = "Employee”
parents = [] parents = []

Figure 6.3.: Initial source model for the ML2 to ML1 trangfeetion.

which are navigable at both ends; each such ML2 bidirectiasgociation is transformed into two
ML1 directed associations.

The initial source model | use for this transformation iswehan figure[&.B (note that this is merely
the TM version of figur§ 2.3(h)). The resulting visualizatiof the transformation is shown in figure
4. At this point, there are only two hints that we are depliith a PMT, and not an MT, transfor-
mation definition and execution: the= operator in line 9 is invalid in MT; identifiers in the target
model have a noticeably different format to those in MT tfamsations.

Let us now assume that the user has modified the target mouheligsre[6.%, adding in a directed
association fronEmployee to Manager denoting an employee’s secondary manager. Let us then
assume that the user returns to the original source modealpdates it as in figure8.6, adding in a
DepartmentHead class and an associated transformation. If the ML2 to MLAdi@armation was
an MT transformation, the user would now have two choiceshdf were to rerun such a transfor-
mation, the original target model would be overwritten dmelsecondary —manager association
would not exist in the new target model. Alternatively themusould choose to manually port the
changes from the source model to the target model. In thegiostenario, changes to one or the
other model are lost; in the latter, differences must be ratyhpropagated between models.

It is at this point — corresponding to stage 3 as describe@étian[6. 2]l — in the transformation
execution cycle that PMT fundamentally distinguishedlfifsem MT, by automatically propagating
the changes made to the source model in figure 6.6 into theegtirget model. The visualization
of the target model after change propagation can be seeruiefii@r. As this figure shows, not only
have the changes to the source model been propagated inttodbemodel, but the manual changes
made to the target model by the user have been preservedinipstant to note that the changes

made to the source and target models by the user in this egarpkntirely arbitrary.

174

:ML2_Package

mod_id = "13"
name = "Personnel"

Association_To_Association: t3

Tracing
Class_To_Class: t1, t2|

Package_To_Package: t4

:ML2_Association

/ \XleAmems

ML1_Package

mod_id ="12"
name = "PE"
end2_name = "manager"

elements mod_"jf Packageﬂ_TO_Package_O_l endl_name = "employees’ elements
name = "Personnel - P
arents = [] end2_multiplicity = 1
P - end1_multiplicity = -1
end2_directed =0
endl_directed = 0
\elements ati2nents /13 \ ndl
N
:ML2_Class :ML1_Association :ML1_Association :ML2_Class
elements | mod_id ="11" elements | mod_id = "Association_To_Association_0__12| mod_id = "Association_To_Association_1__12| mod_id = "10"
name = "Manager" name = "manager” name = "employees” name = "Employee”
parents =[] multiplicity = 1 multiplicity = -1 parents =[]
\ to rom from / tl
N
:ML1_Class :ML1_Class

mod_id = "Class_To_Class_0__11|
name = "Manager"
parents =[]

name = "Employee”
parents = []

mod_id = "Class_To_Class_0__10[

Figure 6.4.: Visualization of the initial execution of theL®Ito ML1 transformation.

The basics of PMT's change propagation approach are vemplsirBoth model element patterns

and model element expressions play a key part in the prodgsemagation. PMT uses model ele-

ment patterns as the primary means of calculating targetezieidentifiers (see sectibn 611.4). When

a rule is executed, and its source clauses match succgssfulirget element identifier is created,

based on unioning the identifiers of the source elementshadticy model element expressions. Tar-

get element expressions in the target clauses use the &egeent identifier created by the source

clauses. When a model element expression is executed kit lndhe TM object repository to see

if an element with the same identifier as the target elemaanttifier already exists. If no such ele-

ment exists, a new model element with that identifier is ea@nd populated accordingly. If such

:ML1_Package

name = "Personnel"

mod_id = "Package_To_Package_0__ 13"

parents =[]
ﬁts

elements lements

ML1_Association

:ML1_Association

:ML1_Association

elements

name

mod_id = "Class_To_Class_0__11|

= "Manager"
parents = []

mod_id = "Association_To_Association_0__ 12" mod_id = "17" mod_id = "Association_To_Association_1__ 12|
name = "manager” name = "secondary_manager| name = "employees”
multiplicity = 1 multiplicity = 1 multiplicity = -1
\ from to from rom f
:ML1_Class ML1_Class

mod_id = "Class_To_Class_0__10[
name = "Employee”
parents = []

Figure 6.5.: The updated target model.

175

lements

:ML2_Package

mod_id = "13"
name = "AcmeLtd"

elements elements

:ML2_Association :ML2_Association
mod_id = "12" mod_id = "15"
name = "PE" name = "manager"
end2_name = "manager" end2_name = "reports_to"|
elements | end1_name = "employees| [plements endl_name = "oversees" lements
end2_multiplicity = 1 end2_multiplicity = 1
endl_multiplicity = -1 endl_multiplicity = -1
end2_directed = 0 end2_directed = 0
endl_directed =0 endl_directed =0
fm \Xniz ﬁu &dz
:ML2_Class :ML2_Class :ML2_Class
mod_id = "10" mod_id = "11" mod_id = "14"
name = "Employee” name = "Manager" name = "DepartmentHead"
parents = [] parents =[] parents = []

Figure 6.6.: The updated source model.

an element exists, it is taken from the object repository imdontents are adjusted as necessary to
satisfy the transformation. Sectidns 6]2.3 Bnd 6.2.4 expiee creation of identifiers and altering of

elements in more depth.

6.2.3. Creating target element identifiers

The construction of target element identifiers is a vitat pAPMT’s change propagation approach.
Target element identifiers should ideally satisfy two cidte that they are unique with respect to

particular source elements and a particular rule executiat they can be created deterministically
across multiple transformation executions. The need ffahmer criteria is self evident, the latter

perhaps less so. However PMT’s approach relies on the fatthle construction of target element

identifiers can be replicated over multiple transformatigacutions. Since satisfying either, or both,
of these two criteria is non-trivial, | consider it highly sleble that target element identifiers can be
automatically created and used without burdening the useeaessarily. In this subsection | outline

in detail how PMT automatically creates target elementftiflers; this process is somewhat more
involved than its description in previous sections has eatgyl.

The way in which target element identifiers are created amdtmakes use of two internal TM
and PMT features. Firstly, as shown in figlirel 4.4, the idemtif a TM model element is a string.
Unioning identifiers thus becomes a case of simple stringat@mation which, whilst not an entirely
robust technique, is adequate for the purposes of thissthekhough TM supplies a default identifier,
a user supplied identifier — such as a PMT target elementifidgnt can be specified when elements
are created. Secondly, PMT uses the concept of model elemmatithed by model element patterns —
exactly as used by the tracing information creation mecmarisee sectidn'3.4) — to determine which

source elements will have their identifiers unioned. Thesiting target element identifiers requires

176

Tracing
Class_To_Class: t1, t2, t4
Association_To_Association: t3, t5
Package_To_Package: t6

:ML2_Package

mod_id = "13"
name = "AcmeLtd"

elements t6 elements
:ML2_Association :ML2_Association
mod_id = "12" mod_id = "15"
name = "PE" :ML1_Package name = "manager”
end2_name = "manager" . . end2_name = "reports_to"
elemerliseng1 _name = "employees| "‘“d—"f B Packag”eiToiPackageioAl elements endl_name = "oversees" elements
[E S name = "AcmeLtd P
end2_multiplicity = 1 arents = | end2_multiplicity
~ end1_multiplicity = -1 P - end1_multiplicity = -1
~ end2_directed = 0 end2_directed = 0
endl1_directed = 0 endl1_directed = 0
‘/ 3 (_gle}ients 3 endz2 elements elements lements endl 5 lements 5 nd2
:ML2_Class :ML1_Association :ML1_Association :ML1_Association :ML2_Class :ML1_Association :ML1_Association :ML2_Class
mod_i 0" mod_id = "Association_To_Association_0__12[' elementy Mod_id = "Association_To_Association_1__12[' | mod_id = "17" elements mod_id = "11" mod_id = "Association_To_Association_1__15' elements| mod_id = "Association_To_Association_0__15" "14"
name = "Employee" name = "manager” name = "employees" name = "secondary_manager name = "Manager" name = "oversees" name = "reports_to" "DepartmentHead"
parents =[] multiplicity = 1 multiplicity = -1 multiplicity = 1 parents =[] multiplicity = -1 multiplicity = 1 parents =[]
i from from from to ©2 to from rom to 23
:ML1_Class :ML1_Class :ML1_Class

mod_id = "Class_To_Class_0__10]
name = "Employee”
parents =[]

mod_id = "Class_To_Class_0__11f
name = "Manager"
parents =[]

mod_id = "Class_To_Class_0__14[
name

DepartmentHead"
parents =[]

Figure 6.7.: Visualization of the ML2 to ML1 transformatiafter change propagation.

no new underlying machinery in the implementation.

Creating unigue target element identifiers

Concatenating the identifiers of source elements is notgerdtion its own to generate a unique target
element identifier, since the same source elements may tdéruswre than one rule execution. PMT
thus also integrates the name of the rule being executedhiattarget identifier to ensure that target
element identifiers are unique. However this then raisepdissibility that executing the same rule
with the same source elements may lead to conflicting tadgettifiers being generated. To avoid
this possibility, PMT rules keep a cache of source elemématg have already transformed; if a rule
matches against the same source elements as it did in aysexecution, then the target elements
produced in that previous execution are returned. It shbaldoted that this is different from MT,
which does not need to enforce such a constraint during é@suion. This may potentially lead to
differences in the execution of seemingly identical MT ahdiTRransformations.

The rules given thus far generate a single unique targetegitigientifiers. This is sufficient when a
rules target clauses contain a single model element expnestich executes only once. If a rule has
multiple model element expressions in its target clausasaanodel element expression can execute
more than once in a single execution of a rule (e.g. when a hebelment expression is suffixed with
for , asin MT), then a single target element identifier would tedaumultiple target elements being
created with the same identifier. For example, ssociation To Association rule in
section[&.ZR has two model element expressions itgffs clause. In such cases it is vital that
each model element expression is passed a unique targetgrel@entifier. In order to ensure that
this is the case, each rule execution keeps a counter of haw times model element expressions
have been executed during the rules execution. This coisbecorporated into the target element
identifier of model element expressions, thus ensuring tigueness of the identifiers even when a
rule executes more than one model element expression.

The general form of a target element identifier in PMT is aovas:

<rul e name>_<nodel el ement expression execution #>__<uni on of source
identifiers>

Using this template, one can interpret the identifiers ajegbelements in figuig_8.7 with respect to
the transformation of sectidn 6.2.2.

It should be noted that in the current implementation whemigive data types are used in model
element expressions, it is possible for PMT to generateumngue identifiers, since instances of
primitive data types do not have a proper element identifieonsider this to be a relatively trivial

implementation detail.

178

Deterministically creating target element identifiers

It is important for PMT that the target element identifiersiieate be deterministic; that is, if a
transformation is rerun with exactly the same source elésnas before, it should create exactly
the same target element identifiers. If target elementiiiiienst are created differently over multiple
transformation executions then PMT will not able to idgntdrget elements correctly. Although the
scheme outlined previously has proved reasonably suctesgbractise, using the model element

expression execution counter leads to a subtle, but patigrgignificant, flaw.

Non-ordered datatypes such as sets can cause the modehepeession execution to become
de-synchronised over multiple transformation executtuesto their inherent non-determinism. Sim-
ilarly, ordered data types such as lists can have elemesgst@d in them in-between transformation
executions; if elements are inserted at any point other thamend of the ordered datatype, then the

counter can again become de-synchronised.

A possible solution to this problem is as follows. Each maelement expression in the target
clauses is statically assigned a number, starting from d,imeremented with each model element
expression encountered during compilation. For model ef¢rexpressions that can only be exe-
cuted once, this is sufficient to ensure uniqueness andndigiem of the resultant target element
identifiers. For model element expressions which can beutgdanore than once, it is then neces-
sary to add something further to the target element identdiensure uniqueness. For example, one
could determine which source elements (which, in genera,vaould expect to be a strict subset of
the overall source elements matched by a rule) led to thdianeaf that particular model element,
and make their identifiers part of the target element identifiote that in this scheme it would be
common for source element identifiers to appear more thaa e target element identifier. In
some cases PMT may be able to automatically determine whigtts elements are involved in the
creation of specific target elements, but in general thisotspossible; the user will therefore need
a way to inform PMT of the required information. Note that i8hihis solution is largely immune
to non-determinism problems, it still has some conceptuablpms e.g. when dealing with ordered

lists which contain duplicated elements.

While solutions such as the one outlined may provide a mdvastoapproach to creating target
element identifiers, | believe that further research willneeded to find the best solution. For the
purposes of this thesis, PMT’s current solution, whilst raiiust, is adequate for exploring change

propagation.

179

6.2.4. Making target elements conformant

When a model element expression is executed, it looks inkhelject repository to see if an element
with the same identifier as the target element identifieaalyeexists. If no such element exists, PMT
executes largely as MT. However if such an element existsT Bk&cutes rather differently from
MT. The object in question is taken from the object repogimnd PMT and is altered into a form
conformant with the model element expression.

It is important to note the use of language in this subsectidfhen an element already exists
it is not necessarily changed to match the exact valuestéittay the model element expression.
Instead the element has the minimal number of changes dpiali@ that make it conformant to
the model element expression. The word ‘conformant’ is irtggd since, in the general case, an
infinite number of differing target elements may be confantmi@ a given execution of a model
element expression. This is because the user can make nanaugjes and additions to the target
model which the transformation writer can, if they choodlwato remain even when changes are
propagated.

In order to achieve this, model element expressions in PME laaditional syntax compared to
MT. Most importantly a model element expression in PMT cosg® zero or morslot conformances
(which are directly analogous to slot comparisons in motighent patterns). In the example shown
earlier, one can see the use of teamformance operator?MT’s conformance operators are partially

inspired by operators found in xMOF (see secfion 3.3.9). &comformance operators are as follows:

Operator Name Description

X =y update Forcibly sets the value of slattoy.

X :== vy | update if not equal If the value of slotx is not equal toy, forcibly sets the value
of slotx toy.

X >=y update superset | The value of slok must be a non-strict supersetyok value.
Any elements iry not present irx will be added tax. x may

contain elements not presentyin

The update conformance operator forcibly propagates @safigm the updated source model to
the target model. The update if not equal conformance aprepatrforms the same action, but only
after checking that the value of the slot in the target eldnsenot equal to the value generated by
its associated model expression. In practise, the two tgrerare very similar; however, since in
some cases distinct objects can compare equal the user mhayospecify precisely whether they
wish the slot value and model expression to hold exactly déineesvalue, or merely two values which

are equal. The update superset conformance operator isinteresting since it does not imply,

180

or force, the value of the slot in the target element to bectlireequal to the value generated by

the model expression. Instead, the value of the slot in tigetaelement is altered to make sure it

contains all the elements that the model expression sagisutid have; if it has extra elements then

those are left intact. In practise this operator is the afmie&ns of allowing changes to be propagated
non-destructively.

One important point that may not be immediately obviousas$ ttansformation writers still need to
use careful thought to determine when each should be use@xBmple, an inexperienced transfor-
mation writer may choose to use the update operator in alcsiaformances, since this will ensure
that all changes made to the source model. However if thersigiestion contains a set then the
users’ manual changes made in the target model will be destrdn such cases, one would gener-
ally expect the transformation writer to use the updatirg sbnformance operator. In some cases,
however, the transformation writer may deliberately wislensure that the target model contains the
transformed set elements, and nothing else, in which casepbate conformance operator is the
correct choice. Knowledge of the appropriate situatiomgfzh conformance operator is likely to be
gathered only through knowledge of the source and targetad@mmand experience with the change
propagating approach.

Later in this chapter | will examine other conformance op®m However the three conformance
operators detailed in this section are currently the onsomhich forcibly alter target elements (the
other conformance operators described in sefidn 6.4 chattler than enforce, conformance). The
reason for this is that, between them, these operators afgpeaver a very large part of the spectrum

of change propagation — certainly, they are sufficient foexeéimples in this chapter.

Changes which can not be propagated

There are various types of changes which PMT is incapableapfggating. The most obvious class
of such problems relates to when the propagation of a chaasggts in an ill-formed model (i.e. one
which does not conform to its meta-model). In such casegralatd TM exception is thrown, and
the user is informed. Whilst this is currently a somewhatlermechanism, it does prevent incorrect
target models being created. The checking conformancetmpsretailed in sectidn®.4 provided an

alternative means of detecting, and reporting, changeshadain not be propagated.

6.2.5. Running a PMT transformation

Running a PMT transformation is very different to MT (seet®ed5.3.6), which is largely a direct
result of the underlying conceptual difference betweeratektss and a change propagating model

transformation approach. An MT transformation is passeduace model which it instantly trans-

181

forms into a target model, creating tracing informationtasxecutes. Since a PMT transformation
may be executed multiple times, and since between exesuit®mlata may have been serialized to
permanent storage, it operates in a fundamentally diftdession.

When run for the first time, a PMT transformation is initigizwith only a source model. After the
transformation executes, the user can extract the targe¢lnaod tracing information created during
the transformations execution. There are then two sceagéore change propagation will occur.
The first scenario is that, whilst the transformation id &ittive’, the user modifies the source and
target models. Propagating changes then becomes a singgl@tee-executing the transformation,
which will automatically pick up the changes made to the nied€&he second scenario is that after
execution, the source and target models, along with thantracformation, are serialized to a persis-
tent store. The transformation itself is then destroyedbsBquent executions of the transformation
thus require the transformation to be reinitialized witl gossibly updated source and target models,
and the tracing information (which must not have have beamgéd), all of which will have been
deserialized from their persistent store. Once suitakilyiti@lized, the transformation can then be
executed to propagate changes. Both these scenarioseyetdiloccur in the real world. Whilst the
former scenario is likely to occur in short-lived tasks, drem efficiency is key, the latter scenario re-
flects the practicalities of long-term use and developmépadicular models. PMT transformations
are designed to deal sensibly with both scenarios.

The code to run the example of sectlon 8.2.2 looks as follows:

employee := ML2.ML2_Class("Employee")
manager := ML2.ML2_Class("Manager")

employee_manager := ML2.ML2_Association("PE", employee , manager, 0, 0, -1, 1, \
"employees”, "manager")
personnel := ML2.ML2_Package("Personnel”, Set{employee , manager, \

employee_manager})

transformation := ML2_to_ML1(personnel)
transformation.do_transform()

The unassuming, but important, difference between thisranding an MT transformation is the
do_transform function on a transformation object. This function can ptitdly be called multi-
ple times. Each time it is called it will propagate changesrfithe source model to the target model.
Extracting the target model and tracing information fromMiTRransformation is identical to MT.
For those instances when models need to be serialized tsigtpet store, the TM package defines
a Serializer module. This is capable of serializing (i.e. saving) ancedafizing (i.e. loading)
models and tracing information via treerialize , serialize _tracing , deserialize ,
anddeserialize _tracing functions. A slightly simplified version of the code whiclriséizes

the ML2 to ML1 transformation is as follows:

src_file.write(Serializer.serialize(transformation. get_source()))
tgt_file.write(Serializer.serialize(transformation. get_target()))
tracing_file.write(Serializer.serialize_tracing(tra nsformation.get_tracing(), \

182

transformation.get_tracing_rules()))
AppendiXE.2 shows the output from serializing the souraktarget models, and tracing information
after the first execution of the example in secfion 8.2.2.

Reinitializing a PMT transformation involves initializgnthe transformation not only with the up-
dated source and target models, but also with the tracimgnrdtion generated on the previous trans-
formation run. The tracing information generated by thevimgs execution does not play a direct
part in the transformation; it is used to determine whiclnadats can be safely deleted from the target
model (see sectidn6.2.6). An entirely fresh set of traamfigrmation is generated on each execution.
A simplified version of the code which deserializes the ML2Mb1 transformation, and propagates

changes is as follows:

src_model := Serializer.deserialize(src_file.read())
tgt_model := Serializer.deserialize(tgt_file.read())
old_tracing, old_tracing_rules := Serializer.deseriali ze_tracing(\

tracing_file.read())
transformation := ML2_to_ML1(personnel)
transformation.set_target(tgt_model)
transformation.set_old_tracing(old_tracing)
transformation.do_transform()

Models can be transformed, serialized, altered and havegelsapropagated into them an arbitrary

number of times.

6.2.6. Removing elements from the target model

An important part of change propagation is to ensure thatvethements are removed from the source
model, target elements which were created by transforntiegsburce elements in question are re-
moved from the target model. This requirement may at firseappo be solved by examining all
target elements at the end of a transformation executiahreanoving all target elements which were
not created as the direct result of transforming one or mumuece elements. However this simple so-
lution would also delete any elements manually added toattgeet model by the user, and as such is
clearly not suitable for the use cases PMT is aimed at. Tliearproblem is therefore to distinguish
which seemingly superfluous elements in the target moded been manually added by the user, and
which are no longer a part of the transformation.

In order to determine which elements can be safely deletdebitarget model, PMT utilises tracing
information — both that generated by an execution of thestmmation, and that generated by its
previous execution. After changes have been propagatedi)TatRansformation examines every
element in the target model, checking whether it is refezdnia either or both of the current and
previous tracing information. Based on this, PMT draws atasion about the origins of the element

and whether it is a candidate for removal. The four possigslifor an element are as follows:

183

In previous In current Conclusion Candidate
tracing info.?| tracing info.? for removal?
Vv V Target element previously manually created by X

PMT.
X vV Target element newly created by PMT. X
X X Target element previous added to target by user. x
Vv X Target element previously created by PMT; cor- /
responding source element now deleted.

Once every element has been examined, PMT performs a garblgetion style ‘mark and sweep’
[JL9C], using the transformed root set of source elementbastarting point. Any self-contained
cycle consisting solely of elements marked as being catefidar removal, is then removed from the
target model. The need to identify self-contained cyclesugh elements is to prevent the removal of
elements cause the target model to become ill-formed. Dhikloccur if elements are removed from
the model even though they are referred to by other objectsexample of elements being removed

after change propagation can be seen in seEfionl 6.3.2.

6.2.7. Propagating changes between containers

Propagating changes between containers (e.g. sets a)drdites two challenges not tackled ear-
lier. The first relates to the removal of elements in cont@nd he second challenge relates to the

synchronising of ordered containers. In this subsecticgtdilPMT’s solutions to these challenges.

Removing elements when propagating changes between contai ners

When elements are deleted from a container in a source maielthat container is transformed
into a container in the target model, PMT needs to be able t& wat which elements in the target
container should be removed. This is a less than easy taak&e®MT needs to distinguish elements
in the target container which have been manually added bydbe and those that are the result of
transforming a now absent source element. In order to magkaligtinction, PMT uses a technique
similar to the general element removal technique of se@i8rD.

When the updating superset operator attempts to propagatehtinges from a containgrto a
slot x's value in a target element, it first adds every elemeny @b x's value if it is not already
present therein. It then iterates owes value, noting any elements iis value which are not present
in y. When it finds such elements, it first checks to see if the aitrisepresent in the tracing

information of the previous transformation execution hi element is not present, PMT assumes the

184

additional element ix’s value is a manually added element, and ignores it. If teeeht is present
in the previous transformation execution’s tracing infation, PMT assumes that the element was
originally added to the container by PMT, and can now be rexddkom the container.

Due to a lack of sufficiently fine-grained information, thisheme has one notable problem —
if a user manually adds a target element into a container,tiedource element that led to the
creation of that particular target element is subsequelglgted, then the element will be erroneously
removed from the container upon change propagation. Natalthes not imply that the element will
necessarily be removed from the model; the element will belyemoved — in the mark and sweep

phase — if its membership of the container was its only refaravithin the model.

Propagating change in ordered containers

Propagating changes to ordered containers is considenadlg complex than into unordered con-
tainers. Not only are elements ordered, but the same elemayntappear more than once. This
means that, for example, it is not acceptable to merely cfacthe existence of a given element,
since it may appear more than once. Similarly, between fimamstion executions, elements may
move their position within a list. When a user is adding, reimg, or moving elements within an
ordered container, the purpose of each individual changerisrally self-evident to them. From the
point of view of a system viewing an arbitrary number of subhr@ges, any such intentions are lost.
The update superset conformance operator takes a simpiiedhapproach to the problem. Given
a target slok , and an ordered containgt it will ensure thai s value contains every elementyfin
the order that those elements are contained withiklowever it will tolerate an arbitrary number of
extra elements withi. Elements fronmy are added intx as necessary. Looked at a different way,
this mechanism ensures that there is an ordered subkstuifich is exactly equal tg . This scheme

is less than ideal, since it can lead to an incorrect dupdicaif elements in the target container.

6.3. The execution of a PMT transformation

Up until this point | have been deliberately vague on exaeathat actually happens when a PMT
transformation is executed. The reason for this is that RMKecution strategy runs contrary to a
standard intuition — as exemplified by Johann and Egyed [[JE6#fichange propagation in operation.
By deferring the explanation of a PMT transformation urtilstpoint in the chapter, | hope that
enough material has been presented to make explanatiois @fttd point practical.

Intuitively, the concept of change propagation seems simgiven a change in the source model,

one simply needs to rerun the few transformation rules whetdite to the changed source elements

185

in order to propagate the change to the target model. For sraayl, localised changes — such as the
renaming of a class, as seen in the earlier example in thimseethis strategy is adequate. Whilst
this intuition is highly appealing, it leads to a solutioratltan not propagate many types of changes
correctly. At best this may lead to a target model that is gatkronised with the source model; at
worst, it may cause the target model to become ill-formed.

In this section | first point out the problems with the intuitichange propagation approach, before

presenting PMT’s approach to transformation execution.

6.3.1. Propagating localised changes

The change propagating example of sediion §.2.2 saw twoty@és of changes to the source model:
the alteration of the values of elements fields (e.g. changipackages name), and the addition of
elements. The former type of change is intuitively simpleptopagate. When thBersonnel
package was renamed &zmelLtd in figure[6.®, all that is required to propagate the change is t
rerun the transformation rule(s) linked to by the tracirapirthe source element. A quick examination
of figure[&.4 shows that rerunning tiRackage To Package rule with the source package in
guestion as input will result in the change being correctlyppgated. The latter type of change is
slightly more complex, but intuitively somewhat similam®approach would be to first pass the new
source element to theansform function; any source elements which have new links to the new
element will be transformed using the same approach asdpagating the change in package name.

The fundamental premise behind this intuitive notion i the propagated changes are what |
termlocalised Note that this term does not directly relate to the locadityalterations in the source
model, but instead to the locality of the necessary charmbs propagated to the target model and
the relation of those changes to the altered source elenféigtge[6.8 shows an abstract example of
a transformation, and localised and non-localised changgagation. If changes are localised, then
changes to elements in the source model can be propagatedumying the rules which originally
applied to the those elements. This has two implicationsstlfi that changes in the source model
will lead to changes in the target model of a similar grarityyain other words, that changes local to
a particular part of the source model should lead to sinyilx¢al changes in the appropriate part of
the target model. The second implication follows from thstfithat the source and target models are
likely to be mostly, or wholly, isomorphic.

Before | justify these two implications, it is instructive see why they are implicit in the, rather
limited, literature on the subject. For example, Johann Bgged [JEO4] describe a system that
is almost wholly targeted at localised changes; despitebaintg directly model related, Varrd and

Varré describe a similar system_[VVI04]. By assuming tharaes are localised, both approaches

186

Source model Target model Source model Target model

(a) Initial models. (b) A localised change relative to the initial
models.

Source model Target model

(c) A non-localised change relative to the initial
models.

Figure 6.8.: The concept of localised changes.

are able to make change propagation highly efficient by amiying the rules directly related to a
particular change. The ability to highly optimise changegagation in the face of localised changes
is a compelling reason to treat such changes as a special tadertunately neither approach is
capable of propagating non-localised changes correcthanh and Egyed [JED4] describe what they
term ‘semantic changes’ as ‘simple changes in the sourcelntivat cause a variety of ripple effects
among multiple/many target elements’, but do not presemiwtisn to this problem. | believe the
reason for this omission is that many toy transformationshsas the example of sectibn 612.2, are

expressed in such a way that only localised changes willesed to be propagated.

Non-localised changes in practise

Two concrete examples demonstrate the problem of nonidecethange. In order to demonstrate
this, | return to the advanced variant of the UML modellingdaage to relational database transfor-
mation, as defined in secti@n 5b.1. | assume that the hyfichehange propagating transformation
which would perform this task follows a similar structurett® MT solution for this problem, as
defined in sectioh’5.5.3.

Consider first the (slightly elided) source model of figur® &nd the corresponding target model in
figure[&ID. Imagine first what would happen were we to changedlue of thes _persistent
slot in Address class of figur€8l9 td. When we execute the transformation to propagate transfor-

mations, intuitively we would expect to see the target modatain two tables, and for all the columns

187

src

:Association

name = "address"

:Class

dest

:Class

is_persistent = 1

name = "Customer"

attrs

attrs

name = "Address"

attrs

is_persistent = 0

attrs

attrs

attrs

:Attribute :Attribute :Attribute :Attribute :Attribute :Attribute
name = "name" name = "house" name = "addr2" name = "addr3" name = "county" name = “"postcode”
type = String type = String type = String type = String type = String type = String
is_primary =1 is_primary =1 is_primary =0 is_primary =0 is_primary =0 is_primary =0

Figure 6.9.: Source model.
:Table
name = "Customer"
pkey cols pkey cols cols cols
:Column :Column :Column :Column
name = "name" name = "address_house" name = "address_addr2" name = "address_addr3"
type = String type = String type = String type = String
cols cols
:Column :Column
name = "address_county" name = "address_postcode"
type = String type = String

Figure 6.10.: Target model.

prefixed withaddress _ to be removed from th€ustomer table. Using a technique similar to that
outlined by Johann and Egyed, this intuitive idea may or matybe matched by reality. In the ini-
tial transformation execution thAssociation =~ Non Persistent Class To Columns
would have matched th&sddress class and transformed it. However by marking it as perdistieat
rule is no longer able to match (tRersistent _ Association ~_To_Columns would however
now match), and so change propagation can not occur usingritfieal rule. Johann and Egyed are
vague as to what happens when an alteration to the sourcd medas that change propagation can
not occur with the original rule which transformed that eégmh However one can imagine that when
such a case is detected the transformation system wouldfdmakdifferent rule which does match

the changed source element.

Taking the same source model of figlirel 6.9, and the corresmprdrget model in figur&6.10

as the basis for the second example, consider the effectaniyatiy thepostcode Attribute S
is _primary keytol. Upon change propagation, one would expect to see gofey link from

the Customer class to theaddress _postcode column. Assuming, as in the previous example,
that alternative rules can be executed when an alteratiarsturce element invalidates the original

rule that transformed it, Johann and Egyed’s scheme willogotible to create this link — in fact,

188

the change propagation will not make any changes to thettargdel at all. This is due to the non-
localised nature of the change. Intuitively, althoughpgbstcode Attribute is changed, the rule
which will be rerun (in this casrimary Primitive = Type Attribute To Columns)
will only transform theAttribute itself; any new primary key links it created will be discatidzs
the transformation will be unaware that the link needs todresitlered in an outer context. In other
words, although the primary key link will be created, sinve transformation rule which transforms
classes to tables is not rerun, it will not be incorporated ihe transformed table. In general, since the
appropriate outer context that needs to be considered may abitrary number of levels away from
the element changed, and since the appropriate contextotdoemletermined in advance, rerunning
only part of the transformation can never be guaranteedapggate all changes correctly.

It is left as an exercise to the reader to spot other casessiredample which will similarly foil
a change propagation scheme only capable of propagatiadjsed changes. As the examples of
this subsection have demonstrated, such schemes have arfenthl weakness when propagating
such changes. In the following section, | demonstrate how BMhore general scheme is capable of

propagating such changes correctly.

6.3.2. PMT’s approach

The fundamental challenge with non-localised changesdetermine the particular rules to execute
given a particular alteration of the source model. This imeguan analysis of all the transformation
rules in a system to determine which are relevant to pagiahanges. In a fully declarative approach
such analysis may be possible, although it may be imprddicaven impossible depending on the
expressive power of the approach. However in a hybrid datilar/ imperative approach such as
PMT’s, analysis of this sort is impossible in the generalkecasvhilst PMT'’s use of patterns may
facilitate analysis in some cases, any use of imperative ¢pdrticularly code which calls out to
Converge libraries) irreparably muddies the waters. Tliter@ for PMT’s execution approach is
thus simple: it must be capable of propagating non-locdligganges successfully, and it must be
capable of doing so even when it can not analyse the tranafammand its rules.

PMT'’s execution approach thus takes the only solution whah ensure correct operation in all
cases: change propagation involves a complete re-exacofithe transformation. By executing
the transformation from the beginning, PMT implicitly peggates even non-localised changes. The
downside to this approach is that rerunning the entire toamstion is not efficient. However since
PMT is, by design, a batch change propagation approach ésterd6.1.B), | believe this is consid-
erably less of a problem than it would be for an immediate gearopagation approach.

The efficacy of PMT's approach is best seen by example. Irrdoderesent a meaningful compar-

189

:Association

mod_id = "19"
name = "address"

src \§1
Y

:Class :Class
mod_id = "11" mod_id = "13"
name = "Customer"” name = "Address"
is_persistent = 1 is_persistent =0
%{II’S attrs %[I’S ttrs attrs attrs
4
:Attribute :Attribute :Attribute :Attribute :Attribute :Attribute
mod_id = "12" mod_id = "14" mod_id = "15" mod_id = "16" mod_id = "17" mod_id = "18"
is_primary = 1 is_primary = 1 is_primary =0 is_primary = 0 is_primary =0 is_primary =0
name = "name" name = "house" name = "addr2" name = "addr3" name = "county" name = "postcode”
e pe &e %e type type
:PrimitiveDataType
mod_id = "10"
name = "String"

Figure 6.11.: Initial source model.

ison, | use exactly the same example as in the previous didrsetn order to have a PMT version
of the advanced variant of the UML modelling language totiefeal database transformation from
sectio 5,513, one simply needs to substigt®MT.mt> for $<MT.mt> in the transformation code.
Although this does not lead to a particularly idiomatic PMansformation, it saves duplicating the
code, and demonstrates how close MT and PMT are in many asgegurd 6.1l shows the initial
source model, and figule6]12 the target mbaeeated by running th€lasses To Tables
transformation. FigurEZ6.13 shows the updated source mudkkl the Address class marked as
being persistent, and theostcode attribute marked as being part of a primary key. Fidurel6.14
shows the result of change propagation on the target model.

As this example shows, PMT's change propagation approastves that all changes — including
non-localised changes — are propagated successfullyiekbehe relative inefficiency of this method
is thus offset by its ability to propagate non-localisedrafes correctly. Sectidn 8.6 discusses poten-

tial techniques to increase the efficiency of PMT change ggafion in some circumstances.

6.4. Checking conformance operators

In some situations in a change propagating transformatton transformation writer may wish to
explicitly prevent some types of change propagation froguaing, or ensure that certain relation-
ships between the source and target models always holdisTasentially very important for PMT’s
use cases, where the transformation writer may need toragmgie modifications that the user can

perform to the target model in order to ensure correct changggagation.

!Note that the occurrence of four * characters in target identifiers is the result of an impletation detail regarding the
identifier of built-in Converge data types such as strings, @an be safely ignored.

190

pkey

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Colusi 12"
type = "String"
name = "name"”

161

L

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_lGmns_0__address__15"
type = "String"
name = "address__addr2"

cols

:Table

mod_id = "Persistent_Class_To_Table_0__11__ 19"

fkeys =[]
name = "Customer”
cols ols
A
:Column :Column
cols cols cols | mod_id = "Non_Primary_Primitive_Type_Attribute_To_I@mns_0__address__17"| mod_id = "Non_Primary_Primitive_Type_Attribute_To_IGmns_0__address__18"]
type = "String" type = "String"
name = "address__county" name = "address__postcode”
:Column :Column

type = "String"

mod_id = "Non_Primary_Primitive_Type_Attribute_To_lGmns_0__address__16"

name = "address__addr3"

type = "String"

mod_id = "Primary_Primitive_Type_Attribute_To_Colusn®__address__ 14"

name = "address__house"

Figure 6.12.: Initial target model.

:Association

mod_id = "19"
name = "address"

\‘ii

:Class

mod_id = "11"
name = "Customer”
is_persistent = 1

%nrs

4

attrs

:Class

mod_id = "13"
name = "Address"
is_persistent = 1

%lrs ttrs attrs

attrs

:Attribute

:Attribute

:Attribute

:Attribute

:Attribute

:Attribute

mod_id = "12"
is_primary = 1
name = "name"

mod_id = "14"
is_primary = 1
name = "house"

mod_id = "15"
is_primary =0
name = "addr2"

mod_id = "16"
is_primary = 0
name = "addr3"

mod_id = "17"
is_primary =0
name = "county”

mod_id = "18"
is_primary = 1
name = "postcode”

e pe

&T llée type type

:PrimitiveDataType

mod_id = "10"
name = "String"

Figure 6.13.: Updated source model before change propagati

PMT provides support for such use cases by providimeckingconformance operators (in contrast
to the updating conformance operators of sediion.2.4)uddyy checking conformance operators,
transformation writers are able to write change propagatjecifications. Note that any given model
element expression may contain updatimgl checking conformance operators; change propagation
specifications thus may live directly alongside change agation implementations.

The following checking conformance operators are defineB Myl

Operator| Name | Description

X == equality | Check that the value of slat is equal to the value of .

x != vy | inequality | Check that the value of slat is not equal to the value of.

x >= vy | superset| Check that the value of slat is a non-strict superset gfs value.
X <=y subset | Check that the value of slat is a non-strict subset gf’s value.

These operators perform the checks specified in the tabte peoduce aconflict reportif the
checks fail. A conflict report consists of a number of conftetords. A conflict record pinpoints a
specific part of the target model as being non-conformaattivel to the rule containing the failing
checking conformance operator. Individual conflict resonday optionally be able to show what
changes would make the target model conformant. The ioterti such reports is to report to the
user a particular sequence of modifications which, if mdygiplied to the target model by the user,
would make it conformant.

In order to demonstrate checking conformance operators;d again reuse the example of section

replacing th®ackage To_ Package rule with the following:

rule Package To_Package:
srcp:

192

:Table

name = "Customer"

mod_id = "Persistent_Class_To_Table_0__11__ 19"

keys cols

key

:Column

cols cols

mod_id = "Primary_Primitive_Type_Attribute_To_Colusni 12"
type = "String"

name = "name"

:Column

:Column

name = "address__house"

mod_id = "Primary_Primitive_Type_Attribute_To_Colus)__address__18"
type = "String"

name = "address__postcode"”

[N
[{o]} :Table
w — .
mod_id = "Persistent_Class_To_Table_0__1
fkeys =[]
name = "Address"
pkey | cols key cols Is
:Column :Column :Column
mod_id = "Primary_Primitive_Type_Attribute_To_Colusni® 14" mod_id = "Primary_Primitive_Type_Attribute_To_Colusn® 18" mod_id = "Non_Primary_Primitive_Type_Attribute_To_lGmns_0. 15"
type = "String" type = "String" type = "String"
name = "house" name = "postcode” name = "addr2"
N
:Column :Column
mod_id = "Non_Primary_Primitive_Type_Attribute_To_IGmns_0 7 mod_id = "Non_Primary_Primitive_Type_Attribute_To_IGmns_0 16"

type = "String"
name = "county”

type = "String"

name = "addr3"

Figure 6.14.: Updated target model after change propagatio

(ML2_Package)[name == <n>, elements == <elements>]

tgtp:
(ML1_Package)[name == n, elements >= tgt_elements]

Essentially this is the same rule as before, but with the tipgl@aonformance operators in thgtp
clauses’ pattern replaced with equivalent checking conéorce operators. Similarly | reuse the initial
source model of figure8.3, which leads to the creation of #mestarget model as figureb.4. | then
assume the user alters the target model as per figure 6.5@adurce model as per figlirel6.6. When
propagating changes with the n®ackage _To_ Package rule in place, the result of the change
propagation is shown in figufe®l15. Conflicts are clearlyashm red.

The visualization of conflicts in PMT intentionally reusée tvisualization techniques from other
parts of PMT, with the aim of reducing the learning burdentffi@ruser. The ‘Conflict report’ in figure
is analogous to the ‘Tracing’ report. In a similar fashio traces, conflicts are namenlwhere
nis an integer starting from 1. Each separate conflict is gaedrduring a particular execution of
a transformation rule. Figufe8J15 shows two types of casfli€onflict ‘c1’ shows that theame
slot in thePersonnel package has an incorrect value. Note that the conflict testri®unded by a
rounded box, and the link to the element is a dotted line -ethésializations only occur in conflict
reports, and can not be confused with the normal visuatimatif elements. Conflict ‘c2’ shows
elements missing from theements slot of thePersonnel package. Model elements, and links,
in solid (as opposed to broken) red lines show that such eltnmeed to be added to the target model
in order to make it conformant. The ‘+’ prefix is a reinforcamef this. Note that the conflict report
itself denotes only that the twidL1 Association elements, théML1 Class element and the
links from thePersonnel package to those elements, need be added to the target rmiasetver
the visualization of the conflict also shows the links betwiese elements (tie andfrom links),
since these are implicitly required in order to make thedargodel well formed. It is important that
this information is shown to the user; if it was not, then fiia conflict report may simply result in
another conflict report being generated for a part of the ifjodeadded.

Conflict reports create some interesting corner cases. VEoaggsimple example of this, | assume
a fresh execution of th€lasses To Tables , once again reusing the initial source and target
models of figure§ 6l3 arld 6.4 respectively. RemovingREeassociation from the source model
and executing the transformation to propagate changes tedture[6.16. The long dashes on the
links from thePersonnel package (combined with the ‘-’ preceding the conflict naméhenlink)
indicate that they should be removed from the target modetder to make it conformant. However
one might have expected to see the tMb1l Association elements also being drawn in red
dashed lines to signify their removal. However, PMT is upabldo this because although the links

from thePersonnel shouldbe deleted from the target model, they are not yet deletedrefdre

194

:ML2_Package

mod_id = "13"
name = "AcmeLtd"

elements \elements

:ML2_Association

:ML2_Association

mod_id = "15"
name = "manager"
end2_name = "reports_to"

name = "PE"
end2_name = "manager"

Association_To_Association: t3, t5

Tracing

Class_To_Class: t1, t2, t4

Package_To_Package: c1, cp

Conflicts

Package_To_Package: t6

[cl: Slot hame’should be set to 'Acmel_g'

:ML1_Package

elementy elements ong1_name = "oversees" || endl_name = "employees] elements mod_id = "Package_To_Package_0__13"

= end2_multiplicity = 1 end2_multiplicity = 1 name = Persogrneerils =1

(] endl_multiplicity = -1 endl_multiplicity = -1 P _

)] end2_directed = 0 end2_directed = 0

endl_directed = 0 endl_directed = 0
1
end2 ﬁendl end2 3 elemenls‘/e\emenls 2: +elements 2: +elements

:ML2_Class :ML2_Class :ML2_Class :ML1_Association :ML1_Association :ML1_Association :ML1_Association :ML1_Association
mod_id = "14" mod_id = "10" mod_id ="11" mod_id = "Association_To_Association_0__12[| mod_id = "17" mod_id = "Association_To_Association_1__ 12| klements Elements mod_id = "Association_To_Association_0__15'| mod_id = "Association_To_Association_1__15"
name = "DepartmentHead"| | name = "Employee” || name = "Manager" || name = "manager" name = "secondary_manager{ | name = "employees" name = "reports_to" name = "oversees"

parents =[] parents =[] parents =[] multiplicity = 1 multiplicity = 1 multiplicity = -1 multiplicity = 1 multiplicity = -1

1 rom rom to to 0 from to rom
P —
:ML1_Class W :ML1_Class :ML1_Class

parents =[]

="Class_To_Class_0__10|
name = "Employee"

name = "Manager"
parents =[]

mod_id = "Class_To_Class_0__11{

Figure 6.15.: Target model with conflicts.

name = "DepartmentHead"
parents =[]

"Class_To_Class_0__14

2: +elements

0 N o g b~ WN P

:ML2_Package Tracing

Conflicts
mod id = "13" Class_To_Class: t1, t2| Pack To Pack
S " ackage_To_Package: ¢
name = "Personnel Package_To_Package: t3 9e_to_ 9
elements 3 lements

:ML1_Package

mod_id = "Package_To_Package_0__ 18"
name = "Personnel”
parents =[]

/ \

:ML2_Class V \ :ML2_Class
mod_id ="11" 7/ cl:-elements \ cl:-elements mod_id = "10"
name = "Manager" / \ name = "Employee”

parents =[] / \ parents = []

K N
ML1_Association ML1_Association
t elements | mod_id = "Association_To_Association_1__12' mod_id = "Association_To_Association_0__12]' |lements ©
name = "employees"” name = "manager"
multiplicity = -1 multiplicity = 1
‘ﬁn o o \@1
:ML1_Class :ML1_Class
mod_id = "Class_To_Class_0__ 11 mod_id ="Class_To_Class_0__ 10|
name = "Manager" name = "Employee”
parents =[] parents =[]

Figure 6.16.: Target model with conflicts after elementsraneoved from the source model.

the twoML1 Association elements are reachable via these links and via the garbdgetizm
style algorithm that PMT runs at the end of the transfornmafsee section 6.2.6) these two elements
are considered to be a valid part of the target model.

Sectiof 6.5 explains the implementation of conflicts inTRRImore detail.

6.5. Implementation

Unsurprisingly, given its origins, PMT’s implementatios largely similar to MT’s. The majority
of PMT's features are simple changes to MT code using thentqabs outlined in sectidn 3.6, and
as such are not documented in detail in this section. Indteathil two particular parts of PMT'’s
implementation that are of additional interest over MT'pleamentation. PMT’s grammar, which is

referenced throughout this section, can be found in apr@Ed.

6.5.1. Conformance operators

A simplified version of the t _pt _mep_pattern traversal function, which only contains the

code for the>= checking conformance operator operating on unordereditwns, is given below:

func t pt mep pattern(node):

/Il pt _mep_pattern = "(" "ID")" "[" "ID" pt _mep_pattern _op expr { "
1 "ID" pt _mep_pattern _op expr }* "]

class _ := [| TM. _CLASSES REPOSITORY[$<<CELl.lift(hode[2].value)>>] []

conformance operators = []

i =5

while i < node.len() & node[i].type == "ID"

196

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57

if node[i + 1][2].type == ">=":
/I pt _mep pattern _op 1= "" ">="
conformance _ operators.extend([|
val := $<<self.preorder(nodefi + 2])>>
if Func _Binding(&obj, Obiject.fields["get _slot"P(" _is _initialized") \

&0bj.$<<CEl.name(node[i].value)>> := val
elif val.conforms _to(Set):

should _be_in _the _set = []

should not be in the set =]

for set _elem := &obj.$<<CEl.name(nodel[i].value)>>.iterate():

if not val.contains(set _elem):
for in _objs, out _objs := &self. _old _tracing.iterate():
if out objs.contains(set _elem):
should _not _be_in _the _set.append(set _elem)
break

for set _elem := val.iterate():
if not &obj.$<<CEl.name(node]i].value)>>.contains(set _elem):
should be in the set.append(set elem)

if should be in the setlen() == 0 & \
should _not _be_in _the _setlen() == O:

pass
else:
&self. _conflict _objects.append(Conflict.Set _ Conflict(\
$<<CELlift(self. _rule _name)>>, &matched objs, &obj, \
$<<CElL lift(node[i].value)>>, should _be_in _the _set, \

should not be in the set))
else:
raise Type Exception(Set)
1)

return ||
func () |

new id ;= identifier based on rule nane union of source elenents etc.

if TM.OBJECTS _REPOSITORY.contains(new _id):
obj := TM.OBJECTS _REPOSITORY[new id]
else:
obj := $<<class >>.new with id(new _id)

$<<conformance _ operators>>

return obj

0
1

There are two distinct parts to this function. Lines 43 — 56vglthe core of the extended model
element expressions in PMT. Line 45 calculates the idenfifiethe model element expression (see
sectiof6.213). Line 47 then checks the TM model elementsiepy to see whether an element with
such an identifier already exists. If it does, that elemeptusked from the repository (line 48). If it

does not, a blank element of the correct type is created §iMeThe element, blank or otherwise, is

then handed to the various conformance operators (line 52).

The superset operator is indicative of the the conformapegators in general (sectiohs 6]2.4 and

[£4). Firstly the the model element expression is evaluatdohe 12. Line 13 then checks to see

whether the element has been initialized (meaning that rkkdement was created in line 50); if

197

it has not, then the value of the user expression is simpligr@ad to the appropriate slot and the
conformance operator automatically succeeds. If the glesaontain a value, then lines 16 — 37
check the value of the slot for conflicts against the userasgion. Lines 19 — 24 check for elements
in the slots value that PMT tentatively believes should rothere (see secti@n 6.P.7), while lines 26
— 28 check for elements in the user expression which shoytddsent in the list. If PMT detects that

there are elements in the set which should or should not Ipe, ttieen it generates a conflict report in

lines 34 — 37.

6.5.2. Conflicts

Although conflict reports are generated by PMT, the conflarioept is housed within TM since
it needs to understand conflicts in order to be able to visedliem. TM defines a simple model
of conflicts which is used to record the required informatiokithough the model of conflicts is
largely an internal detail to PMT and TM, the model preseinetiis subsection captures the required
information in a simple manner; | hope that as other typeaflict reports are needed, it serves as
a practical and efficient base for expansion.

TM currently defines three types of conflict records: slotflicts, list conflicts, and set conflicts.
Conflict records conform to the model of figlire 8.17. As thisves, all conflict records share certain
things in common. All conflicts are generated from a particulle (captured by theule _name
slot), are the result of transforming one or more source etem(thesrc _ objs association), and
are specific to a particulaslot —name within a give target element (thgt obj association).

Slot conflicts show when a slot with a primitive type (e.girgis or ints) has an incorrect value. In
such a case, theonflict _obj records the value the slot should have. List and set contiantis
be considered together, since they store highly similarimétion. In each case they record zero or
more elements which should be in the given container, arml@emore elements which should not
be in the container. As explained in sectlon 8.2.7, at the tnconflict record is generated the list
of elements which should not be in the container is only targaPMT and TM currently record all

such elements, but dynamically filter them out when requioetisplay conflict information.

6.6. Future work

Given its inherently experimental nature, PMT raises margstions and challenges for further work.
As part of this, several engineering issues will need to iresbed before real-world usage is a
possibility. Such issues include devising a practical rma@m for creating target identifiers that is

more robust than the current string concatenation methadi, sa on. However | believe that once

198

src_objs

Conflict)
rule_name : String tgt_obj MObJeCt
slot_name : String

[| |
Slot_Conflict | | List_Conflict | | Set_Conflict
should_not_be_in_the_set

should_be_in_the_set
should_not_be_in_the_list
should_be_in_the_list

conflict_obj

Figure 6.17.: Conflict report model.

engineering issues are put to one side, two higher-levélertyges are of particular interest.

The first is a relatively short term goal. PMT’s approach tmeoging extraneous elements from
the target model is often effective, but fails to remove alata if the links to those elements have
existed for more than one round of change propagation. IM4&E uses the tracing information
of the previous execution, if an element survives being redan more than one round of change
propagation, then PMT incorrectly assumes it has been niigradded to the target model by the
user. PMT can also, in some rarer cases, erroneously debetaaly added links from the target
model. Finding a practical means of accurately determimihgch elements can be safely removed
from the target model would considerably improve the oversdr experience of change propagation

in PMT.

The second challenge | would consider to be a longer term godirelates to the efficiency of the
approach. As explained in sectibn613.2, change propagati®MT involves executing the whole
transformation from the beginning. Whilst has the advamtagt it can propagate even non-localised
changes correctly, it is inevitably somewhat slow. On theephand, approaches like Johann and
Egyed optimise change propagation, but at the considesdglense of correctness. | believe that
PMT’s approach is a necessary ‘fall back’ option, but that¢hare two ways that may allow PMT to
execute only a subset of the transformation in some casestirShmechanism is directly influenced
by Johann and Egyed. It may be possible to perform detailatysis of some transformation rules,
since model element patterns and model element expressibdieentaining arbitrary Converge code
are effectively declarative statements relating two m@déh such cases, it may then be possible
to use this knowledge to determine that certain small clmongéy affect certain rules. The second
mechanism may be complementary to the first: often the udékmow whether certain of their
transformations will be involved in the propagation of e@rtchanges. If the user knows that certain
types of changes are the ones most frequently propagawdmntay be willing to ‘mark up’ parts of
the transformation to indicate that certain paths need eaaken or, alternatively, that certain paths

must be taken, in the context of specific changes. | beliesewbrking out appropriate analyses, and

199

also practical mechanisms for ‘marking up’ a transfornrafr change propagation are considerable,

but highly worthwhile, challenges.

6.7. Summary

In this chapter | presented the PMT change propagating ntoatetformation language. | started
the chapter by examining in more depth some of the issuesjesign decisions, facing any change
propagating model transformation approach. The motigaise case for PMT — allowing the user to
manually alter the target model, whilst still allowing clgas to be propagated into the altered model
non-destructively — is important in understanding sevef&®MT’s design decisions. | then presented
PMT itself, exploring its approach to change propagatioexgmple. PMT was shown to be capable
of propagating even non-localised changes correctly. [Edio an identification of some areas where
PMT's change propagation techniques were effective, anmtesareas where they fell short of what
one may wish for.

Despite its immaturity — particularly in comparison to MTampwhich it is based — | believe that
PMT is among the very first change propagating model tramsftion approaches to make a genuine
attempt at exploring techniques for facilitating likelyatevorld scenarios. Although it can by no
means be considered to be production ready in its currem,fbibelieve it provides a basis for

further exploration of this challenging and exciting area.

200

Chapter 7.

Conclusions

7.1. Summary

In this thesis | presented a clear identification of the sigait types of model transformations. | then
described the Converge programming language, a dynamia@fpgmming language, with compile-
time meta-programming. Converge integrates of a numbelitbéto largely separate paradigms
— Python’s dynamicity, Icon’s generators and backtrackidgjVLisp's data model, and Template
Haskell's compile-time meta-programming — into a cohekghole. In so doing, | listed a number
of insights into the design decisions necessary to integnath features into similar languages. Con-
verge's compile-time meta-programming facility also @ns$ several innovative features, such as
the ability to control error reporting via nested quasitina Compile-time meta-programming was
then used to provide a syntax extension facility in Conveatjewing DSLs to be directly embedded
within Converge code. As a simple demonstration of thisebpnted a simple DSL for defining typed
modelling languages.

Converge was then used to implement the model transformkitiguage MT. MT can be seen in
several ways as an evolution of the QVT-Partners model fmamation approach. To demonstrate
this, | presented an in-depth analysis of the QVT-Partngpsaach, identifying a number of flaws and
limitations. MT was presented as solving many of these prob| as well as providing useful new
features such as pattern multiplicities. By integratinghsfeatures into a model transformation ap-
proach, | was able to express relatively powerful modelsf@mations concisely. MT is also notable
because of its implementation as a Converge DSL. To the besy @&nowledge, it is the first model
transformation approach to use a non-specialised progiagnianguage (Converge) to augment the
model transformation language. Through example it was gwnMT'’s integration of imperative
and declarative features provided a coherent model tramatdn environment. | also believe MT is
the first model transformation approach to present a ddtdiscription of its implementation. By

making use of Converge features such as generators anddiiky, MT’s implementation is small

enough to be documented in the confines of a thesis. MT is alspi@ in several other areas e.qg. its

detailed visualizations of transformations, and tracitfgrimation creation techniques.

PMT was then built as an extension of MT. PMT is, by its veryunat much more of an experiment
than MT. By using a number of simple techniques (e.g. its raeim for creating target element
identifiers) PMT provides a syntactically simple languageable of expressing both change prop-
agating transformation implementations and specificationlthough several documents talk about
change propagating approaches of various forms, few appbhave a corresponding implementation.
PMT is thus one of the very first concrete instances of a chpraagating model transformation ap-
proach. | also believe that it is the first approach to idgmtifiny of the fundamental issues in change
propagation, and the first to provide partial (although rarhplete) solutions to some of them. For
example, PMT provides a real solution to the problem of rawmalised changes, which has been oth-
erwise ignored in the slim literature on this area. PMT'saapt, and visualization, of conflicts is

novel in this context, and an important step towards makirady $ransformations usable.

7.2. Conclusions

The three main parts of this thesis — the Converge programmaimguage, and the MT and PMT
model transformation approaches — form a natural pyramiith @onverge at the bottom, MT in the
middle, and PMT at the top.

Looking at the pyramid from an evolutionary perspectives oan clearly see why the order of the
layers is important. Converge is a stand alone technologghwfacilitates the development of DSLs.
Once stable, Converge was used to design and implement themddlEl transformation approach.
Practically speaking, MT could not have been conceived awittConverge. Although this thesis
documents the final design of MT, it went through many wildyuag iterations before arriving at that
point. Converge’s low-burden development environmentomby allowed such experimentation, but
means that MT is small enough in size that it can be descritbétkispace confines of a thesis. Only
when MT was finished did PMT become a realistic research daailding on top of MT implicitly
meant that many design decisions were fixed, and that PMTedemay to focus on the novel aspects
of change propagation. Despite PMT's relative immaturdynpared to MT and Converge, | believe
it to be the first practical approach to change propagatiand, the first with a publicly available
implementation.

Looking at the pyramid from a usability perspective, Cogeds the most fully realised of the three
parts of this thesis, both in its desigh and implementatfidms is not surprising — if Converge was less

than robust, then designing and implementing MT and PMT dbalve become a much harder task.

202

Converge has already been used for tasks other than modsiamamations, and is currently being
evaluated and used by several international users, in hdtksiry and academia. Relative to other
model transformation approaches, MT is feature rich, amdhiplementation relatively robust and
efficient. Whilst | do not consider MT to be anywhere near anglete as Converge, it has already
proved useful and is being evaluated by a handful of intenat users. | hope that MT provides
a good platform upon which more refined model transformati@y be based. PMT, on the other
hand, is realistically only useful at the research levsldisign being less complete than MT, and its

implementation relatively fragile.

7.2.1. Future work

In terms of language design, Converge is essentially featamplete; the only major exception to
this is the syntax extension feature, which needs furtrezareh to uncover a way of more seamlessly
integrating it into the main language. In terms of enginegiissues, the current implementation is
lacking in its library support and its efficiency. Becaus€ohverge’s applicability to many different
areas, | anticipate tackling all of these issues in the vesr future.

Not considering engineering issues related to efficiencyrabustness are, | believe that MT con-
tains the majority of features necessary to make it a usefalworld model transformation approach.
However there is one area in which MT — along with every othedeh transformation approach of
which | am aware — is distinctly lacking: scalability. | k®le the most important area of future
work for MT will be to investigate techniques for orderinganabining, and prioritising transforma-
tion rules. This will be necessary not only for efficiency poses, but more importantly for human
comprehension. Currently transformations contain evessible transformation rule needed by the
transformation; ultimately this lack of modularity leagsrhany of the same usability issues noted
with XSLT [PBGO1]. As suggested in sectibnl.8, | believet tlaalysing work on combinators in
functional languages may lead to new insights on how to bsttacture transformations. | further
believe that such analysis will be applicable to many mogegigformation approaches, and not just
MT.

As befits the most experimental, and least mature, of the thiggor parts of this thesis, PMT offers
countless opportunities for further research. Whilsteéhere many small to medium sized issues —
e.g. examining better approaches to creating and storiggttalement identifiers — | believe there
are two major issues which need to be addressed before a B§lie-éechnology could be considered
fit for real world use. Firstly, PMT’s approach to removingtraxieous elements from the target
model is often effective, but fails to remove elements in s@ases; in one unpleasant corner case,

links can be erroneously removed from the target model. ifgnd practical means of accurately

203

determining which elements can be safely removed from tigetanodel is likely to have a profound
effect on the user experience of such technologies. SegdPBlIT is currently very inefficient. This

is largely inherent, given PMT’s approach to propagating-tuzalised changes. However, in some
instances — particularly for simple, localised changes siscchanging the name of a class in a source
model — PMT may, possibly with some help from the user, be abknalyse transformations and
determine that only a small part of the transformation ne=cebun. If such cases can be determined
and optimised, then change propagation may become a muahappealing prospect from a users

perspective.

204

Appendix A.

Converge grammar

This section lists the CPK grammar for Converge. This isaeted directly from the Converge

compiler fileCompiler/CV _Parser.cv

top_level ::= definition { "NEWLINE" definition } *
definition ::= class_def

= func_def

= import

= var { ")" var } * =" expr

= splice
import = IMPORT dotted_name |mport as { "," dotted_nam e import_as } *
dotted_name := "ID" { "ID" }
import_as = "AS"
class_def = "CLASS" class_name class_supers class_meta class ":" "INDENT"

class_fields "DEDENT"
class_name = "ID"
= splice

class_supers B "(" expr { ")" expr } x)"

class_metaclass :: "METACLASS expr

class_fields n= Iass field { "NEWLINE" class_field } *
class_field = Iass def

func def

var ":=" expr

splice

"PASS"

func_def = func_type func_name "(" func_params ")" ™" "I NDENT"

func_nonlocals expr_body "DEDENT"
= func_type func_name "(" func_params ")" "{" "INDENT"

func_nonlocals expr_body "DEDENT" "NEWLINE" "}"

func_type = "FUNC"

"BOUND_FUNC"

"UNBOUND_FUNC"

"D

func_name

WO i
A

g
splice

func_params_elems "," func_varargs
func_params_elems
func_varargs

func_params

func_params_elems ::= var func_param_default { "," var fun c_param_default } =
= splice
func_param_default ::= ":=" expr
func_varargs n= *" var
= splice
func_nonlocals = "NONLOCAL" "ID" { "," "ID" } * "NEWLINE"
expr_body ::= expr { "NEWLINE" expr } *
expr = class_def
= func_def
= while
= if
= for
= try
‘= number
= var
= dict
= set
= list
= dict
= string
:= slot_lookup %precedence 50
= list
:= application %precedence 40
= lookup %precedence 40
= slice %precedence 40
= exbi
= return
= yield
= raise
= assert
= break
= continue
= conjunction %precedence 10
= alternation %precedence 10
= assignment %precedence 15
= not %precedence 17
= neg %precedence 35
= binary %precedence 30
= comparison %precedence 20
= pass
= import
= splice %precedence 100
= quasi_quotes
= brackets
if 2= "IF" expr ™" "INDENT" expr_body "DEDENT" { if elif } * if_else
= "IF" expr "{" "INDENT" expr_body "DEDENT" "NEWLINE" "}" { if_elif }
if_else
if_elif ::= "NEWLINE" "ELIF" expr ™" "INDENT" expr_body "D EDENT"
= "NEWLINE" "ELIF" expr "{" "INDENT" expr_body "DEDENT" " NEWLINE" "}"
if_else ::= "NEWLINE" "ELSE" ™" "INDENT" expr_body "DEDEN ™
== "NEWLINE" "ELSE" "{" "INDENT" expr_body "DEDENT" "NEWL INE" "}"
while ::= "WHILE" expr ™" "INDENT" expr_body "DEDENT" exha usted broken
= "WHILE" expr
for = "FOR" expr ":" "INDENT" expr_body "DEDENT" exhauste d broken

206

= "FOR" expr

try n= "TRY" ™" "INDENT" expr_body "DEDENT" { try_catch } * try_else
try_catch = "NEWLINE" "CATCH" expr try_catch_var ™" "IN DENT" expr_body
"DEDENT"
try_catch_var ::= "INTO" var
try_else :::""NEWLINE" "ELSE" ":" "INDENT" expr_body "DEDE NT"
exhausted ::= "NEWLINE" "EXHAUSTED" ™" "INDENT" expr_bod y "DEDENT"
broken ::= "NEWLINE" "BROKEN" ":" "INDENT" expr_body "DEDE NT"
number ::= "INT"
var = "ID"
= "&" "ID"
= splice

string ::= "STRING"

slot_lookup := expr "." "ID"
= expr "." splice

list = "[" expr { "," expr } * M
=
dict ::= "DICT{" expr "" expr { "," expr "" expr } * Y
= "DICT{" "}"
set = "SET{" expr { "," expr } * "
= "SET{" "}
application ::= expr "(" expr { "," expr } * M)
= expr (")"
lookup ::= expr "[" expr "
slice = expr "[" expr ™" expr ""
= expr "[* ™" expr "
= expr "[* expr """
= expr "[* "
exbi = "EXBI" expr "." "ID"
return 1= "RETURN" expr
= "RETURN"
yield ::= "YIELD" expr
raise ::= "RAISE" expr

assert ::= "ASSERT" expr
break := "BREAK"

continue ::= "CONTINUE"

conjunction = expr "&" expr { "&" expr } *
alternation ::= expr "|" expr { "' expr } *
assignment = assignment_target { "," assignment_target }*

assignment_type expr
assignment_target ::= var
= slot_lookup

207

assignment_type = "=

I mn
i
I

not ::= "NOT" expr
neg = "-" expr
binary = expr binary_op expr
binary_op =" *" %precedence 40
= %precedence 30
= "%" %precedence 30
= %precedence 20
= %precedence 20
comparison = expr comparison_op expr
comparison_op = "IS"
Z
= ="
= >="
=
=
pass = "PASS"
splice 1= expr_splice
= block_splice
expr_splice = "$" "<" "<" expr ">" ">"
block_splice = "$" "<" expr ">" ":" "INDENT" "JUMBO" "DEDE

quasi_guotes = expr_guasi_gquotes

= defn_quasi_quotes

"lI" "INDENT" expr { "NEWLINE" expr }
"NEWLINE" "|]"

w= "[|" expr { "NEWLINE" expr } *

"[D|" definition { "NEWLINE" defini

expr_quasi_quotes ::=

defn_quasi_quotes ::=

NT"

*» "DEDENT"

e

tion } = "|]"

= “[D|" "INDENT" definition { "NEWLINE" definition }

"DEDENT" "NEWLINE" "[]"

brackets := "(" expr ")"

208

Appendix B.

DSL grammars

B.1. MT Grammar

mt_rules ::= "TRANSFORMATION" "ID" "NEWLINE" mt_rule { "NE WLINE" mt_rule } =
mt_rule = "RULE" "ID" ™" "INDENT" mt_in "NEWLINE" mt_out "DEDENT"
mt_in = mt_inp mt_inc
mt_inp = "SRCP" ™" "INDENT" pt_ ipattern { "NEWLINE" pt_i pattern } * "DEDENT"
mt_inc = "NEWLINE" "SRC_WHEN" ™" "INDENT" pt_ipattern " DEDENT"
mt_tgt = mt_tgtp mt_tgtw mt_tracing
mt_tgtp = "TGTP" ":" "INDENT" mt tgt expr { "NEWLINE" exp r } » "DEDENT"
mt_tgtw 1= "NEWLINE" "TGT_WHERE" ":" "INDENT" expr { "NEWL INE" expr } * "DEDENT"
mt_tracing = "NEWLINE" "TRACING_ADD" ":" "INDENT" expr " DEDENT"

= "NEWLINE" "TRACING_OVERRIDE" ™" "INDENT" expr "DEDEN ™

pt_ipattern ::= pt_ipattern_expr pt_ipattern_qualifier

pt_ipattern_expr ::= pt iobj_pattern %precedence 10
= pt_iset_pattern %precedence 10
= pt_ivar %precedence 10
= expr
pt_ipattern_qualifier = ™" pt muItlpI|C|ty <" MDDt "> "
pt_multiplicity = pt_ multlpI|C|ty_upper bound
= expr "I"
=" ot
= expr "." "." pt_multiplicity_upper_bound
pt_multiplicity_upper_bound ::= expr
= expr "?"
= ok
= oo
pt_iobj_pattern n= "(" pt_iobj_pattern_self ")" "[" pt_i obj_slot

pt_iobj_pattern_comparison pt_ipattern_expr {
"" pt_iobj_slot pt_iobj_pattern_comparison

pt_ipattern_expr } * "
= "(" pt_iobj_pattern_self ")" "[* ""
pt_iobj_pattern_self SEE DA N DA
"D

9

pt_iobj_slot w=

"ID" (" expr {)" expr } * "

1
9

pt_iobj_pattern_comparison = "=="

2= NS

pt_iset_pattern = "Set{" pt_iset_pattern_elems "|"
pt_iset_pattern_elems "}"
= "Set{" pt_iset_pattern_elems "}"

pt_iset_pattern_elems ::= pt_ipattern { ", pt_ipattern } *
pt_ivar = "<" "ID" ">"
mt_tgt_expr 1= expr mt_tgt expr_qualifier
mt_tgt_expr_qualifier ::= "FOR" expr
expr ;= pt_mep_pattern
pt_mep_pattern = "(" "ID" ")" "[" "ID" ":=" expr {)" "ID" " ="expr} '

b= (D")T

B.2. PMT Grammar

PMT’'s grammar is identical to MT’s with the exception of the__mep_pattern rule whose up-

dated definition is as follows:

pt_mep_pattern = "(" "ID" ")" "[" "ID" pt_mep_pattern_op expr { "," "ID"
pt_mep_pattern_op expr } * M
"¢ DT

pt_mep_pattern_op P

210

Appendix C.

Additional examples

C.1. Converting associations to foreign keys

This transformation is a simple example of a standard taamsdtion: removing associations from a
model, replacing them with foreign key attributes in therappiate classes. This is done in the con-
text of a simple UML-esque modelling language which allowslautes to be marked as constituting
part of a primary key or not. The metamodel is shown in fiur® @/hen an association is replaced
by attributes, the name of the target class is prependedribus¢ names to aid uniqueness of the
resultant names, and also as a grouping mechanism.

The full transformation module is as follows:

import Sys

import MT.MT
import TM.Visualizer
import Simple_UML

$<MT.mt>:

transformation Associations_To_Foreign_Keys
rule Class_To_Class:

srcp:

(Class, <c>)[name == <name>, attrs == <attrs>]

(Association)[src == ¢, dest == <dest>] : * <assocs>
tgtp:

(Class)[name := name, attrs := self.transform_all(attrs) + new_attrs]
tgt_where:

new_attrs := Set{}
for dict := assocs.iterate():
for attr := dict["dest"].attrs.iterate():
if attr.is_primary:
new_attr := (Attribute)[name := dict["dest].name + " " + \
attr.name, type := self.transform([attr.type]), \
is_primary := 0]
new_attrs.add(new_attr)

rule Remove_Association:
srcp:
(Association, <a>)[]

tgtp:

MObject

to_string()
initialize()

mod_id : String >f

Ve

name : String

Classifier

initialize()

T

PrimitiveDataType Association

initialize() initialize()

fes%rc ype

Class

initialize()

attrs

*

N

Attribute

is_primary : bool
name : String

initialize()

Figure C.1.: Simple UML modelling language, with primarylipport.

null

rule Default:
srcp:
(MObject, <mo>)[]

tgtp:
self.clone_and_transform(mo)

func main():

customer := Simple_UML.Class("Customer", Set{Simple_UM
Simple_UML.String, 1)})

order := Simple_UML.Class("Order", Set{Simple_UML.Attr
Simple_UML.Integer, 1)})

employee := Simple_UML.Class("Employee", Set{Simple_UM
Simple_UML.String, 1), Simple_UML.Attribute("age"”, Sim

customer_order := Simple_UML.Association("order", cust
order_employee := Simple_UML.Association("fulfilled_b

class_model := [customer, order, employee, customer_orde
Visualizer.visualize_model(class_model, [], fail)

transformation := Associations_To_Foreign_Keys.new.ap
transformed := transformation.get_target()

Visualizer.visualize_model(transformed, [], 1)

L.Attribute("name”, \
ibute("order_no", \

L.Attribute("name”, \
ple_UML.Integer, 1)})

omer, order)
y", order, employee)

r, order_employee]

ply(class_model)

An example of the input to this transformation can be seengaré[C2, and the result of the

212

:Association

:Association

mod_id = "16"
name = "order"

mod_id = "17"
name = "fulfilled_by"

/SI’C

dest fMdest &‘

:Class

:Class

:Class

mod_id = "10"
name = "Customer"

mod_id = "15"
name = "Employee"

mod_id = "12"
name = "Order"

lanrs

/HTS \§'S

\§TS

:Attribute :Attribute ‘Attribute ‘Attribute
mod_id ="9" mod_id = "13" mod_id = "14" mod_id = "11"
is_primary = 1 is_primary = 1 is_primary = 1 is_primary = 1
name = "name" name = "name" name = "age" name = "order_no"

:Class

mod_id = "22"

name = "Customer"

:PrimitiveDataType

:PrimitiveDataType

k/pe pe

mod_id ="8"
name = "String"

mod_id ="7"
name = "Integer"

Figure C.2.: ER source model.

:Class

mod_id = "29"

name = "Employee"

attrs \i&s

%

:Class

mod_id = "26"
name = "Order"

jattrs &

attrs attrs
y’
:Attribute :Attribute :Attribute :Attribute :Attribute :Attribute :Attribute
mod_id = "21" mod_id = "28" mod_id = "19" mod_id = "27" mod_id = "24" mod_id = "25" mod_id = "23"
is_primary = 1 is_primary = 1 is_primary =0 is_primary = 1 is_primary =0 is_primary =1 is_primary =0
name = "name" name = "name" name = "Order_order_no"| name = "age" name = "Employee_name’ name = "order_no" name = "Employee_age"
\\pe ype pe pe type type type
:PrimitiveDataType :PrimitiveDataType l{
mod_id = "20" mod_id = "18"
name = "String" name = "Integer"

Figure C.3.: ER target model.

transformation seen in figute C.3.

C.2. Removing ‘many to many’ relations

This transformation is a simple example of a standard toamsdtion: removing many to many asso-

ciations in an Entity-Relationship diagram. FiglrelC.4veb@ simple meta-model of ER diagrams

— this example is only concerned with entities and relatijps

The full transformation module is as follows:

import Sys
import PMT.PMT
import TM.Visualizer

import ER

$<PMT.mt>:
transformation Remove_Many_To_Many_Relations

rule Statemachine_To_Statemachine:

srcp:

213

MObject

mod_id : String

to_string()
initialize()

/

ERModel

initialize()

elements
*

Element

initialize()

7

end2_name : String
endl_name : String
end2_multiplicity : int
end1_multiplicity : int

Relation

initialize()

endZ&a/ndl
N

Entity

name : String

initialize()

Figure C.4.: ER diagram metamodel.

(ERModel)[elements == <ielements>]
tgtp:

(ERModel)[elements := oelements]
tgt_where:

oelements := []

for element := ielements.iterate():

oelements.extend(self.transform([element]))

rule Many_To_Many_Association:

srcp:

(Relation)[end1_multiplicity == -1, end2_multiplicity = = -1, \
endl_name == <iendl_name>, end2_name == <iend2_name>, end 1==
<iend1l>, end2 == <iend2>]

tgtp:

(Relation)[end1_multiplicity := 1, end2_multiplicity := -1, 1\
endl := self.transform([iendl]), end2 := intermediate_da ta, \
endl_name := iendl_name, end2_name := intermediate_name]

(Relation)[end1_multiplicity := -1, end2_multiplicity : =1, \
endl := intermediate_data, end2 := self.transform([iend2 D\
endl_name := intermediate_name, end2_name := iend2_name]

tgt_where:

intermediate_name := iendl_name + "_" + iend2_name

intermediate_data := (Entity)[name := intermediate_name]
rule Default:
srcp:

(MObject, <mo>)[]

214

:ERModel

mod_id ="9"

elements

:Relation

mod_id ="8"
elements| end2_name = "employee"
end1l_name = "manager”
end2_multiplicity = -1
endl_multiplicity = -1

‘/dz &1

:Entity :Entity
mod_id ="7" mod_id ="6"
name = "Employee” name = "Manager"

Figure C.5.: ER source model.

:ERModel

mod_id = "Statemachine_To_Statemachine_0_| 9"

elements glements

:Relation :Relation
mod_id = "Many_To_Many_Association_1__ 8 mod_id = "Many_To_Many_Association_2__8
elements| €nd2_name = "manager_employee" end2_name = "employee” lements
endl_name = "manager" endl_name = "manager_employee"
end2_multiplicity = -1 end2_multiplicity = 1
end1_multiplicity = 1 end1_multiplicity = -1
/ndl xridz ﬁ E{ndz
:Entity :Entity :Entity
mod_id = "10" mod_id = "Many_To_Many_Association_0__ 8] mod_id ="11"
name = "Manager" name = "manager_employee" name = "Employee"

Figure C.6.: ER target model.

tgtp:
[self.clone_and_transform(mo)]

tgt_where:
Sys.printin("Default”)
func main():

manager := ER.Entity("Manager")
employee := ER.Entity("Employee")

manager_employee := ER.Relation(-1, -1, "manager”, “"empl oyee", manager, \
employee)
ermodel := ER.ERModel(Set{manager, employee, manager_em ployee})

Visualizer.visualize_model(ermodel, [], fail)

transformation := Remove_Many_To_Many_Relations(ermod el)
transformation.do_transform()

transformed := transformation.get_output()
Visualizer.visualize_model(transformed, [], 1)

An example of the input to this transformation can be seengaré[C5, and the result of the

transformation seen in figuke"C.6.

215

Appendix D.

Example translations

D.1. The ‘Simple UML modelling language

This section shows the pretty printed ITree that resultsftanslating the Simple UML modelling
language shown in sectidn4b.1. Note that this particukamsiation is slightly naive in nature —
it would be possible to engineer a modelling DSL that wouldseavariable capture (e.g. a model
attribute calledor expr would lead to unpredictable results). As the more soplaitit transla-
tion of the model transformation language shows, such probican be avoided, albeit at the cost of

increased implementation effort.

$$1$$:= bound_func initialize_Classifier(= args){
super_attrs := TM._all_attrs(TM.MObject, 1)
if args.len() > super_attrs.len() + 1:

raise TM.Exceptions.Parameters_Exception("Too many arg s")
super_args_pos := TM.Maths.min(super_attrs.len(), args len())
TM.Func_Binding(self, TM.MObject.methods["initialize ".apply(args[0 : \

super_args_pos])
if 0 < args.len() - super_args_pos:
self.name := args[super_args_pos + 0]

}
Classifier := TM.MClass(1, "Classifier", TM.MObject, Dic t{"name" : [3]}, \
['name"], Dict{"initialize" : $$1$%$}, [])
$$2$$:= bound_func initialize_PrimitiveDataType(*args){
super_attrs := TM._all_attrs(TM._CLASSES_REPOSITORY[" Classifier"], 1)
if args.len() > super_attrs.len() + O:
raise TM.Exceptions.Parameters_Exception("Too many arg s")
super_args_pos := TM.Maths.min(super_attrs.len(), args len())
TM.Func_Binding(self, TM._CLASSES_ REPOSITORY["Classi fier"]. \
methods["initialize"]).apply(args[0 : super_args_pos])
}
PrimitiveDataType := TM.MClass(0, "PrimitiveDataType",
TM._CLASSES_REPOSITORY["Classifier"], Dict{}, [], Dict {"initialize" : \
$$28$3}, 1)
$$3%$$:= bound_func initialize_Class(*args){
super_attrs := TM._all_attrs(TM._CLASSES_REPOSITORY[" Classifier"], 1)
if args.len() > super_attrs.len() + 2:
raise TM.Exceptions.Parameters_Exception("Too many arg s")
super_args_pos := TM.Maths.min(super_attrs.len(), args len())
TM.Func_Binding(self, TM._CLASSES_ REPOSITORY["Classi fier"]. \

methods["initialize"]).apply(args[0 : super_args_pos])

if 0 < args.len() - super_args_pos:
self.parents := args[super_args_pos + 0]

if 0 >= args.len() - super_args_pos:
self.parents := TM.TM_List(self)

if 1 < args.len() - super_args_pos:
self.attrs := args[super_args_pos + 1]

if 1 >= args.len() - super_args_pos:
self.attrs := TM.TM_List(self)

}

Class := TM.MClass(0, "Class", TM._CLASSES_REPOSITORY[" Classifier"],
Dict{"parents" : [0, "Class"], "attrs" : [0, "Attribute"]} , ["parents"”, \
"attrs"], Dict{"initialize” : $$3$3$}, [[‘unique_names", unbound_func \
unique_names(self){
return unbound_func ocl_for(){

for_expr := self.attrs
for al := for_expr.iterate():
for a2 := for_expr.iterate():
if not unbound_func ocl_implies(){
if not unbound_func ocl_not_equals(){

lhs := al

if lhs.conforms_to(TM.Int) | lhs.conforms_to(TM.String):
return lhs = a2

else:

return not |hs is a2
10:
return 1
if unbound_func ocl_not_equals(){
lhs := al.name

if Ihs.conforms_to(TM.Int) | lhs.conforms_to(TM.String):
return lhs != a2.name
else:
return not |hs is a2.name
10
return 1
return TM.fail
10
return TM.fail
return 1
10
HD
$$4%$:= bound_func initialize_Attribute(* args)y{

super_attrs := TM._all_attrs(TM.MObject, 1)
if args.len() > super_attrs.len() + 3:

raise TM.Exceptions.Parameters_Exception("Too many arg s")
super_args_pos := TM.Maths.min(super_attrs.len(), args len())
TM.Func_Binding(self, TM.MObject.methods["initialize "N.apply(\

args[0 : super_args_pos])
if 0 < args.len() - super_args_pos:
self.name := args[super_args_pos + 0]
if 1 < args.len() - super_args_pos:
self.type := args[super_args_pos + 1]
if 2 < args.len() - super_args_pos:
self.is_primary := args[super_args_pos + 2]
}

Attribute := TM.MClass(0, "Attribute”, TM.MObject, Dict{ "name" : [3], \
"type" : "Classifier", "is_primary" : [5]}, ['name", "type " "is_primary"], \
Dict{"initialize" : $$4$$}, [I)

D.2. Simple classes to tables transformation

Classes_To_Tables := class Classes_To_Tables:
_rule_names := ['Class_To_Table", "User_Type_Attr_To_C olumn”, \
"Primitive_Type_Attr_To_Column"]

217

bound_func init(*root_set){
self._root_set := root_set
self._transformed_cache := Dict{}
self._matched_objs := Set{}
self._tracing :=]
self._tracing_rule = []
for rule_name := self._rule_names.iterate():

self._transformed_cache[rule_name] := Dict{}

self._output := self.transform_all(root_set)

bound_func get_source()}{
return self._root_set

bound_func get_target(){
return self._output

bound_func get_conflict_objects(){
return []

bound_func transform(* objs{
for obj := objs.iterate():
if not obj.conforms_to(MT.List):
raise MT.Exceptions.Type_Exception(MT.List, obj.insta
obj.to_str())
for rule_name := self._rule_names.iterate():
if output := self.get_slot(rule_name).apply(objs):
return output
raise MT.Exceptions.Exception(MT.Strings.format(\
"Unable to transform '%s'.", objs.to_str()))

bound_func transform_all(objs){
if objs.conforms_to(MT.List):
output_objs := []
for obj := objs.iterate():
output_objs.append(self.transform([obj]))
elif objs.conforms_to(MT.Set):
output_objs := Set{}
for obj := objs.iterate():
output_objs.add(self.transform([obj]))
else:
raise MT.Exceptions.Exception(objs.instance_of.name)
return output_objs

bound_func Class_To_Table(* 0bjs){
$$18$$self$s = self
if matched_objs, bindings := unbound_func (*args){
if args.len() > 1:
return Input_Pattern_Creator.fail
matched_mp_elems := Set{}
bindings := Dict{}
if 0 < args.len():
$$7$%elements$$ = args[0]
else:
$$7$%elements$$ = self._root_set
$$8$$matched_mp_elems_backup$$:= matched_mp_elems
$$9%$$bindings_backup$$:= bindings
for $$108$new_matched_mp_elems$$, $$11$Snew_bindings$
$$12$$matched_elem$$:= unbound_func (bindings, element
for element := elements.iterate() & yield unbound_func (bi
element){
if not Input_Pattern_Creator.TM.type_match("Class", el
return Input_Pattern_Creator.fail
for yield $$2$$:= unbound_func (bindings, element){
if bindings.contains("c") & not bindings['c"] == element:
return Input_Pattern_Creator.fail
return [Set{}, Dict{"c" : element}, element]
}bindings, element) & $$1$$:= bindings + $$2$$[1] & \
$$4%$ = unbound_func (bindings){
slot_element := element.name

218

nce_of, \

$\

sK
ndings, \

ement):

for matched_mp_elems, new_bindings, \
matched_elem := unbound_func (bindings, element){
if bindings.contains("n") & not bindings['n"] ==
element:
return Input_Pattern_Creator.fail
return [Set{}, Dict{"n" : element}, element]
}(bindings, slot_element):
if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \
matched_elem]
return Input_Pattern_Creator.fail
HEP1PE) & $$38$ = $$1$ + $PAPH[1] & $B6$$ = \
unbound_func (bindings){
slot_element := element.attrs
for matched_mp_elems, new_bindings, matched_elem :=\
unbound_func (bindings, element){
if bindings.contains("A") & not bindings['A"] ==
element:
return Input_Pattern_Creator.fail
return [Set{}, Dict{"A" : element}, element]
}bindings, slot_element):
if slot _element == matched_elem:
yield [matched_mp_elems, new_bindings, \
matched_elem]
return Input_Pattern_Creator.fail
HE$38S) & $E5$$ = $$3$$ + 36P[1] & [Set{element}, \
Input_Pattern_Creator.Functional.foldl(\
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map(\
Input_Pattern_Creator._elementl, [$$2$$, $$4$$, \
$$6$$])), element]
return Input_Pattern_Creator.fail
}bindings, element)
return Input_Pattern_Creator.fail
}bindings, $$7$$elementss):
matched_mp_elems := matched_mp_elems + \
$$10$$new_matched_mp_elems$$
bindings := bindings + $$11$$new_bindings$$
return [matched_mp_elems, bindings]
matched_mp_elems := $$8$$matched_mp_elems_backup$$
bindings := $$9%$bindings_backup$$
return Input_Pattern_Creator.fail
}.apply(objs):
self._matched_objs.extend(matched_objs)
if not rtn := unbound_func (matched_objs, bindings){

concatted_id := Output_Pattern_Creator.concat_id(matc hed_objs)
if self._transformed_cache["Class_To_Table"].contain s(\
concatted_id):
return self._transformed_cache["Class_To_Table"][con catted_id]
tracing_i := self._tracing.len()
$$13$$c$$:= bindings['c"]
$$14$$n$$ = bindings['n"]
$$15$8ASS$ = bindings['A"]

$$16$$columns$s =]
for $$17%$attr$s = $$15$3A%S.iterate():
$$16$$columns$s.extend($$18$$self$$.transform([™], \
[$$17$%attr$$]).flatten())
out_elems := []
out_elems.append(unbound_func (){
user_args = Dict{"name" : $$14$$n$$, "cols" : \
$$16$$columns$$}
all_args = []
args_processed := 0
for attr_name := Output_Pattern_Creator.TM. \
all_attrs_in_order(Output_Pattern_Creator.TM. \
_CLASSES_REPOSITORY["Table")).iterate():
if args_processed == user_args.len():
break
if user_args.contains(attr_name):

219

all_args.append(user_args[attr_name])
args_processed += 1
else:
all_args.append(Output_Pattern_Creator.null)
return Output_Pattern_Creator.TM._CLASSES_REPOSITORY \
["Table"].new.apply(all_args)
}0)

out_elem := out_elems|[0]
self._transformed_cache["Class_To_Table"][concatted _id] =\
out_elem
if not out_elem is Output_Pattern_Creator.null:
tracing := [Output_Pattern_Creator.List(matched_objs))\
out_elems]
tracing := Output_Pattern_Creator.trace_reduce(tracin s)]
self._tracing.insert(tracing_i, tracing)
self._tracing_rule.insert(tracing_i, "Class_To_Table ")
return out_elem
}matched_objs, bindings):
raise MT.Exceptions.Exception(MT.Strings.format(\
"Output pattern of Class_To_Table failed to generate " +
"anything for '%s’.", objs.to_str()))
return rtn
else:
return MT fail

bound_func User_Type_Attr_To_Column(* 0bjs){
$$48%$concat_name$$ = concat_name
$$49%$self$$ = self
if matched_objs, bindings := unbound_func (*args)y{
if args.len() > 2:
return Input_Pattern_Creator.fail
matched_mp_elems := Set{}
bindings := Dict{}
if 0 < args.len():
$$37%$elements$$ = args[0]
else:
$$37%Selements$$ = self._root_set
$$38%$matched_mp_elems_backup$$:= matched_mp_elems
$$39%$bindings_backup$$:= bindings
for $$40$$new_matched_mp_elems$$, $$41$$new_bindings$ $, 0\
$$42%Smatched_elem$$:= unbound_func (bindings, element s}
for element := elements.iterate() & vyield \
unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match("String", e lement):
return Input_Pattern_Creator.fail
for yield $$20$$:= unbound_func (bindings, element){
if bindings.contains("prefix") & \
not bindings['prefix"] == element:
return Input_Pattern_Creator.fail
return [Set{}, Dict{"prefix" : element}, element]
}bindings, element) & $$19$$:= bindings + $$20$3$[1] & \
[Set{element}, Input_Pattern_Creator.Functional.fold I(\
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map(\
Input_Pattern_Creator._elementl, [$$20$$])), element]
return Input_Pattern_Creator.fail
}bindings, element)
return Input_Pattern_Creator.fail
}bindings, $$37$$elements$$):
matched_mp_elems := matched_mp_elems + \
$$40%$new_matched_mp_elems$$
bindings := bindings + $$41$$new_bindings$$
if 1 < args.len():
$$31$$elements$$ = args[l]
else:
$$31$Selements$$ = self._root_set
$$32%$matched_mp_elems_backup$$:= matched_mp_elems
$$33%$$bindings_backup$$:= bindings
for $$34$$new_matched_mp_elems$$, $$35%$$new_bindings$ $, 0\

220

$$36%Smatched_elem$$:= unbound_func (bindings, element

for element := elements.iterate() & yield \

unbound_func (bindings, element){

if not Input_Pattern_Creator. TM.type_match("Attribute
element):
return Input_Pattern_Creator.fail

for yield $$21$$:= bindings & $$23$$ = \
unbound_func (bindings){
slot_element := element.name

for matched_mp_elems, new_bindings, matched_elem :

unbound_func (bindings, element){
if bindings.contains("n") & \
not bindings['n"] == element:
return Input_Pattern_Creator.fail
return [Set{}, Dict{"n" : element}, element]
}(bindings, slot_element):
if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \
matched_elem]
return Input_Pattern_Creator.fail
HP$2183) & $$228$ = $$21$$ + $$23$$[1] & $$30$$:
unbound_func (bindings){
slot_element := element.type
for matched_mp_elems, new_bindings, matched_elem :
unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match(\
"Class", element):
return Input_Pattern_Creator.fail
for yield $$24$$:= bindings & \
$$26%$$:= unbound_func (bindings){
slot_element := element.name
for matched_mp_elems, new_bindings, \
matched_elem := unbound_func (bindings, \

element){
if bindings.contains("cn”) & \
not bindings['cn"] == element:

return Input_Pattern_Creator.fail
return [Set{}, Dict{"cn" : element}, \

element]
}bindings, slot_element):
if slot_element == matched_elem:

yield [matched_mp_elems, \
new_bhindings, matched_elem]
return Input_Pattern_Creator.fail
H$$248%) & $$258% = $$24%$% + $$26$%[1] & \
$$28%$:= unbound_func (bindings){
slot_element := element.attrs
for matched_mp_elems, new_bindings, \
matched_elem := unbound_func (bindings, \
element){
if bindings.contains("CA") & \
not bindings['CA"] == element:
return Input_Pattern_Creator.fail
return [Set{}, Dict{"CA" : element}, \

element]
}bindings, slot_element):
if slot_element == matched_elem:

yield [matched_mp_elems, \
new_bhindings, matched_elem]
return Input_Pattern_Creator.fail
HP$25%83) & $327$$ = $$253% + $$28$%[1] & \
[Set{element}, \
Input_Pattern_Creator.Functional.foldl(\
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map(\
Input_Pattern_Creator._elementl, \
[$$26%$, $$28%%])), element]
return Input_Pattern_Creator.fail
}(bindings, slot_element):

221

\

sH

if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \
matched_elem]
return Input_Pattern_Creator.fail
HE$2283) & $$29%% = $$223% + $$30$H[1] & \
[Set{element}, \
Input_Pattern_Creator.Functional.foldl(\
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map(\
Input_Pattern_Creator._elementl, [$$23%$, $$30$%])), \
element]
return Input_Pattern_Creator.fail
}bindings, element)
return Input_Pattern_Creator.fail
}bindings, $$31$$elementss):
matched_mp_elems := matched_mp_elems + \
$$34$Snew_matched_mp_elems$$
bindings := bindings + $$35$$new_bindings$$
return [matched_mp_elems, bindings]
matched_mp_elems := $$32%$matched_mp_elems_backup$$
bindings := $$33$$bindings_backup$$
matched_mp_elems := $$38%$matched_mp_elems_backup$$
bindings := $$39$$bindings_backup$$
return Input_Pattern_Creator.fail
}.apply(objs):
self._matched_objs.extend(matched_objs)
if not rtn := unbound_func (matched_objs, bindings){

concatted_id := Output_Pattern_Creator.concat_id(matc hed_objs)
if self._transformed_cache["User_Type_Attr_To_Column "\
contains(concatted_id):
return self._transformed_cache["User_Type_Attr_To_Co lumn"] \
[concatted_id]
tracing_i := self._tracing.len()

$$43%$prefix$$:= bindings["prefix"]
$$44$8n$$ = bindings['n"]
$$45$$cn$$ = bindings[“cn"]
$$46$SCASS := bindings['CA"]
out_elems := []
out_elems.append(unbound_func (){
output_objs := []
for $$47$$ca$$ = $$46$$CASS.iterate():
output_objs.append($$49$$self$$.transform(\
[$$48%$concat_name$S($$43$Sprefix$s, $$44$$n3)], \
[$$47$5ca$s]))
return output_objs
10)
out_elem := out_elems|[0]
self._transformed_cache["User_Type_Attr_To_Column"] \
[concatted_id] := out_elem
if not out_elem is Output_Pattern_Creator.null:

tracing := [Output_Pattern_Creator.List(matched_objs) N\
out_elems]
tracing := Output_Pattern_Creator.trace_reduce(tracin s)]

self._tracing.insert(tracing_i, tracing)
self._tracing_rule.insert(tracing_i, \
"User_Type_Attr_To_Column")
return out_elem
}matched_objs, bindings):
raise MT.Exceptions.Exception(MT.Strings.format(\
"Output pattern of User_Type_ Attr_To_Column failed to " + \
"generate anything for '%s’.", objs.to_str()))
return rtn
else:
return MT.fail

bound_func Primitive_Type_Attr_To_Column(* objs{
$$75%$concat_name$$:= concat_name
if matched_objs, bindings := unbound_func (*args)y{

if args.len() > 2:

222

return Input_Pattern_Creator.fail
matched_mp_elems := Set{}
bindings := Dict{}
if 0 < args.len():
$$66%Selements$$ = args[0]
else:
$$66%$elements$$ = self._root_set
$$67%$matched_mp_elems_backup$$:= matched_mp_elems
$$68$$bindings_backup$$:= bindings
for $$69%$new_matched_mp_elems$$, $$70$Snew_bindings$ $, 0\
$$71$$matched_elem$$:= unbound_func (bindings, element sq
for element := elements.iterate() & yield \
unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match("String", e lement):
return Input_Pattern_Creator.fail
for yield $$51$$:= unbound_func (bindings, element){
if bindings.contains("prefix") & \
not bindings['prefix"] == element:
return Input_Pattern_Creator.fail
return [Set{}, Dict{"prefix" : element}, element]
}bindings, element) & $$50%$:= bindings + $$51$$[1] & \
[Set{element}, \
Input_Pattern_Creator.Functional.foldl(\
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map(\
Input_Pattern_Creator._elementl, [$$51$%$])), element]
return Input_Pattern_Creator.fail
}bindings, element)
return Input_Pattern_Creator.fail
}bindings, $$66$$elementss):
matched_mp_elems := matched_mp_elems + \
$$69%$new_matched_mp_elems$$
bindings := bindings + $$70$$new_bindings$$
if 1 < args.len():
$$60$$Selements$$ = args[l]
else:
$$60%Selements$$ = self._root_set
$$61$$matched_mp_elems_backup$$:= matched_mp_elems
$$62%$$bindings_backup$$:= bindings
for $$63$$new_matched_mp_elems$$, $$64$$new_bindings$ $, 0\
$$65$$matched_elem$$:= unbound_func (bindings, element si
for element := elements.iterate() & yield \
unbound_func (bindings, element){
if not Input_Pattern_Creator. TM.type_match("Attribute "
element):
return Input_Pattern_Creator.fail
for yield $$52$$:= bindings & $$54$$ = \
unbound_func (bindings){
slot_element := element.name
for matched_mp_elems, new_bindings, matched_elem \
:= unbound_func (bindings, element){
if bindings.contains("n") & \
not bindings['n"] == element:
return Input_Pattern_Creator.fail
return [Set{}, Dict{"n" : element}, element]
}(bindings, slot_element):
if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \
matched_elem]
return Input_Pattern_Creator.fail
HP$52%3) & $$53%$ = $$523% + $$545$[1] & $$59%% :
unbound_func (bindings){
slot_element := element.type
for matched_mp_elems, new_bindings, matched_elem :
unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match(\
"PrimitiveDataType", element):
return Input_Pattern_Creator.fail
for yield $$55$$:= bindings & $$57$$ = \

1
—

1
—

223

unbound_func (bindings){

slot_element := element.name

for matched_mp_elems, new_bindings, \
matched_elem := unbound_func (bindings, \

element){
if bindings.contains("pn") & \
not bindings['pn"] == element:

return Input_Pattern_Creator.fail
return [Set{}, Dict{"pn" : element}, \

element]
}bindings, slot_element):
if slot_element == matched_elem:

yield [matched_mp_elems, \
new_bhindings, matched_elem]
return Input_Pattern_Creator.fail
H$$558%) & $$56$$ = $$558% + $$57$H[1] & \
[Set{element}, \
Input_Pattern_Creator.Functional.foldl(\
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map(\
Input_Pattern_Creator._elementl, [$$57$%])), \
element]
return Input_Pattern_Creator.fail
}(bindings, slot_element):
if slot element == matched_elem:
yield [matched_mp_elems, new_bindings, \
matched_elem]
return Input_Pattern_Creator.fail
H$$53$%) & $$58%% = $$53%% + $$59$%[1] & \
[Set{element}, \
Input_Pattern_Creator.Functional.foldl(\
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map(\
Input_Pattern_Creator._elementl, [$$54$$, $$59%%])), \
element]
return Input_Pattern_Creator.fail
}bindings, element)
return Input_Pattern_Creator.fail
}bindings, $$60$$elementss):
matched_mp_elems := matched_mp_elems + \
$$63$$new_matched_mp_elems$$
bindings := bindings + $$64$$new_bindings$$
return [matched_mp_elems, bindings]
matched_mp_elems := $$61$$matched_mp_elems_backup$$
bindings := $$62$$bindings_backup$$
matched_mp_elems := $$67$$matched_mp_elems_backup$$
bindings := $$68%$$bindings_backup$$
return Input_Pattern_Creator.fail
}.apply(objs):
self._matched_objs.extend(matched_objs)
if not rtn := unbound_func (matched_objs, bindings){
concatted_id := Output_Pattern_Creator.concat_id(matc hed_objs)
if self._transformed_cache["Primitive_Type_Attr_To_C olumn]. \
contains(concatted_id):
return self._transformed_cache \
[*Primitive_Type_Attr_To_Column"][concatted_id]
tracing_i := self._tracing.len()
$$72$$prefix$$ = bindings["prefix"]
$$73$$n$$ = bindings['n"]
$$74%$$pn$$ = bindings["'pn"]
out_elems := []
out_elems.append([unbound_func (){
user_args := Dict{"name" : $$75%$$concat_name3(\
5723prefix$$, $$733n3), "type" : $$74$3pn$s}
all_args = []
args_processed = 0
for attr_name := Output_Pattern_Creator.TM. \
all_attrs_in_order(Output_Pattern_Creator.TM. \
_CLASSES_REPOSITORY["Column"]).iterate():

224

if args_processed == user_args.len():
break
if user_args.contains(attr_name):
all_args.append(user_args[attr_name])
args_processed += 1
else:
all_args.append(Output_Pattern_Creator.null)
return Output_Pattern_Creator.TM._CLASSES_REPOSITORY
[*Column”].new.apply(all_args)
10D
out_elem := out_elems|[0]
self._transformed_cache["Primitive_Type_Attr_To_Col
[concatted_id] := out_elem
if not out_elem is Output_Pattern_Creator.null:
tracing := [Output_Pattern_Creator.List(matched_objs)
out_elems]
tracing := Output_Pattern_Creator.trace_reduce(tracin
self._tracing.insert(tracing_i, tracing)
self._tracing_rule.insert(tracing_i, \
"Primitive_Type_Attr_To_Column")
return out_elem
}matched_objs, bindings):
raise MT.Exceptions.Exception(MT.Strings.format(\
"Output pattern of Primitive_Type_Attr_To_Column failed
"generate anything for '%s’.", objs.to_str()))
return rtn
else:
return MT .fail

225

\

umn"] \

9)

Appendix E.

Model serializer

E.1. Overview

The TM Serializer module comprises functions to serialize and deserialize riiddlels, and
tracing information. The serializer is essentially a siengraph walking function which flattens a
model into an XML tree structure; references between nodesrade by using model elements’
identifiers and an XML attributél .

The deserializer is slightly more complex in operation.tilizes Converge’sML.Whole _Par-
ser module which provides a simple mechanism for parsing angtsing an XML file. The prob-
lem the deserializer faces is that as it works through itaticpeating appropriate model elements, it
may find anid reference to an element which has not yet been created. Incaises, it creates a
blank TM model element which it uses as a dummy holder to kealfith later when the full definition
of the element is encountered in the file. This however mdaatsduring the process of deserializa-
tion the model being created may not be conformant to its imextdel. In order to prevent exceptions
being raised whilst the model is deserialized, the desegiasets the is _initialized field of
each element t0, ensuring that checks against the meta-model are not malden All elements are
completely deserialized, it then goes back over each elermsetiing this field tdl, finally running

the meta-models constraints against the meta-model toeetigat it has been recreated correctly.

E.2. Example output

This section shows the XML output from the TSkrializer model on the example of section

B22. Firstly the ML2 input model:

<Model>
<Element id="13" of="ML2_Package">
<Attribute name="name">
<String val="Personnel" />
</Attribute>
<Attribute name="elements">

<Set>
<Ref ref="12" />
<Ref ref="11" />
<Ref ref="10" />
</Set>
</Attribute>
</Element>
<Element id="12" of="ML2_Association">
<Attribute name="name">
<String val="PE" />
</Attribute>
<Attribute name="end2_name">
<String val="manager" />
</Attribute>
<Attribute name="endl_name">
<String val="employees" />
</Attribute>
<Attribute name="end2_multiplicity">
<Int val="1" />
</Attribute>
<Attribute name="end1_multiplicity">
<Int val="-1" />
</Attribute>
<Attribute name="end2_directed">
<Int val="0" />
</Attribute>
<Attribute name="endl_directed">
<Int val="0" />
</Attribute>
<Attribute name="end2">
<Ref ref="11" />
</Attribute>
<Attribute name="end1">
<Ref ref="10" />
</Attribute>
</Element>
<Element id="11" of="ML2_Class">
<Attribute name="name">
<String val="Manager" />
</Attribute>
<Attribute name="parents">
<List>

</List>
</Attribute>
</Element>
<Element id="10" of="ML2_Class">
<Attribute name="name">
<String val="Employee" />
</Attribute>
<Attribute name="parents">
<List>

</List>
</Attribute>
</Element>
</Model>

Then the ML1 target model produced by the transformatiortomitial execution:

<Model>
<Element id="Package_To_Package 0 13" of="ML1_Packag e">
<Attribute name="name">
<String val="Personnel" />
</Attribute>
<Attribute name="parents">
<List>

</List>

227

</Attribute>
<Attribute name="elements">
<Set>
<Ref ref="Association_To_Association_0__12" />
<Ref ref="Association_To_Association_1__ 12" />
<Ref ref="Class_To_Class_0__11" />
<Ref ref="Class_To_Class_0__10" />
</Set>
</Attribute>
</Element>
<Element id="Association_To_Association_0__12" of="ML 1 Association">
<Attribute name="name">
<String val="manager" />
</Attribute>
<Attribute name="multiplicity">
<Int val="1" />
</Attribute>
<Attribute name="to">
<Ref ref="Class_To_Class_0__11" />
</Attribute>
<Attribute name="from">
<Ref ref="Class_To_Class_0__10" />
</Attribute>
</Element>
<Element id="Association_To_Association_1__ 12" of="ML 1 Association">
<Attribute name="name">
<String val="employees" />
</Attribute>
<Attribute name="multiplicity">
<Int val="-1" />
</Attribute>
<Attribute name="to">
<Ref ref="Class_To_Class_0__10" />
</Attribute>
<Attribute name="from">
<Ref ref="Class_To_Class_0__11" />
</Attribute>
</Element>
<Element id="Class_To_Class_0__11" of="ML1_Class">
<Attribute name="name">
<String val="Manager" />
</Attribute>
<Attribute name="parents">
<List>

</List>
</Attribute>
</Element>
<Element id="Class_To_Class_0__10" of="ML1_Class">
<Attribute name="name">
<String val="Employee" />
</Attribute>
<Attribute name="parents">
<List>

</List>
</Attribute>
</Element>
</Model>

And finally the tracing information generated by the transfation on its initial execution:

<Tracing>
<Trace rule="Class_To_Class">
<From>
<Ref ref="10" />
</From>
<To>
<Ref ref="Class_To_Class_0__10" />

228

</To>
</Trace>
<Trace rule="Class_To_Class">
<From>
<Ref ref="11" />
</From>
<To>
<Ref ref="Class_To_Class_0__11" />
</To>
</Trace>
<Trace rule="Association_To_Association">
<From>
<Ref ref="12" />
</From>
<To>
<Ref ref="Association_To_Association_0__12" />
<Ref ref="Association_To_Association_1__ 12" />
</To>
</Trace>
<Trace rule="Package_To_Package">
<From>
<Ref ref="13" />
</From>
<To>
<Ref ref="Package_To_Package 0__ 13" />
</To>
</Trace>
</Tracing>

229

Appendix F.
Glossary

Bidirectional A transformation which can both transform instances of Ma instances of M2, and

instances of M2 into M1.

Bound function A Converge function which has its self variable bound to aipalar object. Equiv-

alent to the term ‘method’ in many OO languages.

Change propagation The ability to take two models related in a transformatiod,agiven changes

in one or the other model, to make the corresponding changés other model.

Conflict report A record of inconsistencies, relative to a transformatioetween two models in-

volved in change propagation.

Conformance operator An operator relating model elements in a change propagéatamgforma-

tion.

Conjunction The Convergek operator which conjoins expressions. This also serves agefge’s

equivalent of the standa&hd operator.

Disjunction The Convergé operator which successively generates each of its expressThis also

serves as Converge’s equivalent of the standardperator.
DSL block A block of code in a user-specified syntax embedded within mv@ge source file.

DSL implementation function The function which introduces a DSL block, and which is respo

ble, at compile-time, for converting the DSL block into amd®.

Declaration quasi-quotes A form of quasi-quotes which does not perforsrenaming at the top-

level.

Generator A Converge function which generates multiple values viayileéd keyword.

Goal-directed evaluation The evaluation strategy, inherited from Icon, which alldvesktracking

amongst Converge expressions to find values which allomsixegrto continue.
ITree A converge Abstract Syntax Tree.
Key One or more attributes which collectively identify a modielneent.
Lifting The process of converting a normal Converge value, suchtaag, $nto its ITree equivalent.

Metamodel Literally ‘the model of a model'. Often referred to as a mdidel language. Defines

what its valid instances are, possibly by a denotationaleatmnal style.
Model element expressionAn MT or PMT expression which creates model elements.
Model element pattern An MT or PMT expression which matches model elements.

Model expression An overarching MT and PMT term encompassing both normal €aevexpres-

sions, model element expressions and model element mattern
MT The MT language is a unidirectional stateless model tramsftion language.

Multiplicity A constraint specifying the number of times a pattern maychmaigainst model ele-

ments.

Pattern A syntactic convenience for matching data types, most contyrrealised in the real world

as textual regular expressions.
PMT The PMT language is a unidirectional change propagatingefrteghsformation language.
Quasi-quotes A mechanism for expressing ITree’s via standard Convergerete syntax.
Root set of source elementsThe elements initially passed to a transformation.

Rule A transformation is comprised of one or more transformatigies. A rule can be thought of

as being equivalent to a function.

Slot comparisons A standard MT model element pattern is comprised of one oerstmt compar-
isons. Each slot comparison checks to see whether a giveinsiosource model element is

correctly related to the value returned by a model exprassio

Slot conformances A standard PMT model element expression is comprised of ormacre slot
conformances. Each slot conformance checks to see whetfigem slot in a target model

element is correctly related to the value returned by a mexielession.

231

Source / target clausesA transformation rule is said to be comprised of two or momuses; at
least one source clause, matching source elements, arabbbtes target clause creating target

elements.
Splice A splice is an expression in a Converge file which will be eatéd at compile-time.

Splicing The act of replacing a splice with the ITree created by evatlthe expression at compile-

time.

TM The Typed Modelling (TM) language allows simple modelliagduages to be expressed, and

model elements to be created from those meta-models.

Variable binding An MT or PMT variable which is bound to a particular model e@@rhas matching

proceeds.

232

Bibliography

[AC96]

[ACE*02]

[ACR*03]

[AEH*99]

[AGGI04]

[AHO02]

[AKO2]

[AKSO03]

[APO4]

[BO5]

[Bar99]

[Baw99]

Martin Abadi and Luca CardelliA Theory of ObjectsSpringer, 1996.

Biju Appukuttan, Tony Clark, Andy Evans, Stuart Kentri6h Maskeri, Paul Sam-
mut, Laurence Tratt, and James S. Willans. Unambiguous ubthission to uml 2
infrastructure rfp, September 2002. OMG documait2002-06-14

Biju K. Appukuttan, Tony Clark, Sreedhar Reddy, Laueficatt, and R. Venkatesh.
A pattern based model driven approach to model transfoomstiNovember 2003.
Metamodelling for MDA 2003.

Marc Andries, Gregor Engels, Annegret Habel, Bertholtffirann, Hans-Jorg Kre-
owski, Sabine Kuske, Detlef Plump, Andy Schirr, and Gébrlaeentzer. Graph trans-
formation for specification and programming. Technical &®ef@, University of Bre-
men, 1999.

Jim Amsden, Tracy Gardner, Catherine Griffin, andd®ar Iyengar. Draft UML
1.4 profile for automated business processes with a mappirgPEL 1.0, April
2004. http://dwdemaos.dfw.ibm.com/wstk/common/wstkdoc/serv ices/demos
/umli2bpel/docs/UMLProfileForBusinessProcesses1.1.pd f.

John Aycock and R. Nigel Horspool. Practical Earleysing. The Computer Journal
45(6):620-630, 2002.

David H. Akehurst and Stuart J. H. Kent. A relationgdpgoach to defining transfor-
mations in a metamodel. In Jean-Marc Jézéquel, Heinricggshhann, and Steve Cook,
editors,UML 2002 — The Unified Modeling Language : 5th Internationan&rence
pages 243 — 258. Springer-Verlag, 2002.

Aditya Agrawal, Gabor Karsai, and Feng Shi. Grapingformations on domain-
specific models. Technical report, Institute for Softwarte¢irated Systems, Vanderbilt
University, November 2003.

Marcus Alanen and Ivan Porres. Change propagati@nrodel-driven development
tool. Presented at WiSME part of UML 2004, October 2004.

Jean Bézivin. On the unification power of modeBoftware and System Modeling
4(2):171-188, 2005.

Roman Bartak. Constraint programming: What isibéb InProceedings of CPDC99
pages 7 — 15, June 1999.

Alan Bawden. Quasiquotation in LISP. Workshop ortiBBEvaluation and Semantics-
Based Program Manipulation, January 1999.

[Baw0O]

[BC8Y)

[BDJ'03]

[BG02]

[BHO0]

[BHWO4]

[Big98]

[BJROO]

[BKK +96]

[BMO2]

[BMO3]

[BMNOZ2]

[BP99]

[BPO1]

[BSO00]

Alan Bawden. First-class macros have typesProc. 27th ACM SIGPLAN-SIGACT
symposium on Principles of programming languageges 133-141, January 2000.

Jean-Pierre Briot and Pierre Cointe. Programmingh véxplicit metaclasses in
Smalltalk-80. InProc. OOPSLA '890ctober 1989.

Jean Beézivin, Grégoire Dupé, Frédéric JouaultlleSiPitette, and Jamal Eddine
Rougui. First experiments with the ATL model transformatlanguage: Transform-
ing XSLT into XQuery. In2nd OOPSLA Workshop on Generative Techniques in the
context of Model Driven Architectur®ctober 2003.

Jean Bézivin and Sébastien Gérard. A prelimindentification of MDA components.
In Generative Techniques in the context of Model Driven Aechitre Nov 2002.

Heinz-Dieter Bocker and Jurgen Herczeg. Whatdra@re made of. IRroc. ECOOP
'90, pages 89-99, 1990.

Simon M. Becker, Thomas Haase, and Bernhard Wds&dViodel-based a-posteriori
integration of engineering tools for incremental develeptrprocessessoSYM2004.
To appear.

Ted J. Biggerstaff. Pattern matching for programeyation: A user manual. Technical
Report TR-98-55, Microsoft Research, 1998.

Grady Booch, Ivar Jacobson, and Jim Rumbaugh. OM@edmodeling language
specification, 2000.

Peter Borovansky, Claude Kirchner, Hélene Kirchrigierre-Etienne Moreau, and
Marian Vittek. Elan: A logical framework based on compudatl systems. IiProc.
first international workshop on rewriting 1ogid 996.

Peter Braun and Frank Marschall. Transforming obtented models with BOTL.
International Workshop on Graph Transformation and Visiadeling Techniques
72(3), 2002.

Peter Braun and Frank Marschall. Botl — the bidirentl object oriented transforma-
tion language. Technical Report TUM-10307, Institut fafdrmatik der Technischen
Universitat Minchen, May 2003.

Geert Jan Bex, Sebastian Maneth, and Frank Nevewridl model for an expressive
fragment of XSLT.Information System28(1):21-39, 2002.

Jonathan Bachrach and Keith Playford. D-expressidnsp power, Dylan style,
1999. nhttp://iwww.ai.mit.edu/people/jrb/Projects/dexprs.pd f Accessed Sep
22 2004.

Jonathan Bachrach and Keith Playford. The Java sataxtender (JSE). IRroc.
OOPSLApages 31-42, November 2001.

Claus Brabrand and Michael Schwartzbach. Growimguages with metamorphic
syntax macros. IWorkshop on Partial Evaluation and Semantics-Based Progra
Manipulation SIGPLAN. ACM, 2000.

234

[BVO04]

[CEKO1]

[CEL+96]

[CEM*04]

[CESW04]

[CMA93]

[Coi87]

[Cor04]

[COSTO04]

[CPO5]

[CS03]

[DDDCGO2]

[DGRO1]

[DHB92]

[DICO3]

Martin Bravenboer and Eelco Visser. Concrete syrftaxobjects. Domain-specific
language embedding and assimilation without restrictioits Douglas C. Schmidt,
editor, Proc. OOPSLA'04Vancouver, Canada, October 2004. ACM SIGPLAN.

Tony Clark, Andy Evans, and Stuart Kent. Initial saission to OMG RFP’s ad/00-09-
01 (UML 2.0 infrastructure) ad/00-09-03 (UML 2.0 OCL), 2001

Manuel Clavel, Steven Eker, Patrick Lincoln, José, lsiedeguer. Principles of maude.
In José Meseguer, editdt]ectronic Notes in Theoretical Computer Scignagdume 4.
Elsevier Science Publishers, September 1996.

Tony Clark, Andy Evans, Girish Maskeri, Paul Sammut, dadhes S. Willans. Mod-
elling language transformationk:Objet, 9, April 2004.

Tony Clark, Andy Evans, Paul Sammut, and JamesaWéll Applied metamodelling:
A foundation for language driven development, Septemb&420 Available from
http://www.xactium.com/ Accessed Sep 22 2004.

Luca Cardelli, Florian Matthes, and Martin Abadixtensible grammars for language
specialization. InProc. Fourth International Workshop on Database Programgni
Languages - Object Models and Languagesges 11-31, August 1993.

Pierre Cointe. Metaclasses are first class: the Qisfy model. InObject Oriented
Programming Systems Languages and Applicatipages 156—-162, October 1987.

James R. Cordy. TXL - alanguage for programming g tools and applications. In
Proc. LDTA 2004, ACM 4th International Workshop on LanguBgsscriptions, Tools
and Applications April 2004.

Krzysztof Czarnecki, John O’Donnell, Jorg Sirigz, and Walid Taha. DSL imple-
mentation in MetaOCaml, Template Haskell, and C++. 30167302004.

Howard Chivers and Richard Paige. XRound: Bidimedi transformations via a re-
versible template language. To appear Proc. European Conference on MDA (EC-
MDA), November 2005.

Compuware and Sun. XMOF queries, views and transftioms on models using
MOF, OCL and patterns, August 2003. OMG documext’2003-08-07

S. Drossopoulou, F. Damiani, M. Dezani-Ciangggband P. Giannini. More dynamic
object re-classification: Fickle IACM Transactions On Programming Languages and
Systems24(2):153-191, 2002.

Olivier Danvy, Bernd Grobauer, and Morten Rhiger. ufifying approach to goal-
directed evaluationNew Generation Computin@0(1):53—73, Nov 2001.

R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. &tic abstraction in scheme.
In Lisp and Symbolic Computatipwolume 5, pages 295-326, December 1992.

DSTC, IBM, and CBOP. MOF query / views / transfornuais first revised submission,
August 2003. OMG documentd/2003-08-03

235

[DM95]

[dRO3]

[Ear70]

[EBNO2]

[Ecl04]

[Egy01]

[Eva9sg]

[FD98]

[FHK*92]

[For02]

[GG93]

[GGY6a]

[GG96b]

[GGKHO3]

[GHJIV94]

[GISBOO]

Francois-Nicola Demers and Jacques Malenfant. ég&éin in logic, functional and
object-oriented programming: a short comparative stud{proc. IJCAI'95 Workshop
on Reflection and Metalevel Architectures and Their Apfilices in Al, pages 29-38,
August 1995.

Daniel de Rauglaudre. Camlp4 - Reference Manual September 2003.
http://caml.inria.fr/camlp4/manual/ Accessed Sep 22 2004.

Jay Earley. An efficient context-free parsing aipon. Communications of the ACM
13(2), February 1970.

Michael D. Ernst, Greg J. Badros, and David Notkin.n Ampirical analysis of C
preprocessor uséEEE Transactions on Software Engineeriz@02.

IBM. Eclipse 2004. http:/iwww.eclipse.org/

Alexander Egyed. A scenario-driven approach todadility. InProc. 23rd Interna-
tional Conference on Software Engineeripgges 123 — 132, 2001.

Andy Evans. Reasoning with UML class diagrams. Skrtond IEEE Workshop on
Industrial Strength Formal Specification Techniqu@stober 1998.

Ira R. Forman and Scott H. DanfortRutting Metaclasses to Work: A New Dimension
in Object-Oriented ProgrammingAddison-Wesley, 1998.

Thom Fruhwirth, Alexander Herold, Volker Kiichenhoffhierry Le Provost, Pierre
Lim, Eric Monfroy, and Mark Wallace. Constraint logic pregnming: An informal
introduction. InLogic Programming in Actiomnumber 636 in LNCS. Springer, 1992.

Bryan Ford. Packrat parsing: Simple, powerful,yldmear time. Ininternational
Conference on Functional Programmingages 36—47, October 2002.

Ralph E. Griswold and Madge T. Griswold. History oéthprogramming language.
j-SIGPLAN 28(3):53-68, March 1993.

Ralph E. Griswold and Madge T. Griswol@he Icon Programming Languagé®eer-
to-Peer Communications, third edition, 1996.

Ralph E. Griswold and Madge T. Griswoltihe Implementation of the Icon Program-
ming LanguagePeer-to-Peer Communications, third edition, 1996.

Tracy Gardner, Catherine Griffin, Jana Koehler] &ainer Hauser. Query / views /
transformations submissions & recommendations towardsdtandard, August 2003.
OMG document ad/03-08-02

Erich Gamma, Richard Helm, Ralph Johnson, and Jdissides. Design Patterns:
Elements of Reusable Object-Orientated SoftwAddison Wesley, 1994,

James Gosling, Bill Joy, Guy Steele, and Gilad Baathe Java Language Specifica-
tion Second EditionAddison-Wesley, Boston, Mass., 2000.

236

[GLR*02]

[GNOO]

[Gog00]

[GPP9S]

[GR89]

[GSTO1]

[Gud92]

[GZKO3]

[HKTO02]

[HM76]

[Hudog]

[Jaf03]

[JEO04]

Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steetj Andrew Wood. Trans-
formation: The missing link of MDA. In Andrea Corradini, Harut Ehrig, Hans-Jorg
Kreowski, and Grzegorz Rozenberg, edito@&aph Transformation: First Interna-
tional Conference, ICGT 20Q0pages 90-105, October 2002.

Emden R. Gansner and Stephen C. North. An open graglmhzation system
and its applications to software engineerin@oftware — Practice and Experience
30(11):1203-1233, 2000.

Martin Gogolla. Graph transformations on the UMLtamodel. In Jose D. P. Rolim,
Andrei Z. Broder, Andrea Corradini, Roberto Gorrieri, Retteckel, Juraj Hromkovic,
Ugo Vaccaro, and Joe B. Wells, editof§ALP Workshop on Graph Transformations
and Visual Modeling Techniqugsages 359-371. Carleton Scientific, 2000.

Martin Gogolla and Francesco Parisi-Presiccete Siagrams in UML: A formal se-
mantics using graph transformations. In Manfred Broy, ReEeleman, Tom S. E.
Maibaum, and Bernhard Rumpe, editdPspceedings PSMT'98 Workshop on Precise
Semantics for Modeling Techniquekechnische Universitat Minchen, TUM-19803,
1998.

Adele Goldberg and David Robsosmalltalk-80: The LanguageAddison-Wesley,
January 1989.

Steven E. Ganz, Amr Sabry, and Walid Taha. Macros @$i-stage computations:
Type-safe, generative, binding macros in macromlPioc. International Conference
on Functional Programming (ICFRYolume 36 ofSIGPLAN ACM, September 2001.

David A. Gudeman. Denotational semantics of a gir@eted languageACM Trans-
actions on Programming Languages and Systb#(1):107-125, January 1992.

Martin Gogolla, Paul Ziemann, and Sabine Kuske. amg an integrated graph based
semantics for UML. In Paolo Bottoni and Mark Minas, editd®soc. Int. Workshop on
Graph Transformation and Visual Modeling Technigues (3TH\2002) volume 72 of
Electronic Notes in Theoretical Computer Sciern2@03.

Reiko Heckel, Jochen Malte Kister, and Gabrielerfaer. Confluence of typed
attributed graph transformation systems. In A. Corradimil &.-J. Kreowski, edi-
tors, Proceedings First International Conference on Graph Tfarmmmation (ICGT 02)
pages 161 — 176. Springer-Verlag, October 2002.

James Hunt and M. Douglas Mcllroy. An algorithm fofffdrential file comparison.
Technical Report 41, Bell Laboratories Computing Lab, 19y6.

Paul Hudak. Modular domain specific languages aontstoln Proceedings of Fifth
International Conference on Software Reysages 134-142, June 1998.

Aubrey Jaffer. SCM Scheme Implementation November 2003.
http://www.swiss.ai.mit.edu/jaffer/scm _toc Accessed Sep 16 2004.

Sven Johann and Alexander Egyed. Instant and inerafteansformation of models.
September 2004.

237

[Jef02]

[JL99]

[IM94]

[JIMPPO3]

[Jon03]

[KCR98]

[KdRBO1]

[Kep02]

[KFFD86]

[KHEO3]

[KRWO4]

[LBYS]

[LKM +02]

[MDJO2]

IMGO04]

Clinton L. Jeffery. Godiva Language Reference ManuaNovember 2002.
http://www.cs.nmsu.edu/"jeffery/godiva/godiva.html

Richard Jones and Rafael Lin&arbage Collection: Algorithms for Automatic Dy-
namic Memory ManagemeniViley, 1999.

Joxan Jaffar and Michael J. Maher. Constraint logagpamming: A surveyJournal
of Logic Programming19/20:503-581, July 1994.

Clinton Jeffery, Shamim Mohamed, Ray Pereda, aixER ParlettProgramming with
Unicon, April 2003. http://unicon.sourceforge.net/book/ub.pdf

Simon Peyton Joneldaskell 98 Languages and Libraries: The Revised Repfoaim-
bridge University Press, April 2003.

Richard Kelsey, William Clinger, and Jonathan Rdesvised(5) report on the algorith-
mic language Scheméligher-Order and Symbolic Computatiohl(1):7-105, 1998.

Gregor Kiczales, Jim des Rivieres, and Daniel Gbi®da. The Art of the Metaobject
Protocol MIT Press, 1991.

Stephan Kepser. A proof of the Turing-completerad@9sSLT and XQuery. Technical
Report SFB 441, Eberhard Karls Universitat TubingengJ2002.

Eugene Kohlbecker, Daniel P. Friedman, Matthiakdisen, and Bruce Duba. Hygienic
macro expansion. [Bymposium on Lisp and Functional Programmipgges 151—
161. ACM, 1986.

Jochen M. Kister, Reiko Heckel, and Gregor Engdédefining and validating trans-
formations of UML models. INEEE Symposium on Visual Languages and Formal
Methods October 2003.

Ekkart Kindler, Vladimir Rubin, and Robert WagnefAn adaptable TGG interpreter
for in-memory model transformations. Proc. FUJABA Days 20Q4pages 35-38,
September 2004.

Kevin Lano and Juan Bicarregui. UML refinement andtededion transformations.
In Second Workshop on Rigorous Object Oriented Methods: ROMvaRiford May
1998.

Tihamer Levendovszky, Gabor Karsai, Miklos Maroti, Akbedeczi, and Hassan
Charaf. Model reuse with metamodel-based transformationSristina Gacek, editor,
ICSR volume 2319 o NCS Springer, 2002.

Tom Mens, Serge Demeyer, and Dirk Janssens. Fasmglbehaviour preserving pro-
gram transformations. IRroc. 1st International Conf. Graph Transformatjorolume
2505 ofLNCS pages 286-301, 2002.

Tom Mens and Pieter Van Gorp. A taxonomy of model tfamaation and its applica-
tion to graph transformation. Unpublished, November 2004.

238

[MHS03]

[NNZ00]

[0J04]
[OMG97]

[OMGOO0]

[OMG02]

[OMGO3]

[0QV03]

[Ous98]

[PBGO1]

[PRO3]

[Pre00]

[Pro97]

[Que9s]

[QVTO03a]

[QVTO3b]

[RRO3]

[Scho4]

Marjan Mernik, Jan Heering, and Anthony M. Sloane.h&i and how to develop
domain-specific languages. Technical report, Centrum Wiskundeen Informatica,
December 2003.

Ulrich Nickel, Jorg Niere, and Albert Zundorf. ®demonstration: The fujaba en-
vironment. InProc. of the22"? International Conference on Software Engineering
(ICSE) pages 742—745. ACM Press, 2000.

CompuwareQptimalJ 2004. http://www.compuware.com/products/optimalj/
Object constraint language specification, 1997. ®d#bcument ad/97-08-08

Object Management Group. Meta Object Facility (MOF) Specification2000.
formal/00-04-03

Object Management GrouRequest for Proposal: MOF 2.0 Query / Views / Transfor-
mations RFP2002. OMG documentad/2002-04-10

OMG. XML Metadata Interchange (XMI), May 2003.
http://www.omg.org/cgi-bin/doc?formal/2003-05-02

OpenQVT. Response to the MOF 2.0 query / views / fansations RFP, August
2003. OMG documentad/2003-08-05

John K. Ousterhout. Scripting: Higher-level paymgming for the 21st centurfCom-
puter, 31(3):23—-30, 1998.

Mikaél Peltier, Jean Bézivin, and Gabriel Guilae. MTRANS: A general framework,
based on XSLT, for model transformations.WArUML 2001, Italy April 2001.

Richard Paige and Alek Radjenovic. Towards modektfiamation with TXL, Novem-
ber 2003. Metamodelling for MDA 2003.

Lutz Prechelt. An empirical comparison of severgpmming languagesComputey
33(10):23-29, 2000.

Todd A. Proebsting. Simple translation of goakdied evaluation. ISIGPLAN Con-
ference on Programming Language Design and Implementagtages 1-6, 1997.

Christian Queinnec. Macroexpansion reflectiveetown Proc. Reflection’96 pages
93-104, April 1996.

QVT-Partners. First revised submission to QVT RAERgust 2003. OMG document
ad/03-08-08

QVT-Partners initial submission to QVT RFP, 20@3MG document ad/03-03-27

Ganesan Ramalingam and Thomas Reps. A categoribiidgoaphy on incremen-
tal computation. IrProc. 20th ACM SIGPLAN-SIGACT symposium on Principles of
programming languagepages 502-510, 1993.

Andy Schurr. Specification of graph translatorthwtiiiple graph grammars. IRroc.
International Workshop on Graph-Theoretic Concepts in @oter Sciencevolume
903 of LNCS pages 151-163, 1994.

239

[Sch05]

[SCKO3]

[SeABP99]

[Sen03]

[SJ02]

[SMOO04]

[SS94]

[Ste99]

[Stro7]

[Sut63]

[SW98]

[SWZ99]

[Tah99]

[TCO3]

[TCIK99]

Friedrich Wilhelm Schroer. The ACCENT Grammar Language 2005.
http://accent.compilertools.net/language.html Accessed Jan 25 2005.

Sean Seefried, Manuel M. T. Chakravarty, and Gébtiller. Optimising embed-
ded DSLs using Template Haskell. Draft Proc. Implementation of Functional Lan-
guages 2003.

Tim Sheard, Zine el Abidine Benaissa, and EmialRasDSL implementation using
staging and monads. IBRroc. 2nd conference on Domain Specific Languages
ume 35 ofSIGPLAN pages 81-94. ACM, October 1999.

Shane Sendall. Combining generative and graphftnamation techniques for model
transformation: An effective alliance? Generative techniques in the context of MDA
October 2003.

Tim Sheard and Simon Peyton Jones. Template meggamoning for Haskell. In
Proceedings of the Haskell workshop 200ZM, 2002.

Kamil Skalski, Michal Moskal, and Pawel Olszta. Mgirogramming in Nemerle,
2004. http://nemerle.org/metaprogramming.pdf Accessed Oct 1 2004.

Leon Sterling and Ehud Shapifithe Art of Prolog MIT Press, second edition, March
1994.

Guy L. Steele, Jr. Growing a languagdigher-Order and Symbolic Computation
12(3):221 — 236, October 1999.

Bjarne StroustrupThe C++ Programming LanguageAddison Wesley, third edition,
1997.

Ivan Sutherland. Sketchpad: a man—-machine grapb@nmmunication system. In
Proceedings Spring Joint Computer Conference, IEIR®es 329-346, 1963.

Andy Schiirr and Andreas J. Winter. UML packages fagpammed graph rewrit-
ing systems. IrProc. TAGT'98 - Theory and Application of Graph Transforinas
November 1998.

Andy Schurr, Andreas J. Winter, and Albert Zurfddtandbook of Graph Grammars
and Graph Transformatigrvolume 2, chapter PROGRES: Language and Environment,
pages 487-550. 1999.

Walid Taha. Multi-Stage Programming: Its Theory and Application®hD thesis,
Oregon Graduate Institute of Science and Technology, @ctb®99.

Laurence Tratt and Tony Clark. Issues surroundingl@hoonsistency and QVT. Tech-
nical Report TR-03-08, Department of Computer Sciencegiki@ollege London, De-
cember 2003.

Michiaki Tatsubori, Shigeru Chiba, Kozo Itano,caNarc-Olivier Killijian. OpenJava:
A class-based macro system for Java.Phoc. 1st OOPSLA Workshop on Reflection
and Software Engineeringages 117-133, 1999.

240

[THOO] David Thomas and Andrew HuntProgramming Ruby: A Pragmatic Programmer’s
Guide Addison-Wesley, 2000.

[Tra05] Laurence Tratt. Model transformations and tookgnation. Journal of Software and
Systems Modellingl(2):112-122, May 2005.

[Var03] Daniel Varrd. Automated Model Transformations for the Analysis of IT&ygst PhD
thesis, Budapest University of Technology and Economiex,dinber 2003.

[vDKVO00] Arie van Deursen, Paul Klint, and Joost Visser. Daimspecific languages: An anno-
tated bibliography. volume 35 &IGPLAN Noticespages 26—36, June 2000.

[Vel95] Todd Veldhuizen. Using C++ template metaprogra@s+ Report, 7(4):36—-43, May
1995.
[VPO3] Daniel Varr6 and Andras Pataricza. UML action semics for model transformation

systems Periodica Politechnica47(3):167-186, 2003.

[VRO1] Guido van Rossum. Python 2.2 reference manual, 2001.
http://www.python.org/doc/2.2/ref/ref.html

[VRO3] Guido van Rossum. Python 2.3 reference manual, 2003.
http://www.python.org/doc/2.3/ref/ref.html Accessed Aug 31 2005.
[VVO04] Gergely Varrd and Daniel Varrd. Graph transfofioa with incremental updates. In

Proc. GT-VMT 2004, International Workshop on Graph Transiation and Visual
Modelling TechniqgueEENTCS, March 2004. To appear.

[VVPO2] Daniel Varrd, Gergely Varrd, and Andras Patad. Designing the automatic trans-
formation of visual languagesScience of Computer Programming4(2):205-227,
August 2002.

[W3C99a] W3C. XML Path Language (XPath) 2.0 November 1999.
http://www.w3.org/TR/xpath

[W3C99b] W3C.XSL Transformations (XSLT)999. http:/iwvww.w3.0rg/TR/xslt

[WC93] Daniel Weise and Roger Crew. Programmable syntaxresacln Proc. SIGPLAN
pages 156-165, 1993.

[WCOO00] Larry Wall, Tom Christiansen, and Jon Orwamrogramming Petl O’Reilly, third
edition, 2000.

[Whi02] Jon Whittle. Transformations and software modglianguages: Automating transfor-
mations in UML. In Jean-Marc Jézéquel, Heinrich Hussman Steve Cook, editors,
UML 2002 — The Unified Modeling Language : 5th Internationalinference pages
227 — 242. Springer-Verlag, 2002.

[Wil03] Edward D. Willink. UMLX : A graphical transformatio language for MDA. Ir2nd
OOPSLA Workshop on Generative Techniques in the contexbdéMDriven Archi-
tecture October 2003.

[Wil05] Gregory V. Wilson. Extensible programming for th&ést century.Queue 2(9):48-57,
January 2005.

241

	Abstract
	Acknowledgements
	Introduction
	Overview
	An extensible programming language
	Model transformations

	Overall aims of the thesis
	Overall thesis structure
	Contributions
	Detailed synopsis
	Previous availability of material
	Publications
	Software

	Thesis conventions

	Background
	Domain specific languages
	Model transformations
	Transforming between two similar modelling languages
	Encoding the example in a GPL
	A change propagating example
	A method for model transformations
	Challenges raised by the examples

	Notable categories of model transformation
	Model transformations scope
	Change propagation

	Review
	Programming language paradigms
	Compile-time meta-programming
	Token level macro facilities
	Syntax level macro facilities
	MetaML and Template Haskell
	OO languages

	Model transformations
	Transformation specifications
	Transformation technologies
	XSLT
	Graph transformations
	Logic programming
	TXL
	QVT
	TRL
	xMOF
	QVT-Partners approach
	Other approaches
	Summary of model transformation approaches

	Research problem
	A DSL implementation technology
	Issues with existing model transformation approaches
	Thesis aims
	Assessment criteria

	The Converge programming language
	Converge basics
	Syntax, scoping and modules
	Functions
	Goal-directed evaluation
	Data model
	Comparisons and comparison overloading
	Exceptions
	Meta-object protocol
	Differences from Python
	Differences from Icon
	Implementation
	Parsing
	Related work

	Compile-time meta-programming
	Background
	A first example
	Splicing
	The quasi-quotes mechanism
	Basic scoping rules in the presence of quasi-quotes
	The CEI interface
	Lifting values
	Dynamic scoping
	Forward references and splicing
	Compile-time meta-programming in use
	Run-time efficiency
	Compile-time meta-programming costs
	Error reporting
	Related work

	Implications for other languages and their implementations
	Language design implications
	Compiler structure
	Compiler interface

	Syntax extension for DSLs
	DSL implementation functions
	Adding a switch statement
	Related work

	Modelling language DSL
	Example of use
	Data model
	Pre-parsing and grammar
	Traversing the parse tree
	Translating
	Diagrammatic visualization

	Future work
	Summary

	A rule based model transformation system
	Running example
	The QVT-Partners model transformations approach
	Overview
	Pattern language
	Complete example
	Issues with the approach
	Summary

	The MT Language
	Basic details
	Matching source elements with patterns
	Pattern language
	Producing target elements
	Example
	Running a transformation

	Tracing information
	Visualizing tracing information
	Standard tracing information creation mechanism
	Augmenting or overriding the standard mechanism

	Towards more sophisticated transformations
	Extending the running example
	Pattern multiplicities
	Extended example
	Pruning the target model
	Combinators

	Implementation
	Outline of the implementation
	Translating rules
	Translating a rules source model clauses
	Translating patterns
	Translating variable bindings
	Translating model element patterns
	Translating set patterns
	Translating Converge expressions when used as patterns
	An example translated pattern
	Translating pattern multiplicities
	Standard functions
	Embedding Converge code within DSLs
	Extending the Converge grammar
	Unintended interactions between translated and embedded code
	Generating tracing information from nested model patterns
	Summary of the implementation

	Related work
	Future work
	Summary

	A change propagating model transformation system
	Change propagation
	Change propagation compared to incremental transformation
	Manual or automatic change propagation
	Propagating changes in batch or immediate mode
	Relating source and target elements by key, trace, or identifier
	Correctness checking and conflict resolution

	PMT
	A PMT transformation's stages
	Example
	Creating target element identifiers
	Making target elements conformant
	Running a PMT transformation
	Removing elements from the target model
	Propagating changes between containers

	The execution of a PMT transformation
	Propagating localised changes
	PMT's approach

	Checking conformance operators
	Implementation
	Conformance operators
	Conflicts

	Future work
	Summary

	Conclusions
	Summary
	Conclusions
	Future work

	Converge grammar
	DSL grammars
	MT Grammar
	PMT Grammar

	Additional examples
	Converting associations to foreign keys
	Removing `many to many' relations

	Example translations
	The `Simple UML' modelling language
	Simple classes to tables transformation

	Model serializer
	Overview
	Example output

	Glossary

