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Abstract

Dynamically typed object orientated languages such as Python are increasingly seen as a viable im-

plementation technology for software systems. Despite therun-time flexibility that such systems

present, few present any means of extending the base language. Although languages such as LISP

provide features for extending the base language via a macrosystem, few modern languages are capa-

ble of compile-time meta-programming, and of those that do,many of the most powerful are statically

typed functional languages. In this thesis I first present a novel dynamically typed object orientated

languageConverge, which can be extended via its compile-time meta-programming facility. This

facility can then be used to extend Converge’s syntax, allowing Domain Specific Languages (DSLs)

to be embedded directly within Converge.

I then use Converge to tackle the problem of model transformations. Model transformations are

of increasing importance in the development of large systems, whose models need to be manipulated

into many different forms. Model transformations written in general programming languages are

typically bloated, buggy, and inflexible and perform beneath reasonable expectations. The difficulties

of implementing model transformations have hampered practical progress in this area. In this thesis

I show a large scale example of a model transformation approach MT implemented as a Converge

DSL. I then use this as a basis for a novel change propagating model transformation approachPMT

which explores practical approaches to this challenging problem.
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Chapter 1.

Introduction

1.1. Overview

1.1.1. An extensible programming language

When developing complex software systems in a General Purpose Language (GPL), it is often the

case that one comes to a problem which is not naturally expressible in the GPL used to develop that

system. In such cases, the user has little choice but to find a suitable workaround, and encode their

solution in as practical a fashion as they are able. Whilst such workarounds and encodings are often

trivial, they can on occasion be exceedingly complex. In such cases the system can become far less

comprehensible than the user may have wished. Although Steele argues that ‘a main goal in designing

a language should be to plan for growth’ [Ste99], most modernGPLs only allow growth through the

addition of libraries. The ability of a user to extend, or augment, their chosen programming language

is thus severely restricted.

Domain Specific Languages (DSLs) are an attempt to work around the lack of expressivity in a

GPL by presenting the user with a mini-language targeted to the particular domain they are working

in. Mernik et. al [MHS03] define DSLs as ‘languages tailored to a specific application domain. They

offer substantial gains in expressiveness and ease of use compared with general purpose programming

languages in their domain of application’. Traditionally DSLs – for example the UNIXmake pro-

gram – have been implemented as entirely stand alone applications. Hudak contrasts the consequent

high costs of traditional DSL implementation with Domain Specific Embedded Languages (DSELs)

[Hud98]. DSELs contrast with traditional DSLs in that they are a language within a language; in other

words the DSL is embedded within a GPL. In so doing, the DSEL can pick up many of the benefits of

the surrounding GPL. However Hudak specifically limits his visions to DSLs embedded in strongly

typed functional languages such as Haskell, relying on the particular feature sets that such languages

offer.



Wilson argues that programming languages need to allow their syntaxes to be extended if powerful

DSLs are to be exploited to their maximum potential [Wil05].Hudak’s vision is thus fundamentally

limited since he expressly forbids any form of syntax extension to the host GPL. Part of the reason for

this may be that few modern languages are capable of syntax extension. Although LISP’s macro fa-

cilities are well known, its syntactic minimalism is far removed from modern programming languages

and whilst the syntax is inherently flexible, it is not possible to change it in a completely arbitrary

fashion. Nemerle [SMO04] is a statically typed OO language in the Java / C# vein, which includes a

macro system that permits a limited form of syntax extension. Bravenboer and Visser perhaps come

closest to the ideal vision of syntax extension with theMetaBorg system which allows language

grammars to be extended in an arbitrary fashion [BV04]. However MetaBorg is a heterogeneous

system meaning that the language being extended is generally different than the language doing the

extension. In order to use such a system, one needs to be expert in three entirely separate systems

(the language being extended, the language doing the extension and the ‘emulation’ of the language

being extended) in order to produce a quality implementation, which is a significant barrier to use.

A primary aim of this thesis is to present an extendable programming language. Since the GPLs

that I use most frequently for my research [Tra05] are dynamically typed Object Orientated (OO)

languages such as Python [vR03], this thesis further aims topresent an extendable dynamically typed

object orientated language. Dynamically typed OO languages such as Python, Ruby [TH00] and

Smalltalk [GR89] are increasingly recognised as having an important rôle to play in the development

ecosphere, particularly for the rapid development of software whose requirements evolve and change

as the software itself develops [Ous98]. Although they havetraditionally been labelled somewhat

dismissively as ‘scripting languages’, modern dynamic language implementations can often lead to

programs which are close in run-time performance to their statically typed counterparts, whilst having

a significantly lower development cost [Pre00].

In contrast to a heterogeneous system such asMetaBorg , a language which successfully meets

this thesis’s aims would need to be entirely homogeneous in nature. In order to achieve this, the

language thus needs some way to execute arbitrary code at compile-time. To the best of my knowl-

edge, the only dynamically typed OO language capable of thisis Dylan [BP99], which is a hetero-

geneous system since its macro language is distinct from themain language. Relatively recently

languages such as the multi-staged MetaML [Tah99] and Template Haskell (TH) [SJ02] have shown

that statically typed functional languages can house powerful compile-time meta-programming facil-

ities where the run-time and compile-time languages are oneand the same. Whereas lexing macro

systems typically introduce an entirely new language to a system, and LISP macro systems need the

compiler to recognise that macro definitions are different from normal functions, languages such as
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TH move the macro burden from the point of definition to the macro call point. In so doing, macros

suddenly become as any other function within the host language, making this form of compile-time

meta-programming in some way distinct from more traditional macro systems. Importantly these

languages also provide powerful, but usable, ways of copingwith the syntactic richness of modern

languages.

Since languages such as MetaML and TH are concerned with different aspects of program devel-

opment (such as statically determinable type-safety), it is less than clear whether or not a dynamically

typed OO language could satisfactorily house a similar compile-time system. In this thesis I present

the Converge programming language, which can be seen in manyways as a Python derivative, both

syntactically and semantically. However, Converge is a more experimental multi-paradigm language

than Python and its ilk. It has been designed, in part, to explore if, and how, various language fea-

tures can be integrated together. In this thesis I present the main Converge language along with its

TH-derived compile-time meta-programming facilities, explaining the impact this has had on the lan-

guage’s design since it is important that the addition of such a feature does not unduly complicate

other areas of the language. I then show how Converge allows its syntax to be directly extended,

thus allowing DSLs to be embedded in Converge in an entirely natural fashion. In order to validate

Converge’s approach to DSL implementation, the following subsection details a substantial problem,

which is then implemented within Converge.

1.1.2. Model transformations

In recent years the movement towards developing software with the use of models has increased

rapidly. Organizations are increasingly seizing the opportunity to move their intellectual property,

business logic, and processes, from source code into models, allowing them to focus on the important

aspects of their systems, which have traditionally been buried – and sometimes lost – in the mélange

resulting from the use of general purpose languages (GPLs) such as Java and C++. For the purposes

of this thesis, models can be assumed to be UML [BJR00] models, or similar. This increasingly so-

phisticated use of models has led to the desire to transform models into various different forms. Needs

range from the mundane (e.g. simple data format conversion)to the traditional (e.g. model compilers)

to the innovative (e.g. transformations which can propagate changes after an initial transformation).

Model transformations are the key to solving this very fundamental problem, and are vital if the

use of modelling is to reach its full potential [BG02, GLR+02, Whi02]. A simple definition of a

model transformation is that it is a program which mutates one model into another; in other words,

something akin to a programming language compiler. Of course, if this simple description accurately

described model transformations, then we would be faced with a relatively simple and uninterest-
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ing problem to solve – GPLs and traditional techniques wouldalmost certainly suffice to solve this

problem satisfactorily, as they do with many other problems.

In practise writing model transformations is difficult, particularly so when GPLs are the only tool

available to write them. Whilst such languages present goodenvironments for solving many classes of

problems, model transformations make frequent use of techniques and features which are either absent

or cumbersome to use in GPLs. Such features thus need to be encoded in a roundabout fashion in the

host language. For example, models are most naturally represented as graphs; encoding backtracking

over a graph, of the kind frequently needed by model transformations, in a GPL is a surprisingly

challenging task. Performance issues also feature – for example the potential size of models can

necessitate against the eager evaluation of arbitrary structures. Encoding suitable techniques using

the facilities available in a GPL is of course possible, but is tedious, error-prone and can lead to

inefficient execution. More fundamentally it prevents the transformation writer from concentrating

on the important aspects that they need to express; it hinders those who later wish to understand code

which relies on knowledge both of the problem being solved and the elaborate encodings used to

solve it; and lessens the potential for reuse.

To alleviate these problems, a number of different approaches dedicated to model transformations

have recently been proposed. Most approaches have been created with the assumption that existing

GPL approaches are unsatisfactory. However few, if any, approaches are explicit about this assump-

tion and none analyse traditional approaches sufficiently.Perhaps because of this, most proposed

model transformation approaches are somewhat ‘hit and miss’ in terms of tackling the problem more

successfully than existing approaches. Significantly, I believe that most model transformation ap-

proaches are largely similar to each other. Without reasonable evaluation of all the potentially major

different types of model transformation approach, it is hard to be sure that any particular approach

is as good as can be reasonably achieved. There is also a tendency to assume that there is a suitable

‘one size fits all’ solution to the problem because of the narrowness of the solutions being attempted.

At this stage in the development of the area, it seems sensible to assume that different solutions may

be required to tackle different aspects of the problem.

It is my contention that the difficulty of implementing modeltransformation systems is one of the

chief reasons for the relative simplicity of most current model transformation approaches. Only a

small proportion of proposed approaches appear to be implemented; of those that do have an imple-

mentation, some are too limited to perform any meaningful task. Since model transformations are

an inherently practical topic, implementations are vital for assessing and evolving new ideas. A long

and labour intensive idea-implement-assess cycle seriously inhibits such experimentation. The area

of model transformations thus finds itself in something of a vicious cycle: as a relatively new area,
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experimentation is vital for discovering the merits of different approaches and techniques, yet the

difficulties of creating implementations inhibits experimentation.

In respect to model transformations, this thesis has two complementary aims. The first is to demon-

strate how a complex DSL fits within Converge, and how it is implemented. The second is to explore

the model transformations field by investigating new types of model transformations.

Types of model transformation

In this thesis various types of model transformations are identified (see section 2.3), with two being

of particular significance. These two types can be summarised as follows:

Stateless model transformationstake in a source model and produce a target model in a similar vein

to a programming language compiler. Once the transformation has been run it is complete, and

the only action to be taken when rerunning the transformation is to create an entirely fresh

target model from the source model.

Change propagating model transformationsare only relevant after an initial transformation from

a source to target model. Subsequent to such an initial transformation they are capable of

propagating changes made to the source model to the target model in a non-destructive fashion.

The majority of existing model transformation approaches are only capable of expressing state-

less model transformation. Although stateless model transformations are widely recognised as being

important, change propagating model transformations are also of considerable interest.

In this thesis I present a stateless model transformation language MT which serves as an example

of implementing a complex DSL within Converge. I then present a novel change propagating model

transformation language PMT.

1.2. Overall aims of the thesis

Consistent with the issues outlined in section 1.1, this thesis has the following complementary aims:

1. To provide an extensible dynamically typed OO programming language which allows DSLs to

be embedded within it.

2. To provide a non-trivial example of a DSL within the extendable programming language.

3. To examine new approaches for expressing stateless and change propagating transformations.
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1.3. Overall thesis structure

In order to satisfy the stated aims, this thesis is organisedinto four main parts:

1. An analysis and review of compile-time meta-programmingsystems, and model transforma-

tions.

2. I present the design of a new imperative programming language named Converge, designed to

facilitate the implementation of DSLs.

3. Converge is used to express a simple, but powerful rule-based stateless model transformation

system.

4. The rule-based approach is then extended to define a novel change propagating model transfor-

mation approach.

1.4. Contributions

The main contributions of this thesis are as follows:

• The design of the Converge programming language.

• A clear identification of significant types of model transformations.

• The use of Converge to implement a practical rule-based stateless model transformation system,

which severs as a non-trivial example of using Converge to implement a DSL.

• The use of Converge to explore practical approaches to change propagating transformations.

1.5. Detailed synopsis

Chapter 2 introduces the concepts of DSLs and model transformations.This chapter motivates the

need to consider model transformations as a distinct and unique problem via an analysis of the

problem they aim to solve. This leads to a categorization of some significant types of model

transformation, and the establishment of a simple method that model transformation approaches

conform to. By defining the problem space thus, a wide solution space is also defined.

Chapter 3 reviews and analyses the major approaches to compile-time meta-programming and model

transformations. The analysis leads to two choices being made. Firstly I present a dynamically

typed OO language capable of compile-time meta-programming (chapter 4), and secondly I
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choose to provide new approaches for expressing stateless and change propagating transforma-

tions (chapters 5 and 6).

Chapter 4 presents the design of a new dynamically typed OO language Converge designed to facil-

itate the implementation of DSLs. Converge is an imperativeprogramming language, capable

of compile-time meta-programming, and with an extendable syntax.

The chapter concludes with a user extension to Converge which allows simple modelling lan-

guages to be embedded within Converge. As well as being a practical demonstration of Con-

verge’s features, this facility is used extensively throughout the remainder of the thesis.

Chapter 5 constructs a rule-based stateless model transformation approach. This serves as a non-

trivial example of implementing a DSL in Converge.

Chapter 6 details a more sophisticated model transformation solution aiming to tackle the problem

of change propagation. The rule based approach of the previous chapter is augmented with

mechanisms for ensuring that transformations can be preserved after an initial transformation,

and are capable of propagating changes made to a source modelsubsequent to its initial trans-

formation. In so doing, a number of insights into the challenges of change propagation, and

solutions to several of these problems, are presented.

Chapter 7 Conclusions.

1.6. Previous availability of material

1.6.1. Publications

Several parts of this thesis have appeared in identifiable form in previous publications, all authored

solely by myself. An early version of parts of chapters 2 and 3can be found in the following journal

publication:

Laurence Tratt. Model transformations and tool integration. Journal of Software and

Systems Modelling, 4(2):112-122, May 2005.

A slightly augmented version of chapter 4 appeared in the following symposium publication:

Laurence Tratt. Compile-time meta-programming in a dynamically typed OO language.

Proc. Dynamic Languages Symposium, October 2005.

Large parts of chapters four have previously appeared in thefollowing two technical reports:
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Laurence Tratt. Compile-time meta-programming in Converge. Technical report TR-04-

11, Department of Computer Science, King’s College London,December 2004.

Laurence Tratt. The Converge programming language. Technical report TR-05-01, De-

partment of Computer Science, King’s College London, February 2005.

Chapter five appeared largely verbatim in the following technical report:

Laurence Tratt. The MT model transformation language. Technical report TR-05-02,

Department of Computer Science, King’s College London, May2005.

1.6.2. Software

This thesis has led to the creation of several pieces of software. All software in this thesis can be

downloaded fromhttp://convergepl.org/ .

1.7. Thesis conventions

Please note that some code has had to be reformatted in order to make it fit on the printed page.

Also note that whilst error messages and so on frequently give complete pathnames for the files

they refer to, in the interests of brevity these have generally been cut down to show only the leaf name

of the file involved.
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Chapter 2.

Background

This chapter is intended to fill in the background information necessary for the work presented in this

thesis. The concept of DSLs and model transformations are explained and motivated in more detail.

Also spread throughout this section are the definitions of a number of existing and unfamiliar terms –

and explanations of unfamiliar concepts – which are used throughout this thesis.

2.1. Domain specific languages

Mernik et. al [MHS03] define DSLs as ‘languages tailored to a specific application domain. They

offer substantial gains in expressiveness and ease of use compared with general purpose programming

languages in their domain of application’. The canonical example of a DSL is the widely available

UNIX program make, which allows dependencies between files to be expressed. Ifa file x upon

which a filef depends, has been updated it will forcef to be recomputed. Although newer versions

of make have added (sometimes incompatible) features upon this basic vision, in essencemake is

only capable of expressing simple dependencies.

A complete real world example of input tomake is as follows:

echo: echo.c echo.h
cc -o echo echo.o

In this fragment, theecho binary will be relinked (with a user-specified command) if either the

echo.c or echo.h files has been changed since the last link.make also ensures that all C files (files

whose names end in ‘.c ’) are recompiled if they have been changed since their last compilation. The

expressive power of themake DSL for its chosen domain can be gauged by comparing the simple

input to the following GPL pseudo-code:

if not futil.exists("echo.o") or (futil.last_modified(" echo.c") > \
futil.last_modified("echo.o")):
sys.shell("cc -c -o echo.o echo.c")

if not futil.exists("echo") or (futil.last_modified("ec ho.c") > \
futil.last_modified("echo")) or (futil.last_modified( "echo.h") > \



futil.last_modified("echo")):
sys.shell("cc -o echo echo.o")

As this example clearly shows, for its intended domain,make allows users to express file depen-

dencies in a concise fashion compared to a GPL alternative. As this hopefully suggests, the aim of a

DSL is not to provide a generic solution to a wide category of problems; rather a DSL should aim to

provide a succinct way of expressing solutions to a very specific problem. It should also be noted that

although this example, and most of the other DSLs mentioned in this thesis, are computer related, in

general DSLs can be written for any domain. For example, one could construct a DSL designed to

allow banks to express the changing rates of interest on their accounts. van Deursenet. al provide a

comprehensive review of much of the material about DSLs [vDKV00].

2.2. Model transformations

Although transformations in general are a subject that has seen much research over the past decades,

model transformations are a relatively new area of research. Furthermore much of the research on

non-model transformations has been targeted at very specific applications of transformations, nullify-

ing much of its applicability to model transformations which aim to encompass a much broader and

general scope [GLR+02]. Therefore, in order to define what a model transformation is, reference to

previous transformations work is of limited use.

Model transformations have an intuitive meaning: they are programs which change one model

into another. Although this simple definition encompasses one of the most important tasks of model

transformations, it fails to capture other tasks which theymodel transformations aim to facilitate.

This definition also gives little sense as tohowmodel transformations might work, or how one might

go about creating a model transformation. In this section, Ipresent a simple example of a model

transformation which allows many of the different aspects of model transformations to be highlighted.

2.2.1. Transforming between two similar modelling languag es

Figure 2.1 shows the metamodels of two similar modelling languages which will be used in most of

the examples in this chapter. A metamodel is literally the model of a model; it is a set of constraints

which determine its valid instances. A metamodel and a modelare analogous to a BNF grammar and

a particular textual input. In the interests of brevity I do not formally define the semantics of these

languages, assuming that equivalent elements in either modelling language have the same semantics

unless otherwise stated. The modelling languageML1 in figure 2.1(a) supports directed associations

and package inheritance; the latter is a mechanism for structuring models as found in e.g. Appukuttan

et. al [ACE+02]. For the purposes of this example, a packageA which inherits from a packageB is
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considered to posses a copy of all the elements inB. Figure 2.1(b) shows the modelling languageML2

which does not provide support for package inheritance but allows bidirectional associations. Because

of the large overlap between the two metamodels, many modelscan be instances of either metamodel;

however many models will make use of the conflicting featuresof one or the other modelling language

and are thus not directly interchangeable. This is representative of the real world where two modelling

tools store and manipulate models in only marginally different fashions, yet still end up preventing

users from interchanging their models between them1.

Figure 2.2(a) shows a typical example of package inheritance in a simple model of a company –

different aspects of the company have been separated into different packages to aid comprehension.

The Companypackage then inherits the relevant sub-packages, meaning it contains all the relevant

parts of the company model. Since this model makes use of package inheritance, it must be an

instance of theML1 modelling language; any tool which understands theML2 modelling language

will not be able to interpret the model correctly. Intuitively all that is needed to obtain theML2

equivalent of the model in figure 2.2(a) is to flatten the package inheritance by copying elements from

the super-packages into the sub-package. Figure 2.2(b) shows such a model created by hand (with the

super-packages not copied over since they are redundant).

In this example creating theML2 model from theML1 model by hand is simple and relatively

quick. However it is clear that this is not a scalable approach. Performing a similar task on larger

models would be both tedious and error-prone; it would be a daunting prospect to frequently repeat

this task. The problem at hand is thus how to provide users with a practical means of automating this

task.

2.2.2. Encoding the example in a GPL

Any first attempt at an automatic model transformation is likely to be created in a GPL. A relatively,

but not completely, naı̈ve non-OO attempt, expressed in a fairly high-level pseudo-code, might look

as follows:

func transform(element : ML1.Element) : M2.Element:
if type(element) == ML1.Package:

package_elements := []
for package_element in element.elements:

package_elements.append(transform(package_element))
parents_temp = elements.parents.copy()
for parent in parents_temp:

for parent_element in parent.elements:
package_elements.append(transform(parent_element))
parents_temp.extend(parent_element.parents)

return new M2.Package(element.name, package_elements)

1As purely anecdotal evidence, in 2002 I informally evaluated the interoperability of approximately eight UML modelling
tools. I was surprised to find that few tools could load modelssaved by other tools, and frankly shocked to discover that
some tools could not even be relied upon to load in their own saved models in all cases.
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(b) TheML2 modelling language.

Figure 2.1.: Language metamodels.

elif type(element) == ML1.Class:
parents := []
for parent in element.parents:

parents.append(transform(parent))
return new ML2.Class(element.name, parents))

elif type(element) == ML1.Association:
return new ML2.Association(element.name, transform(ele ment.from),

transform(element.to), true, false)

func main(model_in : Seq{ML1.Element}) : Void:
model_out := []
for element in model_in:

model_out.append(transform(element))

The essential idea here is to transform every element in an instance of theML1 language into its coun-

terpart in theML2 language; elements from inherited packages are brought into the child packages

and the package inheritance itself disappears. This approach has two immediate, and closely related,

problems: elements can easily be duplicated during the transformation e.g. if a classS is specialized

by two other classes then two copies ofS will appear in the target model; cycles in the model cre-

ated by associations between two classes cause the transformation to loop without termination. Both

problems are related to the fact that models are graph structures.

If one ignores the flaws in this particular example, then two stylistic issues can be discerned. Most

obviously, the entire transformation has been squeezed into one function. Clearly this is not a scalable

approach. However, factoring out the code from the body of each branch of theif statement into

separate functions reveals another limitation of this approach. The expressions in the condition of
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(b) Company model without package inheritance.

Figure 2.2.: Example models.

each branch of theif statement are an inherent part of eachrule in the transformation, since they

determine whether the rule can be executed or not. Separating the body of each branch into a function

creates a dichotomy between the two aspects of the rule.

A more sophisticated approach which uses a cache to determine which elements have already been

transformed, and uses the overloading facilities of many OOlanguages allows one to encode a more

rule-based approach (see section 3.1) to overcome the problems outlined thus far:

class ML1_To_ML2:
func transform(model_in : Seq{ML1.Element}) : Seq{ML2.El ement}:

self.processed_elements = [] // These two sequences will al ways
self.processed_results = [] // be of the same length
model_out := []
for element in model_in:

model_out.append(self.transform_element(element))
return model_out

func transform_element(element : ML1.Element) : ML2.Elem ent:
if self.processed_elements.index(element) != -1:

processed_element = self.processed_results[
self.processed_elements.index(element)]

else:
processed_element = self.transform_rule(element)
self.processed_results.append(processed_element)

return processed_element

func transform_rule(element : ML1.Package) : ML2.Element :
package_elements := []
for package_element in element.elements:

package_elements.append(self.transform_element(pack age_element))
for parent in element.parents:

for parent_element in parent.elements:
package_elements.append(self.transform_element(pare nt_element))

return new M2.Package(element.name, package_elements)

func transform_rule(element : ML1.Class) : ML2.Element:
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parents := []
for parent in element.parents:

parents.append(self.transform_element(parent))
return new ML2.Class(element.name, parents))

func transform_rule(element : ML1.Association) : ML2.Ele ment:
return new ML2.Association(element.name, transform(ele ment.from),

transform(element.to), true, false)

Our simple example is now successfully encoded – we now no longer transform elements twice nor

can the transformation enter into infinite cycles. By overloading thetransform rule, the reliance on a

largeswitch -style statement has been removed. However this latter success is somewhat illusionary

because of the lack of expressive power afforded by this approach. The only form of constraint that

each rule can express is about the type of source model element it can transform. This would not

be sufficient to express, for example, a rule which transforms packages whose names begin with a

‘ ’ in a different way from packages whose names do not begin with a ‘ ’ (such a rule may be

used to enforce naming conventions). Complex constraints such as this are often a part of model

transformations; method overloading does not provide sufficient expressive power.

Despite the lack of generality of the overloading approach,this transformation is still a considerable

improvement over its flawed predecessor. A significant problem however with this transformation is

its relative size to our naı̈ve solution, with a large amountof boiler plate code and general machinery2

added in order to get the transformation to work correctly. Worryingly, the necessary machinery is

not confined to certain aspects of the transformation – it pervades every aspect. Whilst this machinery

is of manageable proportions for a small transformation, one can surmise that such an approach will

swiftly lead to the substance of the underlying transformation being swamped as the transformation

grows larger. Thus whilst we have a solution for the originalproblem, it seems unlikely that such an

approach will scale appropriately.

2.2.3. A change propagating example

In the previous section, I motivated the need for model transformations by exploring the need to per-

form a transformation between models stored in different tools, and the difficulties in trying to write

such a transformation in a GPL. I classify that transformation example as aunidirectional stateless

transformation. It is unidirectional because it can only transform an instance ofML1 into an instance

of ML2. It is stateless because running the transformation when the source model has changed results

in the creation of an entirely new target model even if it is anexact duplicate of the model that already

exists. Although such a transformation can be of practical use in integrating together different tools,

it tackles only part of the problem.

2I use the term ‘machinery’ to denote code which is necessary to construct a running system but which detracts from the
users’ focus in creating the system.
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One enticing future scenario is when tools which specializein different aspects of modelling can

be used together throughout the development life cycle [Tra05] e.g. a UML modelling toolUT and

a Java modelling toolJT. In such a scenario, a model is not just transformed between different tools

once, but may be edited multiple times in each tool. For example, an initial model may be created

in UT, transformed and subsequently edited inJT, before high-level architectural changes are applied

in UT which one expects to see reflected inJT. A similar, although more linear, scenario involving

incremental model development is explained in Beckeret. al [BHW04]. The general aim underlying

such scenarios is to allow the user to leverage the particular specialities of different tools at varying

points in the development life cycle.

The significant challenge raised by this scenario can be seenin figure 2.3. Imagine first that one

has the model in figure 2.3(a) (an instance of theML2 modelling language) in a toolMT2. One then

transforms this model into an instance of theML1 modelling language for use in another toolMT1.

The result of the transformation fromML2 to ML1 is shown in figure 2.3(b), which contains two

directed associations. Now if the user changes the model inMT2, what might the result be on the

model inMT1? Being stateless in nature, the example presented in the previous section would simply

erase whatever was inMT1and create an entirely fresh model.

A more sophisticated approach would be for the transformation to attempt to perform the minimum

alteration to the target model to propagate the changes, leaving it otherwise intact. In order to do this,

the transformation needs to somehow recognise those elements in the model inMT1 which relate

to those inMT2 and use, or change, them appropriately. This initially seems fairly trivial – for

example theEmployeeclass is obviously shared in both models. However, considerthe bidirectional

association inMT2which is non-trivially related to two directed associations in MT1– how should a

transformation recognise such a relationship? One could search in anMT2model for a pair of directed

associations whose names appear to correspond to that of a bidirectional association inMT1, but such

correspondences may be pure coincidence (the user being free to name associations as they so wish),

which would lead to an incorrect change propagation. One important type of propagation results from

the deletion of an element inMT2which should result in the appropriate deletion of elementsin MT1.

Unfortunately, no matter how clever a property-based calculation might be in determining element

equivalence, if the transformation has no record of which elements inMT2 relate to those inMT1 it

will be unable to perform such a deletion reliably. At best itwill not delete elements inMT1 that it

should; at worst it may result in the accidental deletion of elements inMT1.

The scenario is further complicated by the fact that it is rarely acceptable for the transformations

between tools to reconstruct a model from scratch if it already exists. In other words, although the

original transformation from a model inUT to a model inJT creates the target model from scratch,
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(a) ThePersonnelpackage in theML2 language.

Personnel

Employee employees

*

Manager
manager

(b) ThePersonnelpackage in theML1 language.

Figure 2.3.: Models with different types of associations.

subsequent transformations need to alter the models already present rather than wiping the model and

treating every transformation as if it were an initial transformation (even if it perfectly recreates said

model). There are two main reasons for this. Firstly continually creating large models from scratch

can be prohibitively inefficient, particularly if only a small portion of one model has been changed.

Secondly, the user may in the target model manually create elements which do not directly relate to

the source model (e.g. in theUT andJT example, this could involve adding Java specific details into

the model inJT). Subsequent updates must not destroy manually added elements, or the links to them,

simply because they are not a direct part of the transformation.

It is important to note that the scenario given here is deliberately limited compared to the general

case. It calls only for changes inUT to be propagated toJT, not vice versa. A solution for the general

case would utilize abidirectional transformation that could also propagate any relevant changes made

in JT to UT. True bidirectional transformations present a number of challenges above and beyond

those tackled in this thesis, and by most current model transformation technologies (see section 3).

Consequently they are largely ignored in this thesis – however all of the challenges listed in this thesis

apply equally to bidirectional transformations.

2.2.4. A method for model transformations

Based on examples such as those just presented, a simple method for model transformations can be

discerned which can significantly aid understanding of the general problem. It also allows the com-

parison of different approaches by describing where, and how well, any approach fits into the method.

Because, as shall be seen in chapter 3, there are various different categories of model transformations,

this method is intentionally high level and therefore applicable to the majority of practical approaches.

For example, in a simplistic approach encoded in a GPL this method would apply to the entire pro-

gram; in a rule based approach, this method could be seen to beapplied to each rule. The example in
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Figure 2.4.: Transforming a model.

figure 2.4 is intended to help visualise these parts:

1. Searching a model to identify appropriate elements to transform.

2. Transforming elements.

3. The retention (in some manner) of tracing information recording which elements in a model

are related by the transformation to elements in other models.

4. Detecting updates in one model involved in the transformation and performing relevant opera-

tions in the transformations other affected models.

Whilst a minimal approach to model transformations need only perform parts one and two, a com-

plete approach would be capable of performing all parts: a model transformation technology which

limits itself to merely taking in one model and producing another model out fails to tackle all the

required problems outlined in section 2.2.3. However, although the method is comprised of four main

parts, it is not necessary for these parts to correspond to distinct phases of execution. Parts one and
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two are often partially intertwined and it would be surprising if parts two and three in particular were

implemented as separate phases because the required information for part three will be determined by

what happens in part two.

2.2.5. Challenges raised by the examples

These simple examples are intended to give the reader an ideanot only of the overall problem that

model transformations are attempting to tackle, but also the issues raised in tackling the problem. In

short the two main challenges of the ‘what’ and the ‘how’ can be summarised as follows:

1. The desire to reduce the necessary, but largely irrelevant, machinery which can swamp the

essence of any given model transformation.

2. The need not only to transform an initial instance of a metamodel ML1 into an instance of

a metamodelML2, but also to propagate subsequent changes made to theML1 model non-

destructively to theML2 model.

A third challenge could be considered to be the desire to create bidirectional transformations. How-

ever the problem of bidirectional transformations is not explicitly considered in this thesis chiefly

because it requires, at a minimum, practical solutions to the problems listed in the two challenges

above.

2.3. Notable categories of model transformation

There are many categorisation criteria that one can apply tomodel transformations. For example

one could categorize the way they are used, the paradigm theyexploit [?], the features they pro-

vide [GGKH03] and so on; chapter 3 details some existing categorizations in more detail. Already

in this chapter a few types of model transformation have beenof particular note and, since they

recur throughout this thesis, it is useful to have fixed termsto refer to them. Starting from the in-

tuitive / naı̈ve notion of a model transformation being a program which ‘consumes an instance of

the metamodelML1 and produces an instance of the metamodelML2’, the following types of model

transformations are particularly significant:

Uni/bidirectional transformations. Implicit in the naı̈ve notion of a model transformation is the

idea that the transformation is unidirectional. In other words, the transformation is incapable

of taking an instance of the metamodelML2 in and producing an instance of the metamodel

ML1 out. There are several reasons why a particular transformation is unidirectional, two of
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the most important being: the transformation loses information and hence there is insufficient

detail in instances ofB alone to perform a full reversal; bidirectional transformations tend

to be considerably more difficult to write than unidirectional transformations. Note that this

simple definition of bidirectionality does not necessarilyimply that a reverse transformation

will perfectly recreate the original source model.

In the interests of simplicity, throughout this thesis I generally refer to ‘source’ and ‘target’

models although this should not be taken to mean that a transformation between two models

labelled thus implies that only unidirectional transformations can exist between the two.

Multi-domain transformations In this thesis, as in most work in this area, the general assumption is

that two models ordomainsare involved in a transformation – however it is important torealise

that in the context of this thesis, this simplification is purely to aid exposition. Multi-domain

transformations, though rarer than those involving only two domains, are important tools. A

simple example is a model diff transformation (analogous tothe UNIX diff tool [HM76])

which takes in two models and produces a third.

The reason for the use of the term ‘domain’ is to allow one other notable type of transformation:

so-called ‘update in place’ transformations. This is a transformation which alters its source

model into the target model, rather than operating a target model which is entirely separate

from the source model.

Stateless transformations.An example of a real world stateless transformation is a compiler: in

simplified terms, it takes in a source file, transforms it, andwrites out a binary file. Once done,

the transformation is complete, and if the source file changes the entire transformation is rerun

in an identical fashion regardless of the existence of the binary – an existing binary file will

simply be overwritten. Note that the stateless classification does not imply that transformations

need necessarily be uni-directional: for example, decompilers can reverse the compilation pro-

cess (albeit imperfectly) in exactly the same stateless fashion as a compiler.

Change propagating transformations. These are transformations which can not only perform a

one-off transformation but can propagate subsequent changes from some or all of its constituent

domains without the need to rerun the entire transformation. In the context of this thesis there is

an extra implication on change propagating transformations which is that they propagate their

changes non-destructively; in other words, they do not blindly overwrite the target when propa-

gating changes. Since this is a far trickier proposition than a stateless transformation, relatively

few such transformations exist in practise at the moment, although as seen in section 2.2.3

there is a real need for such transformations in a modelling context. Compuware’s OptimalJ
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tool [OJ04] provides a practical example of this, where a UMLmodel is transformed into an

EJB specific model; changes to either the model or the code arereflected in the other.

Note that these types of model transformations are not necessarily mutually exclusive: one can, for

example, have a bidirectional, multi-domain change propagating transformation. The terms defined

above are used throughout the rest of this thesis.

2.4. Model transformations scope

In this chapter, most of the examples have been small and artificial, to aid exposition. Examples of

larger model transformations abound – some are currently used by real users, some are in develop-

ment, and some require more advanced technologies than are currently available. To give the reader

a rough feel for the scope of the problem we are talking about,some representative examples are, in

approximate ascending order of complexity:

• A simple model refactoring of the kind found in many Integrated Development IDE’s such as

Eclipse [Ecl04], where changing a methods name causes all references to that method to be

renamed appropriately.

• Transforming a model that uses multiple inheritance into one that only uses single inheritance

by creating intermediate interfaces [CEM+04].

• A data conversion transformation between two models whose meta-models are fairly similar in

the aspects being transformed e.g. UML to BPEL [AGGI04].

• A model compiler that takes a UML model (e.g. class diagram and statecharts) and transforms

it into a model for a specific programming language3 e.g. Java.

• An abstracting transformation which operates between models held in two tools, one of which

is an abstraction of the other, and which propagates changesbetween the two automatically.

Further examples can be found in e.g. [ACR+03, BDJ+03].

2.5. Change propagation

Consider the challenge of expressing change propagating transformations in a GPL. Referencing

the model transformation method of section 2.2.4, one can see that the first novel aspect of change

3The underlying meta-model is likely to closely follow the abstract syntax for the language involved.
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propagating transformations – the creation of appropriatetracing information – is relatively easy to

perform in a GPL. In essence, whenever an element is created in the target model, an appropriate

piece of tracing information is created relating the relevant source and target elements.

Consider now what happens when the source model involved in the transformation is altered. There

are two immediate issues to consider when propagating changes from the source model to the target

model. Firstly, should the entire transformation be rerun?Secondly, how do we propagate the relevant

changes whilst maintaining any additions made by the user tothe target model? The first issue can

be considered to be a performance issue, and is thus not of great import. The second issue however

covers a much more fundamental problem.

Recall that in the examples presented in section 2.2.1, standard object creation was used to populate

the target model. This means that if such a transformation, or any part thereof, is rerun then entirely

new model elements will be created from scratch, rather thanexisting elements being altered into

their appropriate new form. To make this example concrete, recall the following function in theML1

to ML2 transformation which transforms packages:

func transform_rule(element : M1.Package) : M2.Element:
package_elements := []
for package_element in element.elements:

package_elements.append(self.transform_element(pack age_element))
for parent in element.parents:

for parent_element in parent.elements:
package_elements.append(self.transform_element(pare nt_element))

return new M2.Package(element.name, package_elements)

Assume that, following an initial transformation, we have added a new element to anML1 package,

and have managed to identify that only the above function need be rerun in order that the correspond-

ing ML2 element is changed accordingly. When rerun in the form presented above, an entirely new

package element will be created – thus two packages which represent the same thing will now be in

existence. Schemes that, for example, delete all elements from previous iterations (so that when a

change is propagated, all elements from the initial transformation are removed to avoid duplication)

go some way to solving the problem, but also unveil another problem. This relates to the requirement

that new elements manually created by the user in the target model be left unchanged when changes

are propagated. Manually added elements may well have had links to or from elements created in

previous transformation iterations. Simply replacing oldmodel elements with new model elements

destroys all links to and from the manually added elements. Instead transformations need to detect

and update old model elements when appropriate.

In the case of thetransform rule function, a suitable change propagating equivalent may

look along the lines of the following:

func transform_rule(element : ML1.Package) : M2.Element:
package_elements := []
for package_element in element.elements:
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package_elements.append(self.transform_element(pack age_element))
for parent in element.parents:

for parent_element in parent.elements:
package_elements.append(self.transform_element(pare nt_element))

existing_package = NULL
for processed_element in self.processed_elements:

if type(processed_element) == ML1.Package and
processed_element.name == element.name:

existing_package = processed_element
break

if existing_package != NULL:
existing_package.name = element.name
existing_package.elements = package_elements

else:
return new ML2.Package(element.name, package_elements)

The intention here is that the function first searches to find if an appropriate element exists in the

target model and, if it does, that element is updated with thecorrect new information. If no such

element exists, one is created. There are two problems with this particular approach. Firstly it relies

on identifying equivalent elements in the source and targetmodels by their name which, as detailed

in section 2.2.3, is not a generally applicable strategy. The second problem is much more significant

— the transformation has been significantly complicated by the addition of code to cope with change

propagation. Separate branches are needed to deal with the creation of new elements, and the update

of existing elements.

There is another potential solution for GPLs which support meta-classes (see Forman and Danforth

[FD98]) where the object creation mechanism can be controlled by users. If all model elements are

instances of a suitable meta-class, then instantiating a model element would require passing it a key

as well as the values of the elements attributes. The meta-class can then check against a repository

to see whether an element with the same key has already been created, and if so returns that element

with its attributes updated appropriately rather than creating a new element; otherwise a new element

is created. However this mechanism only works for model elements: sets, sequences and other built-

in types present a serious problem if the user manually alters an instance of one in the target model.

Furthermore since the meta-class mechanism is not available in many widely used OO languages (e.g.

neither C++, Java or C# has such support), this mechanism cannot be considered to be generally

applicable. In such languages, cumbersome workarounds that avoid the standard object creation need

to be employed.

This section has so far largely avoided a tackling an important practical element of many change

propagating transformations: the generation of suitable keys. The concept of a key has hitherto

been vaguely defined. In the context of change propagating transformations, elements in the target

model have a key which is an identifier based in part on attributes from the source elements. In

essence, given a particular set of source elements involvedin a transformation, one should always

be able to generate the same key. This becomes a complex affair in GPLs when e.g. multiple target
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elements are generated from the same set of source elements in the presence of a loop — how does

one generate unique keys. Furthermore since a target elements key is based on attributes fromall

source elements relevant to the target element, then this can complicate the program flow since this

information potentially needs to be passed to all parts of a transformation rule. Section 6.1.4 explains

the concept of keys in change propagating transformations in more detail, and also details alternative

mechanisms to keys.

The issues noted in this subsection are severe enough that I am not aware of any published instances

of change propagating model transformations written in a GPL.
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Chapter 3.

Review

This chapter has two main parts. The first is a review of compile-time meta-programming systems.

The second is a review of the major model transformation approaches proposed thus far (section

3.3.2).

Since terms related to programming language paradigms occur frequently in this chapter, I first

present brief definitions of some relevant terms. I then givea brief overview of specification orientated

approaches to model transformations; whilst these are of relatively little practical use, they were an

important precursor to implementation orientated approaches. Finally the bulk of the chapter details

several different model transformation approaches.

3.1. Programming language paradigms

When talking about different programming languages and model transformation approaches, I use

certain terms in order to give the reader an impression of approximately where they lie in relation

to each other. Since not all of these terms are likely to be known to all readers – and because some

of these terms have various definitions attached to them – I present a brief explanation of the more

contentious or unfamiliar here to clarify their later usage. Note that many of these terms are not

mutually exclusive; indeed many of these terms can be applied in conjunction to certain languages.

Declarative / imperative As shall be seen in section 3.3.2, existing approaches to model transforma-

tions, and to programming languages in general, can be broadly categorized into two camps:

those taking adeclarativeapproach, and those opting for animperativeapproach. The terms

declarative and imperative can sometimes be rather contentious, and I use them with no small

hesitation – they can also be rather crude mechanisms for pigeon holing different approaches.

With that warning in mind, it is important to realize that in the wider context of programming

languages there is a generally accepted consensus as to which of the two approaches best de-

scribes most languages. Crudely put, a language is considered to be imperative if it has side



effects and if it forces the programmer to be explicit about the sequence of steps to be taken

when it is executed; languages that are side effect free and do not force the programmer to

be explicit about the execution sequence are considered to be declarative. In essence, declara-

tive languages allow the programmer to state the outcome of acomputation without explicitly

stating the steps necessary in order to achieve said outcome; in contrast, imperative languages

force the programmer to state the steps of a computation which hopefully achieves the desired

outcome.

Typically, functional languages such as Haskell [Jon03] and logic languages such as Prolog

[SS94] are considered to be declarative, whilst languages such as Java [GJSB00], C++ [Str97]

and Python [vR01] are considered to be imperative. Because there is a grey area in between

these two terms, languages such as XSLT [W3C99b] – which is side-effect free and has an

implicit approach to function call / pattern application, but is explicit in some aspects about the

computation sequence – can be argued to conform to either paradigm. Wherever possible I try

to suitably qualify these terms when talking about languages that can reasonably be considered

to lie somewhere between the two paradigms. As this may suggest, it is often the case that the

two paradigms to co-exist within the same environment.

Strongly / weakly typed Strongly typed languages are those where data have an intrinsic type which

must be respected at all times. This is most easily explainedby considering its inverse: a weakly

typed language. For example Ckernighan88c allows users to give an arbitrary type to any

memory address. In C, one can incorrectly consider the data at a particular memory address to

be of an incorrect type leading to bizarre errors. In a strongly typed language such an operation

will cause an error.

Note that strong typing does not stipulate when the checkingfor type correctness may occur; it

may be at compile-time or run-time.

Statically / dynamically typed Statically typed languages are those that enforce type correctness

at compile-time. Haskell is an example of a strongly statically typed language, in that any

type errors will result in a program which does not compile. Dynamically typed languages

enforce type correctness at run-time. Python is a strongly dynamically typed language. Thus

the expression2 + "x" will result in a compile-time error in Haskell, but a run-time error in

Python. In both cases however the type of objects is respected.

Note that some languages combine aspects of static and dynamic typing. For example Java has

partial static typing, but type casts force some type checksto be performed at run-time. Also

note that static checking does not imply strong typing; C, for example, is a weakly statically
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typed language.

Rule based Rule based languages allow the user to define multiple independent rules of the form

guard => action i.e. ‘if-then’. In most GPLs the process of execution is based on calling

specific named functions in a sequence determined by the developer. This contrasts with rule

based languages where a given piece of input data is checked against each rules’ guard; the

first rule whose guard matches then has its body called. Rule based languages thus use what

is termedforward chainingas their fundamental execution method; once a guard is matched

and an action is performed, the system does not revert back toa previous state nor does control

flow backtrack to a previous point. Forward chaining of this sort is an inherently data-driven

process, although note that the action part of a rule can be declarative or imperative in nature.

Examples of rule based languages include ELAN [BKK+96] and XSLT.

Logic based Logic based languages are in some senses similar to rule based languages, in that they

define a series of largely independent clauses (which are broken down into facts and rules)

with the order that clauses are executed being determined bythe languages engine and not the

developer. The runtime strategy however is effectively to use abackward chainingstrategy

as opposed to forward chaining. Rule based languages start with a system state and try to

continually apply rules to the system, often changing the system state in the process. Logic

systems operate in the opposite fashion: they start with a goal, and attempt to prove that the

system satisfies the goal, creating intermediate data as appropriate to satisfy this goal. This

process effectively starts at the lowest level where it has known facts it can prove about the

existing system, and works backward trying to prove new goals until the overall goal is satisfied.

The canonical example of a logic language is Prolog.

Constraint solving Constraint solving involves the specification of multiple constraints that have

variables which are quantified over infinite variables [Bar99]. The constraint solving algorithm

then attempts to combine all constraints in a system to find acceptable solution(s). Sketchpad

is the original example of a constraint solving system [Sut63].

Constraint logic based A relevant variation on logic based programming is Constraint Logic Pro-

gramming (CLP). Essentially this involves the merger of theconstraint solving and logic pro-

gramming paradigms into one. CLP overcomes two particular problems often associated with

standard logic programming [FHK+92]. Most significantly, CLP allows data to be interpreted;

in other words new datatypes can be created. By providing different constraint solving mech-

anisms, CLP also allows users to sidestep the often significant performance issues associated
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with the general purpose depth-first search rule of logic programming. Interestingly, CLP sys-

tems are often modified logic systems. See e.g. [JM94] for more details.

3.2. Compile-time meta-programming

Compile-time meta-programming allows the user of a programming language a mechanism to interact

with the compiler to allow the construction of arbitrary program fragments by user code. As Steele

argues, ‘a main goal in designing a language should be to planfor growth’ [Ste99] – compile-time

meta-programming is a powerful mechanism for allowing a language to be grown in ways limited only

by a users imagination. For example, it allows users to add new features to a language [SeABP99],

or apply application specific optimizations [SCK03].

In the following subsections I review material relevant to compile-time meta-programming.

3.2.1. Token level macro facilities

By far the most common programming language macro facility in use today is the C PreProcessor

(CPP). In their comprehensive analysis of C preprocessor usage, Ernst et. al note that although the

CPP is not a fundamental part of the language ‘C ... is incomplete without its macro processor’

[EBN02]. The CPP operates as a pre-compilation stage that expands macros and allows conditional

compilation before the C compiler itself is executed. Generally the separate existence of these two

stages is transparent to the user, although typically either stage can be individually invoked.

The CPP operates at the token level, sharing its tokenizing strategy with the C language. Macro

definitions consist of a name, arguments and a body and are only permitted to occupy one logical

line in the source file. Once introduced, subsequent tokens which match the name of a macro are

automatically replaced by the body of the macro with suitable argument replacement.

Because the CPP is entirely ignorant of the syntactic context it is operating in, one can quickly

run into unexpected situations. The need to develop and use conventions is paramount to avoid

serious problems such as variable capture, and unexpected macro replacement. Variable capture is

a particularly insidious problem, which is most often noticed when a macro expands to manipulate

a particular named variable; at such a point, if the user passes in a variable of the same name as an

argument to the macro then the two clash and unexpected results arise (see Dybvig et. al [DHB92]

for an in depth examination of this problem).

In common with most token level macro facilities (e.g. the Unix M4 macro processor), the CPP

provides useful features but at a cost: its use must be carefully controlled to prevent unexpected side

effects. This is largely due to the fact that most such facilities operate with limited knowledge (CPP)
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or total ignorance (M4) of the syntactic environment in which they are operating. Although the CPP

is widely used, it is well-known for causing bizarre programming headaches due to unexpected side

effects of its use (see e.g. [CMA93, Baw99, EBN02]).

3.2.2. Syntax level macro facilities

The LISP family of languages, such as Scheme [KCR98], have long had powerful macro facilities

allowing program fragments to be built up at compile-time. Such macro facilities suffered for many

years from the problem of variable capture; fortunately modern implementations of hygienic macros

[DHB92] allow macros to be used safely. LISP and Scheme programs make frequent use of macros,

which are an integral and vital feature of the language.

Brabrand and Schwartzbach differentiate between two main categories of macros [BS00]: those

which operate at the syntactic level and those which operateat the lexing level. Scheme’s macro

system works at the syntactic level: it operates on AbstractSyntax Trees (AST’s), which structure

a programs representation in a way that facilitates making sophisticated decisions based on a nodes

context within the tree. Macro systems operating at the lexing level are inherently less powerful, since

they essentially operate on a text string, and have little tono sense of context.

The macro language provided by Scheme is powerful and (unlike many traditional LISP imple-

mentations) reliable. However it has spawned few imitators. Although one could suggest many

reasons for this, perhaps the most crucial is related to the fact that few other languages share Scheme

and LISP’s highly regular, sparse syntax; a LISP grammar is many times smaller than that of any

programming language in wide spread use today. In no small part due to this, LISP is able to use ex-

pressions themselves as a data structures-expressions(or s-exp for short). In other words, this means

that a macro call is a simple operation that first of all provides substitution in one s-exp (the macro)

and then splices the resulting s-exp into another s-exp (themacro caller). In general, manipulating a

language with a complex grammar in such a way is far more difficult. As Weise and Crew note, such

attempts generally lead to heavily convoluted and hard to maintain code that has to manipulate and

create ASTs [WC93].

Weise and Crew propose a new style of macro language (implemented for C) where macros are

C-like functions, with added syntax for macro related facilities, which take in and produce ASTs. A

special operator allows abstract syntax fragments to be expressed in the standard C concrete syntax,

rather than relying upon the explicit creation of an AST via procedure calls. Inside the fragments

limited variable replacement can be made by using the$ operator to refer to variables outside of the

fragment. In so doing, Weise and Crew are able to provide hygienic macros for a language with

a relatively complex grammar in a relatively natural manner. However their solution is somewhat
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hampered by the fact that the macros themselves require considerable added syntax over the base

language C, and that because the macro solution is incomplete, certain types of macro are impossible

to express.

3.2.3. MetaML and Template Haskell

Despite the power of syntactic macro systems, and the wide-spread usage of the CPP, relatively few

programming languages other than LISP and C explicitly incorporate such systems (of course, a

lexing system such as the CPP can be used with other text files that share the same lexing rules). One

of the reasons for the lack of macro systems in programming languages is that whilst lexing systems

are recognised as being inadequate, modern languages do notshare LISP’s syntactic minimalism.

This creates a significant barrier to creating a system whichmatches LISP’s power and seamless

integration with the host language [BP99].

Relatively recently languages such as the multi-staged MetaML [Tah99] and TH [SJ02] have shown

that statically typed functional languages can house powerful compile-time meta-programming facil-

ities where the run-time and compile-time languages are oneand the same. Whereas lexing macro

systems typically introduce an entirely new language to proceedings, and LISP macro systems need

the compiler to recognise that macro definitions are different from normal functions, languages such

as TH move the macro recognition burden from the point of definition to the macro call point. In so

doing, macros suddenly become as any other function within the host language, making this form of

compile-time meta-programming in some way distinct from more traditional macro systems. Impor-

tantly these languages also provide powerful, but usable, ways of coping with the syntactic richness

of modern languages.

MetaML was the first proposal to show how a modern language canincorporate powerful compile-

time meta-programming facilities. MetaML is a multi-stagelanguage; that is, it can generate and

compile arbitrary program fragments even at run-time. In MetaML, macros are normal functions

that are indistinguishable from any other and hence are firstclass, unlike Scheme macros (although

Bawden has proposed a first-class macro system for Scheme [Baw00]). The use of a macro however

requires an explicit ‘splice’ operator that evaluates its arguments at compile time and inserts the

results into the AST. Since a goal of MetaML is to ensure the type correctness not only of program

generators, but also generated programs themselves, the language is severely restricted. For example

MetaML can not, as standard, introduce entirely new definitions (although Ganzet. al propose a

solution for this [GST01]). TH takes the most important aspects of MetaML – quasi-quoting and

splicing – and refines them in the context of Haskell. TH is a two-stage language in that it can only

generate and compile program fragments at compile-time. THintegrates its features more tightly
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into the host language, and places less restrictions on the subsequent generated programs. However

Template Haskell does contain one obvious limitation: macro definitions and macro calls must exist

in different modules1.

3.2.4. OO languages

Few OO languages have any form of macro facility. The dynamically typed OO language Dylan

has a macro facility which is similar to Scheme’s [BP99]. However Dylan’s macro language is very

different from the main language itself, leading to a very obvious seam between the two. The statically

typed OO language Nemerle has a compile-time meta-programming system that is partially inspired

by TH [SMO04]. Nemerle is also capable of a limited form of syntax extension. Nemerle’s system

is unusual in that it is partly homogeneous (normal Nemerle functions can be called at compile-time)

and partly heterogeneous (in that top-level macro functions must be explicitly identified).

3.3. Model transformations

3.3.1. Transformation specifications

Two of the first works in the area of model transformations arethat of Lano [LB98] and Evans

[Eva98] who both define transformations with respect to an underlying semantics of class diagrams.

The transformations they define are not directly executable, rather they specify a transformation. In

essence this means that given two particular model instances the specification can determine the well-

formedness of the two models with respect to one another. Later work such as that of the 2U group

[CEK01] and Akehurst and Kent [AK02] refine the use of class diagrams and OCL for transformation

specifications.

Although transformation specifications have many uses [QVT03a], they are of limited relevance

in this thesis’s context of transformation implementations. However it is important to note that while

transformation specifications are often said not to be executable [QVT03a], this is slightly mislead-

ing. Specifications can provide a ‘yes’ / ‘no’ answer about the well-formedness of a given pair of

models. In advanced cases, a specification may even be able toprovide a detailed analysis of why

two particular models are not well formed with respect to each other.

1This is largely an implementation restriction due to the fact that the existing TH implementation forces staged execution
on an engine not originally intended for such a purpose.
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3.3.2. Transformation technologies

In the following subsections I review the major technologies for expressing model transformations.

Some of these technologies were specifically designed for writing model transformations; others have

been adapted to suit this purpose. The technologies in this section are listed in approximate order from

those technologies least specialized for model transformations to those most specialized.

3.3.3. XSLT

XSLT [W3C99b] is a rule based XML transformation technologywhich has gained a significant

amount of attention over the past few years. XSLT initially seems a promising candidate in which

to realise model transformations, because models are oftenstored as XML in order to interchange

between tools (via the XMI standard [OMG03]). An XSLT rule takes the form of a simple pattern

written in the XPath language [W3C99a] and a body which is an unusual mix of explicit and implicit

sequencing. XSLT is also unusual in that both the data to be transformed and the transformation itself

are represented in the same form – XML.

Peltier et al. [PBG01] based a model transformation framework upon XSLT but used it only at

the lowest-level, citing general readability issues as well as specifics such as the lack of acceptable

error reporting. As this experience suggests, XSLT suffersfrom a number of flaws which render it

unsuitable for the majority of medium or large tasks that we are interested in. As noted in Bex et

al. [BMN02], ‘XSLT is highly adequate for the simple transformations it was intended for (recall

that XSL was originally intended just for XML to HTML transformations)’ but that it has serious

shortcomings for more advanced transformations. One of theproblems alluded to by Bex et al. about

XSLT is its lack of power; it took several years before a formal proof was constructed that XSLT

is Turing complete [Kep02]2 and – as both the relatively recent timing and need for existence of

the proof may suggest – in practical usages one very often rapidly hits the limits as to the sorts of

transformations XSLT can naturally express.

Because XSLT transformations are written in XML, they have to conform to both XML’s syntax

and XML’s rigid well-formedness rules. XML’s syntax is rather verbose compared to most program-

ming languages. Whilst XML’s well-formedness rules go someway to ensure that XML data has

been correctly represented, they also force XSLT transformations to be somewhat more wordy than

would otherwise be necessary. Because XSLT transformations must be well-formed XML files, there

are also some seemingly valid transformations involving XML fragments that are in fact invalid be-

cause the XSLT transformation can only naturally deal with well-formed XML fragments. Ill-formed

2Seehttp://www.unidex.com/turing/utm.htm for the Turing machine implementation the proof is based
upon.
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fragments, such as those which do not contain balanced elements, must be encoded using theCDATA

mechanism thus circumventing much of XSLT’s syntactic conventions. The net effect of XSLT’s

syntax is to cause the ‘poor readability and the high cost of maintenance’ noted by Peltieret. al.

A separate issue which makes expressing model transformations in XSLT less than ideal is that

XML documents are represented as a tree structure; models are, in the general case, naturally rep-

resentable as graphs. Although graphs can be represented bytrees with link references between

nodes, the difference in representation can lead to an unnatural representation of many types of model

transformations [VP03, Var03]. To compound this issue, XSLT provides relatively poor support for

references, making the following of references a heavyweight exercise that further clutters model

transformations.

Of particular relevance to this thesis is the fact that XSLT transformations are inherently unidirec-

tional and stateless. Furthermore when compared to the method of section 2.2.4, one can see that

XSLT comes off poorly by virtue of the fact that it not even capable of creating tracing information

relating source and target elements.

3.3.4. Graph transformations

A particular style of transformation which has seen heavy use in theoretical circles since their in-

troduction in the late 60’s are graph transformations; see [AEH+99] for a relevant, comprehensive

overview of this area. Note that the term ‘graph transformation’ is misleading, as it refers to a par-

ticular category of rule-based transformation that is typically represented diagrammatically. Various

other types of transformations operate on graphs but are nottermed ‘graph transformations’ – Mens

and van Gorp note that ‘graph transformation is more a programming paradigm than a technique’

[MG04].

Well known styles of graph transformations include the single and double push-out approaches,

though there are several others. Graph transformation approaches, viewed at a suitably high level,

operate in a similar fashion. Essentially the input graph isgradually transformed in-place into the

output graph; rules identify subgraphs to transform, and then glue in a replacement graph. Rules

are successively applied to the changing model until no moreapply. Factors such as the handling of

dangling references during replacement, and the order in which rules are tried differentiate various

approaches. Graph transformations have a number of useful theoretical properties which make them

attractive and, in the context of this thesis, the fact that models are well represented as graphs is

particularly appealing [VP03].

Early work involving graph transformation and models largely centred on their use in defining the

semantics of different modelling diagram types. In the continuing work of Gogollaet. al [GPP98,
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Gog00, GZK03], graph transformations are used to transformUML models into instances of a ‘core’

UML, using the precise semantics of this core to define the semantics of the rest of the language.

Although an intriguing approach, Gogolla’s transformations tackle only small-scale problems.

Typed attributed graphs are a style of graph well suited to representing models and for reasoning

about properties such as termination and confluence [HKT02]. Küster et al. [KHE03] define a general

model transformation approach using graph transformationas the underlying mechanism, allowing

them to draw upon some of the properties of graph transformations in a model transformation context.

By grouping transformation rules into transformation units, it is reasonable to expect that such an

approach will scale to larger problems than Gogolla’s approach, but to date only small scale examples

appear to have been attempted.

Levendovszkey et al. [LKM+02], Sendall [Sen03], Varró [VVP02, Var03] and Willink [Wil03]

have all proposed model transformation approaches which are based upon simple graph transfor-

mation systems. Agrawalet. al’s more matureGReATsystem [AKS03] is in a similar vein. These

approaches all share in common that they define a visual language for defining unidirectional stateless

transformations.

Change propagation

None of the graph transformation approaches mentioned thusfar in this section has been capable of

any form of change propagation. There are other instances inthe literature relating to graph transfor-

mations and change propagation which I now describe.

In Braun and Marschall’s language [BM03] the ‘B’ stands for ‘bidirectional’, although this appears

to be a recent change of direction that is not yet fully realised – BOTL originally stood for ‘Basic

Object-oriented Transformation Language’ [BM02]. Braun and Marschall present a small amount of

theory intended to facilitate bidirectional transformations, but choose to restrict the transformations

they consider to bijective transformations. A bijective relation is one that is injective and surjective.

Informally, an injective relation means that distinct source objects must map to distinct target objects

(commonly known as ‘one-to-one’). A surjective relation means that each source object must map

to a target object (commonly know as ‘onto’). Looking back ateven the simple examples of section

2.2.1, one can see that many useful model transformations fail to satisfy one or both of the injective

and surjective criteria. Even if the BOTL approach were to befully fleshed out, the fact that it is

fundamentally incapable of expressing many simple model transformations severely limits its utility.

Triple graph grammars [Sch94] are a formalism specifically designed to facilitate bidirectional

transformations. Several approaches reference triple graph grammars but, to the best of my knowl-

edge, none have yet used this as the underlying formalism. This may be in part due to the fact that
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triple graph grammar rules are considerably more difficult to create and comprehend than normal pair

grammar rules, since they encode productions and correspondence rules in one. Kindleret. al out-

line a possible implementation of triple graph grammars andmodel transformations [KRW04], but

the approach has yet to be realised. Beckeret. al [BHW04] present a model transformation scheme

which integrates some limited aspects of triple graph grammars into an approach that otherwise shares

more in common with unidirectional stateless graph transformation approaches. With this they are

able to perform some limited change propagation, although their scheme requires frequent manual

intervention on the part of the user to resolve conflicts.

Rule organization and control structures

Most of the graph transformation approaches detailed in this section give little or no attention to

facilities for organizing rules or control structures. These two points are connected in a way that may

not be obvious. Since most approaches lack appropriate control structures, one often needs to copy

rules making subtle modifications to get the same effect as ifcontrol structures were present. The

proliferation of rules is then aggravated by the lack of facilities for organizing rules.

The lack of such features in research prototypes is perhaps not surprising. However although there

are some suggestions for enhancing such facilities in graphtransformation systems (for example,

[SW98] defines an organization mechanism based on UML packages), even mature graph transforma-

tion systems such as PROGRES [SWZ99] have surprisingly weakorganization facilities and control

structures [MG04]. It is unclear whether this reflects a fundamental problem in the methodology, or

merely a lack of development effort into practical matters.

Formal properties

Although graph transformations can be used to prove interesting properties about transformations,

only a fairly small minority of useful transformations are currently amenable to such analysis [MDJ02].

In practise the formal properties of graph transformationsare of relatively little use, and can not be

considered to be a significant advantage over other approaches which do not make similar claims.

Conclusion

The sheer number of model transformation approaches based on graph transformations suggests that

they hold promise for realizing model transformations. However current approaches are limited in

scope and rather simplistic. Despite being a well established subject area the relative paucity of graph

transformation implementations is surprising. Perhaps the two best known systems are PROGRES

and FUJABA [NNZ00]. The former is a venerable and generalized candidate with roots stretching
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back to nearly two decades; however it is very much a researchvehicle and has seen relatively little

development in recent years. The latter is more modern but isspecialized for certain restricted styles

of Java development.

Some explanation for the lack of tool support can perhaps be gleaned from the literature on graph

transformation based model transformations. Men and van Gorp comment that ‘it remains to be seen

whether graph transformation alone suffices to express complex transformations’ [MG04]. Czarnecki

et. al [?] note that users often perceive graph transformations to becomplex beasts, hence why they

have seen relatively little real-world usage.

In conclusion, graph transformations have yet to show that they are a practical vehicle for model

transformations. Furthermore, the fact that no current approach provides anything other than rudi-

mentary support for change propagation reduces their relevance to this thesis.

3.3.5. Logic programming

An approach unique in the model transformation world is thatdescribed by Whittle [Whi02] who uses

the rewriting logic based language Maude [CEL+96]. Although the prime motivation of the approach

is to automate simple unidirectional stateless transformations on simplified UML class diagrams,

the concept ofdifference matchingis introduced. The example given is the checking of a model

D2 as a valid refactoring of a modelD1. Differences between the two models are discovered, and

transformation rules are invoked in order to reduce these differences; if the repeated application of

rules reduces the differences between the models to the empty set, then the models are correct with

respect to the transformation. Although difference matching is partly intended to alleviate the logical

problem of instantiation of unbound variables, the conceptcould usefully be applied to non-logic

based system. It should be noted that this concept is considerably different than the transformation

specification approaches detailed in section 3.3.1. Furthermore the unusual nature of this feature

means that it does not neatly fit into the method of section 2.2.4.

3.3.6. TXL

Cordy’s TXL [Cor04] is a particularly interesting transformation language. Although originally in-

tended for transforming instances of the programming language Turing, it has evolved into a language

capable of transforming instances of arbitrary language grammars. In so doing, TXL has morphed

into a hybrid rule-based / functional programming languages. Whilst rules can still be fired in a tradi-

tional rule-based manner, rules can also call specific othernamed rules. If the guard of a named call

does not match then the source model is returned unmodified. TXL rules contain powerful guards,

which consist of a relatively crude pattern augmented by awhenclause containing an arbitrary ex-
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pression. As its origins might suggest, TXL is largely geared towards transforming one programming

instance into another instance of the same programming language. It is possible to transform between

two different programming languages via a ‘union grammar’ which is a single grammar combining

all relevant aspects of the grammars of the two languages in question.

Paige and Radjenovic performed some initial investigations of the feasibility of using TXL for

model transformations [PR03]. They provide a small exampleof a transformation between simplified

models of UML and Java. The example is carefully constructedso that a single grammar is sufficient

to express both models, and thus the transformation is relatively simple.

TXL has many advantages as a transformation system. It is mature, efficient, and is demonstrably

capable of succinctly expressing many useful transformations. It is one of the few transformation

systems to have been used to process large volumes (Cordy records a case where several billion

lines of code were transformed with TXL), and its pragmatic approach to rule-based transformations

incorporating functional aspects is far more refined than any of the dedicated model transformation

approaches reviewed in this chapter. Offset against its advantages are two significant issues relevant

to model transformations. Firstly, TXL’s support for transforming between two different languages is

poor, relying on the artificial concept of union grammars. Such grammars require significant manual

effort to create, and allow the transformation writer to create hybrid models which satisfy the union

grammar but which conform to neither of the original languages; although this may on occasion be

useful, it also opens up many possibilities for generating syntactically invalid output. Secondly, TXL

is an inherently unidirectional stateless transformationmechanism; in terms of the method of section

2.2.4, it is similar to XSLT.

3.3.7. QVT

Model transformations are a vital factor in the realizationof the OMG’s MDA vision [BG02], which

is based on the idea of progressively facilitating more and more software development with models.

Since models appear in different forms at different stages of the MDA vision, the concept of a model

transformation is key within MDA. For example: transforming models representing one technology

into others which represent different technologies; abstracting and refining models; merging models;

and so on. To this end a Request For Proposals (RFP) was issuedby the OMG ‘MOF 2.0 Queries

/ Views / Transformations (QVT)’ [OMG02] in 2002 to seek a standard way of performing model

transformations.

There were eight initial submissions to the RFP. When this thesis was in its early stages of writing,

seven submissions remained on the table. Since that point many of the submissions have attempted to

merge – this process is ongoing at the time of writing. None ofthe original submissions have yet been
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‘taken off the table’, and since they cover a broad spectrum of solutions, with several indicative of the

state of the art, an analysis of them is still highly relevant. However it is not my intention to enumerate

all of the individual submissions; see Gardner et al. [GGKH03] in particular for a comparison of

the individual submissions, and also Czarnecki and Helsen [?] who propose a feature classification

scheme for transformation approaches, including several QVT submissions. In the following sections

I use three QVT submissions – TRL, xMOF and the QVT-Partners submission – to examine some

interesting points in the model transformation spectrum. The first two of these three submissions are

bi-polar opposites; the third lies somewhere between the first two.

3.3.8. TRL

The Transformation Rule Language (TRL) language [OQV03] isin essence a standard rule-based

imperative language specialized with features for dealingwith UML model transformations. This

specialization comes in several forms: concepts such as ‘transformation rule’ are raised to first-class

status, meaning they do not need to be encoded using standardlanguage constructs; some of the infor-

mation recorded in the new first class constructs is used for additional purposes e.g. to create tracing

information; extra syntax is provided for e.g. accessing the stereotype of a UML model element.

Rules consist of a signature – comprising the types of the source and target model elements – and

an imperative body. The syntax and semantics are essentially that of the Object Constraint Language

(OCL) [OMG97] augmented with side-effects and a small handful of necessary control constructs.

The benefit of this approach is its relative familiarity to users, and the knowledge that imperative

programming languages traditionally lead to efficient implementations. However this argument is

slightly dented by the relatively unusual concrete syntax and semantics which result from adding

side-effects to a side-effect free constraint language.

Whilst TRL is adequate for specifying small transformations, it has several flaws which become

apparent when attempting more complex tasks. For example, it suffers from many of the problems

associated with writing model transformations in GPLs; this is compounded by the surprising realiza-

tion that despite initial appearances TRL is not an OO language. Additionally, despite having several

language constructs specifically designed to aid inspecting and manipulating models, TRL implicitly

adopts a fixed meta-level system – representing models that are not of the type originally envisioned

is difficult. Fundamentally TRL is only capable of expressing unidirectional stateless transformations

– whilst tracing information can be automatically created from rules, the fundamentally imperative

nature of the majority of the language and use of explicit object creation rules out practical change

propagation.

TRL can thus be seen to be a fairly standard non-OO rule-basedimperative language, augmented
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with a few unusual features for its intended domain. Due to the very coarse grained nature of the rule

signature mechanism, TRL relies heavily on the use of OCL constraints to detect elements of interest.

In short, TRL is adequate for a certain style of limited modeltransformation, but its addition of very

specialized model features coupled with a paucity of standard control and data mechanisms means it

is not a practical vehicle for complex model transformations.

3.3.9. xMOF

The xMOF3 language [CS03] is a constraint solving system for model transformations. An xMOF

program consists of a number of OCL constraints about model elements involved in a transformation,

with the aim of specifying bidirectional change propagating transformations. The xMOF engine then

attempts to ensure that all models in the system satisfy the constraints. As far as the constraint writer

is concerned there is thus no practical difference between an initial transformation and subsequent

change propagation.

The chief advantage of the xMOF approach is seen to be that it rids the transformation designer

of the need to perform the tedious and verbose book-keeping demanded by imperative approaches.

Furthermore since the relationship between two models is not stated in terms of inputs and outputs,

the transformation is implicitly bi-directional.

xMOF has some features which are of particular interest. Chief amongst these is its powerful but in-

tuitive solution to the potential paradox inherent in bidirectional change propagating transformations

– that is, if, after an initial transformation, one model is changed, in which directions should changes

be propagated? A simplistic system might notice the difference between the two models and propa-

gate changes from the unchanged model, thereby wiping out the changes made to the other model. A

more complex system would be for the system to record which elements have been changed in which

model and use that to determine the direction in which changes should be propagated. However un-

fettered change propagation is not always desirable and is not always possible in cases in which an

infinite number of possibilities might satisfy some relations between models (for an analogy, consider

what happens if, given specific values ofx andz, one varies the value ofy in the equationx + y

= z – there are an infinite number of pairs(x, z)which will satisfy the equation). xMOF therefore

allows developers to specify the direction of equality in the presence of change propagation. A simple

example of this is as follows. Consider the xMOF statementname :== name which means that

the name attribute of the lhs and rhs models should be the same; if theydiffer, the name of the lhs

should be used to update the rhs. The opposite effect can be achieved byname ==: name . Al-

3xMOF uses a number of terms in ways that conflict with generally accepted definitions; in the interests of simplicity I
largely ignore the particular terms xMOF uses.
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though xMOF requires such functionality for bidirectionalchange propagation, one can see that such

a feature could be of use even in unidirectional change propagating transformations.

However xMOF has several severe disadvantages from a practical point of view. First and foremost,

it places a burden on the user to make sure that the constraints they specify completely describe

the transformation – if they fail to do this, the resulting system is likely to either produce arbitrary

results each time it is run, or to run out of memory as it attempts to enumerate all matching values.

Although this complaint can be levelled against any constraint solving system, it is arguably more

critical in a modelling environment which contains richer and more complex datatypes than many

similar systems. There are therefore a large number of different ways that a user can under specify

their transformation; it is unclear that xMOF can report enough instances of this in advance to the

user to significantly lessen the problem. A similar issue canbe seen when considering transformation

composition; although xMOF allows arbitrary transformations to be composed together, it places

no restrictions on how constraints between different transformations interact. Since individual rules

typically interact together in complex ways, adding another set of rules via composition can easily

generate unexpected results.

A secondary problem with xMOF is that, perhaps surprisingly, its specification is entirely non-

committal about execution strategies. Whilst this gives implementers scope for concentrating on

aspects important to specific audiences, it also places a heavy burden on each implementer to develop

the sophisticated inference rules necessary for analysinggroups of constraints, and for producing an

engine capable of finding solutions which satisfy all of them. This has a subtle knock-on effect for

end users: since different execution engines will have different inference rules and so on, sets of

constraints that may execute as expected in one xMOF system may not do so in another. However, at

the time of writing, this can be considered to be a minor issuesince there is currently only one xMOF

implementation available.

Perhaps the most intractable issue with xMOF is that, by its very nature, and even with perfectly

specified systems, it can take an unbounded amount of time to execute. Particularly in the case of

large models, it is unclear that a solution of this type will execute in a reasonable time. Constraint

programming, as detailed by e.g. Barták [Bar99] is a challenging and relatively unexplored area of

research (despite existing for over four decades [Sut63]),which has shown potential in small, tightly

defined areas, but there is little precedent for using it on a task of the order of complexity of model

transformations. Conceptually however xMOF is interesting because it satisfies all parts of the method

of section 2.2.4.

48



3.3.10. QVT-Partners approach

Having detailed two approaches at opposite ends of the modeltransformation spectrum in the pre-

ceding two sections, it is interesting to evaluate the QVT-Partners submission [QVT03a] as it can be

seen as lying between the other two submissions. This section comes with a bias warning: it should

be noted that the author was a major contributor to this submission.

The QVT-Partners approach makes a distinction between transformation specifications and imple-

mentations, providing support for both. Specifications cancheck whether two models are correct

according to the specification. Implementations actually transform a given model into another. In the

general case, specifications are not executable in the sensethat they are capable of transforming one

model into another; however the QVT-Partners approach makes the case that certain types of small

specification can automatically be refined into implementations. The specification aspect of the ap-

proach shares much in common with the wholly specification orientated approaches noted in section

3.3.1.

The overall framework is a rule-based one, with a limited form of backtracking occurring when

transformations are composed together. Transformations are formed of a number of domains, each

domain being formed of a pattern and a constraint. Patterns are succinct ways of expressing powerful

constraints about models and can be arbitrarily nested and composed. Patterns can contain unbound

variables which are effectively wildcards that are assigned the value of whatever they match against.

A transformation can contain an overarching OCL constraintwhich is able to tie together variables

over multiple patterns.

Transformations can be composed together using three operators disjunct , conjunct and

not . Composition can be used in two different fashions: a new transformation can be the composi-

tion of one or more other transformations; transformation implementations can utilise a limited form

of composition in their expressions. In order that specific rules can be composed, rules have names

which allow individual rules to be explicitly called. Both diagrammatic and textual notations are de-

fined; the diagrammatic notation conveys less information and all but the most simple transformations

make at least some use of the textual notation.

The QVT-Partners approach is interesting in several ways. By making heavy use of patterns, it

is often able to express complex transformations succinctly and in a manner which is reasonably

comprehensible. Its use of composition with limited backtracking allows complex transformations to

be built which are still likely to run in a reasonable time.

However the approach is not without its limitations. For example the rule-application mecha-

nism is ill-defined and confusing. Transformation composition is marred somewhat by the default

semantics ofconjunctwhich automatically and arbitrarily merge some model elements returned by
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the composed transformation together leading to unexpected and confusing results. The pattern lan-

guage provided is relatively threadbare, lacking vital features, and its definition ambiguous in several

important areas. Significantly, there is no support provided at present for facilitating change prop-

agating transformations. However there have also been a number of follow-up publications to the

QVT-Partners submission that explore and elucidate various other areas around the submission e.g.

[ACR+03].

3.3.11. Other approaches

DSTC approach

The CLP based model transformation approach of the DSTC QVT submission [DIC03] is in essence

a Prolog-like language highly specialized for model transformations. Despite some superficial sim-

ilarities to xMOF, the two approaches are in fact rather different – the DSTC approach is far more

explicit than xMOF about many aspects of transformations thus removing many of the possibilities

for users to write transformations that can not be executed.For example, transformations in the DSTC

approach are inherently unidirectional. Transformation rules can create tracing (called tracking in the

DSTC terminology) information but require the user to explicitly specify what elements must be in-

volved in each trace. A concept of a ‘key’ is also defined whichis a way of uniquely defining an object

based on certain of the objects’ properties. This concept islargely unused in the current approach; one

can surmise that it is intended as part of a strategy to enablechange propagation. Although the DSTC

submission makes clear that its choice of a declarative approach is to enable change propagation –

and despite the presence of relevant features such as tracking and keys – it is currently only capable

of specifying unidirectional stateless transformations.

ATL

The ATL language [BDJ+03] takes a rule-based approach broadly similar to the QVT-Partners ap-

proach, albeit with significantly enhanced tool support. Itdoes not possess a very specialised pattern

language, relying chiefly on a slightly augmented version ofOCL. Unlike the QVT-Partners approach,

which places a strong emphasis on the imperative aspects of the solution, ATL downplays the non-

declarative aspects of the language. Currently the approach only supports unidirectional stateless

transformations.

50



Johann and Egyed’s approach

Johann and Egyed briefly outline a framework for unidirectional change propagation model transfor-

mation approach [JE04]. As shall be seen in section 6.3.1, their proposed solution is only capable of

propagating certain limited forms of changes. However their approach is notable for being the only

unidirectional change propagating approach documented inthis section.

3.3.12. Summary of model transformation approaches

Several interesting points can be taken away from the reviewof existing model transformation ap-

proaches:

1. Approaches are either essentially variant GPLs (e.g. TRL) or logic-based (e.g. xMOF). The

QVT-Partners approach is unusual in that it has aspects of both styles, but it can be argued that

it is really two different approaches under one umbrella.

2. Most approaches contain some discussion of change propagation. However with one or two

exceptions (notably xMOF) very few approaches actually present any concrete material as to

how they might support change propagating model transformations in practise.

3. Many approaches either lack a publicly available implementation, or have an implementation

that only implements a subset of what is documented.

A corollary of the first two points is that the existing approaches only explore a handful of points

within the overall solution space.

Many of the current model transformation approaches can be categorised as declarative. Those

that are categorised as imperative (e.g. the QVT-Partners approach and TRL) are of limited use

because they share the same issues as GPLs, as noted in section 2.5. At this point, it is important

to note that although this implies – as do the majority model transformation documents – that only

a fully declarative solution is capable of providing a practical solution to change propagating model

transformations, this is not in fact the case. In fact, whilst several of the issues noted in section 2.5

are irksome when expressing change propagating transformations, explicit object creation is the only

issue which fundamentally limits change propagation.

Although explicit object creation is the default in GPLs, there is no inherent reason why imperative

approacheshaveto use explicit object creation. If the relationship between elements in the source

and target models is specified declaratively then the details of the computation which leads to the

relationship is irrelevant – the computation can be declarative or imperative. However currently only
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solutions which have a fully declarative computation are able to specify the relationship between

source and target elements sufficiently.

An interesting point to note is that whilst many model transformation approaches claim to be de-

signed with change propagation in mind few of them, at the time of writing, have any practical support

for such model transformations.

3.4. Research problem

Having in this chapter reviewed the major approaches to compile-time meta-programming and to

model transformations, this section identifies two research problems which are tackled in the remain-

der of this thesis.

3.4.1. A DSL implementation technology

As noted by Hudak, implementing DSLs as stand alone applications is time-consuming [Hud98].

In response to this, Hudak proposes Domain Specific EmbeddedLanguages (DSEL’s), which take

a different approach, embedding a DSL inside a larger, richer language. Unfortunately the style of

DSEL that Hudak promotes is quite limited in nature. His approach relies on the built-in features

of functional languages such as Haskell: higher-order functions, lazy evaluation and so on. Whilst

these features can ease the expression of many DSELs, there is a limit to how much one can express

without descending into cumbersome encodings. The fundamental limitation of Hudak’s approach

is that he expressly forbids any form of syntax extension to his host languages. Conversely Wilson

argues that programming languages need to allow their syntaxes to be extended if powerful DSLs are

to be exploited to their maximum potential [Wil05].

There exist other approaches to embedding DSLs within host languages in a fashion that permits

syntax extension. LISP and Nemerle provide limited forms ofsyntax extension and were discussed

in section 3.2. Bravenboer and Visser perhaps come closest to the ideal vision of syntax extension

with the MetaBorg system which allows language grammars to be extended in an arbitrary fash-

ion [BV04]. MetaBorg is a heterogeneous system in that the language being extended is generally

different than the language doing the extension. Thus the latter must provide facilities ranging from

parsers and parse tree datatypes to emulations of aspects ofthe extended languages compiler in order

to present a system which can compete with LISP-esque macrosfor power. In order to use such a sys-

tem, the person implementing the extension will need to be expert in three entirely separate systems

(the language being extended, the language doing the extension and the ‘emulation’ of the language

being extended) in order to produce a quality implementation. Because of this, theMetaBorg ap-

52



proach currently seems best suited for embedding DSLs that are small and localised in nature.

The research problem tackled by this thesis is thus to provide a programming language which al-

lows its syntax to be extended in order to facilitate DSL development. Both Wilson, and Bravenboer

and Visser note that no modern programming language contains sufficient facilities ‘as is’ to achieve

this aim. Chapter 4 thus details my solution to this problem:a new imperative programming lan-

guage named Converge, which supports syntax extension withits compile-time meta-programming

facilities.

3.4.2. Issues with existing model transformation approach es

Although, as shown in section 3.3.12, there are many detailed points one can pick out from the analy-

sis of existing model transformation approaches, two higher-level points in particular have relevance

to the direction of this thesis. The first is fairly easily deduced:

1. Despite superficial differences, most existing model transformation approaches are relatively

similar to one another, and are also largely simplistic in their approaches. For example, with

the notable exception of xMOF, all existing approaches are only capable of expressing stateless

model transformations.

Put in different terms, since model transformations are a relatively recent development there is

little collective knowledge about even the most basic of building blocks. Unsurprisingly therefore, all

existing approaches are therefore somewhat limited and simplistic in nature. This suggests that rather

than expecting a new model transformation approach to present a complete, unified solution it is more

important to focus on attempting novel approaches to even simple issues. In this way one would hope

that in time the best solutions for various aspects of model transformations will be identified.

The second point has not, to the best of my knowledge, been directly articulated in the context of

model transformations but is a well known issue in similar areas:

2. The relative expense and time necessary to implement a practical model transformation ap-

proach inhibits experimentation.

Hudak documents this issue in a more general, but highly applicable, context [Hud98]. Hudak

highlights an unfortunate tendency that one can also see in model transformation approaches – as they

grow in complexity they tend to acquire more and more features influenced by normal programming

languages. This not only adds to the implementation burden,but the programming language-esque

features tend to be inferior to their counterparts. This tendency can be seen in its most extreme form

in TRL.
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It is my contention that the two points here are closely linked. The difficulty of implementing

model transformation approaches is one of the chief reasonsbehind the lack of exploration of dif-

ferent techniques and approaches, and hence the relativelysimple and uniform approaches that are

currently available. Since model transformations are an inherently practical topic, implementations

are vital for assessing and evolving new ideas. A long and labour intensive idea-implement-assess

cycle seriously inhibits such experimentation. Model transformations are thus an excellent candidate

for implementation as DSLs within a programming language with an extendable syntax.

Specific model transformation approaches

As noted in section 3.3.12, although there exist fully imperative model transformation approaches

(chiefly TRL), the majority of approaches can be categorisedas declarative. The gap between these

two extremes is currently under-explored. The QVT-Partners approach is almost alone in exploring

this gap, but achieves only limited success since it is effectively an umbrella for two different ap-

proaches: a wholly declarative approach and a mostly imperative approach. Whilst there is some

reuse of concepts between the two approaches, the overall effect is far from seamless from a user

point of view.

Therefore the first choice I make about the specific model transformation approaches that I will in-

vestigate in this thesis is that they should fuse elements ofboth declarative and imperative approaches.

Note that there is a deliberate synergy with the choice in section 3.4.1 to use an imperative language

to implement embedded model transformation DSLs: one wouldhope to be able to reuse aspects of

the host imperative language within the model transformations DSL.

The second choice that needs to be made relates to the types ofmodel transformations to be at-

tempted. Since one of the purposes of Converge is to reduce the implementation burden when cre-

ating model transformation approaches, it is important to present some evidence that it is useful for

implementing more than one model transformation approach.I therefore choose to define a ‘standard’

unidirectional stateless model transformation approach in chapter 5. I then extend this approach to

define a unidirectional change propagating model transformation approach in chapter 6.

3.4.3. Thesis aims

In summary, this thesis has the following aims:

1. To provide an extensible dynamically typed OO programming language which allows DSLs to

be embedded within it.

2. To provide a non-trivial example of a DSL within the extendable programming language.
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3. To examine new approaches for expressing stateless and change propagating transformations.

3.4.4. Assessment criteria

In this section I present the criteria by which Converge (chapter 4) and the model transformation

approaches (chapters 5 and 6) can be judged by.

Assessment criteria for a DSL implementation technology

Reasonable criteria by which one can judge the success of a technology that aims to aid the imple-

mentation of DSLs are simple to state, but difficult to assessby. For example the fundamental criteria

in the context of this thesis is whether the technology palpably reduces the required implementa-

tion effort. However, it is beyond the scope of this thesis toprovide hard numbers in the form of

comparative time measurements or lines of code since — such atask would be a major undertaking.

In the context of the overall thesis the only feasible way to assess the implementation technology

proposed is an indirect one: through the model transformation approaches presented in chapters 5 and

6. If those approaches are seen to be useful and novel in and ofthemselves, then one can surmise that,

at worst, the proposed implementation technology did not hamper their development and, at best, it

actively helped their development.

Note that although it is hard to assess the success of a model transformation implementation tech-

nology in general, the specific technology proposed in this thesis is not only intended to be used

for implementing model transformation approaches. In fact, Converge is proposed as a general GPL

and can be assessed completely independently of model transformations. Therefore part of chapter 4

presents a comparison of Converge to other GPLs, and detailshow some of the lessons learned from

its development could be used to augment mainstream GPLs with some of its more novel features.

Assessment criteria for a model transformation approach

A model transformation approach can be assessed on the following two criteria:

1. The scope of the problem it tackles (compared to the methodof section 2.2.4).

2. The practicality of the solution.

The first of these criteria is relatively easy to assess, the second considerably less so. Nevertheless

the second point is an important one: a powerful solution which requires of a potential user undue

effort can not really be considered to present a realistic solution to what is an inherently practical

problem.

55



Chapter 4.

The Converge programming language

This chapter presents the design of a new dynamically typed OO language Converge designed to

facilitate the implementation of DSLs. Converge is a dynamically typed imperative programming

language, capable of compile-time meta-programming, and with an extendable syntax. Although

Converge has been designed with the aim of implementing different model transformation approaches

as embedded DSLs in mind, it is also a GPL, albeit one with unusually powerful features.

This chapter comes in four main parts. The first part documents the basics of the Converge language

itself. The second part details Converge’s compile-time meta-programming and syntax extension

facilities, including a section detailing suggestions forhow some of Converge’s novel features could

be added to similar languages. The third part of the chapter explains Converge’s syntax extension

facility, and includes a simple example of syntax extensionin use. The final part of the chapter

documents a user extension which allows simple UML modelling languages to be embedded within

Converge. As well as being a practical demonstration of Converge’s features, this facility is used

extensively throughout the remainder of the thesis.

4.1. Converge basics

This section gives a brief overview of the core Converge features that are relevant to the main subject

of this thesis. Since most of the basic features of Converge are similar to other similar programming

language, this section is intentionally terse. However it should allow readers familiar with a few other

programming languages the opportunity to quickly come to grips with the most important areas of

Converge, and to determine the areas where it differs from other languages.

4.1.1. Syntax, scoping and modules

Converge’s most obvious ancestor is Python [vR03] resulting in an indentation based syntax, a sim-

ilar range and style of datatypes, and general sense of aesthetics. The most significant difference is



that Converge is a slightly more static language: all namespaces (e.g. a modules’ classes and func-

tions, and all variable references) are determined statically at compile-time whereas even modern

Python allows namespaces to be altered at run-time1. Converge’s scoping rules are also different

from Python’s and many other languages, and are intentionally very simple. Essentially Converge’s

functions are synonymous with both closures and blocks. Converge is lexically scoped, and there is

only one type of scope (as opposed to Python’s notion of localand global scopes). Variables do not

need to be declared before their use: assigning to a variableanywhere in a block makes that variable

local throughout the block (and accessible to inner blocks). However if a variable is declared via

thenonlocal keyword, then Converge searches for the first block containing an assignment of that

variable, from the current block outwards; reading and assigning to the variable will then refer to the

outer variable in the block containing thenonlocal definition, but not by default to further inner

blocks. Variable references search in order from the innermost block outwards, ultimately resulting

in a compile-time error if a suitable reference is not found.As in Python, fields within a class are

not accessible via the default scoping mechanism: they mustbe referenced via theself variable

which is automatically brought into scope in anybound function(functions declared within a class

are automatically bound functions). Converge’s justification for this is subtly different than Python’s,

which has this feature to aid comprehension; although this is equally true in Converge, without this

feature, namespaces would not be statically calculable since an objects slots are not always known at

compile-time.

Converge programs are split into modules, which contain a series ofdefinitions(imports, functions,

classes and variable definitions). Unlike Python, each module is individually compiled into a bytecode

file by the Converge compilerconvergec and linked byconvergel to produce a static bytecode

executable which can be run by the Converge VM. If a module is themain moduleof a program (i.e.

passed first to the linker), Converge calls itsmain function to start execution. The following module

shows a caching Fibonacci generating class, and indirectlyshows Converge’s scoping rules (thei and

fib cache variables are local to the functions they are contained within), printing 8 when run:

import Sys

class Fib_Cache:
func init():

self.cache := [0, 1]

func fib(x):
i := self.cache.len()
while i <= x:

self.cache.append(self.cache[i - 2] + self.cache[i - 1])
i += 1

return self.cache[x]

1Prior to version 2.1, Python’s namespaces were determined almost wholly dynamically; this often lead to subtle bugs,
and hampered the utility of nested functions.

57



func main():
fib_cache := Fib_Cache()
Sys.println(fib_cache.fib(6))

Compiling and running this fragment looks as follows:

$ converge convergec -o fib.cvb fib.cv
$ converge convergel -o fib fib.cvb lib/libconverge.cvl
$ converge fib
8

As in Python, Converge modules are executed from top to bottom when they are first imported. This

is because functions, classes and so on are normal objects within a Converge system that need to

be instantiated from the appropriate built-in classes – therefore the order of their creation can be

significant e.g. a classmustbe declared before its use by a subsequent class as a superclass. Note that

this only affects references made at the modules top-level –references e.g. inside functions are not

restricted thus.

4.1.2. Functions

Converge uses the term function both in its traditional programming sense of a stand-alone function

(or ‘procedure’), and also for functions which reside in classes (often called methods). The reason for

this is that ‘normal’ functions and ‘methods’ are not restricted in Converge to only their traditional

rôles: ‘normal’ functions can reside in classes and ‘methods’ can reside outside of classes. When

it is important to distinguish between the two, Converge hastwo distinct types:unbound functions

(‘normal’ functions) andbound functions(‘methods’). Bound functions expect to have an implicit first

argument of the self object2; however they can not have arguments applied to it directly.Extracting

a bound function from an object creates afunction bindingwhich wraps a bound function and a

reference to the self object into an object which can then have arguments applied to it. Function

bindings can be manually created by instantiating theFunc Binding class, which allows bound

functions to be used with arbitrary self objects.

In normal use, Converge automatically assumes that the keyword func introduces an unbound

function if it is used outside class, and a bound function if used inside a class. Using thebound func

or unbound func keywords overrides this behaviour. Functions, bound or unbound, can have zero

or more parameters; prefixing the final parameter in a function with a* denotes the ‘var args’ param-

eter.

An important feature of functions is theirapply slot which applies a list of objects as parameters

to the function. This allows argument lists of arbitrary size to be built and applied at run-time.

2Note that unlike Python, Converge does not force the user to explicitly list self as a function parameter.
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4.1.3. Goal-directed evaluation

An important, if less obvious, influence to Converge is Icon [GG96a]. Since Icon is likely to be

unfamiliar to be most readers, a brief overview of Icon is instructive in understanding why it possesses

an unusual, and interesting, feature set. Icon’s chief designer was Ralph Griswold, and is a descendant

of the SNOBOL series of programming languages – whose designteam Griswold had been a part of

– and SNOBOL’s short-lived successor SL5. SNOBOL4 in particular was specifically designed for

the task of string manipulation, but an unfortunate dichotomy between pattern matching and the rest

of the language, and the more general problems encountered when trying to use it for more general

programming issues ensured that, whilst successful, it never achieved mass acceptance; SL5 suffered

from almost the opposite problem by having an over-generalized and unwieldy procedure mechanism.

See Griswold and Griswold [GG93] for an insight into the process leading to Icon’s conception. Since

programs rarely manipulate strings in isolation, post-SL5Griswold had as his aim to build a language

which whilst being aimed at non-numeric manipulation also was usable as a general programming

language. The eventual result was Icon [GG96a, GG96b], a language still in use and being developed

to this day. In order to fulfil the goal of practical string manipulation, the premises on which Icon is

founded are not only fundamentally different from those normally associated with GPLs, but are also

tightly coupled with one another.

As Icon, Converge is an expression-based language, with similar notions of expressionsuccessand

failure. In essence, expressions which succeed produce a value; expressions which fail do not produce

a value and percolate the failure to their outer expression.For example the following fragment:

func main():
x := 1 < 2
y := 2 < 1
Sys.println(x)
Sys.println(y)

leads to the following output:

2
Traceback (most recent call last):

File "expr.cv", line 5, column 13, in main
Unassigned_Var_Exception: Var has not yet been assigned to .

This is because when the expression2 < 1 is evaluated, it fails (since 2 is not less than 1); the

failure percolates outwards and prevents the assignment ofa value to the variabley . Note that failure

does not percolate outwards to arbitrary points: failure can not crossbound expressions. A bound

expression thus denotes a ‘stop point’ for backtracking. The most obvious point at which bound

expressions occur is when expressions are separated by newlines in an Converge program although

bound expressions occur in various other points. For example, each branch of anif expression

is bound, which prevents the failure of a branch causing the entire if expression to be re-evaluated.
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Converge directly inherits Icon’s bound expression rules which largely preserve traditional imperative

language evaluation strategies, even in the face of backtracking.

Success and failure are the building blocks for goal-directed evaluation, which is essentially a lim-

ited form of backtracking suitable for imperative programming languages. Functions which contain

theyield statement aregeneratorsand can produce more than one return value. Theyield state-

ment is an alternative type of function return which effectively freezes the current functions closure

and stack, and returns a value to the caller; if backtrackingoccurs, the function is resumed from its

previous point of execution and may return another value. Generators complete by using thereturn

statement. Since thereturn statement returns thenull object if no expression is specified, gener-

ators typically usereturn fail to ensure that the completion of the generator does not causeone

final loop of the caller —return ’ing the fail object causes a function to percolate failure to its

caller immediately.

The most frequent use of generators is seemingly mundane, and occurs in the following idiom,

which uses theiterate generator on a list to print each list elementl on a newline:

l := [3, 9, 27]
for x := l.iterate():

Sys.println(x)

In simple terms, thefor construct evaluates its condition expression and after each iteration of the

loop backtracks in an attempt to pump the condition for more values. This idiom therefore subsumes

the verbose encoding of iterators found in most OO languages.

Generators can be used for much more sophisticated purposes. Consider first the following gener-

ator which generates all Fibonacci numbers from 1 tohigh :

func fib(high):
a, b := [0, 1]
while b < high:

yield b
a, b := [b, a + b]

return fail

The for construct exhaustively evaluates its condition (via backtracking) until it can produce no

more values. Therefore the following fragment prints all Fibonacci values from 1 to 100000:

for f := fib(100000):
Sys.println(f)

The conjunction operator& conjoins two or more expressions; the failure of any part of the ex-

pression causes backtracking to occur. Backtracking resumes the most recent generator which is still

capable of producing values, only resuming older generators when more recent ones are exhausted.

Thus backtracking in Converge is entirely deterministic because the sequence in which alternatives

are tried is explicitly specified by the programmer – this makes the evaluation strategy significantly

different than that found in logic languages such as Prolog.If all expressions in a conjunction suc-

60



ceed, the value of the final expression is used as the value of the conjunction. If failure occurs, and

there are no generators capable of producing more values to be resumed, then the conjunction itself

fails.

Combining thefor construct with the& operator can lead to terse, expressive examples such as

the following which prints all Fibonacci numbers wholly divisible by 3 between 1 and 100000:

for Sys.println(f := fib(100000) & f % 3 == 0 & f)

A brief explanation of this can be instructive. Firstlyf := fib(100000) pumps thefib genera-

tor and assigns each value it returns to the variablef . Since it is contained within the first expression

of the& operator, when thefib generator completes, its failure causes thef := ... assignment

to fail, which causes the entire& operator to fail thus causing thefor construct to fail and complete.

Secondlyf % 3 == 0 checks whetherf modulo 3 is equal to 0 or not; if it is not, failure occurs and

backtracking occurs back to thefib generator. Sincef % 3 == 0 , if it succeeds, always evaluates

to 0 (== evaluates to its right hand argument on success), the final expression off produces the value

of the variable whichSys.println then prints.

Neither Icon or Converge possess standard boolean logic since equivalent functionality is available

through other means. The conjunction operator acts as an ‘and’ operator. Although the disjunction

operator| is generally used as ‘or’, it is in fact a generator that successively evaluates all its ex-

pressions, producing values for those expressions which succeed. Thus in most circumstances the|

operator neatly preserves the normal expectation of ‘or’ – that it evaluates expressions in order only

until it finds one which succeeds – whilst also providing useful extra functionality.

This section has detailed the most important aspects of Converge’s Icon-esque features, but for

a more thorough treatment of these features I recommend Icon’s manual [GG96a] — virtually all

the material on goal-directed evaluation is trivially transferable from Icon to Converge. Gudeman

[Gud92] presents a detailed explanation of goal-directed evaluation in general, with its main focus on

Icon, and presents a denotational semantics for Icon’s goal-directed evaluation scheme. Proebsting

[Pro97] and Danvy et al. [DGR01] both take subsets of Icon chosen for their relevance to goal-

directed evaluation, compiling the fragments into variousprogramming languages (Danvyet. alalso

specify their Icon subset with a monadic semantics); both papers provide solid further reading on the

topic.

While loops

Converge also contains awhile construct. The difference between thefor andwhile constructs

is initially subtle, but is ultimately more pronounced thanin most languages. In essence, each time

a for loop completes, the construct backtracks to the condition expression and pumps it for a new
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Object
slots : Dict{String : Object}

instance_of

get_slot(String) : Object

set_slot(String, Object)

conforms_to(Class)

has_slot(String)
id() : Object

to_str() : String

get_slots(String) : Dict{String : Object}

Class
name : String
fields : Dict{String : Object}

is_subclass(Class)

supers

*

init(*Object)

new(*Object) : Object

Figure 4.1.: Core Converge data model.

value. In contrast, awhile construct evaluates its expression anew after each iteration. This means

that if the condition of awhile construct is a generator it can only ever generate a maximum of one

value before it is discarded. To emphasise this, the following code endlessly repeats, printing 1 on

each iteration:

while f := fib(100000):
Sys.println(f)

4.1.4. Data model

Converge’s OO features are reminiscent of Smalltalk’s [GR89] everything-is-an-object philosophy,

but with a prototyping influence that was inspired by Abadi and Cardelli’s theoretical work [AC96].

The internal data model is derived from ObjVLisp [Coi87]. Classes are provided as a useful and

common convenience but are not fundamental to the object system in the way they are to most OO

languages. The system is bootstrapped with two base classesObject andClass , with the latter

being a subclass of the former and both being instances ofClass itself: this provides a full metaclass

ability whilst avoiding the class / metaclass dichotomy found in Smalltalk [BC89, DM95]. The core

data model can be seen in figure 4.1. Note that theslots field in theObject class is conceptual

and can only be accessed via theget slot andget slots functions.

In the Smalltalk school of OO, objects consist of a slot for each attribute in the class; calling a

method on an object looks for a suitable method in the object’s instantiating class (and possibly its

superclasses). In contrast Converge, by default, creates objects with a slot for each field in a class,

including methods. This therefore moves method overridingin classes to object creation time, rather

than the more normal invocation time. This is possible since, as in Python, a function’s name is

the only factor to be taken into account when overriding. Object creation in Converge thus has a

higher overhead than in most OO languages; this is offset by the fact that calling a function in an
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object is faster (since classes and super-classes do not need to be searched). The reason for this

design decision is to ensure that all objects in a Converge system are ‘free objects’ in that they can

be individually manipulated without directly affecting other objects, a feature which can prove useful

when manipulating and transforming objects. This behaviour also mirrors the real world where,

for example, changing a car’s design on paper does not changeactual cars on the road; it does not

however reflect the behaviour of non-prototyping OO languages. For example, in Converge adding

(or deleting) a method in a class does not automatically affect objects which are instances of that class,

whereas in Python all of the classes instances would appear to grow (or lose) a method. Note that this

flexibility also allows objects to be dynamically reclassified without additional language features; this

contrasts with more static languages where additional language features need to be added to allow

this feature (see Drossopoulouet. al for a concrete proposal [DDDCG02]). Although not explored

further in this thesis, such a feature is highly desirable for so-called ‘update in place’ transformations.

From a practical point of view it is important to note that in normal use most users will be unaware

of the difference between Converge’s object creation scheme and its more normal counterparts since

common usage does not involve directly manipulating the meta-system. Note that this entire area of

behaviour can be overridden by using meta-classes and the meta-object protocol (section 4.1.7).

Metaclasses

In similar fashion to ObjVLisp, metaclasses are otherwise normal objects which possess anew

slot. Class is the default metaclass; individual classes can instantiate a different class via the

metaclass keyword. Metaclasses typically subclassClass , although this is not a requirement.

A simple example of a useful metaclass is the following singleton metaclass [GHJV94] which allows

classes to enforce that at most one instance of the class can exist in the system. Noting thatexbi

(EXtract and BInd) can be viewed as being broadly equivalentto other languagessuper keyword,

theSingleton class is defined and used as follows:

class Singleton(Class):
func new():

if not self.has_slot("instance"):
self.instance := exbi Class.new()

return self.instance

class M metaclass Singleton:
pass

Note that thenew function in Class automatically calls theinit function on the newly created

object, passing it all the arguments that were passed tonew.
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Built-in data types

Converge provides a similar set of built-in data types to Python: strings, integers, dictionaries (key

/ value pairs) and sets. Dictionary keys and set elements should be immutable (though this is not

enforced, violating this expectation can lead to unpredictable results), and must define== andhash

functions, the latter of which should return an integer representing the object. All built-in types are

subclasses ofObject , and can be sub-classed by user classes (although the current implementation

restricts user classes to sub-classing a maximum of one built-in type).

4.1.5. Comparisons and comparison overloading

Converge defines a largely standard set of binary operators.The lack of standard boolean logic in

Converge means that thenot operator is slightly unusual and is not classed as a comparison operator.

Rather thannot taking in a boolean value and returning its negated value, thenot operator evaluates

its expression and, if it fails,not succeeds and produces thenull object. If the expression succeeds,

the value produced is discarded and thenot operator fails.

Objects can control their involvement in comparisons by defining, or overriding, the functions

which are called by the various comparison operators. Functions are passed an object for compari-

son, and should fail if the comparison does not hold, or return the object passed to them if it does.

Comparison operators are syntactic sugar for calling a function of the same name in the left hand side

object (e.g. the== operator looks up the== slot in an object).

Note that although the Converge grammar (appendix A) bundles theis operator into thecompar-

ison op production, it is unlike the other comparison operators in that it tests two objects for

equality of their identities, and can not be overridden by user objects.

4.1.6. Exceptions

Converge provides exception handling that is largely similar to Python. Theraise expression raises

an exception, printing a detailed stack-trace, the type of the exception and a message from the excep-

tion object itself. All exceptions must be instances of theException class in theExceptions

module. Thetry ... catch construct is used to test and capture exceptions.

4.1.7. Meta-object protocol

Converge implements a simple but powerful Meta-Object Protocol (MOP) [KdRB91], which allows

objects to control all behaviour relating to slots. The default MOP is contained within theObject

class and comprises theget slot , get slots , has slot andset slot functions. These
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can be arbitrarily overridden to control which slots the object claims it has, and what values such slots

contain. Note thatall accesses go through these functions; if they are overriddenin a subclass, the

user must exercise caution to call the ‘master’ MOP functions in theObject class to prevent infinite

loops. The following example shows a MOP which returns a default value ofnull for unknown slot

names:

class M:
func get_slot(n):

if not self.has_slot(n):
return null

return exbi Object.get_slot(n)

4.1.8. Differences from Python

Converge deliberately presents a feature set which can be used in a fashion similar to Python. Pro-

grammers used to Python can easily use Converge in a Python-esque fashion although they will miss

out on some of Converge’s more advanced features. The chief differences from Python are that Con-

verge is a more static language, able to make stronger guarantees about namespaces, and that Con-

verge is an expression based language rather than Python’s statement based approach. Converge has

a more uniform object system, and less reliance on a battery of globally available built-in functions

than Python.

One small change from Python to Converge is a generalizationof the somewhat confusingly named

finally branch which can be attached to Python’sfor andwhile loops. Thefinally branch

is executed if the loop construct terminates naturally (i.e. break is not called). Converge renames

the finally branch toexhausted and also allows abroken branch to be added which will be

called if abreak is encountered. A slightly contrived example of this feature is as follows:

high := 10000
for x := fib(high):

if x % 9 == 0:
break

exhausted:
Sys.println("No Fibonacci numbers wholly divisible by 9 up to ", high)

broken:
Sys.println("Fibonacci number ", x, " wholly divisible by 9 ")

4.1.9. Differences from Icon

Converge’s expression system is highly similar to Icon. Provided they can adjust to the Python-

esque veneer, Icon programmers will have little difficulty exploiting Converge’s expression system

and implementation of goal-directed evaluation. There arehowever two significant differences in

Converge’s functions and generators.

Firstly, whereas Icon functions which do not have areturn expression at the end of a function

have an implicitreturn fail added, Converge functions instead default toreturn null (as
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do Python functions). Icon takes its approach so that generators do not accidentally return an extra

object when they should instead fail, and Converge originally took the same approach as Icon. How-

ever in practise it is quite common, when developing code, towrite incomplete functions — often

one part of the code not initially filled in is the function’s final return expression. Such functions

then cause seemingly bizarre errors since they do not returna value, causing assignments in calling

functions to fail and so on (indeed, this happened surprisingly frequently in the early stages of Con-

verge development). Since the proportion of generators to normal functions is small, it seems more

sensible to optimise the safety of normal functions at the expense of the safety of generators. As

can be seen from section 4.1.3, generators in Converge generally havereturn fail as their final

action in order to emulate Icon’s behaviour.

Secondly, Converge does not propagate generation across areturn expression. In Icon, iff is a

generator thenreturn f() turns the function containing thereturn expression into a generator

itself which produces all the values thatf produces. Converge does not emulate this behaviour, which

somewhat arbitrarily turnsreturn into a sort offor construct in certain situations that can only

be determined by knowing whether the expression contains a generator. The same behaviour can be

obtained in Converge via the following idiom:

for yield f()
return fail

Finally, two important features present in Icon are absent in Converge. One is the concept of string-

scanning expressions, which are a specialised form of string matching; such a concept is not general

enough for Converge but, if required, could be expressed as aDSL (see section 4.4). Second is Icon’s

reversible assignment operator<- . Reversible assignment acts as normal assignment except inthe

presence of backtracking, which will restore the variable being assigned to its original value. Whilst

conceptually a useful idea, this is used reasonably infrequently in practise and is thus not included in

Converge.

4.1.10. Implementation

The current Converge implementation consists of a Virtual Machine (VM) written in C, and a com-

piler written in Converge itself (the current compiler was bootstrapped several generations ago from

a much simpler Python version). The VM has a simplistic semi-conservative garbage collector which

frees the user from memory management concerns. The VM uses acontinuation passing technique at

the C level to make the implementation of goal-directed evaluation reasonably simple and transparent

from the point of view of extension modules. Its instructionset is largely based on Icon’s, although

the VM implementation itself shares more in common with modern VM’s such as Python’s.

This thesis is not overly concerned with the implementationof the VM and compiler. Interested

66



readers are encouraged to visithttp://convergepl.org/ where the VM and compiler can be

downloaded and inspected.

4.1.11. Parsing

An aspect of Converge and its implementation that is particularly important throughout this thesis

is its ability to easily parse text. Converge implements a parser toolkit (the Converge Parser Kit or

CPK) which contains a parsing algorithm based on that presented by Earley [Ear70]. Earley’s parsing

algorithm is interesting since it accepts and parses any Context Free Grammar (CFG) — this means

that grammars do not need to be written in a restricted form tosuit the parsing algorithm, as is the case

with traditional parsing algorithms such as LALR. By allowing grammars to be expressed without

concern for many of the traditional parsing concerns, a barrier to DSL development is removed.

Practical implementations of Earley parsers have traditionally been scarce, since the flexibility of the

algorithm results in slower parsing times than traditionalparsing algorithms. The CPK utilises some

(though not all) of the additional techniques developed by Aycock and Horspool [AH02] to improve

its parsing time, particularly those relating to theε production. Even though the CPK contains an

inefficient implementation of the algorithm, on a modern machine, and even with a complex grammar,

it is capable of parsing in the low hundreds of lines per second which is sufficient for the purposes

of this thesis. The performance of more sophisticated Earley parsers such as Accent [Sch05] suggest

that the CPK’s performance could be raised by approximatelyan order of magnitude with relatively

little effort.

Parsing in Converge is preceded by a tokenization (also known as lexing) phase. The CPK provides

no special support for tokenization, since the built-in regular expression library makes the creation

of custom tokenizers trivial. Tokenizers are expected to return a list of objects, each of which has

slotstype , value , src file andsrc offset . The first two slots represent the type (i.e.ID )

and value (i.e.height ) of a token and must be strings; the latter two slots record both the file and

character offset within the file that a particular token originated in. The tokenizer for Converge itself

is somewhat unusual in that it needs to understand about indentation in order that the grammar can

be expressed satisfactorily. Each increase in the level of indentation results in aINDENT token being

generated; each decrease results in aDEDENTfollowed by aNEWLINEtoken. Each newline on the

same level of indentation results in aNEWLINEtoken.

The CPK implements an EBNF style system – a BNF system with theaddition of the Kleene star.

CPK production rules consist of a rule name, and one or more alternatives. Each alternative consists

of tokens, references to other rules and groupings. Currently the only form of grouping accepted is

the Kleene star. Since this thesis contains several grammars writing in the CPK, the grammar of the
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CPK itself is as follows:

〈grammar〉 ::= 〈rule〉*

〈rule〉 ::= ‘ ID ’ 〈rule alternative〉*

〈rule alternative〉 ::= ‘ ::= ’ 〈rule elem〉*
| ‘ ::= ’ 〈rule elem〉* ‘ %PRECEDENCE’ ‘ INT ’

〈rule elem〉 ::= 〈atom〉
| 〈grouping〉

〈grouping〉 ::= ‘{ ’ 〈atom〉 ‘ } * ’

〈atom〉 ::= ‘" ’ ‘ TOKEN’ ‘ " ’

| ‘ ID ’

Since Earley grammars can express any CFG, grammars can be ambiguous — that is, given inputs

can satisfy the grammar in more than one way. In order to disambiguate between alternatives when

building the parse tree, the CPK allows grammar rules to havea precedence attached to them; if more

than one rule has been used to parse a given group of tokens, the rule with the highest precedence is

used3.

In order to use the CPK, the user must provide it with a grammar, the name of a start rule within the

grammar, and a sequence of tokens. The result of a CPK parse isan automatically constructed parse

tree, which is represented as a nested Converge list of the form [ production name, token or

list1, ..., token or listn] . The following program fragment shows a CPK grammar for

a simple calculator:

GRAMMAR := """
S ::= E
E ::= E "+" E %precedence 10

::= E " * " E %precedence 30
::= "(" E ")"
::= N "INT" %precedence 10

N ::= "-"
::=

"""

Assuming the existence of a suitabletokenize function, an example program which uses this

grammar to parse input is as follows:

import CPK.Grammar, CPK.Parser

func calc_parse(input):
grammar := Grammar.Grammar(GRAMMAR, "S")
tokens := tokenize(input)
parser := Parser.Parser(grammar)

3Note that there is another, much rarer, type of ambiguity involving alternatives which contain different number of tokens.
These are currently always resolved in favour of the alternative containing the least number of tokens, no matter its
precedence. This generally gives the expected behaviour, but can cause problems in some rare cases. This limitation is
purely due to a naı̈ve implementation.
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tree := parser.parse(tokens)
Sys.println(tree)

The parse tree is printed out as:

["S", ["E", ["E", ["N"], <INT 5>], <+>, ["E", ["E", ["N"], <I NT 2>], < * >, ["E",
["N"], <INT 3>]]]]

This is somewhat easier to visualize when using theparse tree function in aParser instance

to format the list as a tree:

S->
E ->

E ->
N ->
INT <5>

+
E ->

E ->
N ->

-
INT <2>

*
E ->

N ->
INT <3>

The full Converge grammar can be seen in appendix A.

4.1.12. Related work

This section has made several comparisons between Converge, and Icon and Python in particular.

These are not repeated in this subsection.

The Unicon project [JMPP03] is in the reasonably advanced stages of extending Icon with object

orientated features. It differs significantly from Converge in maintaining virtually 100% compatibility

with Icon. Unicon’s extensions to Icon, effectively being abolt-on to the original, mean the resulting

language features are not as closely integrated as they are in Converge. Godiva [Jef02], which claims

as a goal to be a ‘very high level dialect of Java’, also incorporates goal-directed evaluation. In reality,

Godiva’s claim to be a dialect of Java is slightly tenuous: whilst it shares some syntax, the semantics

are substantially different. Neither Unicon nor Godiva have a meta-circular data model (see section

4.5.2), and both are less dynamic languages than Converge.

4.2. Compile-time meta-programming

4.2.1. Background

Compile-time meta-programming provides the user of a programming language with a mechanism

to interact with the compiler to allow the construction of arbitrary program fragments by user code.

In this section I detail an extension to the core Converge language which adds compile-time meta-
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programming facilities similar to TH. Since this is the firsttime that facilities of this nature have been

added to a dynamically-typed OO language such as Converge, section 4.3 details the implications of

adding such a feature to similar languages.

4.2.2. A first example

The following program is a simple example of compile-time meta-programming, trivially adopted

from its TH cousin in [COST04].expand power recursively creates an expression that multiplies

n x times;mk power takes a parametern and creates a function that takes a single argumentx and

calculatesxn; power3 is a specific power function which calculatesn3:

func expand_power(n, x):
if n == 0:

return [| 1 |]
else:

return [| $<<x>> * $<<expand_power(n - 1, x)>> |]

func mk_power(n):
return [|

func (x):
return $<<expand_power(n, [| x |])>>

|]

power3 := $<<mk_power(3)>>

The user interface to compile-time meta-programming is inherited from TH: quasi-quote expressions

[| ... |] build abstract syntax trees - ITree’s in Converge’s terminology - that represent the

program code contained within them, and the splice annotation $<<...>> evaluates its expression

at compile-time (and before VM instruction generation), replacing the splice annotation itself with the

ITree resulting from its evaluation. When the above examplehas been compiled into VM instructions,

power3 essentially looks as follows:

power3 := func (x):
return x * x * x * 1

By using the quasi-quotes and splicing mechanisms, we have been able to synthesise at compile-time

a function which can efficiently calculate powers without resorting to recursion, or even iteration.

Note how apart from the quasi-quotes and splicing mechanisms no extra features have been added

to the base language – unlike LISP style languages, all partsof a Converge program are first-class

elements regardless of whether they are executed at compile-time or run-time.

This terse explanation hides much of the necessary detail which can allow readers who are unfa-

miliar with similar systems to make sense of this synthesis.In the following sections, I explore the

interface to compile-time meta-programming in more detail, explaining the system step by step.
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4.2.3. Splicing

The key part of the ‘powers’ program is the splice annotationin the linepower3 := $<<mk -

power(3)>> . The top-level splice tells the compiler to evaluate the expression between the chevrons

at compile-time, and to include the result of that evaluation in the module for ultimate bytecode gener-

ation. In order to perform this evaluation, the compiler creates a temporary or ‘dummy’ module which

contains all definitions up to, but excluding, the definitionthe splice annotation is a part of; to this

temporary module a new splice function (conventionally called $$splice$$ ) is added which con-

tains a single expressionreturn splice expr. This temporary module is compiled to bytecode

and injected into the running VM, whereupon the splice function is called. Thus the splice function

‘sees’ all the definitions prior to it in the module, and can call them freely – there are no other limits

on the splice expression. The splice function must return a valid ITree which the compiler uses in

place of the splice annotation.

Evaluating a splice expression leads to a new ‘stage’ in the compiler being executed. Converge’s

rules about which references can cross the staging boundaryare simple: only references to top-

level module definitions can be carried across the staging boundary (see section 4.2.5). For example

the following code is invalid since the variablex will only have a value at run-time, and hence is

unavailable to the splice expression which is evaluated at compile-time:

func f(x): $<<g(x)>>

Although the implementation of splicing in Converge is moreflexible than in TH – where splice

expressions can only refer to definitions in imported modules – it raises a new issue regarding forward

references. This is tackled in section 4.2.9.

Note that splice annotations within a file are executed strictly in order from top to bottom, and that

splice annotations can not contain splice annotations.

Permissible splice locations

Converge is more flexible than TH in where it allows splice annotations. A representative sample of

permissible locations is:

Top-level definitions. Splice annotations in place of top-level definitions must return an ITree, or a

list of ITree’s, each of which must be an assignment.

Function names. Splice annotations in place of function names must return aName(see section

4.2.6).

Expressions. Splice annotations as expressions can returnany normal ITree. A simple exam-

ple is $<<x>> + 2 . We saw another example in the ‘powers’ program withpower3 :=
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$<<mk power(3)>> .

Within a block body. Splice annotations in block bodies (e.g. a functions body) accept either a

single ITree, or a list of ITree’s. Lists of ITree’s will be spliced in as if they were expressions

separated by newlines.

A contrived example that shows the last three of these splicelocations (in order) in one piece of code

is as follows:

func $<<create_a_name()>>():
x := $<<f()>> + g()
$<<list_of_exprs()>>

At compile-time, this will result in a function named by the result ofcreate a nameand contain-

ing 1 or more expressions, depending on the number of expressions returned in the list bylist of-

exprs .

Note that the splice expressions must return a valid ITree for the location of a splice annotation. For

example, attempting to splice in a sequence of expressions into an expression splice such as$<<x>>

+ 2 results in a compile-time error.

4.2.4. The quasi-quotes mechanism

In the previous section we saw that splice annotations are replaced by ITree’s. In many systems the

only way to create ITree’s is to use a verbose and tedious interface of ITree creating functions which

results in a ‘style of code [which] plagues meta-programming systems’ [WC93]. LISP’s quasi-quote

mechanism allows programmers to build up LISP S-expressions (which, for our purposes, are anal-

ogous to be ITree’s) by writing normal code prepended by the backquote‘ notation; the resulting

S-expression can be easily manipulated by a LISP program. Unfortunately LISP’s syntactic minimal-

ism is unrepresentative of modern languages, whose rich syntaxes are not as easily represented and

manipulated.

MetaML and, later TH, introduce a quasi-quotes mechanism suited to syntactically rich languages.

Converge inherits TH’s Oxford quotes notation[| ...|] notation to represent a quasi-quoted piece

of code. A quasi-quoted expression evaluates to the ITree which represents the expression inside it.

For example, whilst the raw Converge expression4 + 2 evaluates to, and prints out as,6, [| 4 +

2 |] evaluates to an ITree which prints out as4 + 2 . Thus the quasi-quote mechanism constructs

an ITree directly from the users input - the exact nature of the ITree is of immaterial to the casual

ITree user, who need not know that the resulting ITree is structured along the lines ofadd(int(4),

int(2)).

To match the fact that splice annotations in blocks can accept sequences of expressions to splice in,
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the quasi-quotes mechanism allows multiple expressions tobe expressed within it, split over newlines.

The result of evaluating such an expression is, unsurprisingly, a list of ITree’s.

Note that as in TH, Converge’s splicing and quasi-quote mechanisms cancel each other out:$<<[|

x |]>> is equivalent tox (though not necessarily vice versa).

Splicing within quasi-quotes

In the ‘powers’ program, we saw the splice annotation being used within quasi-quotes. The ex-

planation of splicing in section 4.2.3 would seem to suggestthat the splice inside the quasi-quoted

expression in theexpand power function should lead to a staging error since it refers to variables

n and x which were defined outside of the splice annotation. In fact,splices within quasi-quotes

work rather differently to splices outside quasi-quotes: most significantly the splice expression itself

is not evaluated at compile-time. Instead the splice expression is copied as-is into the code that the

quasi-quotes transforms to. For example, the quasi-quotedexpression[| $<<x>> + 2 |] leads

to an ITree along the lines ofadd(x, int(2))– the variablex in this case would need to contain a valid

ITree. As this example shows, since splice annotations within quasi-quotes are executed at run-time

they can access variables without staging concerns.

This feature completes the cancelling out relationship between splicing and quasi-quoting:[|

$<<x>> |] is equivalent tox (though not necessarily vice versa).

4.2.5. Basic scoping rules in the presence of quasi-quotes

The quasi-quote mechanism can be used to surround any Converge expression to allow the easy

construction of ITree’s. Quasi-quoting an expression alsohas another important feature: it fully

respects lexical scoping. Take the following contrived example of moduleA:

func x(): return 4

func y(): return [| x() * 2 |]

and moduleB:

import A, Sys

func x(): return 2

func main(): Sys.println($<<A.y()>>)

The quasi-quotes mechanisms ensures that since the reference tox in the quasi-quoted expression

in A.y refers lexically toA.x , that running moduleB prints out8. This example shows one of the

reasons why Converge needs to be able to statically determine namespaces: since the reference ofx

in A.y is lexically resolved to the functionA.x , the quasi-quotes mechanism can replace the simple
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reference with anoriginal name4 that always evaluates to the slotx within the specific moduleA

wherever it is spliced into, even ifA is not in scope (or a differentA is in scope) in the splice location.

Some other aspects of scoping and quasi-quoting require a more subtle approach. Consider the

following (again contrived) example:

func f(): return [| x := 4 |]

func g():
x := 10
$<<f()>>
y := x

What might one expect the value ofy in function g to be after the value ofx is assigned to it? A

naı̈ve splicing off() into g would mean that thex within [| x := 4 |] would be captured

by thex already ing – y would end with the value4. If this was the case, using the quasi-quote

mechanism could potentially cause all sorts of unexpected interactions and problems. This problem

of variable capture is well known in the LISP community, and hampered LISP macro implementations

for many years until the concept of hygienic macros was invented [KFFD86]. A new subtlety is now

uncovered: not only is Converge able to statically determine namespaces, but variable names can be

α-renamed without affecting the programs semantics. This isa significant deviation from the Python

heritage. The quasi-quotes mechanism determines all boundvariables in a quasi-quoted expression,

and preemptivelyα-renames each bound variable to a guaranteed unique name that the user can not

specify; all references to the variable are updated similarly. Thus thex within [| x := 4 |] will

not cause variable capture to occur, and the variabley in functiong will be set to10 .

There is one potential catch: top-level definitions (all of which are assignments to a variable, al-

though syntactic sugar generally obscures this fact) can not beα-renamed without affecting the pro-

grams semantics. This is because Converge’s dynamic typingmeans that referencing a slot within

a module can not generally be statically checked at compile-time. Thusα-renaming top-level def-

initions would almost certainly lead to run-time ‘slot missing’ exceptions being raised as the user

attempts to reference a definitionD within a module. Although the current compiler does not catch

this case, since the user is unlikely to have cause to quasi-quote top-level definitions, barring it should

be of little practical consequence.

Whilst the above rules explain the most important of Converge’s scoping rules in the presence of

quasi-quotes, upcoming sections add extra detail to the basic scoping rules explained in this section.

4.2.6. The CEI interface

At various points when compile-time meta-programming, oneneeds to interact with the Converge

compiler. The Converge compiler is entirely contained within a package calledCompiler which

4This terminology is borrowed from TH, but with a much different implementation.
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is available to every Converge program. TheCEI module within theCompiler package is the

officially sanctioned interface to the Compiler, and can be imported withimport Compiler.CEI .

ITree functions

Although the quasi-quotes mechanism allows the easy, and safe, creation of many required ITree’s,

there are certain legal ITree’s which it can not express. Most such cases come under the heading of

‘create an arbitrary number ofX’ e.g. a function with an arbitrary number of parameters, or an if

expression with an arbitrary number ofelif clauses. In such cases theCEI interface presents a

more traditional meta-programming interface to the user that allows ITree’s that are not expressible

via quasi-quotes to be built. The downside to this approach is that recourse to the manual is virtu-

ally guaranteed: the user needs to know the name of the ITree element(s) required (each element

has a corresponding function with a lower case name and a prepended ‘i’ in theCEI interface e.g.

ivar ), what the functions requirements are etc. Fortunately this interface needs to be used relatively

infrequently; all uses of it in this thesis will be explicitly explained.

Names

Section 4.2.3 showed that the Converge compiler sometimes uses names for variables that the user

can not specify using concrete syntax. The same technique isused by the quasi-quote mechanism to

α-rename variables to ensure that variable capture does not occur. However one of the by-products of

the arbitrary ITree creating interface provided by theCEI interface is that the user is not constrained

by Converge’s concrete syntax; potentially they could create variable names which would clash with

the ‘safe’ names used by the compiler. To ensure this does notoccur, theCEI interface contains

several functions – similar to those in recent versions of TH– related to names which the user is

forced to use; these functions guarantee that there can be noinadvertent clashes between names used

by the compiler and by the user.

In order to do this, theCEI interface deals in terms of instances of theCEI.Name class. In order to

create a variable, a slot reference etc, the user must pass aninstance of this class to the relevant func-

tion in theCEI interface. New names can be created by one of two functions. Thename(x) function

validatesx, raising an exception if it is invalid, and returning aNameotherwise. Thefresh name

function guarantees to create a uniqueNameeach time it is called (this is the interface used by

the quasi-quotes mechanism). This allows e.g. variable names to be created safely with the idiom

var := CEI.ivar(CEI.name("var name")) . fresh name takes an optional argument

x which, if present, is incorporated into the generated name whilst still guaranteeing the uniqueness

of the resulting name; this feature aids debugging by allowing the user to trace the origins of a fresh
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name. Note that thename interface opens the door for dynamic scoping (see section 4.2.8).

4.2.7. Lifting values

When meta-programming, one often needs to take a normal Converge value (e.g. a string) and obtain

its ITree equivalent: this is known aslifting a value.

Consider a debugging functionlog which prints out the debug string passed to it; this function

is called at compile-time so that if the globalDEBUG BUILD variable is set tofail there is no

run-time penalty for using its facility. Thelog function is thus a safe means of performing what is

often termed ‘conditional compilation’. Noting thatpass is the Converge no-op, a first attempt at

such a function is as follows:

func log(msg):
if DEBUG_BUILD:

return [| Sys.println(msg) |]
else:

return [| pass |]

This function fails to compile: the reference to themsg variable causes the Converge compiler to

raise the error:

Var ‘msg’ is not in scope when in quasi-quotes (consider usin g
$<<CEI.lift(msg)>>).

Rewriting the offending piece of code to the following givesthe correct solution:

return [| Sys.println($<<CEI.lift(x)>>) |]

What has happened here is that the string value ofmsg is transformed by thelift function into its

abstract syntax equivalent. Constants are automatically lifted by the quasi-quotes mechanism: the two

expressions[| $<<CEI.lift("str")>> |] and[| "str" |] are therefore equivalent.

Converge’s refusal to lift the raw reference tomsg in the original definition oflog is a significant

difference from TH, whose scoping rules would have causedmsg to be lifted without an explicit

call to CEI.lift . To explain this difference, assume thelog function is rewritten to include the

following fragment:

return [|
msg := "Debug: " + $<<CEI.lift(msg)>>
Sys.println(msg)

|]

In a sense, the quasi-quotes mechanism can be considered to introduce its own block: the assignment

to themsg variable forces it to be local to the quasi-quote block. Thisneeds to be the case since

the alternative behaviour is nonsensical: if the assignment referenced to themsg variable outside

the quasi-quotes then what would the effect of splicing in the quasi-quoted expression to a different

context be? The implication of this is that referencing a variable within quasi-quotes would have a

significantly different meaning if the variable had been assigned to within the quasi-quotes or outside
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it. Whilst it is easy for the Converge compiler writer to determine that a given variable was defined

outside the quasi-quotes and should be automatically lifted in (or vice versa), from a user perspective

TH’s behaviour can be unnecessarily confusing. Converge’squasi-quote mechanism originally had

the same behaviour in this respect as TH, but this resulted infragile and hard to follow code. To

avoid such problems, Converge forces variables defined outside of quasi-quotes to be explicitly lifted

into it. This also maintains a simple symmetry with Converge’s main scoping rules: assigning to a

variable in a block makes it local to that block.

4.2.8. Dynamic scoping

Sometimes the quasi-quote mechanisms automaticα-renaming of variables is not what is needed.

For example consider a functionswap(x, y) which should swap the values of the two vari-

ables passed as strings in its parameters. In such a case, wewant the result of the splice to cap-

ture the variables in the spliced environment. Because the quasi-quotes mechanism only renames

variables which it can determine statically at compile time, any variables created via the idiom

CEI.ivar(CEI.name(x)) and spliced into the quasi-quotes will not be renamed. The following

succinct definition ofswap takes advantage of this fact:

func swap(x, y):
x_var := CEI.ivar(CEI.name(x))
y_var := CEI.ivar(CEI.name(y))
return [|

temp := $<<x_var>>
$<<x_var>> := $<<y_var>>
$<<y_var>> := temp

|]

Note that the variabletemp within the quasi-quoteswill beα-renamed and thus will be effectively

invisible to the code that it is spliced into, but that the twovariables referred to byx andy will be

scoped by their splice location. Theswap function can be used thus:

a := 10
b := 20
$<<swap("a", "b")>>

Dynamic scoping also tends to be useful when a quasi-quoted function is created piecemeal with many

separate quasi-quote expressions. In such a case, variablereferences can only be resolved success-

fully when all the resulting ITree’s are spliced together since references to the function’s parameters

and so on will not be determined until that point. Since it is highly tedious to continually write

CEI.ivar(CEI.name("foo")) , Converge provides the special syntax&foo which is equiva-

lent. Notice that this notation prefixes a variable name, irrespective of the value it contains. Thus it

would not be possible to rewrite parts of theswap function as e.g.x var := &x .
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4.2.9. Forward references and splicing

In section 4.2.3 we saw that when a splice annotation outsidequasi-quotes is encountered, a temporary

module is created which contains all the definitions up to, but excluding, the definition holding the

splice annotation. This is a very useful feature since compile-time functions used only in one module

can be kept in that module. However this introduces a real problem involving forward references. A

forward reference is defined to be a reference to a definition within a module, where the reference

occurs at an earlier point in the source file than the definition. If a splice annotation is encountered

and compiles a subset of the module, then some definitions involved in forward references may not be

included: thus the temporary module will fail to compile, leading to the entire module not compiling.

Worse still, the user is likely to be presented with a highly confusing error telling them that a particular

reference is undefined when, as far as they are concerned, thedefinition is staring at them within their

text editor.

Consider the following contrived example:

func f1(): return [| 7 |]

func f2(): x := f4()

func f3(): return $<<f1()>>

func f4(): pass

If f2 is included in the temporary module created when evaluatingthe splice annotation inf3 , then

the forward reference tof4 will be unresolvable.

The solution taken by Converge ensures that, by including only a minimal subset of definitions in

the temporary module, most forward references do not raise acompile-time error. We saw in section

4.2.5 that the quasi-quotes mechanism uses Converge’s statically determined namespaces to calculate

bound variables. That same property is now used to determinean expressions free variables.

When a splice annotation is encountered, the Converge compiler does not immediately create a

temporary module. First it calculates the splice expressions free variables; any previously encountered

definition which has a name in the set of free variables is added to a set of definitions to include. These

definitions themselves then have their free variables calculated, and again any previously encountered

definition which has a name in the set of free variables is added to the set of definitions to include.

This last step is repeated until an iteration adds no new definitions to the set. At this point, Converge

then goes back in order over all previously encountered definitions, and if the definition is in the list

of definitions to include, it is added to the temporary module. Recall that the order of definitions in

a Converge file can be significant (see section 4.1.4): this last stage ensures that definitions are not

reordered in the temporary module. Note also that free variables which genuinely do not refer to any

definitions (i.e. a mistake on the part of the programmer) will pass through this scheme unmolested
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and will raise an appropriate error when the temporary module is compiled.

Using this method, the temporary module that is created and evaluated for the example looks as

follows:

func f1(): return [| 7 |]

func $$splice$$(): return f1()

There are thus no unresolvable forward references in this example.

There is a secondary, but significant, advantage to this method: since it reduces the number of

definitions in temporary modules it can lead to an appreciable saving in compile time, especially in

files containing multiple splice annotations.

4.2.10. Compile-time meta-programming in use

In this chapter thus far we have seen several uses of compile-time meta-programming. There are

many potential uses for this feature, many of which are too involved to detail in the available space.

For example, one of the most exciting uses of the feature has been in conjunction with Converge’s

extendable syntax feature (see section 4.4), allowing powerful DSLs to be expressed in an arbitrary

concrete syntax. One can see similar work involving DSLs in e.g. [SCK03, COST04].

In this section I show two seemingly mundane uses of compile-time meta-programming: condi-

tional compilation and compile-time optimization. Although mundane in some senses, both examples

open up potential avenues not currently available to other dynamically typed OO languages.

Conditional compilation

Whereas languages such as Java attempt to insulate their users from the underlying platform an ap-

plication is running on, languages such as Python and Ruby allow the user access to many of the

lower-level features the platform provides. Many applications rely on such low-level features being

available in some fashion. However for the developer who hasto provide access to such features

a significant problem arises: how does one sensibly provide access to such features when they are

available, and to remove that access when they are unavailable?

The log function on page 76 was a small example of conditional compilation. Let us consider a

simple but realistic example that is more interesting from an OO perspective. The POSIXfcntl

(File CoNTrol) feature provides low-level control of file descriptors, for example allowing file reads

and writes to be set to be non-blocking; it is generally only available on UNIX-like platforms. Assume

that we wish to provide some access to thefcntl feature via a method within file objects; this

method will need to call the raw function within the providedfcntl module iff that module is

available on the current platform.
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In Python for example, there are two chief ways of doing this.The first mechanism is for aFile

class to defer checking for the existence of thefcntl module until thefcntl method is called,

raising an exception if the feature is not detected in the underlying platform. Callers who wish to avoid

use of thefcntl method on platforms lacking this feature must catch the appropriate exception.

This rather heavy handed solution goes against the spirit ofduck typing[TH00], a practise prevalent

in languages such as Ruby and Python. In duck typing, one checks for the presence of a method(s)

which appear to satisfy a particular API without worrying about the type of the object in question.

For example, for a method that requires a file object to read from, rather than testing that the object

passed is an instance of theFile class, the method simply checks that the input object has aread

slot. Whilst perhaps unappealing from a theoretical point of view, this approach is common in practise

due to the low-cost flexibility it leads to. To ensure that duck typing is possible in ourfcntl example,

we are forced to use exception handling and the dynamic selection of an appropriate sub-class:

try:
import fcntl
_HAVE_FCNTL = True

except exceptions.ImportError:
_HAVE_FCNTL = False

class Core_File:
# ...

if _HAVE_FCNTL:
class File(Core_File):

def fcntl(op, arg):
return fcntl.fcntl(self.fileno(), op, arg)

else:
class File(Core_File):

pass

Whilst this allows for duck typing, this idiom is far from elegant. The splitting of theFile class into

a core component and sub-classes to cope with the presence ofthefcntl functionality is somewhat

distasteful. This example is also far from scalable: if one wishes to use the same approach for more

features in the same class then the resultant code is likely to be highly fragile and complex.

Although it appears that the above idiom can be encoded largely ‘as is’ in Converge, we imme-

diately hit a problem due to the fact that module imports are statically determined. Thus a direct

Converge analogue would compile correctly only on platforms with afcntl module. However by

using compile-time meta-programming one can create an equivalent which functions correctly on all

platforms and which cuts out the ugly dynamic sub-class selection.

The core feature here is that class fields are permissible splice locations (see section 4.2.3). A

splice which returns an ITree that is a function will have that function incorporated into the class; if

the splice returnspass as an ITree then the class is unaffected. So at compile-time we first detect for

the presence of afcntl module (theVM.loaded module names function returns a list con-
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taining the names of all loaded modules); if it is detected, we splice in an appropriatefcntl method

otherwise we splice in the no-op. This example make use of twohitherto unencountered features.

Firstly, using anif construct as an expression requires a different syntax (to work around parsing

limitations associated with indentation based grammars);the construct evaluates to the value of the

final expression in whichever branch is taken, failing if no branch is taken. Secondly the modified

Oxford quotes[d| ...|] – declaration quasi-quotes– act like normal quasi-quotes except they

do notα-rename variables; declaration quotes are typically most useful at the top-level of a module.

The Converge example is as follows:

$<<if VM.loaded_module_names().contains("FCntl") {
[d|

import FCntl
_HAVE_FCNTL := 1

|]
}
else {

[d| _HAVE_FCNTL := 0 |]
}>>

class File:
$<<if _HAVE_FCNTL {

[d|
func fcntl(op, arg):

return FCntl.fcntl(self.fileno(), op, arg)
|]

}
else {

[| pass |]
}>>

Although this example is simplistic in many ways, it shows that compile-time meta-programming can

provide a conceptually neater solution than any purely run-time alternative since it allows related code

fragments to be kept together. It also provides a potential solution to related problems. For example

portability related code in dynamically typed OO languagesoften consists of manyif statements

which perform different actions depending on a condition which relates to querying the platform in

use. Such code can become a performance bottleneck if calledfrequently within a program. The use

of compile-time meta-programming can lead to a zero-cost run-time overhead. Perhaps significantly,

the ability to tune a program at compile-time for portability purposes is the largest single use of the

C preprocessor [EBN02] – compile-time meta-programming ofthe sort found in Converge not only

opens similar doors for dynamically typed OO languages, butallows the process to occur in a far

safer, more consistent and more powerful environment than the C preprocessor.

4.2.11. Run-time efficiency

In this section I present the Converge equivalent of the TH compile-timeprintf function given in

[SJ02]. Such a function takes a format string such as"%s has %d %s" and returns a quasi-quoted

function which takes an argument per ‘%’ specifier and intermingles that argument with the main text
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string. For our purposes, we deal with decimal numbers%dand strings%s.

The motivation for a THprintf is that such a function is not expressible in base Haskell. Al-

though Converge functions can take a variable number of arguments (as Python, but unlike Haskell),

having a compile-time version still has two benefits over itsrun-time version: any errors in the format

string are caught at compile-time; an efficiency boost.

This example assumes the existence of a functionsplit format which given a string such as

"%s has %d %s" returns a list of the form[PRINTF STRING, " has ", PRINTF INT,

" ", PRINTF STRING] wherePRINTF STRINGandPRINTF INT are constants.

First we define the mainprintf function which creates the appropriate number of parameters

for the format string (of the formp0 , p1 etc.). Parameters must be created by theCEI interface.

An iparam has two components: a variable, and a default value (the latter can be set tonull

to signify the parameter is mandatory and has no default value). printf then returns an anony-

mous quasi-quoted function which contains the parameters,and a spliced-in expression returned by

printf expr :

func printf(format):
split := split_format(format)
params := []
i := 0
for part := split.iterate():

if part == PRINTF_INT | part == PRINTF_STRING:
params.append(CEI.iparam(CEI.ivar(CEI.name("p" + i.to _str())), null))
i += 1

return [|
func ($<<params>>):

Sys.println($<<printf_expr(split, 0)>>)
|]

printf expr is a recursive function which takes two parameters: a list representing the parts of

the format string yet to be processed; an integer which signifies which parameter of the quasi-quoted

function has been reached.

func printf_expr(split, param_i):
if split.len() == 0:

return [| "" |]
param := CEI.ivar(CEI.name("p" + param_i.to_str()))
if split[0].conforms_to(String):

return [| $<<CEI.lift(split[0])>> + $<<printf_expr(spli t[1:], param_i)>> |]
elif split[0] == PRINTF_INT:

return [| $<<param>>.to_str() + $<<printf_expr(split[1: ], param_i + 1)>> |]
elif split[0] == PRINTF_STRING:

return [| $<<param>> + $<<printf_expr(split[1 : ], param_i + 1)>> |]

printf expr recursively calls itself, each time removing the first element from the format string

list, and incrementing theparam i variable iff a parameter has been processed. This latter condition

is invoked when a string or integer ‘%’ specifier is encountered; raw text in the input is included as

is, and as it does not involve any of the functions’ parameters, does not incrementparam i . When

the format string list is empty, the recursion starts to unwind.
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When the result ofprintf expr is spliced into the quasi-quoted function, the dynamically

scoped references to parameter names inprintf expr become bound to the quasi-quoted func-

tions’ parameters. As an example of calling this function,$<<printf("%s has %d %s")>>

generates the following function:

func (p0, p1, p2):
Sys.println(p0 + " has " + p1.to_str() + " " + p2 + "")

so that evaluating the following:

$<<printf("%s has %d %s")>>("England", 39, "traditional c ounties")

results inEngland has 39 traditional counties being printed to screen.

This definition ofprintf is simplistic and lacks error reporting, partly because it is intended to

be written in a similar spirit to its TH equivalent. Convergecomes with a more complete compile-

time printf function as an example, which uses an iterative solution with more compile-time and

run-time error-checking. Simple benchmarking of the latter function reveals that it runs nearly an

order of magnitude faster than its run-time equivalent5 – a potentially significant gain when a tight

loop repeatedly callsprintf .

4.2.12. Compile-time meta-programming costs

Although compile-time meta-programming has a number of benefits, it would be naı̈ve to assume

that it has no costs associated with it. However although Converge’s features have been used to build

several small programs, and two systems of several thousandlines of code each, it will require a

wider range of experience from multiple people working in different domains to make truly informed

comments in this area.

One thing is clear from experience with LISP: compile-time meta-programming in its rawest form

is not likely to be grasped by every potential developer [Que96]. To use it to its fullest potential

requires a deeper understanding of the host language than many developers are traditionally used to;

indeed, it is quite possible that it requires a greater degree of understanding than many developers

are prepared to learn. Whilst features such as extendable syntax (see section 4.4) which are layered

on top of compile-time meta-programming may smooth off manyof the usability rough edges, fun-

damentally the power that compile-time meta-programming extends to the user comes at the cost of

increased time to learn and master.

In Converge one issue that arises is that code which continually dips in and out of the meta-

programming constructs can become rather messy and difficult to read on screen if over-used in

any one area of code. This is due in no small part to the syntactic considerations that necessitate a

5This large differential is in part due to the fact that the current Converge VM imposes a relatively high overhead on
function application.
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move away from the clean Python-esque syntax to something closer to the C family of languages.

It is possible that the integration of similar features intoother languages with a C-like syntax would

lead to less obvious syntactic seams.

4.2.13. Error reporting

Perhaps the most significant unresolved issue in compile-time meta-programming systems relates

to error reporting [COST04]. Although Converge does not have complete solutions to all issues

surrounding error reporting, it does contain some rudimentary features which may give insight into

the form of more powerful error reporting features both in Converge and other compile-time meta-

programming systems.

The first aspect of Converge’s error reporting facilities relates to exceptions. When an exception

is raised, detailed stack traces are printed out allowing the user to inspect the sequence of calls that

led to the exception being raised. These stack traces differfrom those found in e.g. Python in that

each level in the stack trace displays the file name, line number and column number that led to the

error. Displaying the column number allows users to make useof the fine-grained information to

more quickly narrow down the precise source of an exception.Converge is able to display such

detailed information because when it parses text, it storesthe file name, line number and column

number of each token. Tokens are ordered into parse trees; parse trees are converted into ASTs;

ASTs are eventually converted into VM instructions. At eachpoint in this conversion, information

about the source code elements is retained. Thus every VM instruction in a binary Converge program

has a corresponding debugging entry which records which file, line number and column number the

VM instruction relates to. Whilst this does require more storage space than simpler forms of error

information, the amount of space required is insignificant when the vast storage resources of modern

hardware are considered.

Whilst the base language needs to record the related source offset of each VM instruction, the

source file a VM instruction relates to is required only due tocompile-time meta-programming. Con-

sider a fileA.cv :

func f():
return [| 2 + "3" |]

and a file B.cv:

import A

func main():
$<<A.f()>>

When the quasi-quoted code inA.f is spliced in, and then executed an exception will be raised about

the attempted addition of an integer and a string. The exception that results from runningB is as
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follows:

Traceback (most recent call last):
File "A.cv", line 2, column 13, in main

Type_Exception: Expected instance of Int, but got instance of String.

The fact that theA module is pinpointed as the source of the exception may initially seem surprising,

since the code raising the exception will have been spliced into theB module. This is however a

deliberate design choice in Converge. Although the code from A.f has been spliced intoB.main ,

whenB is run the quasi-quoted code retains the information about its original source file, and not its

splice location. To the best of my knowledge, this approach to error reporting in the face of compile-

time meta-programming is unique. As points of comparison, TH is not able to produce any detailed

information during a stack-trace and SCM Scheme [Jaf03] pinpoints the source file and line number

of run-time errors as that of the macro call site. In SCM Scheme if the code that a macro produces

contains an error, all the user can work out is which macro would have led to the problem — the user

has no way of knowing which part of the macro may be at fault.

Converge allows customization of the error-reporting information stored about a given ITree. Firstly

Converge adds a feature not present in TH: nested quasi-quotes. An outer quasi-quote returns the

ITree of the code which would create the ITree of the nested quasi-quote. For example the following

nested code:

Sys.println([| [| 2 + "3" |] |].pp())

results in the following output:

CEI.ibinary_add(CEI.iint(2, "ct.cv", 484), CEI.istring ("3", "ct.cv", 488),
"ct.cv", 486)

Nested quasi-quotes provide a facility which allows users to analyse the ITrees that plain quasi-

quotes generate: one can see in the above that each ITree element contains a reference to the file it

was contained within (ct.cv in this case) and to the offset within the file (484 and so on). The

CEI module provides a functionsrc info to var which given an ITree representing quasi-

quoted code copies the ITree6 replacing the source code file and offsets with variablessrc file

andsrc offset . This new ITree is then embedded in a quasi-quoted function which takes two

argumentssrc file andsrc offset . When the user splices in and then calls this function,

they update the ITree’s relation to source code files and offsets. Using this function in the following

fashion:

Sys.println(CEI.src_info_to_var([| [| 2 + "3" |] |]).pp() )

results in the following output:

unbound_func (src_file, src_offset){
return CEI.ibinary_add(CEI.iint(2, src_file, src_offse t),

6In the current implementation, thesrc info to var actually mutates ITrees, but for reasons explained in section
4.3.3 this will not be possible in the future.
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CEI.istring("3", src_file, src_offset), src_file, src_o ffset)
}

In practice when one wishes to customise the claimed location of quasi-quoted code, the nested quasi-

quotes need to be cancelled out by a splice. For example, to change source information to be offset

77 in the filent.cv we would use the following code:

return $<<CEI.src_info_to_var([| [| 2 + "3" |] |], "nt.cv", 77>>

Whilst this appears somewhat clumsy, it is worth noting thatby adding only the simple concept of

nested quasi-quotes, complex manipulation of the meta-system is possible.

Converge’s current approach is not without its limitations. Its chief problem is that it can only relate

one source code location to any given VM instruction. There is thus an ‘either / or’ situation in that the

user can choose to record either the definition point of the quasi-quoted code, or change it to elsewhere

(e.g. to record the splice point). It would be of considerable benefit to the user if it is possible to

record all locations which a given VM instruction relates to. Assuming the appropriate changes to

the compiler and VM, then the only user-visible change wouldbe thatsrc info to var would

appendsrc file andsrc offset information within a given ITree, rather than overwriting the

information it already possessed.

4.2.14. Related work

Perhaps surprisingly, the template system in C++ has been found to be a fairly effective, if crude,

mechanism for performing compile-time meta-programming [Vel95, COST04]. The template system

can be seen as an ad-hoc functional language which is interpreted at compile-time. However this

approach is inherently limited compared to the other approaches described in this section.

The dynamic OO language Dylan – perhaps one of the closest languages in spirit to Converge – has

a similar macro system [BP99] to Scheme. In both languages there is a dichotomy between macro

code and normal code; this is particularly pronounced in Dylan, where the macro language is quite

different from the main Dylan language. As explained in the introduction, languages such as Scheme

need to be able to identify macros as distinct from normal functions (although Bawden has suggested

a way to make macros first-class citizens [Baw00]). The advantage of explicitly identifying macros

is that there is no added syntax for calling a macro: macro calls look like normal function calls. Of

course, this could just as easily be considered a disadvantage: a macro call is in many senses rather

different than a function call. In both schemes, macros are evaluated by a macro expander based on

patterns – neither executes arbitrary code during macro expansion. This means that their facilities

are limited in some respects – furthermore, overuse of Scheme’s macros can lead to complex and

confusing ‘language towers’ [Que96]. Since it can execute arbitrary code at compile-time Converge

does not suffer from the same macro expansion limitations, but whether moving the syntax burden
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from the point of macro definition to call site will prevent the comprehension problems associated

with Scheme is an open question.

Whilst there are several proposals to add macros of one sort or another to existing languages (e.g.

for Java alone one can find proposals from Bachrach and Playford’s Java macro system [BP01] and

Tatsuboriet. al[TCIK99]), the lack of integration with their target language thwarts practical take-up.

Nemerle [SMO04] is a statically typed OO language, in the Java / C# vein, which includes a macro

system mixing elements of Scheme and TH’s systems. Macros are not first-class citizens, but AST’s

are built in a manner reminiscent of TH. The disadvantage of this approach is that calculations often

need to be arbitrarily pushed into normal functions if they need to be performed at compile-time.

Comparisons between Converge and TH have been made throughout this section – I do not repeat

them here. MetaML is TH’s most obvious forebear and much of the terminology in Converge has

come from MetaML via TH. MetaML differs from TH and Converge by being a multi-stage language.

Using its ‘run’ operator, code can be constructed and run (via an interpreter) at run-time, whilst

still benefiting from MetaML’s type guarantees that all generated programs are type-correct. The

downside of MetaML is that new definitions can not be introduced into programs. The MacroML

proposal [GST01] aims to provide such a facility but – in order to guarantee type-correctness – forbids

inspection of code fragments which limits the features expressivity.

Significantly, with the exception of Dylan, I know of no otherdynamically typed OO language in

the vein of Converge which supports any form of compile-timemeta-programming natively.

4.3. Implications for other languages and their implementa tions

I believe that Converge shows that compile-time meta-programming facilities can be added in a seam-

less fashion to a dynamically-typed OO language and that such facilities provide useful functionality

not available previously in such languages. In this sectionI first pinpoint the relatively minimal re-

quirements on language design necessary to allow the safe and practical integration of compile-time

meta-programming facilities. Since the implementation ofsuch a facility is quite different from a

normal language compiler, I then outline the makeup of the Converge compiler to demonstrate how

an implementation of such features may look in practice. Finally I discuss the requirements on the

interface between user code and the languages’ compiler.

4.3.1. Language design implications

Although Converge’s compile-time meta-programming facilities have benefited slightly from being

incorporated in the early stages of the language design, there is surprisingly little coupling between the
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base language and the compile-time meta-programming constructs. The implications on the design

of similar languages can thus be boiled down to the followingtwo main requirements:

1. It must be possible to determine all namespaces statically, and also to resolve variable refer-

ences between namespaces statically. This requirement is vital for ensuring that scoping rules

in the presence of compile-time meta-programming are safe and practical (see section 4.2.5).

Slightly less importantly, this requirement also allows functions called at compile-time to be

stored in the same module as splices which call them whilst avoiding the forward reference

problem (see section 4.2.9).

2. Variables within namespaces other than the outermost module namespace must beα-renameable

without affecting the programs semantics. This requirement is vital to avoid the problem of

variable capture.

Note that there is an important, but non-obvious, corollaryto the second point: when variables and

slot names overlap thenα-renaming can not take place. In section 4.2.5 we saw that, inConverge,

top-level module definitions can not be renamed because the variable names are also the slot names of

the module object. Since Converge forces all accesses of class fields via theself variable, Converge

neatly sidesteps another potential place where this problem may arise. Fortunately, whilst many

statically typed languages allow class fields to be treated as normal variables (i.e. making theself.

prefix optional) most dynamically typed languages take a similar approach to Converge and should

be equally immune to this issue in that context.

Only two constructs in Converge are dedicated to compile-time meta-programming. Practically

speaking both constructs would need to be added to other languages:

1. A splicing mechanism. This is vital since it is the sole user mechanism for evaluating expres-

sions at compile-time.

2. A quasi-quoting mechanism to build up AST’s. Although such a facility is not strictly nec-

essary, experience suggests that systems without such a facility tend towards the unusable

[WC93].

4.3.2. Compiler structure

Typical language compilers follow a predictable structure: a parser creates a parse tree; the parse tree

may be converted into an AST; the parse tree or AST is used to generate target code (be that VM

bytecode, machine code or an intermediate language). Ignoring optional components such as opti-

mizers, one can see that normal compilers need only two or three major components (depending on
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Figure 4.2.: Converge compiler states.

the inclusion or omission of an explicit AST generator). Importantly the process of compilation in-

volves an entirely linear data flow from one component to the next. Compile-time meta-programming

however necessitates a different compiler structure, withfive major components and a non-linear data

flow between its components. In this section I detail the structure of the Converge compiler, which

hopefully serves as a practical example for compilers for other languages. Whether existing language

compilers can be retro-fitted to conform to such a structure,or whether a new compiler would need

to be written can only be determined on a case-by-case basis;however in either case this general

structure serves as an example.

Figure 4.2 shows a (slightly non-standard) state-machine representing the most important states of

the Converge compiler. Large arrows indicate a transition between compiler states; small arrows indi-

cate a corresponding return transition from one state to another (in such cases, the compiler transitions

to a state to perform a particular action and, when complete,returns to its previous state to carry on

as before). Each of these states also corresponds to a distinct component within the compiler.

The stages of the Converge compiler can be described thus:

1. Parsing. The compiler parses an input file into a parse tree. Once complete, the compiler

transitions to the next state.

2. ITree Generation. The compiler converts the parse tree into an ITree; this stage continues until

the complete parse tree has been converted into an ITree. Since ITree’s are exposed directly to

the user, it is vital that the parse tree is converted into a format that the user can manipulate in

a practical manner7.

a) Splice mode / bytecode generation.When it encounters a splice annotation in the parse

tree, the compiler creates a temporary ITree representing amodule. It then transitions

temporarily to the bytecode generation state to compile. The compiled temporary module

is injected into the running VM and executed; the result of the splice is used in place of

the annotation itself when creating the ITree.

7An early, and naı̈ve, prototype of the Converge compiler exposed parse trees directly to the user. This quickly lead to
spaghetti code.
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b) Quasi-quotes mode / splice mode.As the ITree generator encounters quasi-quotes in

the parse tree, it transitions to the quasi-quote mode. Quasi-quote mode creates an ITree

respecting the scoping rules and other features of section 4.2.5.

If, whilst processing a quasi-quoted expression, a splice annotation is encountered, the

compiler enters the splice mode state. In this state, the parse tree is converted to an ITree

in a manner mostly similar to the normal ITree Generation state. If, whilst processing

a splice annotation, a quasi-quoted expression is encountered, the compiler enters the

quasi-quotes mode state again. If, whilst processing a quasi-quoted expression, a nested

quasi-quoted expression is encountered the compiler enters a new quasi-quotes mode.

3. Bytecode generation.The complete ITree is converted into bytecode and written todisk.

4.3.3. Compiler interface

Converge provides theCEI module which user code can use to interact with the language compiler.

Similar implementations will require a similar interface to allow two important activities:

1. The creation of fresh variable names (see section 4.2.6).This is vital to provide a mechanism

for the user to generate unique names which will not clash with other names, and thus will

prevent unintended variable capture. To ensure that all fresh names are unique, most practical

implementations will probably choose to inspect and restrict the variable names that a user

can use within ITree’s via an analogue to Converge’sname interface; this is purely to prevent

the user inadvertently using a name which the compiler has guaranteed (or might in the future

guarantee) to be unique.

2. The creation of arbitrary AST’s. Since it is extremely difficult to make a quasi-quote mech-

anisms completely general without making it prohibitivelycomplex to use, there are likely to

be valid AST’s which are not completely expressible via the quasi-quotes mechanism. There-

fore the user will require a mechanism to allow them to createarbitrary AST fragments via a

more-or-less traditional meta-programming interface [WC93].

Abstract syntax trees

One aspect of Converge’s design that has proved to be more important than expected, is the issue of

AST design. In typical languages, the particular AST used bythe compiler is never exposed in any

way to the user. Even in Converge, for many users the particulars of the ITree’s they generate via the

quasi-quotes mechanism are largely irrelevant. However those users who find themselves needing to

90



generate arbitrary ITree’s via theCEI interface, and especially those (admittedly few) who perform

computations based on ITree’s, find themselves disproportionately affected by decisions surrounding

the ITree’s representation.

At the highest level, there are two main choices surroundingAST’s. Firstly, should it be represented

as an homogeneous, or heterogeneous tree? Secondly should the AST be mutable or immutable? The

first question is relatively easy to answer: my experience suggests that homogeneous trees are not a

practical representation of a rich AST. Whilst parse trees are naturally homogeneous, the conversion

to an AST leads to a more structured and detailed tree that is naturally heterogeneous.

Let us then consider the issue of AST mutability. Initially Converge supported mutable AST’s;

whilst this feature has proved useful from time to time, it has also proved somewhat more dangerous

than expected. This is because one often naturally creates references to a given AST fragment from

more than one node. Changing a node which is referenced by more than one other node can then

result in unexpected changes, which all too frequently manifest themselves in hard to debug ways.

Since it is not possible to check for this problem in the general case, the user is ultimately responsible

for ensuring it does not occur; in practise this has proved tobe unrealistic, and gradually all ITree-

mutating code has been banished from Converge code. Future versions of Converge will force ITree’s

to be immutable, and I would recommend other languages consider this point carefully.

4.4. Syntax extension for DSLs

Converge has a simple but powerful facility allowing users to embed arbitrary sequences of tokens

within Converge source files. At compile-time these tokens are passed to a designated user function,

which is expected to return an AST. This allows the user to extend the language’s syntax in an arbitrary

fashion, meaning that DSLs can be embedded within normal Converge code.

A DSL fragment is an indented block containing an arbitrary sequence of tokens. The DSL block is

introduced by a variant on the splice syntax$< expr > whereexpr should evaluate to a function

(the DSL implementation function). The DSL function will be called at compile-time with a listof

tokens, and is expected to return an AST which will replace the DSL block in the same way as a

normal splice. Compile-time meta-programming is thus the mechanism which facilitates embedding

DSLs.

An example DSL fragment is as follows. Colloquially this block is referred to as ‘aTM.model-

class ’:

import TM.TM

$<TM.model_class>:
abstract class ML1_Element {

91



name : String;

inv nonempty_name:
name != null and name.len() > 0

}

Note that the DSL fragment is written in an entirely different syntax than Converge itself.

Currently DSL blocks are automatically tokenized by the Converge compiler using its default to-

kenization rules — this is not a fundamental requirement of the technique, but a peculiarity of the

current implementation. More sophisticated implementations might choose to defer tokenization to

the DSL implementation function. However using the Converge tokenizer has the advantage that

normal Converge code can be embedded inside the DSL itself assuming an appropriate link from the

DSLs grammar to the Converge grammar.

4.4.1. DSL implementation functions

DSL implementation functions follow a largely similar sequence of steps in order to translate the

input tokens into an ITree:

1. Alter the input tokens as necessary. Since DSLs often use keywords that are not part of the

main Converge grammar, such alterations mostly take the form of replacingID tokens with

specific keyword tokens.

2. Parse the input tokens according to the DSL’s grammar.

3. Traverse the parse tree, translating it into an ITree.

Section 4.5 explores these steps in greater detail via a concrete example.

4.4.2. Adding a switch statement

In this subsection, I detail a simple Converge DSL which allowsswitch statements to be embedded

in Converge code. A simple example of theswitch DSL in use is as follows:

$<switch>:
switch x:

case 2:
Sys.println("2")

case 4:
Sys.println("4")

default:
Sys.println("default")

Pre-parsing and grammar

Before theswitch DSL can parse its input, it first iterates through the input tokens searching for

tokens which have typeID and value any ofswitch , case , or default . Such tokens are replaced

92



by a keyword token, whose type is theID ’s value. The grammar for this DSL is as follows:

switch ::= "SWITCH" "ID" ":" "INDENT" clauses default "DEDE NT"
clauses ::= { clause "NEWLINE" } * clause
clause ::= "CASE" expr ":" "INDENT" expr_body "DEDENT"
default ::= "NEWLINE" "DEFAULT" ":" "INDENT" expr_body "DE DENT"

::=

References to theexpr body grammar rule reference the main Converge grammar.

Traversing the parse tree

Since theswitch DSL references the main Converge grammar, the DSL extends the Converge com-

piler (via theIModule Generator module) itself, needing only to add simple traversal functions

for the four grammar rules added by the DSL. The main part of a DSL implementation function is con-

cerned with traversing the parse tree, and translating it into an appropriate ITree. The CPK provides a

simple traversal class (essentially a Converge equivalentof that found in the SPARK parser [AH02])

which provides the basis for most such translations. Users need only subclass theTraverser

class and create a function prefixed byt name for each rule in the grammar. TheTraverser

class provides apreorder function will traverse an input parse tree in preorder fashion, calling the

appropriate t name function for each node encountered in the tree. Note that each t name

function can choose whether to invoke thepreorder rule on sub-nodes, or whether it is capable

of processing the sub-nodes itself. TheIModule Generator class is a sub-class of the CPK’s

Traverser class. Although subclassing of large and complex classes isoften thought of as being

dangerous, theIModule Generator module has been specifically designed with sub-classing of

this sort in mind.

The complete code for theswitch translation is as follows:

1 class Switch_Translator(IModule_Generator._IModule_G enerator)
2 func _t_switch(node):
3 // switch ::= "SWITCH" "ID" ":" "INDENT" clauses default "DE DENT"
4 self._var := CEI.ivar(CEI.name(node[2].value))
5 clauses := self.preorder(node[5])
6 default := self.preorder(node[6])
7 return return CEI.iif(clauses, default)
8

9 func _t_clauses(node):
10 // clauses ::= { clause "NEWLINE" } * clause
11 // ::=
12 i := 1
13 clauses := []
14 while i < node.len():
15 clauses.append(self.preorder(node[i]))
16 i += 2
17 return clauses
18

19 func _t_clause(node):
20 // clause ::= "CASE" expr ":" "INDENT" expr_body "DEDENT"
21 return CEI.iclause([| $<<self._var>> == $<<self.preorde r( \
22 node[2])>> |], self.preorder(node[5]))
23

24 func _t_default(node):
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25 // default ::= "NEWLINE" "DEFAULT" ":" "INDENT" expr_body " DEDENT"
26 // ::=
27 if node.len() == 1:
28 return [| pass |]
29 else:
30 return self.preorder(node[5])

The translation is straightforward. Line 4 records the variable which is being ‘switched’. Lines 5 – 7

translate theswitch statement into a singleif statement; the switchesdefault clause becomes

theelif clause. Lines 21 – 22 translate each clause in theswitch statement into an ITree clause

which compares the ‘switched’ variable with the value of theexpression in the clause. Lines 27 – 30

translate thedefault clause; if no such clause is specified, the translation returns thepass no-op.

4.4.3. Related work

Real-world implementations of a similar concept are surprisingly rare. The Camlp4 pre-processor

[dR03] allows the normal OCaml grammar to be arbitrarily extended, and is an example of a hetero-

geneous syntax extension system in that the system doing theextension is distinct from the system

being extended. The MetaBorg system [BV04] is a heterogeneous system that can be applied to any

language; more sophisticated than the Camlp4 pre-processor, from an external point of view it more

closely resembles Converge’s functionality, although theimplementations and underlying philoso-

phies are still very different.

I am currently aware of only two homogeneous syntax extension systems apart from Converge.

Nemerle [SMO04] allows limited syntax extension via its macro scheme. The commercial XMF tool

[CESW04] presents only a small core grammar, with many normal language concepts being grammar

extensions on top of the core grammar. Grammar extensions are compiled down into XMF’s AST.

XMF is thus much closer in spirit to Converge, although the example grammar extensions available

suggest that XMF’s compile-time facilities may be less powerful than Converge’s, seemingly being

based on a simplified version of TH’s features. If true, this may limit the complexity of the grammar

extensions.

4.5. Modelling language DSL

This section presents an example of a Converge DSLTM for expressing typed modelling languages;

modelling languages can be instantiated create models. In its current simplistic form, TM operates

with a fixed number of meta-levels in that it defines modellinglanguages that can create models, but

those models are terminal instances (in ObjVLisp’s terminology) — that is, they can not be used to

create new objects.

This section serves two purposes. Firstly it is an example ofConverge’s syntax extension system,

94



Classifier
name : String

PrimitiveDataType Class
name : String

Attribute
is_primary : bool
name : String

attrs

type

* {ordered}

Figure 4.3.: ‘Simple UML’ model.

and fleshes out the method of section 4.4.1. Secondly the DSL in question is used in the remainder of

this thesis.

4.5.1. Example of use

The TM DSL is housed within the packageTM; the DSL implementation functionmodel class is

contained within theTMmodule within the package. The following fragment uses the DSL to express

a model of a simplified UML modelling language as shown in figure 4.3:

import TM.TM

$<TM.model_class>:
abstract class Classifier {

name : String;
}

class PrimitiveDataType extends Classifier { }

class Class extends Classifier {
attrs : Seq(Attribute);

inv unique_names:
attrs->forAll(a1 a2 |

a1 != a2 implies a1.name != a2.name)
}

class Attribute {
name : String;
type : Classifier;
is_primary : bool;

}

Note that although this particular example shows a model of amodelling language, the DSL is capable

of expressing any type of model — the example here is taken from section 5.3.5.

TheTM.model class DSL implementation function translates each class in the model into a

function in Converge which creates model objects. As a useful convenience, each constructor function

takes arguments which correspond to the order in which attributes are specified in the model class. If

a model class has parents, their attributes come first, and soon recursively. Model objects can have

their slots accessed by name. Note that since the modelling language is typed, setting attributes either
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via the constructor function or through assigning to a slot forces the value to be of the correct type.

Types can be of any model class (the DSL allows forward references),int , String , bool (where

true and false are represented by 1 and 0 respectively), or sequences or sets of the preceding types.

Note that sequences and sets can be nested arbitrarily. Model classes can contain invariants which are

written in OCL; invariants are checked after an object has been initialized with values, and on every

subsequent slot update. Currently only a subset of OCL 1.x isimplemented, but the subset covers

several different areas of OCL; implementing full OCL 1.x would be a relatively simple extension.

Assuming the above is held in a fileSimple UML.cv , one can then use the Simple UML mod-

elling language to create models. The following example creates model classesDog andPerson ,

with Dog having an attributeowner of typePerson :

person := Simple_UML.Class("Person")
dog := Simple_UML.Class("Dog")
dog.attrs.append(Simple_UML.Attribute("owner", perso n, 0))

One can arbitrarily manipulate models in the same way as standard objects:

dog.name := "Doggy"

Attempting to update a model in a way that would conflict with its type information results in an

exception being raised. For example, attempting to assign an integer to theDog model class’ name

raises the following exception:

Traceback (most recent call last):
File "Ex1.cv", line 42, column 4, in main
File "TM/TM.cv", line 162, column 5, in set_slot

Exception: Instance of ’Class’ expected object of type ’Str ing’ for slot ’name’.

In similar fashion, if one violates theunique names constraint by adding two attributes called

owner to theDog model class, the following exception is raised:

Traceback (most recent call last):
File "Ex1.cv", line 45, column 17, in main
File "TM/TM.cv", line 327, column 31, in append
File "TM/TM.cv", line 407, column 3, in _class_class_check _invs

Exception: Invariant ’unique_names’ violated.

As can be seen, the result of using theTM.model class DSL is a natural embedding of an ar-

bitrary modelling language within Converge. Furthermore the recording of type information using

the modelling language DSL, allows the enforcement of such type information providing guarantees

about models that would not have been the case if they were implemented as normal Converge classes.

In the following sections I outline how this DSL is implemented.

4.5.2. Data model

TM provides its own ObjVLisp style data model which is similar to, but distinct from, the Converge

data model of section 4.1.4. TM needs to provide a new data model since the default Converge data

model is inherently untyped; whilst figure 4.1 showed the core data model with types, such type
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of

MClass
attrs : Dict{String : MObject}

super_class

new_(*MObject) : MObject

invariants : Seq{MObject}
is_abstract : bool
methods : Dict{String : MObject}

name : String
check_invs() : void
initialize(*MObject) : void

MObject
mod_id : String

to_string() : String
initialize(*MObject) : void

0, 1

Figure 4.4.:TMdata model.

information is purely for the benefit of the reader. In contrast, the TM data model is inherently typed,

and the type information is used to enforce the correctness of models. The only exception to this is

that functions are currently untyped; it would be relatively simple to extend the implementation to

record and enforce functions’ type information.

Figure 4.4 shows the TM data model. As in Converge, a bootstrapping phase is needed to set up

the meta-circular data model.MObject andMClass are so named to avoid clashing with the built-

in classesObject andClass . Similarly, method and attribute names which might conflict, or be

confused with, those found in normal Converge classes are named differently. For exampleinit

becomesinitialize , to str becomesto string and instance of becomesof . For

brevity, and for easy interaction with external code, TM does not directly replicate all built-in Con-

verge types such as strings; built-in Converge types are treated internally as instances ofMObject .

Once cosmetic differences between the two are ignored, someimportant differences in the TM

and Converge data models become apparent. Most importantlythe TM data model has the standard

statically typed OO languages notions of separate methods and attributes. TM mclasses are also

different in that they can be abstract (i.e. can not be instantiated) and have at most one super class.

MObject classes possess amod id slot which is a unique identifier, and which is typed asString

to allow flexibility over the format of identifiers. Themod id slot is the sole factor in determining

whether two model elements are equal or not; because this identifier is immutable, it is used as the

objects hash, allowing model elements to be placed within Converge sets.

As all of this might suggest, the TM data model is intended to match the data model found at

the core of modelling methodologies e.g. MOF [OMG00]. Sincemethods and attributes are housed

separately within classes, model instances require only a slot per attribute; invoking a method on an

object searches the objectsof class (and its superclasses) for an appropriate method. This is achieved

by making use of the Converge MOP (see section 4.1.7). Although the actual implementation is rela-

tively complex, a simplified version demonstrates the salient points. All model objects are instances
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of the Converge classRaw Object which is initialized with a blank slot per attribute of a model

class. The Converge MOP is overridden via a customget slot function in the Raw Object

class. If a slot name matches an attribute slot, that value isreturned. Otherwise the model objects

of class and, if necessary its superclasses, are searched for amethod of the appropriate name. Fi-

nally, if a method is not found then if the slot name matches that of a normal Converge slot in the

Raw Object instance, the value is returned; otherwise an exception is raised. The following,

much simplified, version of the code shows the skeleton of theRaw Object class and part of its

MOP:

1 class _Raw_Object:
2 func init(attr_names):
3 self._attr_slots := Dict{}
4 for attr_name := attr_names.iterate():
5 self._attr_slots[attr_name] := null
6

7 func get_slot(name):
8 if self._attr_slots.contains(name):
9 return self._attr_slots[name]

10 else:
11 class_ := self._attr_slots["of"]
12 while 1:
13 if class_.methods.contains(name):
14 return Func_Binding(self, class_.methods[name])
15 if (class_ = class_.super_class) == null:
16 break
17 if exbi Object.has_slot(name):
18 return exbi Object.get_slot(name)
19 else:
20 raise Exceptions.Slot_Exception(Strings.format( \
21 "No such model / Converge slot ’%s’", name))

A few notes are in order. Firstly theclass variable on line 11 is so named sinceclass is a

reserved keyword in Converge; by convention variable namesare suffixed by ‘ ’ if they would other-

wise clash with a reserved word. Note that definitions prefixed by ‘ ’ are conventionally considered

to be private to the module or class they are contained within. On line 14, theFunc Binding class

creates a binding which, when invoked, will call the Converge functionclass .methods[name]

with its self variable bound toself (i.e. the Raw Object instance; see section 4.1.2 for more

details about functions and function bindings). The ability to create function bindings in this fashion

is an important feature of Converge, allowing a large deal ofcontrol over the behaviour of objects.

The TM data model can be considered to be a suitable template for suggesting how more advanced

typed modelling languages – perhaps including packages andpackage inheritance [ACE+02], or

allowing classes to inherit from more than one superclass – might be represented in a Converge DSL.

4.5.3. Pre-parsing and grammar

At a high-level, the translation of TM is fairly simple: eachmodel class is converted into an object ca-

pable of creating model instances. Before theTM.model class DSL can parse its input, it first it-
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erates through the input tokens searching for tokens which have typeID and value any ofabstract ,

and , at , collect , extends , forAll , implies , inv , Seq, Set . Such tokens are replaced

by a keyword token, whose type is theID ’s value. Furthermore since theTM.model class DSL

is intended to emulate typed languages such as C and Java, it implements a white space insensi-

tive grammar; thus allINDENT, DEDENT, andNEWLINEtokens are removed from the input. The

modified token list is then parsed according to the followinggrammar:

top_level ::= { class } *

class ::= class_abstract "CLASS" "ID" class_super "{" { cla ss_field } *
"}"

class_abstract ::= "ABSTRACT"
::=

class_super ::= "EXTENDS" "ID"
::=

class_field ::= field_type
::= invariant

field_type ::= "ID" ":" type ";"

type ::= "ID"
::= "SEQ" "(" type ")"
::= "SET" "(" type ")"

invariant ::= "INV" "ID" ":" expr

expr ::= int
::= string
::= slot_lookup %precedence 20
::= application %precedence 15
::= binary %precedence 10
::= seq
::= set
::= "ID"

int ::= "INT"

string ::= "STRING"

slot_lookup ::= expr "." "ID"
::= expr "-" ">" forall
::= expr "-" ">" at
::= expr "-" ">" collect

forall ::= "FORALL" "(" "ID" "|" expr ")"
::= "FORALL" "(" "ID" "ID" "|" expr ")"

at ::= "AT" "(" expr ")"
collect ::= "COLLECT" "(" "ID" "ID" "=" expr "|" expr ")"

application ::= expr "(" expr { "," expr } * ")"
::= expr "(" ")"

binary ::= expr "+" expr %precedence 30
::= expr "-" expr %precedence 30
::= expr ">" expr %precedence 20
::= expr "<" expr %precedence 20
::= expr "==" expr %precedence 20
::= expr "!=" expr %precedence 20
::= expr "IMPLIES" expr %precedence 10
::= expr "AND" expr %precedence 10

seq ::= "SEQ" "{" expr ".." expr "}"
::= "SEQ" "{" expr { "," expr } * "}"
::= "SEQ" "{" "}"
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set ::= "SET{" expr { "," expr } * "}"
::= "SET{" "}"

Most of this grammar is straightforward, although it is worth noting a few peculiarities that result

from the fact that tokenization is performed by the Convergetokenizer. For example, ‘Set {’ is a

single token (sinceSet {... } builds up a set in normal Converge). The equivalent notationfor

sequences is represented by two tokens: ‘Seq’ (a new keyword introduced by the DSL) followed by

‘{’. Fortunately in practise, such idiosyncrasies are largely hidden from, and irrelevant to, the DSL’s

users.

4.5.4. Traversing the parse tree

For example, theTM.model class function defines a traversal classModel Class Crea-

tor which translates the DSLs parse tree. An idealized version of the beginning of this class looks

as follows:

import CPK.Traverser

class Model_Class_Creator(Traverser.Traverser):
func translate():

return self.preorder()

func _t_top_level(node):
// top_level ::= { class } *
classes := []
for class_node := node[1 : ].iterate()

classes.extend(self.preorder(class_node))
return classes

func _t_class(node):
// class ::= class_abstract "CLASS" "ID" class_super "{" { c lass_field } *
// "}"
...
return [|

class $<<CEI.name(node[3].value)>>:
...

|]

4.5.5. Translating

The actual translation of the parse tree to a ITree involves much repetition, and contains implemen-

tation details which are irrelevant to this thesis. The firstpoint to note about the translation is that

the resulting ITree largely follows the structure of the parse tree. Having the translation follow the

structure of the parse tree is desirable because it significantly lowers the conceptual burden involved

in creating and comprehending the translation.

In this subsection I highlight some interesting aspects of the translation; interested readers can use

this as a step to exploring the full translation in theTMpackage.
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OCL expressions

Translating the OCL subset into Converge is a simple place tostart in the translation because it is

mostly simple and repetitive. For example, converting binary expressions from OCL into Converge

is mostly a direct translation as the elidedt binary traversal function shows:

func _t_binary(node):
// binary ::= expr "+" expr
// ::= expr "<" expr
// ::= expr "==" expr
lhs := self.preorder(node[1])
rhs := self.preorder(node[3])
if node[2].type == "+":

return [| $<<lhs>> + $<<rhs>> |]
elif node[2].type == ">":

return [| $<<lhs>> > $<<rhs>> |]
elif node[2].type == "==":

return [|
func ocl_equals() {

lhs := $<<lhs>>
if lhs.conforms_to(Int) | lhs.conforms_to(String):

return lhs == $<<rhs>>
else:

return lhs is $<<rhs>>
}()

|]

Note that there is a slight complexity in translating the== operator, since OCL defines equality

between objects to be based on their value if they are a primitive type, and on their identity if they are

a model element. Whilst this is simple to encode as a sequenceof expressions, it slightly complicates

the t class traversal function, which is expected to return only a single quasi-quoted expression.

In order to work around this limitation the required sequence of instructions are grouped together with

a function; the quasi-quotes returns the invocation of thisfunction which is thus a single expression.

This idiom occurs frequently in such translations.

Forward references

Forward references between model classes might appear to slightly muddy the structure of the trans-

lation. Consider the following example:

$<TM.model_class>:
class Dog {

owner : Person;
}

class Person {
name : String;
age : int;

}

With a naı̈ve translation, the result might look similar to the following Converge code:

class Dog:
attributes := Dict{"owner" : Person}
name := "Dog"

class Person:
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attributes := Dict{"name" : String, "age" : Integer}
name := "Person"

Such code would compile correctly, but lead to an exception being raised at run-time since the

Person class will not have assigned a value to thePerson variable when it is accessed in the

Dog class. A standard approach to this problem would be to make the attributes field a func-

tion; by placing the reference toPerson a function, the variable access would be deferred until after

thePerson variable contained a value.

The TM.model class DSL takes an alternative approach which is simplistic and, whilst not

generally applicable, effective. TheTMmodule keeps a record of all model classes encountered.

When a new model class is created (i.e. when importing a modelcontaining aTM.model class

block), it registers itself with theTMmodule. Rather than directly referring to model classes, type

references are strings of the target model class name – when amodel class needs to be retrieved, its

name is looked up in theTMmodules’ registry, and the appropriate object returned. Thus forward

references are a non-issue, since references are only resolved when necessary.

The reason theTM.model class DSL takes this approach is that all model classes live in the

same namespace; when we come to transforming model elementsit aids brevity that model classes

do not need to be prefixed by a package or module name.

Model class translation

The suggestion up to this point has largely been that model classes have been directly translated to

normal Converge classes. In fact, model classes are instances of theMClass class. Whilst this

would suggest that we can use themetaclass keyword shown in section 4.1.4, this is not possible

sinceMClass requires more information than a normal Converge class. Normal Converge classes

take only three parametersname, supers, fields whereas a model class requires information

about whether it is abstract, its invariants and so on. Thus the class object must be created manually.

Usingbound func keyword allows an appropriate bound functions to be expressed outside a class.

A much elided, and slightly simplified, version of thet class traversal function is as follows:

is abstract := bool
class name := String
super := String or null
attrs := Dict{name : type}
invariants := List of tuples [name, function]
operations := List of tuples [name, function]

init func var := CEI.ivar(CEI.fresh name())

return [d|
bound func initialize( * args):

super attrs := all attrs($<<super >>, 1)
if args.len() > (super attrs.len() + $<<CEI.lift(attrs.len())>>):

raise Exceptions.Parameters Exception("Too many args")
super args pos := Maths.min(super attrs.len(), args.len())
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Func Binding(self, $<<super >>.methods["initialize"]).apply( \
args[ : super args pos])

$<<init func body>>

$<<CEI.ivar(CEI.name(class name))>> := MClass($<<is abstract>>, \
$<<CEI.lift(class name)>>, $<<super >>, $<<CEI.lift(attrs)>>, \
$<<CEI.idict(operations + [[CEI.lift("initialize"), \
init func var]])>>, $<<CEI.ilist(invariants)>>)

|]

The t class traversal function first evaluates and transforms the details of the model class, plac-

ing information such as whether the class is abstract into appropriately named variables. Finally it

returns quasi-quoted code which contains two things: a function to initialize model class instances,

and finally the instantiation ofMClass itself. The arguments thatMClass itself requires are hope-

fully obvious due to the names of the variables passed to it inthis example.

Summary of translation

Whilst this section has tersely presented the translation of a TM.model class block, I hope that

it shows enough detail to suggest that the bulk of the translation is simple work, with only one or two

areas requiring the use of more esoteric Converge features.Appendix D.1 shows the pretty printed

ITree resulting from the translation of the example in section 4.5.1.

4.5.6. Diagrammatic visualization

A useful additional feature of TM is its ability to visualizemodelling languages and model languages

as diagrams. Visualization makes use of the fact that the TM data model is fully reflective, making

the traversal and querying of objects trivial. TheVisualizer module defines several visualiza-

tion functions, all of which use the GraphViz package [GN00]to create diagrams. For example,

the visualize modelling language function takes a list of model classes, and visualizes

them as a standard class diagram. Figure 4.5 shows the automatic visualization of the Simple UML

modelling language originally shown in figure 4.3. Note thatthe modelling language visualization

function explicitly shows that all model classes are subclasses ofMObject .

The Visualizer is also able to visualize arbitrary models asUML object diagrams. Figure 4.6 shows

the resulting visualization of the model in the following code:

person := Simple_UML.Class("Person")
dog := Simple_UML.Class("Dog")
dog.attrs.append(Simple_UML.Attribute("owner", perso n, 0))

Visualizer.visualize_model([Person, Dog])
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MObject

mod_id : String

to_string()
initialize()

of

Classifier

name : String

initialize()

Attribute

name : String

initialize()

PrimitiveDataType

 

initialize()

Class

 

initialize()

attrs
* ordered

type

Figure 4.5.: ‘Simple UML’ modelling language visualized.

4.6. Future work

Because the core of Converge is a mix of established languages, the core language is largely stable

syntactically and semantically. The implementation of thecompile-time meta-programming facilities

is currently less than satisfactory in one or two areas, but is eminently usable. One feature in particular

that appears to confuse new users to the language relates to the very different effects of the splice

annotation. The syntax, inherited from Template Haskell, means that$ behaves very differently when

inside (a simple replacement of the splice annotation) and outside (cause compile-time evaluation)

quasi-quotes. A simple change of syntax may suffice to solve this problem, or it may be considered

:Class

mod_id = "9" 
name = "Dog"

:Attribute

mod_id = "10" 
is_primary = 0
name = "owner"

attrs

:Class

mod_id = "8" 
name = "Person"

type

Figure 4.6.: A ‘Simple UML’ model language visualized.
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to be an inevitable part of the learning curve that compile-time meta-programming presents.

Although Converge’s error reporting facilities are at least as good as any comparable language,

there is still room for considerable improvement from the users point of view. Although section

4.2.13 used nested quasi-quotes to customise error reports, it may be necessary to find a lighter weight

technique if DSL authors are to be encouraged to provide highquality error reporting.

The syntax extension feature presents the greatest opportunity for future work. The most obvious

improvement would be to allow the user to provide their own tokenization facility. This may result in

simply passing a single string to the DSL implementation function, or it may involve a more sophis-

ticated interaction between the Converge tokenizer and parser and the DSL tokenizer and parser. For

example parsing algorithms such as Pack Rat parsing [For02]allow the conflation of tokenizing and

parsing in a way that might lend themselves to syntax extension.

Section 5.6 shows how – currently slightly inelegantly – DSLs can incorporate normal Converge

code within them. Improving the mechanism for weaving the core language and DSL extensions in

arbitrary ways will be important if this feature is to be exploited to its full potential.

4.7. Summary

In this chapter, I first presented the core of the Converge programming language. The core lan-

guage is a largely standard dynamically typed OO language. Ithen detailed Converge’s compile-time

meta-programming facility, which allows users to extend the language in an arbitrary fashion; I also

explained how similar functionality may be added to other dynamically typed OO languages. I then

used Converge’s compile-time meta-programming facility to add a syntax extension facility to Con-

verge. The syntax extension feature allows users who extendthe language to present their extensions

to other users in a syntactically seamless fashion. FinallyI demonstrated the syntax extension feature

by showing how a powerful typed modelling language can be embedded within Converge.
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Chapter 5.

A rule based model transformation system

This chapter presents a unidirectional stateless model transformation language MT, implemented as

a DSL within Converge. MT serves as an example of a non-trivial example of a DSL implemented

as Converge, exercising many parts of Converge and showing many of the idioms common when

developing DSLs in Converge.

MT shares several aspects in common with model transformation languages such as the QVT-

Partners approach [QVT03b]. That is, it is a rule-based system, utilising patterns. However there

are a number of advances over, and significant differences from, previous approaches. Some of these

are a side-effect of implementing MT as a DSL within Converge; some are the result of experimen-

tation with a concrete, but malleable, implementation. Forexample, MT allows normal Converge

imperative expressions to be embedded within it. MT’s implementation is interesting for other rea-

sons, particularly its exploitation of a number Converge’sother unique features, such as goal-directed

evaluation.

This chapter comes in three main parts. Firstly the chaptersrunning example is introduced, fol-

lowed by an introduction to the QVT-Partners model transformation approach. The QVT-Partners

approach is then used as the basis for the MT language, which is introduced partly through example.

Finally the implementation of the MT language as a DSL in Converge is discussed in more detail. In

the wider context of this thesis, MT is a necessary step towards the change propagating transformation

language presented in chapter 6.

5.1. Running example

This chapter makes use of a simple running example of a transformation from a UML like modelling

language to a model of relational databases. The chief reason for using this example is the ability to

compare the result with its implementation in other model transformation approaches (e.g. [DIC03,

OQV03, QVT03a]. The example also has the virtue that it can beeasily considered in ‘simple’ and



* {ordered}

Table
name : String

columns
Column

name : String
type : String

Figure 5.1.: Simplified relational database meta-model.

:Class
name = "Person"

:Attribute
name = "name"

:Attribute
name = "age"

:Class
name = "Dog"

:Attribute
name = "name"

:Attribute
name = "owner"

attrs

type

attrs attrsattrs

:PrimitiveDataType
name = "String"

:PrimitiveDataType
name = "int"

typetypetypetype

Figure 5.2.: An example of a source simple UML model.

‘advanced’ variants. Whilst the advanced variant does exercise a reasonable number of features of

any given model transformation approach, it is still of an appropriate size for this thesis.

The original example is defined in [QVT03a]. The simple variant is as follows. The meta-model

for a simple UML modelling language was previously given in figure 4.3. A corresponding meta-

model for simplified relational databases is given in figure 5.1. In essence, the transformation takes

in a Class and transforms it to aTable of the same name.Attribute ’s whose type is a

PrimitiveDataType (e.g. string, integer) are transformed to a column of the same name and

the same primitive data type.Attribute ’s whose type is aClass (i.e. the type refers to another

user class) are transformed to a number of columns: the transformation recursively ‘drills down’

through a class’s non-primitively typed attributes until it reaches attributes with primitive datatypes.

At each point in the recursion the name of the current class along with a ‘ ’ character is appended to

the column name. The net result of this is that non-primitivedata types are flattened.

Consider the source model of figure 5.2 (trivially adapted from section 4.5.5). Assuming that the

Dog class is used as the input class, an implementation of this transformation should produce the

relational database model as in figure 5.3.

This is the core of the example that will be used throughout this chapter. As the chapter progresses,

columns

:Column
name = "name"
type = "String"

name = "owner_name"
type = "String"

:Column
name = "owner_age"
type = "int"

:Column

:Table
name = "Dog"

columnscolumns

Figure 5.3.: An example of a target relational database model
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I will progressively add complexity to the example.

5.2. The QVT-Partners model transformations approach

The QVT-Partners approach was outlined in section 3.3.10. In this section, I explain some relevant

aspects of the approach in more detail, since the MT languageshares several factors in common with

the QVT-Partners approach. Whilst the QVT-Partners approach has the concept of ‘specification’ and

‘implementation’ transformations (known asrelationsandmappingsrespectively1), for the purposes

of this chapter, transformation specifications are largelyirrelevant and are consequently ignored. The

QVT-Partners approach also defines a diagrammatic syntax for transformations which is similarly

ignored.

5.2.1. Overview

A transformation in the QVT-Partners approach consists of anumber of mappings. A mapping con-

sists of one or more sourcedomains(analogous to a function parameter) and a target imperativebody.

Each domain consists of one or morepatternsto match against. Patterns are written in a language

designed to make expressing constraints over models succinct; they are analogous to textual regular

expressions as found in e.g. Perl [WCO00]. Imperative bodies consist of a single expression in an

extended OCL variant that is capable of side effects. Using the meta-models presented in the previous

section, a simple mapping for transforming a class to a tablewould look as follows:

mapping Class_To_Table {
domain {

(Class)[name = n, attrs = A]
}

body {
let

columns = A->collect(attr columns = Set{} |
columns + Attr_To_Column(attr))

in
(Table)[name = n, columns = columns]

end
}

}

The intuitive meaning of this is hopefully fairly straightforward. TheClass To Table rule will

match against aClass model element, with the pattern binding whatever name the class has to the

variablen and whatever attributes it has to the variableA. The imperative body then creates a corre-

spondingTable whose name matches the source class. It should be noted that although theTable

expression in the body appears to be a pattern, this is something of a syntactic illusion: the pattern-

esque syntax is simply syntactic sugar for object creation and slot updating.Attr To Column

1The author of this thesis takes full responsibility for his decision to use these names — given their multiple overloaded
meanings in the wider field, in retrospect they were not the best possible choices.
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refers to another mapping, which is used to transform each attribute in the source class into one or

more database columns which are then placed within the target table.

5.2.2. Pattern language

In the context of this thesis, the most important novel aspect of the QVT-Partners approach is its

pattern language. Its aim is to provide a concise textual notation for expressing constraints over

models, thereby reducing the time needed to write and to comprehend a transformation. In this

subsection, I provide a brief background of patterns beforeinformally explaining the QVT-Partners

pattern language.

Many computer users are familiar with textual pattern languages e.g. via operating system com-

mands such asls * .txt . One can obtain a crude gauge of the popularity of textual regular expres-

sions by the fact that suitable libraries are found as standard in many modern programming languages

such as Perl, Python and Ruby. However whilst pattern languages are commonly thought of as be-

ing suitable only for matching against text, they can be usedto match against other, much richer,

datatypes. For example program transformation patterns match against complex AST’s [Big98]. In-

tuitively, designing a pattern language involves a compromise between providing a concise notation

for capturing common constraints, and providing a completely general mechanism — the more cases

a pattern language can express, the less concise it is likelyto be. Many pattern languages are thus

tailored for the common case as opposed to the general case. Textual regular expressions, for exam-

ple, are typically defined as finite-state automata which cannot express a seemingly simple constraint

such as ensuring that a string contains balanced open and close brackets2. It is therefore desirable

that when a pattern languages’ expressive limit is reached,a suitable escape mechanism into a more

powerful, if verbose, system is available.

The QVT-Partners approach provides a specific pattern language for expressing constraints over

models. The QVT-Partners approach is important in this respect because, as noted in chapter 3, most

current model transformation approaches do not provide pattern languages. Although it could be

argued that graph transformation approaches utilise pattern languages, their matching facilities are

relatively simplistic, particularly when compared to textual regular expressions; many approaches

allow nodes to only match fixed numbers of nodes and edges. Forthe purposes of this thesis, I

therefore do not consider graph transformation approachesto have pattern languages.

The QVT-Partners approach provides a small pattern language for expressing constraints over mod-

els. A slightly simplified version of the grammar for the pattern language is as follows:

2Note that some implementations of regular expressions are no longer ‘regular’ in the formal sense of that word. For
example, modern Perl contains an experimental feature which can express the balanced brackets constraint.
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〈pattern〉 ::= ‘_’

| 〈set pattern〉
| 〈seq pattern〉
| 〈obj pattern〉
| 〈expression〉

〈set pattern〉 ::= ‘{’ [ 〈pattern〉* (‘ | ’ 〈pattern〉)*] ‘ }’

〈set pattern〉 ::= ‘ [ ’ [ 〈pattern〉* (‘ | ’ 〈pattern〉)*] ‘ ] ’

〈obj pattern〉 ::= ‘( ’ 〈var〉 [ ‘ , ’ 〈var〉 ] ‘ ) ’ ‘ [ ’ [ 〈field pattern〉 (‘ , ’ 〈field pattern〉)*] ‘ ] ’

〈field pattern〉 ::= 〈var〉 ‘=’ 〈pattern〉

〈var〉 ::= ‘ ID ’

| ‘_’

The reference to the ruleexpressionis a reference to a rule which contains the extended OCL

variants’ grammar.

The QVT-Partners approach identifies three main types of patterns: set, sequence, and object pat-

terns. Although not explicitly noted as such, variables in patterns are essentially patterns themselves.

To ensure consistency with the rest of this chapter, I refer to object patterns asmodel element patterns.

All types of pattern share in common one thing: given a particular model element, they will either

succeed or fail to match against it.

Set and sequence patterns are similar to those used in function parameters in functional and logic

programming languages such as Haskell and Prolog. For example a set patternSet {1, 6 | R}
will match successfully against a set that contains at leasttwo items1 and6; a new set containing

all of the original sets items other than1 and6 will be bound toR. Intuitively, variable names mean

‘match anything and bind’; henceforth these will be referred to asvariable bindings. If the same vari-

able name appears more than once in the same scope, all instances of that variable name must match

against equivalent objects (the definition of object equality in the QVT-Partners approach is inher-

ited from the MOF [OMG00]). The special variable ‘’ matches against anything and immediately

discards the result; multiple instances of ‘’ do not need to match against equivalent objects.

Although relatively simple, model element patterns are thebackbone of the pattern language.

Model element patterns specify the type that matching modelelements must conform to, and an

optional ‘self’ variable which will be bound to the element matched against. The model element then

specifies a number of slots and a pattern against which each slot in the model element must match

against. The terse power of model element patterns is best demonstrated by example. Consider first
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the following model element pattern:

(Dog, d)[name = n, owner = (Person)[name = "Fred"]]

This pattern will match successfully against a model element which is of typeDog and whose owner

is Fred. After the match the variabled will point to the particularDog element matched, andn

will contain the dog’s name. This pattern is approximately equivalent to the following Converge-

esque pseudo-code function which returns a dictionary of bindings if the source element is matched

successfully, failing otherwise:

func match(element):
if not element.conforms_to(Dog):

return fail
d := element
n := element.name
if not element.owner.conforms_to(Person):

return fail
if element.owner.name != "Fred":

return fail

return Dict{"d" : d, "n" : n}

Although it may seem more logical to have used OCL to express this, it should be noted that express-

ing the creation and update of bindings in OCL would require complex encodings. Partly due to this

difficulty, the QVT-Partners approach defines a new calculusin order to have a suitable semantic do-

main. The calculus is given an operational semantics, and directly implements several pattern match-

ing primitives; it can be seen to be similar to the imperativeobject calculus of Abadi and Cardelli

[AC96] extended with pattern matching. Using Converge pseudo-code as the target translation of the

example pattern avoids the need to define and explain the calculus.

As this example translation clearly shows, the model element pattern is not only considerably terser

than its equivalent pseudo-code, but is arguably easier to comprehend. Since the pseudo-code has to

explicitly embed certain aspects of the model transformation (e.g. thereturn fail statements) the

important aspects of the pattern are obscured. This is simply a recasting of the problem of expressing

model transformations in GPLs. Even though the pattern language is simple, it neatly solves many

such problems.

5.2.3. Complete example

The running example expressed in the QVT-Partners approachis as follows:

mapping Class_To_Table {
domain {

(Class)[name = n, attrs = A]
}

body {
let

columns = A->collect(attr columns = Set{} |
columns + or(Primitive_Type_Attr_To_Column("", attr),

User_Type_Attr_To_Column("", attr))
in
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(Table)[name = n, columns = columns]
end

}
}

mapping User_Type_Attr_To_Column {
domain {

(String, prefix)[]
}

domain {
(Attribute)[name = n, type = (Class)[name = ct, attributes = A]]

}

body {
let

new_prefix =
if prefix == "" then

n
else

prefix + "_" + n
end

in
for A->collect(attr attrs = Set{} |

attrs + or(Primitive_Type_Attr_To_Column(new_prefix, a ttr),
User_Type_Attr_To_Column(new_prefix, attr)))

end
}

}

mapping Primitive_Type_Attr_To_Column {
domain {

(String, prefix)[]
}

domain {
(Attribute)[name = n, type = (PrimitiveDataType)[name = pt ]]

}

body {
Set{(Column)[name = if prefix == ""

name = n
else

name = prefix + "_" + n
end,
type = pt]}

}
}

One feature in particular that requires explanation is theor function used in theClass To Table

andUser Type Attr To Column mappings.or is not a normal function call, but is a built-in

combinatorwhich lazily executes the mappings passed as arguments to itin order until one succeeds

and produces a value. Note that unlike most rule-based systems, the QVT-Partners does not provide a

function which takes an element and attempts to find a rule which will transform it. Although theor

combinator can provide the same functionality, its repeated use becomes tiresome to the programmer

due to the continuous hard-coding of mapping names required.

The overall structure of this transformation is fairly simple. TheClass To Table is the top-

level mapping which takes in a class and iterates through itsattributes, invoking other mappings to

produce columns. Attributes are transformed in one of two ways. Both theUser Type Attr To-
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Column andPrimitive Type Attr To Column mappings take two arguments: a string

and an attribute. The string represents the current column name prefix being built up as the transfor-

mation drills into user data types. Attributes which have a primitive data type are transformed by the

Primitive Type Attr To Column mapping into a single column. Attributes which have a

user data type are transformed by theUser Type Attr To Column into one or more columns;

theUser Type Attr To Column mapping is the recursive mapping which drills into user data

types.

Although the example from section 5.1 has been successfullyexpressed in the QVT-Partners ap-

proach, the result is perhaps more verbose than one may have expected. Indeed, somewhat surpris-

ingly, a simple GPL equivalent of this example is smaller. One might thus reasonably expect that

expressing such a transformation in the QVT-Partners approach has other benefits. Since mappings

only allow the expression of unidirectional stateless transformations, the only potential gain over a

GPL approach is the possibility of automatically created tracing information. Unfortunately the QVT-

Partners approach does not explain how rules can create suchtracing information in practise. Since

the GPL equivalent is likely to be more readily understood bya far wider range of people, the overall

benefits of this approach are not clear cut. In the following subsection I outline three issues which are

indicative of the problems of the QVT-Partners approach.

5.2.4. Issues with the approach

As the verbose example in section 5.2.3 may suggest, the QVT-Partners approach has a number of

minor flaws and limitations which hamper practical use. In this subsection I outline, in approximately

descending order, three areas which are indicative of wherethe QVT-Partners falls short of its in-

tended goals. These points are instructive in understanding several of the design decisions made in

the MT language of section 5.3.

Inappropriate imperative language

The imperative bodies of mappings are written in a so-called‘extended OCL’, which is intended to

allow users familiar with OCL the chance to reuse that knowledge in an imperative setting. This has an

immediate negative effect: extending OCL with imperative constructs means that the often desirable

properties OCL had as a purely side-effect free language arelost3. Conversely when it comes to acting

as a normal GPL, the resulting language is decidedly unwieldy since it lacks appropriate constructs

for common operations. For example, there is no explicit sequencing mechanism: the imperative

3OCL 2.0 is not in fact entirely side-effect free; however thesituations in which this property is violated are largely
irrelevant in the context of this thesis.
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body consists of exactly one OCL constraint, and sequencingcan be achieved clumsily via thelet

expression.

Underpowered patterns

The pattern language defined in the QVT-Partners approach isnovel in the context of model transfor-

mations, and potentially very useful. However as the relatively simple definition in section 5.2.2 may

suggest the pattern language is lacking in significant expressive power.

The pattern language itself is limited in two main ways:

1. Within model element patterns it is only possible to checkfor the equality of slots. For example,

it is not possible to use a model element pattern to express that a match against an object should

succeed provided a given slot does not match a particular value.

In order to sidestep this problem, users must add additionalOCL in awhen clause.

2. Model element patterns can only match against a fixed number of elements. A model element

pattern, for example, can only match successfully against one, and only one, model element.

Note that whilst set and sequence patterns can match againstsets and sequences of arbitrary

lengths, only a fixed number of elements can be explicitly identified within any given set or

sequence.

There is no general solution to this problem. Typically a newmapping needs to be added so

that iteration in awhen clause can control the number of times another mapping is successfully

matched.

Scoping rules

Since a bare variable name in a slot constitutes a variable binding, the QVT-Partners approach has

fragile scoping rules, since it is difficult to distinguish avariable binding from a variable reference.

Consider the simple example of section 5.2.2(Dog, d)[...] . Dog is a reference to theDog

model class, whereasd is a variable binding which will be set to the self value of theobject which

matches the model element pattern. This means that it is impossible to express that a model element

pattern should match against a particular element. For example, in a meta-circular system where a

classM is an instance of theSingleton meta-class, the model element pattern(Singleton,

M)[...] will create a local variableM rather than ensuring that it matches against the element

pointed to byM.

The QVT-Partners approach allows awhen clause to be scoped over all domains establishing a

constraint across domains since it does not create any new variable bindings. However it is not possi-

114



ble to introduce a similar clause (often calledwhere in similar approaches) scoped over all domains

which introduces new variable binding without introducingambiguities. Consider the following ex-

ample: should thex in the pattern bind the value ofslot to the variable, or should it ensure that

slot contains the value introduced in thewhere clause?

mapping X {
domain {

(E)[slot = x]
}

where {
x := 5

}
}

In the QVT-Partners approach, scoping ambiguities are avoided by disallowing several potentially

useful features that may introduce new variable bindings. However the end result is that whilst ex-

pressions such as in(Dog, d)[...] are statically resolvable, they are confusing for users. The

overall effect of the scoping rules are to severely limit thepossibilities for extending or embedding

the language.

5.2.5. Summary

The QVT-Partners approach provides a number of innovationscompared to other model transforma-

tion approaches, most notably the use of patterns. However in practise the simplistic nature of the

approach means that it falls somewhat short in its aim to allow users to express model transformations

more easily than in GPLs.

In the next section of this chapter, I define a new model transformation language MT which takes

elements of the QVT-Partners approach, adding extra features and addressing some of the approaches

flaws.

5.3. The MT Language

The MT language is a new unidirectional stateless model transformation language, implemented as a

DSL within Converge. MT transforms instances of the typed modelling language TM (section 4.5)

into new instances of TM. In essence, MT defines a natural embedding of model transformations

within Converge, using declarative patterns to match against model elements in a terse but powerful

way, whilst allowing normal imperative Converge code to be embedded within rules.

Because MT is implemented as a DSL within Converge, it has existed as a concrete implementa-

tion from shortly after its original design was sketched out. This has proved to be significant, since

practical experience with the approach has been rapidly fedback into the implementation. Rapid
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development has been facilitated by the flexible environment provided by Converge. The ability

to experiment with the implementation has ultimately led MTto contain a number of insights and

distinct differences from other approaches. Such insightsrange from a more sophisticated pattern

language to suitable ways to visualize model transformations. In the wider context of this thesis, MT

is also important as the basis of the change propagating language presented in chapter 6.

In this section I first highlight the main features of MT, thenpresent an MT version of the running

example, before showing how MT transformations are run in practise. This section is intended to

present the basic features of MT, before more advanced features are described in section 5.5.

5.3.1. Basic details

An MT transformation has a name and consists of one or more rules, the ordering of which is sig-

nificant. Rules are effectively functions which define a fixednumber of parameters and which either

succeed or fail depending on whether the rule matches against given arguments. Rules and functions

in MT are essentially synonymous as in approaches such as TXL(see section 3.3.6). If a rule matches

successfully, one or more target elements are produced and it is said to have executed; if it fails to

match successfully, nothing is produced. Rules are comprised of: a source matching clause contain-

ing one or more source patterns; an optional when clause on the source matching clause; a target

producing clause consisting of one or more expressions; andan optional where clause for the target

production clause.

An MT transformation takes in one or more source elements, which are referred to as theroot set

of source elements. The transformation then attempts to transform each element in the root set of

source elements using one of the transformations rules, which are tried in the order they are defined.

If no rule matches a given element, an exception is raised andthe transformation is aborted.

The general form of an MT transformation is as follows:

import MT.MT

$<MT.mt>:
transformation transformation name

rule rule name:
srcp:
pattern1

...
patternn

src when:
expr

tgtp:
expr1

...
exprn

tgt where:
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expr1

...
exprn

Thesrcp andsrcp when clauses are collectively said to form thesource model clauses ;

similarly the tgtp and tgtp when clauses are collectively said to form thetarget model

clauses .

Transformations are translated by MT into a Converge class with the name of the transformation;

rules are translated to functions of the same name within theclass. In order to run a transformation,

the transformation class is instantiated; each class can beinstantiated multiple times. Transformation

classes have additional functions for e.g. extracting tracing information (see section 5.3.6).

Transformation rules contain normal Converge code in expressions; such expressions can reference

variables outside of the model transformation DSL fragment. This is an important aspect of MT since

it allows users to use normal Converge functions arbitrarily, and without penalty. In other words,

when the model transformation language itself is inadequate in a particular respect, a normal reusable

Converge function can be defined outside of the model transformation, but which can be called from

within any model transformation.

MT transformations hold a record of tracing information, which is automatically created as trans-

formation rules are executed. Each rule executed adds a new trace. Each trace is a tuple, encoded

as a Converge list, of the form[[ source elements], [ target elements]] . The source

elements that are stored in the tracing information do not necessarily constitute the entire universe

of elements passed via parameters to the transformation. Bydefault, only elements matched by non-

nested model element patterns are recorded in the tracing information. Section 5.4.2 details the default

tracing creation mechanism, and explains how it can be augmented or overridden.

A simple example of a transformation and a rule is as follows:

$<MT.mt>:
transformation Classes_To_Tables

rule Class_To_Table:
srcp:

(Class, <c>)[name == <n>, attrs == <A>]

tgtp:
(Table)[name := n, cols := columns]

tgt_where:
columns := []
for attr := A.iterate():

columns.extend(self.transform([""], [attr]).flatten( ))

This rule is the MT analogue of the rule in section 5.2.1. Notehow normal Converge code is inter-

spersed amongst the MT DSL (see section 5.6.12 for implementation information). Since transforma-

tions are translated to Converge classes, to access functions ‘internal’ to the transformation, one must

use theself. prefix. Thetransform function, for example, takes source elements and tries each
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rule in the transformation in succession until it finds one which successfully matches the elements

and produces values. If thetransform function does not find a suitable rule then, by default, an

exception is raised. Thetransform function is also used internally by the transformation as the

mechanism used to transform the root set of source model elements. Section 5.5.3 shows an example

of a rule that can guarantee that thetransform rule can be made to succeed on any given input.

In the following subsections I explain in more detail how rules match and produce elements, in-

cluding a detailed examination of the pattern language and pattern multiplicities.

5.3.2. Matching source elements with patterns

Each pattern in thesrcp clause of a rule corresponds to a domain in the QVT-Partners approach. Ar-

guments must be passed as lists rather than sets; whilst TM elements can be placed into Converge sets

(section 4.5.2), users may wish to transform non-hashable elements such as lists. Each list contains

the top-level model elements which each pattern can match against. Elements can exist, directly or

indirectly – that is, as top-level elements, or by being reachable via the graph that constitutes a model

– in one or more arguments. In order to avoid the problems noted in section 5.2.4, variable bindings

are surrounded by angled brackets ‘<’ and ‘>’ to distinguish them from normal Converge variable

references.

The matching algorithm used by MT is intentionally simple. Each pattern in turn attempts to

match against the top-level source elements passed in the appropriate argument. Each time a pattern

matches it produces variable bindings which are available to all subsequent patterns. If a pattern

fails to match, control backtracks to previous patterns (inthe order of most recently called), which

attempt to generate another match given the variable bindings and arguments available to them. The

generation of an alternative match causes new variable bindings to produce, which allows the rule to

attempt another match of later patterns. Thesrc when clause, if it exists, is tried once all patterns

have been matched successfully; it is essentially a guard over patterns. If it fails, patterns are requested

to generate new matches exactly as in the failure of a patternto match. The implementation details of

such behaviour are largely hidden from the user by the use of patterns.

The order that patterns are defined in thesrcp clause is significant, for two separate reasons.

Most obviously it is necessary to ensure that users’ sequence variable bindings and references to the

bound variables correctly. However there is a second reasonthat, whilst less obvious, is critical to

the performance of larger transformations. Making the order of patterns significant allows users to

make use of their domain knowledge to order them in an efficient way. Consider a rule which has

two independent patternsx andy wherex tends to match against many source elements, buty against

few. Placingx first in thesrcp clause means that wheny fails x will try to produce more values; if
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x can produce multiple matches,y may be executed many times unnecessarily. Ify is placed first in

thesrcp clause then if it fails to match against its input the rule fails without ever trying to matchx.

Sensible ordering of patterns in this way can lead to a significant boost in performance as unnecessary

matches are not evaluated.

Each pattern is translated to a Converge generator, which provides a natural mechanism for lazily

generating all possible matches. Translated patterns are conjoined to make use of Converge’s back-

tracking abilities. Note that thesrc when clause, if it exists, must be a single Converge expression

which either succeeds or fails given variable bindings generated by patterns in thesrcp clause.

5.3.3. Pattern language

MT’s pattern language is a super-set of that found in the QVT-Partners approach. MT defines a

number ofpattern expressions: model element patterns, set patterns, variable bindings,and normal

Converge expressions. Patterns written in the latter language can be directly translated into MT with

only minor syntactic changes.

There are two significant differences between the two pattern languages. Firstly – as noted in the

section 5.3.2 – variable bindings in MT must be surrounded byangled brackets to ensure harmony

between MT and Converge’s scoping rules. Secondly, model element patterns in MT can contain

comparisons other than equality between slots; henceforththese are known asslot comparisons. Any

of the standard Converge comparison operators can be used inslot comparisons (see section 4.1.5 for

a list of comparison operators). A model element pattern in MT is said to consist of zero or more slot

comparisons.

As a trivial example of slot comparisons, one can take the model element pattern example from

section 5.2.2 (making the necessary minor syntactic modifications), and change it to find dogs whose

owner is not Fred:

(Dog, <d>)[name == <n>, owner == (Person)[name != "Fred"]]

This same example would necessitate an OCL constraint in awhen clause in the QVT-Partners ap-

proach.

Allowing different types of slot comparison in model element patterns opens up new possibilities.

Since MT allows the same slot name to appear in more than one slot comparison, one can test a slot

for multiple conditions as in the following model element pattern:

(Person)[age >= 18, age <= 25]

There is one other additional feature in the MT pattern language. Since model elements are Con-

verge objects, slot comparison is not entirely synonymous with attribute comparison, since slots may

contain functions. MT’s model element patterns therefore provides support for functions as shown in
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the following example:

(Person)[calc_wage() > 18000]

Functions in slot comparisons can be passed an arbitrary number of arguments passed to them; all

arguments are normal Converge expressions.

Pattern multiplicities are not considered to be a part of thecore pattern language, but are a signifi-

cant enhancement in MT over the QVT-Partners approach; theyare detailed in section 5.5.2.

5.3.4. Producing target elements

When an MT rule executes it produces one or more target elements. An exception is raised if a rule

executes but fails to produce any elements. The number of elements produced is determined by the

number of expressions in thetgtp clause. If thetgtp clause has a single expression, then the rule

produces a single element; if it contains more than one expression, then the rule produces a list whose

length is the same as the number of expressions in thetgtp clause. Each expression is a normal

Converge expression, but with an important addition. The MTDSL admitsmodel element expres-

sionsby extending the Converge grammar ruleexpr (see section 5.6.13 for implementation details).

Model element expressions differ from model element patterns both conceptually and syntactically.

Conceptually a model element expression is an imperative, creational action. There is therefore no

concept of a ‘self’ variable in a model expression. Furthermore, to reinforce the notion that model

expressions are imperative actions, slot assignments use the normal Converge assignment operator

:= .

Expressions intgtp have an optionalfor suffix which allows a single expression to generate

multiple values. If one ignores the obvious syntactic difference of the relative location of the keyword,

the for suffix works largely as its normal Converge counterpart, taking a single expression and

continuously pumping it for values until it fails. Variables defined in thefor suffix are scoped only

over the single expression in thetgtp clause that it suffixes. AssumingCOLSis a list, a typical usage

of this feature is as follows:

(Column)[name := col.name] for col := COLS.iterate()

Note that if the above example was the only expression in atgtp , the result of the rule would be a list

of lengthCOLS.len() . However, if the expression was the first of two in atgtp , the rule would

produce a list of length two, with the first element being a list of lengthCOLS.len() . Section 5.8

suggests a possible extension to MT which would allow a rule to produce a number of elements not

solely determined by the number of expressions in itstgtp .

The tgt where clause, if it exists, is a sequence of Converge expressions which are executed

before thetgtp clause. Variables in thetgt where clause are automatically scoped over the
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tgtp clause. Unlike thesrc when clause, there is no notion of success or failure with the

tgt where clause, which is simply a helper function for thetgtp clause. Note that expressions

in the tgt where clause can contain model element expressions.

5.3.5. Example

The following is a complete Converge module which implements the running example:

1 import Sys
2 import Relational, Simple_UML
3 import MT.MT
4

5 func concat_name(prefix, name):
6 if prefix == "":
7 return name
8 else:
9 return prefix + "_" + name

10

11 $<MT.mt>:
12 transformation Classes_To_Tables
13

14 rule Class_To_Table:
15 srcp:
16 (Class, <c>)[name == <n>, attrs == <A>]
17

18 tgtp:
19 (Table)[name := n, cols := columns]
20

21 tgt_where:
22 columns := []
23 for attr := A.iterate():
24 columns.extend(self.transform([""], [attr]).flatten( ))
25

26 rule User_Type_Attr_To_Column:
27 srcp:
28 (String, <prefix>)[]
29 (Attribute)[name == <n>, type == (Class)[name == <cn>, attr s == <CA>]]
30

31 tgtp:
32 self.transform([concat_name(prefix, n)], [ca]) for ca := CA.iterate()
33

34 rule Primitive_Type_Attr_To_Column:
35 srcp:
36 (String, <prefix>)[]
37 (Attribute)[name == <n>, type == (PrimitiveDataType)[nam e == <pn>]]
38

39 tgtp:
40 [(Column)[name := concat_name(prefix, n), type := pn]]

The overall structure of this transformation is deliberately similar to the version in the QVT-Partners

approach of section 5.2.3. One important difference is thatthe repetitive code which builds up the

column prefix is factored out into a normal top-level function concat name.

A slight difference between the MT transformation and the QVT-Partners approach equivalent is

that theUser Type Attr To Column in the former rule produces a nested list, the innermost

list containing a list of columns. The outer list will be of lengthCA.len() , with each entry in the list

being of arbitrary length. Consequently theflatten function call in line 24 is necessary to remove

the nesting that will be present if theUser Type Attr To Column rule is called.
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5.3.6. Running a transformation

Details of how to run a model transformation, including details such as the format of its inputs and

outputs and so on, are surprisingly absent from descriptions of the majority of model transforma-

tion approaches. Since this has implications for the designof the model transformation languages

presented in this thesis, it is important to be explicit about how transformations are run. In this sub-

section I detail the process of running a MT transformation.

Running a transformation in MT involves instantiating a transformation class and passing it model

elements. The transformation then executes, attempting tofind a rule to transform each element in

the root set of source elements. If the transformation is successful in transforming the root set of

elements, a transformation object will be returned. The transformation object can then be queried

to find the target model elements produced and the corresponding tracing information. The format

of MT’s inputs and outputs is simple. Source elements must beinstances of elements defined in a

TM.model class block (see section 4.5.2, and note that built-in Converge types such as strings

and ints are defined to be valid TM model elements). Similarlytarget elements will be TM model

elements.

The following example creates a simple input model and then executes theClasses To Tab-

les transformation:

dog := Simple_UML.Class("Dog")
person := Simple_UML.Class("Person")

dog.attrs.append(Simple_UML.Attribute("name", Simple _UML.String))
dog.attrs.append(Simple_UML.Attribute("owner", perso n))

person.attrs.append(Simple_UML.Attribute("name", Sim ple_UML.String))
person.attrs.append(Simple_UML.Attribute("age", Simp le_UML.Integer))

transformation := Classes_To_Tables(dog)

The target elements produced by the transformation can be accessed via theget target function.

Since both the source and target elements are TM model elements, one can apply the standard TM

visualization to our example. The source model is shown in figure 5.4, with the target model in

figure 5.5. Note that the colours given to the source and target models will be used in the remainder

of this thesis: source elements are shown in blue, target elements in green. To emphasise that all

such visualization’s are the result of a real, running system, figure 5.6 shows an MT transformation

executing on an OpenBSD machine.

If an element passed to thetransform function can not be transformed by any of the available

rules, an exception is raised showing the offending element(s) and the transformation is aborted. Users

may catch such an exception if desired, however one may reasonably ask why the transformation does

not attempt to recover gracefully in such instances. Unfortunately this seems to be unrealistic in the
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Figure 5.4.: Source model.

general case for the following reason. Since thetransform function is called with the expectation

that it will return a result, when it fails to find a suitable rule to transform a given element it is unable

to fulfil the callers expectation that an element will be returned. In order to maintain this expectation,

transform could conceivably return a ‘dummy’ target element as a placeholder. However such

a dummy element would be unlikely to satisfy the constraintson the target meta-model, and would

thus generally cause an exception to be raised. In the, probably small, number of situations where the

dummy element did not cause an error, it is then less than clear that the resulting target model will

be of significant use to the user. Section 5.5.3 shows an example of a ‘default’ rule which guarantees

that thetransform function can not fail.

5.4. Tracing information

In this section I describe how MT deals with tracing information. First I show how tracing information

is visualized, then describe the standard mechanism for creating it, before showing how the user can

augment or override the default tracing information created.
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Figure 5.5.: Target model.

5.4.1. Visualizing tracing information

Section 5.3.6 showed how a MT transformation can be run, and used the default visualization capa-

bilities of TM to visualize the source and target models of a transformation. However, MT transfor-

mation instances also store tracing information (see section 5.3.1) relating source and target elements.

Visualizing tracing information is an interesting challenge, and one that has hitherto received scant

attention in the context of model transformations. Work on trace visualization in areas such as ob-

ject orientated systems (e.g. [BH90]) is of little use in thecontext of model transformations due to

the different nature of what is being visualized. Egyed motivates the use of tracing information in the

context of modelling, but explains neither how to generate or visualize such information [Egy01]. MT

and TM cooperate together to present a simple visualizationof tracing information that also allows

users to build up a detailed picture of how the transformation executed.

In order to visualize tracing information, one needs to understand how this information is stored.

Transformation instances contain two separate lists of equal length related to tracing information. The

first list contains tuples (encoded as lists) relating source and target elements. The second list contains

the name of the transformation rule which created the corresponding entry in the first list. The fact

that they are stored separately is a simple implementation detail — conceptually these two lists can

be considered to constitute one single piece of information.

TheTM.Visualizer module defines a functionvisualize trace(transformation)

which takes a transformation instance and visualizes it complete with tracing information. The result

of visualizing the tracing information for the example model of section 5.3.6 can be seen in figure

5.7. The original source model is on the left in blue, with thetarget model on the right in green. The

black lines between source and target elements are the traces between source and target elements.

Individual traces always run from a single source element toa single target element. Each trace has a

name of the form tn wheren is an integer starting from 1. The integer values reflect the traces position

in the execution sequence; trace numbers can be compared to one another to determine whether a rule

execution happened earlier or later in the execution sequence. Trace names can be looked up in the
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Figure 5.6.: MT running.

‘Tracing’ table at the top right of figure. The tracing table contains the name of each rule which was

executed at least once during the transformation. Against each rule name are the names of traces;

each trace name represents an execution of that rule. Note that a single rule execution can create more

than one trace; however each trace created in a single execution will share the same name.

Although the visualization of tracing information may seemsimple, it allows one to infer a great

deal of useful information about the execution of a transformation. This information is useful both

for analysis and debugging of a transformation. At a simple level, one can use the names of trac-

ing information to determine which rule consumed which source elements and produced which tar-

get elements. For example the ‘t1’ trace from the source class to the target table is a result of the

Class To Table rule. One can also deduce from this traces name that it was theresult of the

first rule execution in the system. Similarly since two traces share the name ‘t4’, one can determine

that a rule – in this caseUser Type Attr To Column – created more than one target element

in a single execution.

Although this subsection has talked about how tracing information is stored and visualized, and
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Figure 5.7.: Visualizing tracing information.

what the visualization can be used for, it has not discussed how the tracing information is created.

Section 5.4.2 explains how tracing information is created,and how users can control its creation.

Alternative visualizations

The tracing information in figure 5.7 is visualized with the source and target models formatted ex-

actly as they were when presented individually in figures 5.4and 5.5. Whilst this visualization works

well for small transformations, larger transformations with greater volumes of tracing information

tend to become unreadable as the strict formatting of the source and target models forces traces to

overlap with each other. There is thus an alternative form ofvisualization available via the visual-

izers visualize trace clustered 4 function where the source and target elements can be

formatted directly alongside one another. Figure 5.8 showsthis alternative visualization. Note that

the diagram colouring now becomes critical to distinguish source and target model elements from one

4The ‘clustered’ part of this function name reflects the mechanism used in GraphViz to enable this layout.
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Figure 5.8.: Visualizing tracing information with the freelayout of source and target model elements.

another. Due to its general lack of cluttering, this is generally the preferred visualization when tracing

information is involved, and is used in the remainder of thisthesis.

5.4.2. Standard tracing information creation mechanism

Section 5.4.1 showed how MT and TM can visualize the tracing information automatically created

by MT transformations. In this subsection I outline how the default tracing information is created by

MT. Most, if not all, model transformation approaches are currently somewhat vague on this subject.

There is therefore little prior art to use as a basis, or pointof comparison, for any such mechanism.

MT takes a simple approach to the problem to ensure that its behaviour is predictable from a users

perspective – this is vital to ensure that users can make informed choices about when and where to

add or override tracing information (see section 5.4.3).

As standard, tracing information in a rule is created between all source elements matched by non-

nested model element patterns, and all target elements produced by model element expressions, nested

or otherwise. Non-nested model element patterns are definedto be those which are not nested within

another model element pattern. For example in the followingmodel element pattern, tracing informa-

tion will be created only from instances of theDog model class:
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(Dog, <d>)[name == <n>, owner == (Person)[name != "Fred"]]

It may initially seem somewhat arbitrary to try to minimise the source elements used in tracing infor-

mation whilst maximising the target elements used. The reason for minimising the source elements

used is due to a simple observation: individual source elements are often matched in more than one

rule execution. This then causes some source elements to be the source for large numbers of traces

which can obscure the result of the transformation. Empirical observations of MT transformations

suggest that when model elements are matched via nested model element patterns, they are also

matched as a non-nested model element pattern during a separate rule execution. In the case of target

elements, a different challenge emerges. Rather than trying to create an ‘optimum’ amount of traces

one wishes to ensure that, as far as is practical, every target element has at least one trace associated

with it. Since target element expressions are inherently localised to individual rule executions it is

highly unusual for an element created by such an expression to be the target of more than one trace.

Thus it is important to ensure that nested target element expressions have traces associated with them.

Section 5.6.15 shows how nested model element patterns can be made to contribute towards tracing

information if desired (that section also shows the large number of extra, largely uninteresting, traces

created).

The standard tracing information mechanism can be seen in practice by comparing the visualized

trace information of figure 5.8 with the transformation thatcreated it in section 5.3.5.

5.4.3. Augmenting or overriding the standard mechanism

Whilst the standard tracing creation mechanism performs well in many cases, users may wish to

augment, or override, the default tracing information created. Users may wish to add extra tracing

information to emphasise certain relationships within a transformation, or to remove certain tracing

information that unnecessarily clutters the transformation visualization. MT provides a simple capa-

bility for augmenting, or overriding, the default tracing information created by the standard mecha-

nism.

For example, using the MT example presented in section 5.3.5as a base, imagine that one wishes

to add extra traces between the source class and all target columns. In order to achieve this one makes

use of the optionaltracing add clause on MT rules. This clause must contain a single Converge

expression which evaluates to a tuple relating source and target model elements. The tuple is then

added to the tracing information created automatically by the rule. The newClass To Table

rule looks as follows:

rule Class_To_Table:
srcp:

(Class, <c>)[name == <n>, attrs == <A>]
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Figure 5.9.: Augmenting the default tracing information.

tgtp:
(Table)[name := n, cols := columns]

tgt_where:
columns := []
for attr := A.iterate():

columns.extend(self.transform([""], [attr]).flatten( ))

tracing_add:
[[c], columns]

Note that sincec is a single element it needs to be placed within a list to create a valid trace tuple. The

tuple in thetracing add clause is then added to the tracing information automatically created by

the rule – hence the new traces have the same tracing number (in this case ‘t1’) as the default traces

for the rule execution. Figure 5.9 shows the resulting visualization of the transformation with the

extra tracing information added in.

In some circumstances, users may wish to entirely override the default tracing information, rather

than simply augmenting it. Thetracing override clause in a rule turns off the rules default

tracing generation, replacing it with the tuple returned bythe single Converge expression in the

clause. tracing add and tracing override are thus mutually exclusive clauses within a

rule. Whilst maintaining the additional tracing information created by the modifiedClass To Ta-

ble rule, assume one now wishes the other two rules in the transformation to be prevented from

generating any tracing information at all. In order to achieve this, tracing override clauses
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which contain tuples relating the empty set of source elements to the empty list of target elements are

defined. The modified rules are as follows:

rule User_Type_Attr_To_Column:
srcp:

(String, <prefix>)[]
(Attribute)[name == <n>, type == (Class)[name == <cn>, attr s == <CA>]]

tgtp:
self.transform([concat_name(prefix, n)], [ca]) for ca := CA.iterate()

tracing_override:
[[], []]

rule Primitive_Type_Attr_To_Column:
srcp:

(String, <prefix>)[]
(Attribute)[name == <n>, type == (PrimitiveDataType)[nam e == <pn>]]

tgtp:
[(Column)[name := concat_name(prefix, n), type := pn]]

tracing_override:
[[], []]

The result of running the transformation with its three rules altered can be seen in figure 5.10. As this

example shows, users can completely customise the tracing information created by MT to their own

needs.

5.5. Towards more sophisticated transformations

The previous section introduced the basics of the MT language, via a simple version of the running

example. In this section, I delve into some of the more advanced aspects of the MT language which

allow more complex and sophisticated transformations to beexpressed. In order to explore these

aspects fully, I first present a more complex version of the running example.

5.5.1. Extending the running example

In this subsection I define the ‘advanced’ variant of the running example. The overall idea is, as

before, to translate UML class models into relational database models. In order to make the example

more challenging, the ‘Simple UML’ meta-model is extended in several ways as can be seen in figure

5.11. These extensions extend the required transformationas follows:

• Associations are added to the meta-model. Associations adda significant degree of complexity

to the meta-model because a class’s ‘real’ attributes are determined by the union of the attributes

it directly links to, and the associations for which it is a source.

• Attributes can be marked as being part of a class’s primary key by having theis primary

attribute set to true. Note that associations play no part indetermining a class’s primary key.
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:Class

mod_id = "10" 
name = "Dog"

:Attribute

mod_id = "12" 
name = "name"

attrs

:Attribute

mod_id = "13" 
name = "owner"

attrs

:Table

mod_id = "19" 
name = "Dog"

t1

:Column

mod_id = "16" 
type = "String" 
name = "name"

t1

:Column

mod_id = "17" 
type = "String" 
name = "owner_name"

t1

:Column

mod_id = "18" 
type = "Integer" 
name = "owner_age"

t1

:PrimitiveDataType

mod_id = "9" 
name = "String"

type

:Class

mod_id = "11" 
name = "Person"

type

:Attribute

mod_id = "14" 
name = "name"

attrs

:Attribute

mod_id = "15" 
name = "age"

attrs

type

:PrimitiveDataType

mod_id = "8" 
name = "Integer"

type

cols colscols

Tracing
Class_To_Table: t1

Figure 5.10.: Augmenting and overriding the default tracing information.

• Classes which have theis persistent attribute set to true will be converted to tables;

references to such classes (via attribute types or associations) will result in the classes primary

key attributes being to converted to columns used as a foreign key. Class’s which do not have

the is persistent attribute set to true will not be transformed into tables, and will have

their attributes drilled into, as in the simple transformation.

The relational database meta-model is also extended, as shown in figure 5.12. The extended meta-

model allows tables to define primary keys and foreign keys. Note that, since the TM data model

allows nested data types to be expressed, foreign keys are defined as a sequence of sequences of

columns.

5.5.2. Pattern multiplicities

One of the problems noted in section 5.2.4 with the QVT-Partners approach is that model element

patterns can only match against a fixed number of elements. Some very simple transformations

naturally consist only of rules which match against a fixed number of elements in the source model.
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MObject

mod_id : String

to_string()
initialize()

of

Classifier

name : String

initialize()

Attribute

is_primary : bool
name : String

initialize()

PrimitiveDataType

 

initialize()

Class

is_persistent : bool

initialize()

Association

 

initialize()

attrs
* ordered

typedest src

Figure 5.11.: Extended ‘Simple UML’ meta-model.

However, many, if not most, non-trivial transformations contain rules which need to match against an

arbitrary number of source elements. Expressing such transformations in the QVT-Partners approach

can be cumbersome.

To solve this problem, MT adapts the concept of multiplicities found in many textual regular ex-

pression languages. Each source pattern in MT can optionally be given amultiplicity. Multiplicities

specify how often a given source pattern can, or must, match against its source elements. Multiplici-

ties are therefore a constraint on the universe of model elements passed in the parameter correspond-

ing to the patterns position in thesrcp clause. Each pattern in asrcp clause can optionally be

suffixed with a multiplicity and an associated variable binding. The following example of a pattern

multiplicity will match zero or more associations, assigning the result of the match to theassocs

variable:

(Association, <assoc>)[name == n] : * <assocs>

The syntax for multiplicities is inspired by Perl’s regularexpression languages. The following

multiplicities, and possible qualifiers, are defined in MT:
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MObject

mod_id : String

to_string()
initialize()

of

Table

fkeys : Seq(Seq(Column))
name : String

initialize()

Column

type : String
name : String

initialize()

pkey
* ordered

cols
* ordered

Figure 5.12.: Extended relational database meta-model.

m Must match exactlymsource elements.

* Will match against zero or more source elements.

* ! Must match against every source element.

* ? Will match against the minimum possible number of source elements.

m .. n Must match no less thanm, and no more thann source elements.

m .. n ? Will match against the minimum number of source elements oncemelements have

been matched, but will not exceedn matches.

m .. * Must match no less thanmelements.

m .. * ? Will match against the minimum number of source elements oncemelements have

been matched.

As with Perl textual regular expressions, multiplicities default to ‘greedy’ matching — that is, they

will match their pattern against the maximum number of elements that causes the multiplicity to

be satisfied. When backtracking in asrcp clause calls upon a multiplicity to provide alternative

matches, it then returns matches of lesser lengths. The concept of greedy and non-greedy matching

is however much simpler in the case of textual regular expressions since text is an inherently ordered

data type. Thus the length of matches is calculated by determining how many characters past a

fixed starting point a match extends. In contrast to this, model elements have no order with respect

to one another, and thus MT has to take a very different approach to the concepts of greedy and

non-greedy matches. MT defines the length of a multiplicities match as the number of times the

multiplicity matched; however since model elements are notordered, this does not present an obvious

way of returning successively smaller matches. In order to resolve this problem in the case of greedy
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matching, MT creates the powerset of matches, and iterates over it, successively returning sets with

smaller number of elements when called upon to do so. Note that whilst MT guarantees that with

greedy matching|matchn| ≥ |matchn+1|, it makes no guarantees about the order that sets of equal

size in the powerset will be returned.

The? qualifier reverses the default greedy matching behaviour, attempting to match the minimum

number of elements that causes the multiplicity to be satisfied, successively returning sets of greater

size from the powerset when called upon to do so. The! qualifier is the ‘complete’ qualifier which

ensures that the pattern matches successfully against every model element passed in the patterns

appropriate argument. Whilst the? qualifier, in a slightly different form, is standard in most textual

regular expression languages, the! qualifier is specific to MT.

Variable bindings in the presence of multiplicities

Variable bindings in patterns suffixed by multiplicities need to be treated differently from variables

in bare patterns. When a multiplicity is satisfied, its associated variable binding is assigned a list of

dictionaries. Each dictionary contains the variable bindings from a particular match of the pattern.

The need for different treatment of variable bindings inside and outside multiplicities is most easily

shown by examining what would happen if they were treated identically. Consider the following

incorrect MT code:

(Association)[src == (Class)[name = n]] : * <assocs>
(Class, <c>)[name == n]

A first glance may suggest that when the rule these patterns are a part of runs,c will be set to the

class which has the same name as the associations source class. However, the example is nonsensical

sincen has no single value. Indeedn may have no value at all, since it will be bound to zero or more

class names as the multiplicity attempts to match the model pattern as many times as possible. As this

example shows,n has no meaning outside of the multiplicity it is bound in; however it clearly has a

meaning in the context of the multiplicity.

In order to resolve this quandary, MT takes a two stage approach. Within multiplicities, local vari-

able bindings are accessed as normal. At the end of each successful match, MT creates a dictionary

relating variable binding names to their bound values. The list of these values is then assigned to

the variable binding associated with the multiplicity. Thus the variable bindings for each individual

match can be accessed. To illustrate this, I reuse the original multiplicities example:

(Association)[src == (Class)[name = <n>]] : * <assocs>

Printing theassocs variable would lead to output along the following lines:

[Dict{"n" : "orders"}, Dict{"n" : "parts"}]
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The MTmodule provides a convenience functionmult extract(bindings, name) which

iterates over a list of dictionaries, as generated by a multiplicity, and extracts the particular binding

name from each dictionary, returning a list. A standard idiom in MT is to use this function with a self

variable binding in a model element pattern, which allows a user to determine all the model elements

matched by a particular pattern multiplicity.

5.5.3. Extended example

In this subsection I show the MT version of the extended example. The added complexity in this

version of the transformation over the original simpler version is due to three considerations:

1. Classes can not be transformed in isolation – all associations for which a class is the source must

be considered in order that the table that results from a class contains all necessary columns.

2. Classes which are marked as persistent must be transformed substantially different from those

not marked as persistent.

3. Foreign keys and primary keys reference columns. It is important that the column model ele-

ments pointed to by a table are the appropriate model elements, and not duplicates.

The MT example is as follows:

$<MT.mt>:
transformation Classes_To_Tables

rule Persistent_Class_To_Table:
srcp:

(Class, <c>)[name == <n>, attrs == <attrs>, is_persistent = = 1]
(Association, <assoc>)[src == c] : * <assocs>

tgtp:
(Table)[name := n, cols := cols, pkey := pkeys, fkeys := fkeys ]

tgt_where:
cols := []
pkeys := []
fkeys := []
for aa := (attrs + MT.mult_extract(assocs, "assoc")).iter ate():

a_cols, a_pkeys, a_fkeys := self.transform([""], [aa])
cols.extend(a_cols)
pkeys.extend(a_pkeys)
fkeys.extend(a_fkeys)

rule Primary_Primitive_Type_Attribute_To_Columns:
srcp:

(String, <prefix>)[]
(Attribute)[name == <attr_name>, type == (PrimitiveDataT ype)[name == \

<type_name>], is_primary == 1]

tgtp:
[col]
[col]
[]

tgt_where:
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col := (Column)[name := concat_name(prefix, attr_name), t ype := \
type_name]

rule Non_Primary_Primitive_Type_Attribute_To_Columns :
srcp:

(String, <prefix>)[]
(Attribute)[name == <attr_name>, type == (PrimitiveDataT ype)[name == \

<type_name>], is_primary == 0]

tgtp:
[(Column)[name := concat_name(prefix, attr_name), type : = type_name]]
[]
[]

rule Persistent_User_Type_Attribute_To_Columns:
srcp:

(String, <prefix>)[]
(Attribute, <attr>)[name == <attr_name>, type == (Class, < class_>) \

[name == <class_name>, attrs == <attrs>, is_persistent == 1 ]]

tgtp:
cols
[]
[cols]

tgt_where:
cols := []
for attr := attrs.iterate():

a_cols, a_pkeys, a_fkeys := self.transform([concat_name (prefix, \
attr_name)], [attr])

cols.extend(a_pkeys)

rule Non_Persistent_User_Type_Attribute_To_Columns:
srcp:

(String, <prefix>)[]
(Attribute, <attr>)[name == <attr_name>, type == (Class, < class_>) \

[name == <class_name>, attrs == <attrs>, is_persistent == 0 ]]

tgtp:
cols
[]
[]

tgt_where:
cols := []
for attr := attrs.iterate():

a_cols, a_pkeys, a_fkeys := self.transform([concat_name (prefix, \
attr_name)], [attr])

cols.extend(a_cols)

rule Persistent_Association_To_Columns:
srcp:

(String, <prefix>)[]
(Association)[name == <attr_name>, dest == (Class, <class _>)[name == \

<class_name>, attrs == <attrs>, is_persistent == 1]]

tgtp:
cols
[]
[cols]

tgt_where:
cols := []
for attr := attrs.iterate():

a_cols, a_pkeys, a_fkeys := self.transform([concat_name (prefix, \
attr_name)], [attr])

cols.extend(a_pkeys)

rule Association_Non_Persistent_Class_To_Columns:
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srcp:
(String, <prefix>)[]
(Association)[name == <attr_name>, dest == (Class, <class _>)[name == \

<class_name>, attrs == <attrs>, is_persistent == 0]]
(Association, <assoc>)[src == class_] : * <assocs>

tgtp:
cols
[]
fkeys

tgt_where:
cols := []
fkeys := []
for aa := (attrs + MT.mult_extract(assocs, "assoc")).iter ate():

a_cols, a_pkeys, a_fkeys := self.transform([concat_name (prefix, \
attr_name)], [aa])

cols.extend(a_cols)

rule Default:
srcp:

(MObject)[]

tgtp:
null

In order to run this transformation, a list of top-level elements (classes and associations) should be

passed to it. Unlike the simple version of the example, thereis no need to designate one particular

class as being the ‘start’ class for the transformation. Theoutput of the transformation will consist of

a number of tables.

One feature in particular requires explanation to make sense of this transformation. Many of the

rules have more patterns than there are arguments passed to the transform function. For example,

the Association Non Persistent Class To Columns rule defines three patterns but

thetransform function is never called with more than two arguments – it would thus seem impos-

sible for this rule to ever execute. However, MT defines that when a rule is passed fewer arguments

than it has parameters, the root set of source elements is substituted for each missing argument. This

is effectively an escape mechanism allowing rules access tothe complete source graph. Although this

might seem an arbitrary design choice, without such a mechanism transformations such as this would

be complicated by the need to pass the root set of source elements to every rule execution.

The overall structure of this transformation is hopefully relatively straightforward. ThePersis-

tent Class To Table rule ensures that each class marked as being persistent in the source

model is transformed into a table in the target model. It takes a persistent class, and finds all of the

associations for which the class is a source; it then iterates over the union of the classes’ attributes and

associations for which it is a source, transforming them into columns. All of the other rules take in a

string prefix (representing the column prefix being constructed as the transformation drills into user

types), and an attribute or association (and, in the case of the Association Non Persist-

ent Class To Columns rule, an additional set of associations) and produces threethings: a
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list of normal table columns; a list of primary key columns; alist of foreign key columns. The final

rule in the transformationDefault is a ‘catch all’ rule that takes in model elements from the root

set which not matched by other rules – non-persistent classes and associations – and transforms them

into thenull object; this causes MT to discard the result of the transformation rule, and not create

any tracing information. TheDefault rule is necessary to ensure that such elements in the root set

of source elements do not cause the transformation to raise aCan not transform exception.

Figure 5.13 shows a visualization of a particular executionof the transformation. The size of the

source model has been increased to the maximum that can be sensibly visualized on paper, to provide

some reassurance that MT can cope with transformations beyond a small handful of elements. Note

that when freed of paper-based space constraints, and the visualization technique can easily cope with

much larger source models.

5.5.4. Pruning the target model

One thing not immediately obvious from viewing figure 5.13 isthat the final target model is not a

union of the model elements produced in every rule execution. In fact, if one were to take the union of

model elements produced by every rule execution, the targetmodel would contain many superfluous

model elements. The reason for this can be seen by examining arule such asPersistent Ass-

ociation To Columns . This rule calls thetransform function but then effectively discards

some of the model elements produced by this call (the rule in question cares only about primary key

columns, and ignores non-primary key columns). Knowing that, as an implementation detail, TM

assigns each new model element a unique and monotonically increasing identifier, one can see from

figure 5.13, that some elements have been discarded, due to the non-contiguous model identifiers in

target model elements. For example, the lowest identifier for a target model element is 29 and the

highest 47, but identifiers such as 42 are missing in the figure– these are elements that were produced

by a rule execution, but discarded by other rules.

MT’s approach to achieving the final target model involves firstly taking the model elements pro-

duced by transforming each element in the root source set. Itthen then uses these elements as the root

nodes in a simple graph walking scheme. Only target model elements which are reachable from these

elements are considered to be in the eventual target model. Note that scheme does allow the eventual

target model to consist of unconnected subgraphs.

5.5.5. Combinators

One of the most interesting features in the QVT-Partners approach are combinators. Section 5.2.3

showed theor combinator; the QVT-Partners approach also definesand andnot combinators. The
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:Class

mod_id = "11" 
name = "Customer" 

is_persistent = 1

:Attribute

mod_id = "12" 
is_primary = 1
name = "name"

attrs

:Table

mod_id = "37" 
name = "Customer"

t1

:PrimitiveDataType

mod_id = "10" 
name = "String"

type

:Column

mod_id = "29" 
type = "String" 
name = "name"

t2

:Class

mod_id = "13" 
name = "Order" 
is_persistent = 1

:Attribute

mod_id = "14" 
is_primary = 1
name = "date"

attrs

:Attribute

mod_id = "15" 
is_primary = 1
name = "order_num"

attrs

:Table

mod_id = "43" 
name = "Order"

t12

:PrimitiveDataType

mod_id = "9" 
name = "Integer"

type

:Column

mod_id = "30" 
type = "Integer" 
name = "orders__date"

t4

:Column

mod_id = "38" 
type = "Integer" 
name = "date"

t13type

:Column

mod_id = "31" 
type = "Integer" 
name = "orders__order_num"

t5

:Column

mod_id = "39" 
type = "Integer" 
name = "order_num"

t14

:Class

mod_id = "16" 
name = "Part" 
is_persistent = 1

:Attribute

mod_id = "17" 
is_primary = 1

name = "id"

attrs

:Attribute

mod_id = "18" 
is_primary = 0
name = "name"

attrs

:Attribute

mod_id = "19" 
is_primary = 0
name = "price"

attrs

:Table

mod_id = "47" 
fkeys = []
name = "Part"

t19

type

:Column

mod_id = "40" 
type = "Integer" 
name = "parts__id"

t16

:Column

mod_id = "44" 
type = "Integer" 

name = "id"

t20type

:Column

mod_id = "45" 
type = "String" 
name = "name"

t21 type

:Column

mod_id = "46" 
type = "Integer" 
name = "price"

t22

:Association

mod_id = "26" 
name = "orders"

src dest

t1

t3 t3

:Association

mod_id = "27" 
name = "parts"

srcdest

t12

t15

:Association

mod_id = "28" 
name = "address"

src

:Class

mod_id = "20" 
name = "Address" 
is_persistent = 0

dest

t1

:Column

mod_id = "32" 
type = "String" 
name = "address__house"

t6

:Column

mod_id = "33" 
type = "String" 
name = "address__addr2"

t6

:Column

mod_id = "34" 
type = "String" 
name = "address__addr3"

t6

:Column

mod_id = "35" 
type = "String" 
name = "address__county"

t6

:Column

mod_id = "36" 
type = "String" 
name = "address__postcode"

t6

:Attribute

mod_id = "21" 
is_primary = 0
name = "house"

attrs

:Attribute

mod_id = "22" 
is_primary = 0
name = "addr2"

attrs

:Attribute

mod_id = "23" 
is_primary = 0
name = "addr3"

attrs

:Attribute

mod_id = "24" 
is_primary = 0
name = "county"

attrs

:Attribute

mod_id = "25" 
is_primary = 0
name = "postcode"

attrs

typet7 type t8type t9type t10type t11 fkeys

cols cols

pkeycolscols cols cols cols cols fkeys

cols

pkeycols pkey colspkeycolscols cols

Tracing
Persistent_Class_To_Table: t1, t12, t19

Primary_Primitive_Type_Attribute_To_Columns: t2, t4, t5, t13, t14, t16, t20

Persistent_Association_To_Columns: t3, t15

Association_Non_Persistent_Class_To_Columns: t6

Non_Primary_Primitive_Type_Attribute_To_Columns: t7, t8, t9, t10, t11, t17, t18, t21, t22

Figure 5.13.: An example execution of the extended transformation.
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combinators work largely as one might expect given their names. For example theand combinator

takes two or more rule invocations, and succeeds only if eachinvocation succeeds.

Since MT rules are able to utilise the standard Converge notions of success and failure, the base

combinators from the QVT-Partners approach can be encoded directly in MT using thenot , dis-

junction and conjunction operators fornot , or , andand respectively. The following contrived

transformation rule will match against a class iff one of itsattributes can be transformed by one or the

other of theR1 or R2 rules:

rule X:
srcp:

(Class)[attributes = {a | O}]

src_when:
self.R1(a) | self.R2(a)

The QVT-Partners approach defines extra semantics for theand combinator which automatically

merges together the outputs of different rules. In the general case, I believe that such functionality is

undesirable since the merging of outputs can only sensibly be determined at the fine-grained level by

transformation writers themselves. However building a ‘merging’ combinator on top of the existing

functionality is relatively simple, since it merely involves storing and then merging the result of each

expression in a conjunction.

Although the treatment of combinators in MT is currently simplistic, the direct encoding of these

features in terms of primitive Converge features is interesting. Whereas the QVT-Partners combina-

tors are new primitives in the language, MT is able to directly utilise Converge features. I believe

a fruitful area of future research will be to investigate more powerful combinators, with a view to

including the most useful in a standard library. Work such asthat of Bézivin on model unification

[B0́5], and Chivers and Paige [CP05] may have relevance to the investigation of combinators.

5.6. Implementation

In this section I discuss some of the most interesting aspects of the MT implementation. Since the

implementation follows the typical structure of DSL implementation functions as outlined in section

4.4.1 – and as seen concretely in TM (section 4.5) – many aspects of the implementation have already

been presented elsewhere in this thesis. In this section I outline the novel aspects of the implementa-

tion, relative to what has already been presented. AppendixB.1 contains the MT grammar which is

referenced throughout this section.
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5.6.1. Outline of the implementation

The translation of anMT.MTblock into Converge is relatively straight forward at a high-level. An MT

transformation is translated to a single class with a numberof standard functions (e.g.transform

andget target , as seen earlier), fields for holding tracing information and so on, and a function

for each rule in the transformation. The translation records the names of all transformation rules as a

list in the rule names field within the transformation class; the list retains the rules’ order in the

source file.

The following subsections show how rules are translated andthe definitions of the standard func-

tions.

5.6.2. Translating rules

The translation of a rule into a function conceptually follows the path outlined by example in section

5.3.1. The translated function takes a variable number of arguments, each of which must be a list

containing the ‘universe’ of elements which each pattern inthe rule can match against. If the trans-

lated source model clauses fail to match against the arguments passed to the translated function, the

rule fails. If these clauses succeed, they return the set of model elements matched by model element

patterns, and a dictionary of bindings. The dictionary of bindings is passed to the translatedtgtp

and tgtp where clauses which produce and return a list of target elements. The matched model

element patterns and target elements are then used to createa suitable tuple for the transformations

tracing execution, before the rule returns the target elements produced.

A simplified version of the outer translation of a rule is as follows:

1 func _t_mt_rule(node):
2 // mt_rule ::= "RULE" "ID" ":" "INDENT" mt_src "NEWLINE" mt_ out "DEDENT"
3 return [|
4 bound_func $<<CEI.name(node[2].value)>>( * objs):
5 if not mep_objects, bindings := $<<self.preorder(node[5] )>>.apply(objs):
6 return fail
7

8 if not target_elements := $<<self.preorder(node[7])>>(b indings):
9 raise Exceptions.Exception(Strings.format(\${}<<CEI. lift( \

10 "Failed to generate anything for ’%s’.")>>, objs.to_str() ))
11

12 self._tracing.append([mep_objects, target_elements])
13

14 return target_elements
15 |]

Line 5 translates the rules source model clauses; note that if the source model clauses fail, the entire

rule fails. If the source model clauses succeed, then the translation of the target model clauses in line

8 is executed. Failure of the target model clauses is deemed afatal error, and an exception is raised.

Note that there is no concept of backtracking between the target and source model clauses – once the

source model clause has successfully matched, the target model clauses are executed. The final part
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of the rule in line 12 creates the necessary tracing information.

The translation of a rules source model clauses contains subtleties to ensure that backtracking

amongst patterns works correctly; this is explored in the upcoming subsections. Since the target model

clauses are already fairly standard imperative code (with the addition of model element expressions),

their translation is largely uninteresting and consequently elided. However, the translation of all

clauses is complicated by the need to embed normal Converge code, and to ensure that there are no

unintended interactions between translated and embedded code (see sections 5.6.12 and 5.6.14).

5.6.3. Translating a rules source model clauses

A rule potentially contains two source model clauses: thesrcp andsrcp when clauses, the latter

of which is optional. Each pattern in thesrcp clause is translated into a generator function which

takes in a list of model elements, and a Converge dictionary of bindings. Each time the pattern

matches successfully it returns a list containing three items: a list of the model elements matched by

model element patterns, a dictionary of new bindings, and the object the pattern evaluated to. The last

of these is largely an internal detail needed to support the nesting of patterns. Section 5.6.4 contains

more detail on the translation of patterns.

Since each pattern is a generator, it needs to be placed within afor construct to ensure that possible

matches can be generated. When more than one pattern is present in asrcp clause, patterns must be

translated ‘inside out’ into nestedfor constructs; that is, the first pattern will be the outermostfor

construct, and the last pattern the innermost. This slightly complicates the translation, which iterates

over the patterns in the order they are presented in the parsetree. In order to achieve the desired effect,

a standard idiom is used. Patterns are first translated to a temporary list. The translatedsrcp when

clause, if it exists, is used as the innermost construct. Thetemporary list is then iterated over in reverse

order with each iteration placing the result of the previousiteration inside afor construct. This idiom

is highly useful, and also shows a simple example of a DSL translation where the translated code does

not directly reflect the order of its source. Noting that a lists riterate function iterates in reverse

order over the list, the simplified version of this translation is as follows:

translated patterns := [ ordered translated patterns]
patterns expr := [| $<<self.preorder( src when clause)>> |]
for translated pattern := translated patterns.riterate():

patterns expr := [|
for $<<translated pattern>>:

$<<patterns expr>>
|]

This simple translation only deals with part of the problem caused when the failure of a pattern leads

to backtracking to an earlier clause. As each pattern matches, it returns a list containing three items:

a list of the model elements matched by model element patterns, a dictionary of new bindings, and
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the object the pattern evaluated to. As each pattern in thesrcp clause is matched, the rules records

of matched model element patterns and variable bindings grow. When a pattern fails, the list of

elements it matched by model element patterns and variable bindings it created need to be ‘undone’

from the rules’ records. Since the failure of one pattern maycause the failure of an arbitrary number

of preceding patterns, the ‘undo’ mechanism also needs to work to an arbitrary depth.

MT makes use of Converge’s variable capturing and scoping rules to implement a simple and effi-

cient undoing mechanism. Each rule defines two variablesmatched mp elems andbindings

which store the rules evolving list of matched model patternelements and variable bindings. These

variables are available to each translated pattern. Each translated pattern then defines two variables

private to that pattern (hidden via Converge’s scoping rules; see section 4.2.5), namedmatched mp-

elems backup andbindings backup . As the names of these variables may suggest, they

are used to store the values of thematched mp elems andbindings variables as they were

before the pattern is matched; if the pattern did not match successfully or is required to generate new

matches, they are used to restore their value. A slightly elided version of the translation function is as

follows:

func t mt src(node):
// mt src ::= mt srcp mt srcc
// mt srcp ::= "SRCP" ":" "INDENT" pt spattern { "NEWLINE" pt spattern }*
// "DEDENT"

translated patterns := [ ordered translated patterns]
if node[2].len() > 1:

// mt srcc ::= "NEWLINE" "SRC WHEN" ":" "INDENT" expr "DEDENT"
patterns expr := [|

if $<<self.preorder(node[2][5])>>:
return [&matched mp elems, &bindings]

|]
else:

// mt srcc ::=
patterns expr := [| return [&matched mp elems, &bindings] |]

for i := (translated patterns.len() - 1).to(-1, -1):
patterns expr := [|

if $<<CEI.lift(i)>> < &args.len():
elements := &args[$<<CEI.lift(i)>>]

else:
elements := &self. root set

matched mp elems backup := &matched mp elems
bindings backup := &bindings
for new matched mp elems, new bindings, matched elem := \

$<<translated patterns[i]>>(&bindings, elements):
&matched mp elems := &matched mp elems + new matched mp elems
&bindings := &bindings + new bindings
$<<patterns expr>>
&matched mp elems := matched mp elems backup
&bindings := bindings backup

|]

return [|
func ( * args):

if args.len() > $<<CEI.lift(translated patterns.len())>>:
return fail
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matched mp elems := Set {}
bindings := Dict {}

$<<patterns expr>>

return fail
|]

5.6.4. Translating patterns

In this subsection I show how patterns are translated in MT (the translation of pattern multiplicities is

detailed in section 5.6.10). Each pattern is translated into a generator function which takes in a list of

model elements, and a Converge dictionary of bindings. Eachtime the pattern matches successfully it

returns a list containing three items: a list of the model elements matched by model element patterns,

a dictionary of new bindings, and the object the pattern evaluated to.

Patterns can be any one of a number of pattern expressions: model element patterns, set patterns,

variable bindings, and normal Converge expressions. Pattern expressions may arbitrarily nest other

pattern expressions. Each pattern expression is translated to a generator which can generate zero or

matches against given model elements. The translation is complicated by the fact that nested pattern

expressions are also generators; therefore when a pattern is asked by backtracking to generate new

matches, the backtracking may need to resume several levelsdeep in a nested pattern expression.

All translated pattern expressions contain a wrapper whichiterates over the objects passed to the

pattern and passes them one at a time to the pattern expression. Since the pattern expression is a

generator, its result is immediately yielded to the translated patterns caller. Noting thatyield in

Converge is an expression, the outer translation is as follows:

func _t_pt_spattern(node):
// pt_spattern ::= pt_spattern_expr
return [|

func (bindings, elements):
for element := elements.iterate() & yield $<<self.preorde r(node[1])>> \

(bindings, element)

return fail
|]

In the following subsections I detail how each type of pattern expression is translated by MT.

5.6.5. Translating variable bindings

As befits the simplest type of pattern expression, MT’s translation of variable bindings is simple:

1 func _t_pt_svar(node):
2 // pt_svar ::= "<" "ID" ">"
3

4 self._pattern_vars.add(node[2].value)
5 var_str := CEI.lift(node[2].value)
6 return [|
7 func (bindings, element):
8 if bindings.contains($<<var_str>>) & not bindings[$<<va r_str>>] == \
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9 element:
10 return fail
11 return [Set{}, Dict{$<<var_str>> : element}, element]
12 |]

Lines 8 – 10 check to see whether the variable in question has already been bound; if it has, the

value of the existing binding is compared against the element being matched to ensure equality. If the

original and new binding values are not equal, the variable binding fails. As such, this behaviour is

largely redundant in MT since exactly the same effect can be achieved by having an initial variable

binding followed by references to that variable. This behaviour is maintained for the sake of ensuring

backwards compatibility with the QVT-Partners approach.

As the MT translation encounters variable bindings, it addsthem to the set of known variable

bindings in the translations’ pattern vars field (line 4). This information is used in two dif-

ferent ways. Firstly the set of variable bindings is used to determine the valid variable references for

subsequent patterns and clauses in a rule; this is necessarysince variable bindings in patterns with

multiplicities are dealt with differently (see sections 5.5.2 and 5.6.10). Secondly variables in a Con-

verge expression which reference a variable binding need tobe translated into a dictionary lookup on

the current set of known bindings (see section 5.6.12).

5.6.6. Translating model element patterns

The translation of model patterns is the largest individualpart of MT’s translation, but can be split

into two parts: matching the model element type and dealing with the self variable; matching against

model element slots. The former part is relatively simple. The latter part is complicated by the need

to deal with nested pattern expressions. In this subsectionI first present a simplified translation of

model element patterns which does not deal with nested pattern expressions, before presenting the

complete translation.

A simplified translation

In order to understand the translation of model element patterns, I first consider a simplified variant.

The model element patterns in this simple variant can not contain any reference to the self variable,

and slot comparisons with nested pattern expressions will only be evaluated once. If a slot comparison

fails, the entire pattern fails immediately. In the interests of brevity, only equality and inequality slot

comparisons are translated. This subset still encompassesa number of interesting and useful model

element patterns such as the following:

(Dog)[name == <n>, owner == (Person)[name != "Fred"]]

The simplified translation is as follows:

145



1 func t pt smodel pattern(node):
2 // pt smodel pattern ::= "(" pt smodel pattern self ")" "[" pt sobj slot
3 // pt smodel pattern comparison pt spattern expr { ","
4 // pt sobj slot pt smodel pattern comparison
5 // pt spattern expr }* "]"
6 // ::= "(" pt smodel pattern self ")" "[" "]"
7

8 // pt sobj pattern self ::= "ID"
9 type match := [|

10 if not TM.type match($<<CEI.lift(node[2][1].value)>>, &element):
11 return fail
12 |]
13

14 slot comparisons := []
15 while i < node.len() & node[i].conforms to(List) & node[i][0] == \
16 "pt sobj slot":
17 slot name := node[i]
18 slot comparison := node[i + 1]
19 slot pattern := node[i + 2]
20

21 if slot comparison[1].type == "==":
22 slot condition := CEI.ieq comparison
23 elif slot comparison[1].type == "!=":
24 slot condition := CEI.ineq comparison
25

26 slot comparisons.append([|
27 slot element := &element.$<<CEI.name(slot name[1].value)>>
28 if not new matched mep elems, new bindings, matched elem := \
29 $<<self.preorder(slot pattern)>>(bindings, &slot element):
30 return fail
31 if not $<<slot condition([| &slot element |], [| matched elem |])>>:
32 return fail
33 &local bindings += new bindings
34 |])
35

36 i += 4
37

38 return [|
39 func (bindings, element):
40

41 local bindings := Dict {}
42

43 $<<type match>>
44

45 $<<slot comparisons>>
46

47 return [Set {element }, local bindings, element]
48 |]

Lines 9 to 12 deal with ensuring the model element to be matched is of the correct type. Lines 26

to 34 shown the heart of the translation of slot comparisons.Line 27 extracts the value of the model

elements slot. Line 28 evaluates the slots pattern; if the slots pattern fails for any reason, the entire

model pattern fails. The hitherto unused third element, hitherto referred to as ‘the object the pattern

evaluated to’, returned by the pattern expression is then compared to the value of the model elements

slot obtained in line 27, using the slot comparison operator. If the comparison operator fails, then

the entire model pattern fails. As can be seen in line 48, a model element pattern ignores any model

elements matched by nested model element patterns.

The clumsy term ‘the object the pattern evaluated to’ is usedbecause conceptually there are

two distinct ways in which a pattern expression evaluates. Converge expressions used as patterns
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(e.g. "Fred" ; see section 5.6.8) simply evaluate to an object which must be checked against the

model elements slot. However other types of pattern expressions, such as the model element pattern

(Person)[name != "Fred"] , are passed the value of the model elements slot and asked to

match against it; they then return the value of the model elements slot unchanged. In other words,

some types of pattern expressions (Converge expressions) evaluate to a new object whilst some return

the object passed to them (e.g. model element patterns). Note that even in the latter case it is neces-

sary to check the slot comparison after the evaluation, so that element patterns such as the following

(which is functionally equivalent to the previous example)evaluate correctly:

(Dog)[name == <n>, owner != (Person)[name == "Fred"]]

Ensuring the complete evaluation of nested pattern express ions

The preceding translation of model element patterns contains one major flaw: it does not correctly

deal with nested pattern expressions that may generate morethan one match. Consider the following

pattern:

(Dog)[name == <n>, allowable_foods == Set{<x> | <Y>}]

The set patternSet {<x> | <Y> } will potentially generate a match for every element in a set

matched against it. If, for example, the rule this pattern ispart of contains asrc when clause along

the lines ofx == "Biscuit" then it is vital that the set pattern generates all possible matches to

ensure that a correct match can be found (if one exists). In the previous translation of model ele-

ments, unless the nested set pattern happened to stumble across the correct combination during its

first iteration, then the entire rule this is a part of would fail.

In the general case, pattern expressions may be nested to an arbitrary depth within one another. MT

thus needs to ensure that all pattern expressions, no matterhow deep they are nested, can generate all

their possible matches. For model element patterns, it is also desirable that the pattern expressions

in slot comparisons generate multiple matches in a predictable fashion. Pattern expressions are thus

evaluated in a deliberately similar fashion to patterns in asrcp clause in the order that they were

defined, from left to right. If a model element pattern is requested to generate more matches, the right

most pattern expression will generate a further match if possible. When a pattern expression within a

model element pattern generates all its possible matches, the pattern expression to its left generates a

new match, which causes the control flow to return to its right, causing that pattern to generate a new

match. When all pattern expressions within a model element pattern have generated all their matches,

then the model element pattern itself fails. In common with patterns in asrcp clause, MT ensures

that each time a pattern expression fails, the appropriate variable bindings are ‘undone’.
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In order to cope with arbitrary levels of nested pattern expressions, one might reasonably expect

a significant degree of complexity to be needed in the translation – indexes within lists needing to

be passed around and stored, and so on. However by careful useof Converge generators and the

conjunction operator, the desired effect can be achieved with a relatively small amount of code. Con-

sidering the same marginally simplified variant of model element patterns as previously (references

to the self variable not allowed; only a subset of slot comparison operators dealt with), the translation

is as follows:

1 func _t_pt_smodel_pattern(node):
2 type_match := [|
3 if not TM.type_match(\$<<CEI.lift(node[2][1].value)>> , &element):
4 return fail
5 |]
6

7 returns_vars := []
8 current_bindings_var := CEI.ivar(CEI.fresh_name())
9 conjunction := [[| $<<current_bindings_var>> := &binding s |]]

10

11 while i < node.len() & node[i].conforms_to(List) & node[i] [0] == \
12 "pt_sobj_slot":
13 slot_name := node[i]
14 slot_comparison := node[i + 1]
15 slot_pattern := node[i + 2]
16

17 if slot_comparison[1].type == "==":
18 slot_condition := CEI.ieq_comparison
19 elif slot_comparison[1].type == "!=":
20 slot_condition := CEI.ineq_comparison
21

22 next_bindings_var := CEI.ivar(CEI.fresh_name())
23 return_var := CEI.ivar(CEI.fresh_name())
24 returns_vars.append(return_var)
25 conjunction.append([| $<<return_var>> := $<<func_>>( \
26 $<<current_bindings_var>>) |])
27 conjunction.append([| $<<next_bindings_var>> := \
28 $<<current_bindings_var>> + $<<return_var>>[1] |])
29 current_bindings_var := next_bindings_var
30 i += 4
31

32 conjunction.append([| [Set{&element}, Functional.fold l(_adder, \
33 Functional.map(_element1, $<<CEI.ilist(returns_vars) >>)), &element] |])
34

35 return [|
36 func (bindings, element):
37

38 $<<type_match>>
39

40 for yield $<<CEI.iconjunction(conjunction)>>
41

42 return fail
43 |]
44

45 func _adder(x, y):
46 return x + y
47

48 func _element0(x):
49 return x[0]
50

51 func _element1(x):
52 return x[1]
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Note that in this code adder , element0 and element1 are module level functions. These

functions are used in later translations in this chapter.

The underlying theme in this translation is that pattern expressions in slot comparisons may be

generators. Pattern expressions are placed into a single conjunction expression (chiefly built up in

lines 25 – 28). The translation places the conjunction containing translated pattern expressions within

a for construct (line 40), which yields a value each time a successful match of all slot comparisons

is found. Thus the translation utilizes Converge’s built-in goal-directed evaluation (section 4.1.3) to

ensure that all possible values – including those from nested pattern expressions – for all translated

slot comparisons are evaluated.

There are two further (somewhat related) aspects of the translation which require explanation. The

first of these relates to MT’s treatment of variable bindings, particularly the need to ‘undo’ variable

bindings when a slot comparison fails and Converge backtracks. After each slot comparison has been

added to the conjunction, MT creates a new uniquely named variable (line 22) which has assigned to

it the union of the existing variable bindings and those created by the pattern expression (lines 27 and

28). The pattern expression in the next slot comparison thenuses this union of variable bindings as

its set of currently valid bindings (line 26). When Convergebacktracks, the currently valid bindings

are implicitly undone since the union of existing and new bindings is performed after each translated

slot comparisons.

The second aspect relates to the value returned by a model element pattern, which is created in lines

32 to 33. Since model element patterns ignore elements matched by nested model element patterns

(section 5.4.2), it is not surprising that the first element of the returned list is a set containing only

the element matched by the current model element pattern. The second element of the returned list

which is initially rather foreboding using as it does thefoldl andmap functions which operate as

their LISP counterparts. Before tackling it directly, we first need to investigate thereturn vars

variable in the translation, which is a list containing quasi-quoted variables. Each time a nested

pattern expression is evaluated, a newreturn var variable is created (line 23) to which the return

value of the pattern expression is assigned (lines 25 and 26). The return var variable is then

added to thereturn vars list (line 24). Eachreturn var variable thus holds a standard three

element list. Thefoldl call in line 32 is then passed a list of lists at run-time; eachsub-list will

be a list containing three elements, as returned by a patternexpression. The element1 function

then selects the variable bindings generated from each slotcomparison; the adder function then

creates a union of these variable bindings. This union is a non-strict subset of the final value of,

current bindings var which will include all the bindings passed to the model element pattern

in its bindings argument. Note that whilst it may initially appear simpler to makereturn vars
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a run-time variable to which each pattern expressions return list is appended, this would then lead to

complications when back-tracking would require items in the list to be removed. However since

the variables inreturn vars are known at compile-time, it would be possible to achieve a small

optimization by moving thefoldl call to compile-time; this is left as an exercise for the reader.

It is interesting to compare this translation to that used for patterns in asrcp clause, as presented

in section 5.6.3. While the two transformations are essentially functionally equivalent, the earlier

translation is perhaps more initially appealing since it reuses a familiar concept (nestedfor con-

structs). Although the translation in this section uses theless familiar conjunction operator, it results

in a much shorter, more idiomatic – and marginally more efficient – translation. As this may suggest,

making use of some of the less common features present in Converge can be of significant advantage

when translating DSLs.

5.6.7. Translating set patterns

In this subsection I outline the translation of set patterns, but do not delve into the code of the transla-

tion which uses the same techniques and idioms outlined in the translation of model element patterns.

Set patterns match against single element patterns (those to the left of the ‘| ’ character) and subset

patterns (those to the right of the ‘| ’ character) simultaneously. For each single element pattern, MT

iterates over the set being matched; no two single element patterns will be matched against the same

element simultaneously. For each subset pattern, MT iterates over the powerset of the set to match

against. The intersection of all subsets (including the setcomprised of all single element patterns

matched) must be∅. The union of all subsets (including the set comprised of allsingle element

patterns matched) must equal the set being matched. Set patterns then generate an appropriate return

value whenever each single element pattern and each subset pattern match successfully.

5.6.8. Translating Converge expressions when used as patte rns

As outlined in section 5.6.6, when Converge expressions areused as pattern expressions, they act in

a different fashion to other pattern expressions. Whereas all other types of pattern expressions are

a declarative match against model elements, Converge expressions are simply expected to evaluate

to constants (in this situation meaning integers, strings,model elements and so on). MT therefore

defines that Converge expressions in this situation are onlyevaluated once – even if the particular

Converge expression is a generator, it will only ever be required to generate a single value. Converge

expressions used as pattern expressions return a list consisting of the empty set to represent the model

elements matched by model element patterns, an empty dictionary of bindings, and the constant object

the expression evaluated to.
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The translation of Converge expressions in this instance thus requires only a very thin wrapping

around the actual expression itself:

func _t_pt_spattern_expr(node):
// pt_spattern_expr ::= pt_sobj_pattern
// ::= pt_sset_pattern
// ::= pt_svar
// ::= expr

if node[1][0] == "expr":
return [|

func (bindings, elements):
return [Set{}, Dict{}, $<<self.preorder(node[1])>>]

|]
else:

return self.preorder(node[1])

Section 5.6.12 details how the Converge grammar ruleexpr is embedded in the MT grammar.

5.6.9. An example translated pattern

Having now seen the translations of variable bindings, model element patterns, set patterns and Con-

verge expressions used as pattern expressions, we are now ina position to see the result of translating

a particular pattern. I use the following pattern, which incorporates all three types of pattern expres-

sions:

(Dog)[name == <n>, allowable_foods == Set{"pork" | <Y>}]

The result of translating this pattern is the following ITree:

1 unbound_func (bindings, element){
2 if not Input_Pattern_Creator.TM.type_match("Dog", elem ent):
3 return Input_Pattern_Creator.fail
4 for yield $$76$$ := bindings & $$78$$ := unbound_func (bindi ngs){
5 slot_element := element.name
6 for matched_mp_elems, new_bindings, matched_elem := unbo und_func \
7 (bindings, element){
8 if bindings.contains("n") & not bindings["n"] == element:
9 return Input_Pattern_Creator.fail

10 return [Set{}, Dict{"n" : element}, element]
11 }(bindings, slot_element):
12 if slot_element == matched_elem:
13 yield [matched_mp_elems, new_bindings, matched_elem]
14 return Input_Pattern_Creator.fail
15 }($$76$$) & $$77$$ := $$76$$ + $$78$$[1] & $$84$$ := unbound_ func (bindings){
16 slot_element := element.allowable_foods
17 for matched_mp_elems, new_bindings, matched_elem := unbo und_func \
18 (bindings, element){
19 if not element.conforms_to(Input_Pattern_Creator.Set) :
20 return Input_Pattern_Creator.fail
21 if element.len() < 1:
22 return Input_Pattern_Creator.fail
23 for $$79$$ := element.iterate() & $$80$$ := unbound_func (b indings, \
24 elements){
25 return [Set{}, Dict{}, "pork"]
26 }(bindings, $$79$$) & $$81$$ := Input_Pattern_Creator.Fu nctional. \
27 powerset_generator(element) & $$81$$.union(Set{$$79$$ }) == element & \
28 not $$81$$.contains($$79$$) & $$82$$ := unbound_func (bin dings, \
29 element){
30 if bindings.contains("Y") & not bindings["Y"] == element:
31 return Input_Pattern_Creator.fail
32 return [Set{}, Dict{"Y" : element}, element]
33 }(bindings, $$81$$) & $$82$$[2] == $$81$$:
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34 yield [$$80$$[0] + $$82$$[0], $$80$$[1] + $$82$$[1], eleme nt]
35 return Input_Pattern_Creator.fail
36 }(bindings, slot_element):
37 if slot_element == matched_elem:
38 yield [matched_mp_elems, new_bindings, matched_elem]
39 return Input_Pattern_Creator.fail
40 }($$77$$) & $$83$$ := $$77$$ + $$84$$[1] & [Set{element}, \
41 Input_Pattern_Creator.Functional.foldl(Input_Patter n_Creator._adder, \
42 Input_Pattern_Creator.Functional.map(Input_Pattern_ Creator._element1, \
43 [$$78$$, $$84$$])), element]
44 return Input_Pattern_Creator.fail
45 }(bindings, element)

Despite its initial appearance as an impenetrable jumble ofbizarrely named identifiers, through care-

ful examination of the input pattern, and the translations presented in this section, it is possible to

identify which parts of this ITree relate to specific parts ofthe input pattern. The first step in this is to

recursively break the input pattern down into its constituent pattern expressions. One can then deter-

mine which line numbers each pattern expression relates to.A simple table showing this is as follows

(note that due to the recursive breakdown, outer pattern expressions line numbers overlap with those

of nested pattern expressions):

Pattern Lines

(Dog)[name == <n>, allowable foods == Set {"pork" | <Y> }] 1 – 45

<n> 6 – 13

Set {"pork" | <Y> } 20 – 34

"pork" 23 – 26

<Y> 28 – 33

5.6.10. Translating pattern multiplicities

In order to deal with patterns with multiplicities (see section 5.5.2), some additions need to be made

to the outer translation of patterns from section 5.6.4. Although each of the several forms of pattern

multiplicities requires a specific translation, they all follow the same general form, which can be split

into two distinct phases. In order to demonstrate this, I present the translation for the* multiplicity

in an elided view of the t pt spattern function:

1 func _t_pt_spattern(node):
2 // pt_spattern ::= pt_spattern_expr pt_spattern_qualifi er
3 // pt_spattern_qualifier ::= ":" pt_multiplicity "<" "ID" ">"
4 // pt_multiplicity ::= pt_multiplicity_upper_bound
5 // pt_multiplicity_upper_bound ::= " * "
6

7 self._inside_multiplicity_pattern += 1
8 pattern := [|
9 func (bindings, elements):

10 matches := []
11 for element := elements.iterate() & matches.append($<<se lf.preorder( \
12 node[1])>>(bindings, element))
13

14 powerset := Functional.powerset(matches)
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15 powerset := Sort.sort(powerset, func (x, y) {
16 return x.len() < y.len()
17 })
18 for matches := powerset.riterate():
19 if matches.len() == 0:
20 continue
21 yield [Functional.foldl(_adder, Functional.map(_eleme nt0, matches)), \
22 Dict{$<<CEI.lift(node[2][4].value)>> : Functional.map (_element1, \
23 matches)}, Functional.foldl(adder, Functional.map(fun c (x) {
24 return [x[2]]
25 }, matches))]
26

27 return [Set{}, Dict{$<<CEI.lift(node[2][4].value)>> : [ ]}, elements]
28 |]
29 self._inside_multiplicity_pattern -= 1
30

31 return pattern

The first phase of a multiplicities execution involves matching elements. In the case of the* multi-

plicity, this occurs in lines 10 to 12 which evaluates every successful match of the pattern (note that

when the pattern does not match successfully, backtrackingensures that theappend call will not

be executed). The second phase of execution then successively returns permutations of the matches.

Note that, although not the case for the* multiplicity, in some multiplicities these two phases willbe

partially intertwined. Lines 14 to 17 evaluate the powerset5 of matches, sorting the resulting permu-

tations into ascending order based on the number of elementsin each. Thefor construct in line 18

then iterates over the the powerset in reverse order, yielding permutations of lesser size as the multi-

plicity is called upon to generate new matches. The list yielded by the multiplicity in lines 21 to 25 is

simpler than it may first appear. Line 21 unions the elements matched by model element patterns from

each match in the permutation. Lines 22 and 23 create a singlebinding for the multiplicities variable,

assigning it a list of variable bindings, with a bindings entry for each match in the permutation. Lines

23 to 25 union the objects each match in the permutation evaluated to.

The translation of pattern multiplicities requires a smallbut important change to the translation of

variable bindings, to prevent variable bindings within multiplicities from being added to thepat-

tern vars field. The inside multiplicity pattern field within the translation tracks

whether the translation is currently processing a pattern multiplicity or not. The updated t pt -

svar function thus looks as follows:

func _t_pt_svar(node):
// pt_svar ::= "<" "ID" ">"

if _inside_multiplicity_pattern == 0:
self._pattern_vars.add(node[2].value)

var_str := CEI.lift(node[2].value)
return [|

func (bindings, element):
if bindings.contains($<<var_str>>) & not bindings[$<<va r_str>>] == \

element:
return fail

return [Set{}, Dict{$<<var_str>> : element}, element]
|]

5The Convergepowerset function returns a list of lists if, as in this case, it is passed a list rather than a set.
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5.6.11. Standard functions

Each transformation has two standard functions of particular importance: thetransform and

transform all functions. In this subsection I show the definition of these two functions.

The transform function was outlined in section 5.3.1. It takes a variable number of arguments,

each of which must be a list. Noting that function objects in Converge have a functionapply which

takes a list of values and applies them to the function as if they were passed as individual arguments,

the transform function looks as follows:

1 func transform( * elems):
2 for elem := elems.iterate():
3 if not elem.conforms_to(List):
4 raise Exceptions.Type_Exception(List, elem.instance_o f, elem.to_str())
5

6 for rule_name := self._rule_names.iterate():
7 if target := self.get_slot(rule_name).apply(elems):
8 return target
9

10 raise Exceptions.Exception(Strings.format("Unable to t ransform ’%s’.", \
11 elems.to_str()))

The first action of thetransform function After is to type-check its arguments in lines 2 to 4.It

then makes use of therule names field within a transformation which records the names of a

transformations rule in the order they were defined. Iterating over the rule names field allows

the translated rule function to be accessed via theget slot function. Using this, thetransform

function calls rules in the order in which they were defined, succeeding as soon as it finds a rule which

executes on the input. If no rules execute, an exception is raised.

Thetransform all function is a simple, but highly useful, convenience function built on top of

thetransform function. Given a list of model elements, it transforms eachusing thetransform

function. The definition oftransform all is thus simple:

func transform_all(elems):
if not elems.conforms_to(List):

raise Exceptions.Type_Exception(List, elems.instance_ of, elems.to_str())

target_elems := []
for elem := elems.iterate():

target_elems.append(self.transform([elem]))

return target_elems

5.6.12. Embedding Converge code within DSLs

When compared to other model transformation approaches, one of MT’s most novel aspects is its

ability to embed GPL code within it. This is possible due to Converge’s DSL embedding features.

The ability to embed Converge code in DSLs benefits both the DSLs users and implementers. Users

can reuse their knowledge of standard Converge, whilst DSL implementers can reuse tried and trusted

parts of the Converge compiler. In this subsection I explainhow a DSLs can embed Converge within
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itself.

The key to embedding normal Converge code can be seen in such as pt ipattern expr in

the MT grammar (section B.1) which reference theexpr rule from the Converge grammar (chapter

A). The first point to note is that all rules in the MT grammar are prefixed bymt ; this allows the

MT grammar to be merged with the Converge grammar with no conflicts. Since CPK grammars are

currently defined in strings, merging two grammars togetheris simply a case of adding two strings.

In a similar fashion to TXL (section 3.3.6) there is currently no notion of grammar namespaces nor

are any checks for conflicts between the two grammars. As thismay suggest, whilst the current

implementation of this feature is workable, it is one of the less refined parts of DSL implementation

in Converge.

MT extendsIModule Generator in much the same way as theswitch DSL (see section

4.4.2). The MT subclass has only one non-trivial interaction with its superclass, needing to override

the t var function. References to variable bindings are translated into dictionary lookups on the

bindings variable (see section 5.6.5); see also section 5.6.14. An elided version of the t var

translation function is as follows:

func _t_var(node):
// var ::= "ID"

if self._pattern_vars.contains(node[1].value):
return [| &bindings[$<<CEI.lift(node[1].value)>>] |]

else:
return exbi IModule_Generator._IModule_Generator._t_v ar(node)

In summary – despite the need to add strings representing grammars together, and to subclass a

complex class residing in the depths of the Converge compiler – the process of embedding Con-

verge code in DSLs is surprisingly simple and relatively free of complications. However it is unclear

whether this approach would scale satisfactorily to largerexamples. I believe that in the future two

things may need to be changed to improve the situation. Firstly grammars need to be properly mod-

ularised to ensure that naming problems between grammars donot arise, and that the relationship

between grammars is clearly stated. Secondly it would be useful to loosen the coupling between

DSLs and theIModule Generator module, possibly by removing the requirement to subclass

the IModule Generator class.

5.6.13. Extending the Converge grammar

Although this section has thus far ignored the translation of a rules target clauses, the presence of

model element expressions in such clauses is worthy of examination. As a brief recap, model element

expressions such as(Dog)[name := "Fido", owner := (Person)[name = "Fred"

]] create new model elements; they are syntactically similar,although not identical, to model ele-
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ment patterns. Section 5.3.4 contains more details on modelelement expressions. Model element

expressions can be used anywhere in a rules target clauses that a normal Converge expression can be

used. Although this may suggest that model element expressions can only be used at the top-level

within target clauses, they can in fact be used within Converge expressions themselves. For example

the following expression shows how a model element expression can be used within a Converge list:

[(Person)[name = "Fred"]]

As this example shows, in the context of target clauses, model element expressions effectively embed

themselves in the the base Converge language itself.

The embedding of model element expressions is currently implemented by taking advantage of

the fact that that CPK grammars are strings, and that production rules can have alternatives added at

any point in the grammar. Thus in the MT grammar (section B.1)theexpr rule from the Converge

grammar is extended with a new alternative by MT pointing to thept mep pattern rule. Since

theexpr translation function in the Converge compiler immediatelyhands computation over to the

rule named in its alternatives, the MT translation class needs only to provide a simple translation

function forpt mep pattern .

It should be noted that whilst extremely powerful, this technique is not generally applicable. It

currently requires detailed knowledge of the Converge grammar and the Converge compilers internals

in order to ensure that extending a rule in the Converge grammar has the desired effect. I hope that

future versions of Converge will be able to provide safer support for extension of this sort.

5.6.14. Unintended interactions between translated and em bedded code

One of the challenges not tackled in the TM DSL was preventingunintended variable capture from

DSL input and the translated DSL code. This problem arises when an ITree derived from user input

is placed inside an ITree containing dynamically scoped variables. As seen in the translations in this

section, dynamically scoped variables occur frequently, chiefly via the&var syntax. Dynamically

scoped variables are highly useful in allowing ITrees to be built piece meal. However whilst stati-

cally scoped variables are automatically safely renamed byConverge’s scoping rules (section 4.2.5),

dynamically scoped variables may cause variable capture with ITree’s derived from user input. For

example, the variablebindings is frequently dynamically scoped in the translations of this section;

if an MT were to use the same variable name in, for example, atgt where clause, then unexpected

results would almost certainly arise.

To prevent this problem occurring, MT performs its ownα-renaming of variables in Converge

expressions. MT takes advantage of the fact that each ITree can report its free and bound variables

(via theget free vars andget bound vars functions respectively). For each rule, MT first
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calculates the free and bound variables of all Converge expressions contained in that rules clauses. For

each variable, a fresh name is then generated; a dictionary records the mapping between the original

and fresh names. When MT encounters Converge variables during its translation, it translates them

to variables with the corresponding fresh name. By renamingall variables from users input, MT thus

ensures that there can be no unintended variable capture.

Once all variables have been safely renamed, a rules free variables then require extra treatment.

For example theconcat name function in section 5.3.5 is a free variable in the context ofthe

Classes To Tables transformation, since it is defined outside of the transformation. All in-

stances of theconcat name within a given rule will be renamed to a variable along the lines of

$$5$concat name$$. At this point, there is no link between the value ofconcat nameoutside

the rule, and the value of$$5$concat name$$. Thus MT adds to translated rules assignments

from the original value of variables to their fresh name equivalent. In the case of theconcat name

function, the result of the translation would look along thelines of the following:

$$5$concat_name$$ := concat_name

...
$$5$concat_name$$("", bindings["n"])

...

Assigning to variables in outer blocks

Although theα-renaming mechanism of variables in user input prevents unintended variable capture,

it introduces problems due to the disconnect between the original variable and its fresh-named clone.

This leads to two related problems.

The first problem relates to assigning to free variables. Since a fresh-named clone is made of each

free variable, assigning to free variables in an MT block does not affect the value of the original

variable. MT thus mirrors the normal Converge expectation that variables assigned to in a block

(where a block in MT is essentially a rule) are local to that block. However a problem arises if one

wishes an assignment to a free variable. First, let us assumethat MT allows some free variables to be

declared as nonlocal (recall that in normal Convergenonlocal x is a declaration that assignment

to the variablex does not create a localx, but instead binds to the the first outer block which contains

an assignment ofx). Assignment to a free variable then becomes problematic, since the user will be

assigning to the variables fresh-named clone; furthermorethere is no way to assign to the original

variable without reintroducing the prospect of variable capture. A partial solution to this problem is

for MT to mirror the assignment of free variables to their fresh-named clone at the beginning of the

translated rule, with the assignment of the fresh-named clone to its free variable equivalent at the end

of the transformation. Whilst this is possible, it means that during the execution of the rule the local
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and global values of the variable may differ.

This then highlights the more general problem, which is thatat any point during the execution

of a rule the values of the original variable and its fresh-named clone may diverge either through

assignment to the original variable or its fresh-named clone. There is no solution for this problem at

the moment in Converge. Although one can devise increasingly sophisticated work arounds which

reduce the potential for the problem to arise, fundamentally the cloning of variables is flawed since

there is no mechanism for atomically synchronising the cloned and original variables.

The situations in which this deficiency are exposed are essentially confined to compile-time meta-

programming, although one would not normally expect to encounter the problem in practise. How-

ever Converge DSLs such as MT, which embed Converge code within the DSL, greatly increases the

chances of hitting this problem due to potential clashes in variable names between embedded Con-

verge code and the DSL. A possible solution to this deficiencywould be for Converge to acquire a

‘variable alias’ feature which would alias a variablex in an outer block toy in an inner block. Since

the names would merely be aliases for the same underlying variable, there could then be no synchro-

nization issues between the two. Such a feature would ideally work in much the same way as the

nonlocal declaration; indeed, it is also implicit that aliased variables are nonlocal to the block in

which they are renamed. Although the Converge VM provides sufficient support for such a feature,

the compiler and language have yet to be sufficiently extended.

5.6.15. Generating tracing information from nested model p atterns

In section 5.4.2, the standard MT tracing information creation mechanism was outlined. By default,

only non-nested model element patterns contribute to the source part of trace tuples. I asserted that

empirically this appeared to be a sensible compromise that created sufficient tracing information

without overwhelming the user. However it is clear that thistechnique may not be suitable for all

applications; one can easily imagine further research to determine the most practical tracing infor-

mation creation techniques for different types of transformations. To this end, in this subsection I

present a simple modification to the MT translation which changes the default tracing information

created by allowing nested model element patterns to contribute to the source part of trace tuples.

This serves two separate purposes. Firstly it provides evidence that the default tracing information

creation mechanism achieves a useful balance in terms of thevolume of information it creates. Sec-

ond it shows that DSL implementations in Converge tend to be amenable to changes, and also that the

MT implementation itself can serve as a testbed for further model transformation experimentation.

The modification to MT necessary to allow nested model expression patterns to contribute to the

source part of trace tuples is in fact rather simple. All thatis needed is for model element patterns
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to return the union of all elements matched by nested model element patterns. By default, model

element patterns only return the element they matched against, ignoring the elements matched by

nested model element patterns. However the required information is present in thereturn var

associated with each slot comparison in a model element pattern. Thus all that is needed is to use the

same technique used to union the bindings of each slot comparison. Replacing lines 31 to 32 of the

complete translation from section 5.6.6 with the followingachieves the desired effect:

conjunction.append([| [Set{&element} + Functional.fold l(_adder, \
Functional.map(_element0, $<<CEI.ilist(returns_vars) >>)), \
Functional.foldl(_adder, Functional.map(_element1, $< <CEI.ilist( \

returns_vars)>>)), &element] |])

Taking exactly the same source model and transformation used in figure 5.13, the result of making

this change to MT can be seen in figure 5.14. Note that in this new visualization, one can see that

many target elements have tracing information from more than one source element; the end result is

rather harder to read than figure 5.13, and does not add significantly to the users understanding of the

transformation in this particular case.

5.6.16. Summary of the implementation

In this section I have presented an analysis of the major parts of the MT implementation. To demon-

strate the result of MT’s translation of a transformation, section D.2 shows the complete result of

translating the simple MT transformation from section 5.3.5.

5.7. Related work

Chapter 3 gave an overview of many of the leading model transformation systems currently available.

As with the majority of existing systems, MT is a unidirectional stateless model transformation sys-

tem. MT’s most obvious ancestor is the QVT-Partners approach [QVT03b] which pioneered the use

of patterns in model transformations. MT takes the base QVT-Partners pattern language and enriches

it with features such as pattern multiplicities, and variable slot comparisons. Furthermore, by pro-

viding a concrete implementation – and a detailed explanation of that implementation – much of the

vagueness associated with other model transformations such as the QVT-Partners approach is avoided

in MT.

A significant difference from the QVT-Partners approach is in MT’s imperative aspects. Due to its

implementation as a Converge DSL, MT can embed normal Converge code within it. This contrasts

sharply with the QVT-Partners approach which is forced to define an OCL variant with imperative

features in order to have a usable language. As explained in section 5.2.4, this variant language

suffers from several conceptual and practical problems. I believe that MT is unique in being able
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Figure 5.14.: Tracing information from nested model pattern expressions.
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to embed a GPL within it. Perhaps more significant than the actual language embedded within MT

transformations is the ability to call out naturally to normal Converge code, even if it is defined outside

of the transformation. MT users are thus not constrained by any limitations of the particular model

transformation approach. Although this may initially appear to be a mere implementation detail,

it differentiates MT from virtually all existing model transformation approaches, which typically

present a highly constrained execution environment.

Perhaps the closest model transformation approach is the commercial XMap language [CESW04],

an approach essentially based on the QVT-Partners approach. This also means that the issues noted

in both this section, and in section 5.2.4 with respect to theQVT-Partners approach, apply equally to

XMap. XMap is however notable for its sister language XSync which allows changes to be propagated

in the style outlined by Tratt and Clark [TC03]. Chapter 6 shows how MT can be evolved into a

powerful change propagating language.

Perhaps surprisingly, given the seeming simplicity of the task, one of MT’s most distinctive fea-

tures is its automatic creation of tracing information. Most approaches neglect this problem; the few

that tackle it, such as the DSTC approach [DIC03], require the user to manually specify the tracing

information to be created. By using patterns defined by the user to automatically derive tracing infor-

mation has not, to the best of my knowledge, been used by any other system. MT distinguishes itself

further by its simple, but effective, technique for reducing superfluous tracing information.

It is perhaps telling that although MT contains several enhancements compared to existing ap-

proaches, it also shares many of the limitations of existingapproaches, such as a lack of rule structur-

ing mechanisms. Section 5.8 outlines the work that may resolve some of these limitations.

5.8. Future work

Although I believe that MT is currently one of the most advanced model transformation languages

available, the relative immaturity of the area means that nonew approach can claim to present a

definitive solution.

Perhaps the most pressing question for every model transformation approach, including MT, is

with regards to scalability. Although MT has been used to express transformations of the order of

magnitude of the low tens of rules, it is clear that in order tomake larger transformations feasible,

new techniques for structuring and combining rules will be required. For example, currently all

the rules in a MT transformation exist in a single namespace;there is no notion of ‘transformation

modules’. Similarly at the moment all rules exist at the samelevel; that is, given an element to

transform, rules are tried in order. Complex transformations will require more selective mechanisms
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to determine which rules can be executed, both for structuring efficiency reasons. At the moment, a

transformations execution time has a worst case proportional to n2 wheren is the number of rules

in the transformation; authors of larger transformations may require that their domain knowledge is

used to narrow down the number of rules used to transform given elements. I believe that analysing

work on combinators in functional languages may lead to new insights on how to better structure

transformations6.

The desirable for scalability is a concrete manifestation of a more nebulous problem surrounding

model transformations: their usability. Whilst one can present advanced tools to users, it is vital that

the tools be relatively easy to use. I believe there is significant work to be done in presenting model

transformation languages to different users. MT could serve a useful purpose here in allowing model

transformation languages to be easily tailored for different audiences.

In terms of ‘nitty gritty’ details, there are several aspects of MT that could usefully be improved.

For example, one irritation encountered in this chapter relates to thefor suffix of expressions in a

rules tgtp clause. Currently rules can generally only produce as many top-level elements as they

have expressions in thetgtp clause. This can occasionally lead to cumbersome or dangerous work

arounds being employed. It would be useful to have a variantfor suffix which would ‘fold in’ the

elements produced by its expression as if they had been produced by top-leveltgtp . As befits a new,

small language similar examples can easily be found elsewhere in MT.

5.9. Summary

In this chapter I presented the MT model transformation language. I started by examining the QVT-

Partners approach, from which MT is partly derived, in depth. Identifying the strengths and weak-

nesses of this approach explains some of the underlying design decisions taken with MT. I then

explored MT’s basic features, including its novel visualization abilities of transformations, including

automatically generated tracing information. I then explored some of MT’s more advanced features

such as pattern multiplicities, which allowed a sophisticated model transformation to be concisely

expressed. I then finished the chapter by examining in depth the translation of an MT transformation

into MT.

I believe that MT is the first model transformation approach to present a detailed analysis of its

implementation. In so doing, I hope that MT serves two purposes: a demonstration of implementing

a non-trivial DSL in Converge; a demonstration of practicalidioms for implementing model transfor-

mation engines. As the source code for MT is freely available, I hope that it will allow others to take

6This suggestion is partly a result of a conversation with Bernhard Rumpe, made during a visit to the Technische Univer-
sität Braunschweig in February 2005.
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MT and alter it for their own purposes. In this way, I hope thatMT aids further experimentation into

differing model transformation techniques.

MT’s implementation is also notable for its relative brevity. Through careful use of Converge

idioms such as generators and the use of goal-directed evaluation, I assert that much of the tedious

machinery that would be needed if MT were to be implemented ina standard GPL has been avoided.

Although it is outside of the scope of this thesis to present hard numbers to back up this claim, I

believe that MT provides compelling evidence that the seemingly disparate influences on Converge

(such as Icon’s goal-directed evaluation, ObjVLisp’s datamodel, and Template Haskell’s compile-

time meta-programming) coalesce to form a natural and highly powerful development environment.

In the following chapter MT is used as the basis for a change propagating transformation language.
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Chapter 6.

A change propagating model transformation

system

This chapter builds upon the MT language defined in the previous chapter, creating a new unidirec-

tional change propagating model transformation language PMT. Motivation for change propagating

transformations was given in section 2.2.3. Alanen and Porres provide a useful overview of change

propagating transformations, which also explains some of the categories of changes that can be prop-

agated [AP04]. Change propagating transformations introduce considerable complexity compared

to stateless transformations. It is my belief that no one approach to change propagation is likely

to prove sufficient for all purposes. Furthermore due to the lack of focus on this particular area of

model transformations, much exploration will be necessaryto determine when different approaches

are most applicable. The aim of this chapter is to outline some of the possibilities for change propa-

gating approaches, and to present a particular unidirectional change propagating solution, PMT. PMT

is intended to provide support for use cases similar to that outlined in section 2.2.3.

As noted in chapter 3, although several model transformation approaches mention change propa-

gating transformations few actually provide such a mechanism. For the purposes of this thesis, only

three approaches are potentially of interest: BOTL [BM03],Johann and Egyed’s approach [JE04],

and XMOF [CS03]. Both BOTL and XMOF are of limited interest, due to their differing aims com-

pared to PMT. Since BOTL restricts itself to bijective transformations, I discount it, since I believe

that bijective transformations constitute only a small proportion of useful transformations (see sec-

tion 3.3.4). XMOF is also of limited interest since it is poorly documented, and aims to provide a

solution for bidirectional change propagating model transformations, which introduces an extra set of

challenges above and beyond those presented by unidirectional change propagating model transfor-

mations. Johann and Egyed’s approach is the most interesting of the three, as it tackles unidirectional

change propagating model transformations; however it explains only one aspect of its approach in

detail, and furthermore is incapable of propagating some important types of changes.



It is an explicit aim of PMT to facilitate change propagationin any type of model transformation.

However it is important to note that PMT is not as mature or stable as MT – by its nature PMT is

much more of an experiment than MT. Nevertheless I hope that this chapter serves as a useful step on

the path towards mature change propagating model transformation solutions.

This chapter begins with an overview of some of the high-level strategies and design decisions

relevant to change propagation. PMT itself is then introduced, and via example it is shown how it

allows change propagating transformations to be expressed. I show how PMT relates source and target

models, and how it is capable of propagating changes that defeat other approaches. I also detail PMT’s

support for expressing change propagating transformationspecifications. Finally I detail some of the

relevant parts of PMT’s implementation; since PMT is able toreuse much of MT’s implementation,

this chapter places less emphasis on the implementation than in the previous chapter.

6.1. Change propagation

Whilst section 2.2.3 motivated change propagating model transformations, it gave very little hint as to

how such transformations might be realised. The intention of this section is to outline the background

of change propagations, and some of the overall design decisions possible when implementing a

change propagating model transformation approach. Note that I only consider these design decisions

in the context of unidirectional change propagating transformations.

6.1.1. Change propagation compared to incremental transfo rmation

Incremental transformation (sometimes known as incremental computation) is a well studied field

(see [RR93] for an overview of some of the available literature). The most widespread, and one of

the simplest, examples of incremental transformation are code compilation systems. For example the

UNIX make command takes a list of source code files, and compiles only those which have been

modified since the last execution ofmake.

Incremental transformation initially appears to be very similar to change propagation. Both ap-

proaches provide support for taking a source item and transforming it into an appropriate target item;

subsequent changes made to the source item then cause appropriate updates on the target item. How-

ever incremental transformation approaches assume that the target item will be unmodified by the

user when they update it. Incremental transformation need not therefore concern itself with many

of the issues that affect change propagation in the context of this thesis, chiefly how to propagate

changes non-destructively into the target model. This can be seen clearly in the code compilation

system example; any modifications the user may make to the output of the compiler will be lost the
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next time the code compilation system discovers it needs to recompile the associated source file.

There is thus a fundamental difference between the two approaches, since an incremental transfor-

mation approach is able to make assumptions about its environment that conflict with the use case

outlined in section 2.2.3. For the purposes of this thesis, change propagation is therefore largely

treated as a new subject with respect to incremental transformation systems.

6.1.2. Manual or automatic change propagation

Tratt and Clark outline a framework intended to allow unidirectional stateless transformations to be

associated with one or moredelta transformationswhich can propagate changes [TC03]. The execu-

tion sequence of such transformations is as follows. The unidirectional stateless transformation takes

in a source model and produces a target model as normal. Subsequent changes made to the source

model are extracted as change deltas to the source model. These deltas are then passed to an appro-

priate delta transformation which is expected to propagatethe change represented by the delta to the

target model. In general each different type of change will require a different delta transformation to

be created. Note that the framework itself does not impose, or facilitate, a particular change propaga-

tion mechanism is left open in this framework. An example of this framework can be seen in the XMF

tool which includes a change propagation framework with a dedicated delta transformation language

XSync, to accompany a unidirectional stateless model transformation language XMap [CESW04].

The concept of delta transformations is an interesting one in that it provides a means of integrating

legacy, or otherwise incapable, transformations into a change propagating transformation. However

it has two inherent problems. Firstly there is an inevitabledisconnect between the core unidirec-

tional stateless transformation, and the delta transformations, all of which must be created by hand.

Secondly there is, in general, no bound on the number of deltatransformations needed to cope with

change deltas. For this reason I classify this framework as manual change propagation, since the code

to perform change propagation must be manually created.

Manual change propagation contrasts with automatic changepropagation, where a transformation

can propagate changes without additional code needing to beadded. Some approaches choose a hy-

brid approach, being able to automatically propagate some changes whilst requiring manual assistance

to propagate others. For example, OptimalJ is able to propagate changes between some of its sim-

ple models automatically, but can require assistance when propagating changes between a complex

model and its textual representation [OJ04].
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6.1.3. Propagating changes in batch or immediate mode

There are two potential modes of operation for running change propagating transformations: ‘batch’

and ‘immediate’ mode. These two modes refer to the number of changes that are propagated in each

step.

Batch change propagation takes a number of changes from the source model and propagates them

to the target model only when explicitly requested to do so bythe user. The advantage of batch

change propagation is that the user is in complete control ofwhen changes are propagated. Batch

change propagation can be considered to be similar to code compilation — users typically make

multiple edits to a source code file before choosing to compile it. Since change propagation may be

a relatively slow activity, it is beneficial to the user if they can schedule change propagation at a time

convenient to them. On the other hand, the user may consider it inconvenient to have to manually

force changes to be propagated.

The concept of immediate change propagating transformations is defined in [CS03]. An immedi-

ate change propagating transformation propagates changesto the target model as soon as the source

model is changed. Unlike a batch mode change propagating transformation, which implicitly propa-

gates multiple changes when run, an immediate mode change propagating transformation propagates

small changes, which can be viewed as being semi-atomic. Theadvantage of immediate mode prop-

agation is that the source and target models involved in the transformation are always synchronised

with each other. However there are a number of potential disadvantages to immediate change propa-

gating transformations.

From the users point of view, immediate change propagation may introduce a lag every time the

user makes a change to the source model, whilst the system propagates the appropriate changes to the

target model. During this lag, the system can choose to either lock the source model, thus preventing

the user making changes to it, or to place changes to the source model into an ordered queue. In the

former case, the user is likely to become highly frustrated;in the latter case, the advantage of syn-

chronised source and target models is lost, albeit temporarily. Furthermore, the process of changing a

model frequently involves passing through one or more intermediate stages. Each intermediate stage

may see elements being temporarily deleted, renamed and so on. If the changes from these inter-

mediate stages are propagated, it is possible that incorrect, and irreversible, changes may be made

to the target model. Consider a tool which allows a user to ‘cut’ a model element to a clipboard,

who then intends to paste the element to another part of the model later. If such a change is propa-

gated immediately, it will lead to the deletion of target elements. Such elements may contain manual

changes or additions in the target model; when the element isdeleted, the manual changes will be

lost and will not be replaced when the source element is ‘pasted’ back into the model. Since only
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the user can know the intended end goal of their sequence of actions, immediate change propagating

transformations pose an extra set of challenges for such scenarios.

6.1.4. Relating source and target elements by key, trace, or identifier

One of the chief challenges when propagating changes is to find a mechanism for relating, or distin-

guishing, the specific target elements created by a given rule relative to specific source elements. The

distinguishing of elements is vital to ensure that target elements are modified, created or deleted cor-

rectly during change propagation. This problem is largely irrelevant during the initial run of a change

propagating transformation, but is vital when subsequently propagating changes; this problem was

outlined by example in section 2.2.3.

Johann and Egyed present a basic, high-level overview of this subject, describing the distinguishing

of elements by key and by identifier [JE04]. For the purposes of this thesis I identify three chief ways

of relating or distinguishing which target elements are related to specific source elements: by key, by

trace, and by identifier. I now outline these three possibilities in more detail.

Distinguishing target elements by key

A simple mechanism for distinguishing elements is to do so ontheir key i.e. a collection of attributes

which, collectively, uniquely identify any given element.Using this mechanism for change propa-

gation is advocated by the DSTC QVT approach [DIC03]. By requiring elements to be defined in

keys, this mechanism implicitly adds an extra burden on the user since all elements in a model must

be augmented with a key definition. Although this is often trivial, it is an extra burden, and can be

difficult when elements have no natural key.

The essential idea of propagating by key is that when changesfrom an element need to be propa-

gated, the source element is transformed (possibly to a temporary location), and the key of the target

element is extracted. This then allows the changed parts of the target element to be merged with an

existing target element with the same key. However this means that modifying the values of attributes

involved in a key confuses the propagation algorithm. Consider the transformation from and to a

simple modelling language where the key of aClass is its name attribute. If a class namedx is

transformed to a class also namedx , then many changes made to the source model (e.g. adding at-

tributes) can be trivially propagated to the relevant target element by transforming the source models

key and finding the target element with the appropriate key. However if the source element is re-

named toy then the key relationship between the source elementy and target elementx is broken;

the change propagation algorithm will assume that the relevant target element has been deleted, and

will recreate it from scratch.
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Although not mentioned in the DSTC QVT approach, one technique which may potentially im-

prove the coverage of this technique is to use the previous generation of a source element to calculate

the key of the appropriate target element. This allows changes to be propagated successfully even

when source elements have had the values of attributes involved in their key altered. However it is

unable to cope when manual changes are made to a target elements’ key.

In the general case, propagation by key is insufficient. However it may be combined with other

propagation techniques to increase coverage.

Relating target elements via tracing information

Using the tracing information created by a transformation (see section 5.4) to relate source and target

elements seems a good candidate, particularly as the information already exists. However, as shown

in MT, there are various different tracing information creation mechanisms. The success of a change

propagation algorithm then depends on factors such as the coverage and granularity of the recorded

tracing information. For example, while the default tracing information generated by MT records

which target elements were created by a rule from specific source elements, it does not generate

enough information to know which part of the rule created which target element. Such information

may be vital for an accurate change propagation algorithm.

There is thus a potential tension between the different usesof tracing information. The type of

tracing information desirable for change propagation may be very different from that required by a

user to understand transformations on their model. However, assuming that it is suitably detailed,

tracing information is sufficient as the sole means of distinguish elements for change propagation.

Distinguishing target elements by identifier

A technique that can ultimately be seen as a slight variationon distinguishing target elements by

tracing information was detailed by this author in [Tra05],and independently by Johann and Egyed

in [JE04]. When a target element is created it is given an identifier which contains, at a minimum,

the concatenated identifiers of all the source elements which led to the creation of the target element.

Henceforth I refer to this as thetarget element identifier. Note that the target element identifier may

be in addition to an elements standard identifier, and that conceptually there is no requirement that

this new identifier be a single field.

Conceptually this technique does not add any additional power over using tracing information

to distinguish elements; it is an alternative way of storingtracing information. Indeed, a simple

concatenation of the source elements identifiers means thatthe target element identifier is merely

an alternative way of storing information that can in theorybe directly derived from suitably fine-
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grained tracing information. However extra information can be easily stored in the target element

identifier, if required, to allow a transformation to encodeinformation which may not be present in

tracing information. This then allows tracing informationto be used for other purposes. Furthermore

this then means that tracing information need neither have complete coverage, nor be fine-grained; as

such, tracing information can be recorded in a fashion whichgives it the greatest utility to the user.

6.1.5. Correctness checking and conflict resolution

Some changes made to a source model may not be able to be propagated successfully to the target

model. For example, when propagating an element newly addedto the source model, a conflict may

arise with an element already present in the target model. There are three main strategies that can be

taken in such cases:

1. Propagate all changes regardless of correctness conditions, accepting that the resulting target

model may not match expectations, and may even be ill-formed.

2. Check for the correctness of changes before propagating them; refuse to propagate changes

which will violate correctness conditions.

3. Propagate all changes which do not violate correctness conditions; note those which violate

such conditions and request manual intervention from the user.

Whilst the first strategy requires little extra support, in the cases of the second and third strategies

change propagating model transformation approaches have to decide upon the form of correctness

checking, its completeness, and its ability to be controlled by users.

6.2. PMT

PMT’s implementation began as a fork of MT, and can be considered initially to be a superset of MT.

Most valid MT transformations can be moved into PMT without syntactic change — when used as a

stateless model transformation language, PMT performs largely as MT. When compared to the design

decisions detailed in section 6.1, PMT can be said to be a fully automatic, batch change propagation

approach, which distinguishes target elements by their identifiers, and which has user controllable

correctness checking built in. The details of this broad overview will be filled in as this chapter

progresses.

Despite many similarities, the sequence of running a PMT transformation is fundamentally dif-

ferent from MT. An MT transformation is initialized with oneor more source elements which are

immediately transformed into target elements. In contrast, a PMT transformation is initialized with
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a source model, a (possibly empty) target model, and a (possibly empty) set of tracing informa-

tion. Unlike MT, source elements are not immediately transformed after initialization, waiting for

the transformation to be executed by the user. Since none, parts, or all, of the target model may be

present after the initialization of the PMT transformation, the concept of rule execution in PMT is

markedly different in MT. In MT, when a rules source clauses match its input, the execution of the

rule implies the production of new target elements. In PMT, when a rules source clauses match its

input, the execution of the rule implies that the target model is modified to make it conformant with

respect to the transformation. Although from a naı̈ve usersperspective there is a difference between

the initial execution of a PMT transformation – which appears to populate an empty target model –

and subsequent executions which propagate changes, from PMT’s perspective there is no difference

between the initial and subsequent executions.

Put crudely, the difference between MT and PMT is that the former is an imperative model trans-

formation language whilst the latter is declarative. Conceptually, the execution of a PMT rule is

fundamentally different from MT. When a PMT rule is executed, it attempts to make the necessary

changes to the target model to satisfy the rules declaration. This may require elements being added,

altered and deleted from the target model. The way in which the relationship between source and

target elements is specified, and the process by which the update of the target model occurs are the

two defining aspects of PMT.

6.2.1. A PMT transformation’s stages

The stages of a PMT transformation are as follows:

1. Take a source model, and an empty target model and transform the source model. This stage – if

taken in isolation and viewed as a black box – is essentially identical to an MT transformation.

After the transformation has executed, the source and target models, together with the tracing

information created, are stored in some fashion.

2. The user may make arbitrary changes to both the source and target models, independent from

one another.

3. The user then requests that the changes they have made to the source model are propagated non-

destructively to the target model. The transformation is reinitialized with the updated source

and target models, and the tracing information from the previous execution. The execution of

the transformation then propagates changes from the sourcemodel to the target model. After

the transformation has executed, the source and target models, together with the new tracing

information created are once again stored.
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MObject

mod_id : String

to_string()
initialize()

of

ML1_Element

name : String

initialize()

ML1_Package

 

allElements()
initialize()

ML1_Class

 

initialize()

ML1_Association

multiplicity : int

initialize()

elements
*

parents
* ordered

parents
* ordered

to from

Figure 6.1.: The ML1 modelling language.

At this point, the sequence moves back to stage 2.

6.2.2. Example

This subsection presents a simple example of change propagation, which is based on the change

propagation example from section 2.2.3. That example showed the conceptual problems of a change

propagating transformation from the ML2 to the ML1 modelling language. The metamodels of the

ML1 and ML2 modelling languages are shown in figures 6.1 and 6.2 respectively.

The transformation itself is as follows:

1 $<PMT.mt>:
2 transformation ML2_to_ML1
3

4 rule Package_To_Package:
5 srcp:
6 (ML2_Package)[name == <n>, elements == <elements>]
7

8 tgtp:
9 (ML1_Package)[name := n, elements :>= tgt_elements]

10

11 tgt_where:
12 tgt_elements := Set{}
13 for x := elements.iterate():
14 tgt_element := self.transform([x])
15 if tgt_element.conforms_to(List):
16 tgt_elements.extend(Set(tgt_element))
17 else:
18 tgt_elements.add(tgt_element)
19

20 rule Class_To_Class:
21 srcp:
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to_string()
initialize()
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initialize()
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end2_multiplicity : int
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initialize()

elements
*

parents
* ordered

end2 end1

Figure 6.2.: The ML2 modelling language.

22 (ML2_Class)[name == <n>]
23

24 tgtp:
25 (ML1_Class)[name := n]
26

27 rule Association_To_Association:
28 srcp:
29 (ML2_Association)[name == <n>, end1 == <end1>, end2 == <end 2>, \
30 end1_directed == 0, end2_directed == 0, \
31 end1_multiplicity == <end1_multiplicity>, \
32 end2_multiplicity == <end2_multiplicity>, end1_name == < end1_name>, \
33 end2_name == <end2_name>]
34

35 tgtp:
36 (ML1_Association)[name := end2_name, from := tgt_end1, to := tgt_end2, \
37 multiplicity := end2_multiplicity]
38 (ML1_Association)[name := end1_name, from := tgt_end2, to := tgt_end1, \
39 multiplicity := end1_multiplicity]
40

41 tgt_where:
42 tgt_end1 := self.transform([end1])
43 tgt_end2 := self.transform([end2])

This is an intentionally simple transformation which, in the interests of brevity, ignores parent pack-

ages and only handles associations which are navigable at both ends. Since converting ML2 classes

and packages to ML1 classes and packages is exceedingly trivial, thePackage To Package and

Class To Class rules are simple (lines 12 - 18 are a largely inconsequentialimplementation

detail that essentially normalizes the return value from other transformation rules). TheAssocia-

tion To Association rule is slightly more complex, although it only deals with associations
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:ML2_Package

mod_id = "13" 
name = "Personnel"

:ML2_Association

mod_id = "12" 
name = "PE" 
end2_name = "manager" 
end1_name = "employees" 
end2_multiplicity = 1
end1_multiplicity = -1
end2_directed = 0

end1_directed = 0

elements

:ML2_Class

mod_id = "11" 
name = "Manager" 

parents = []

elements

:ML2_Class

mod_id = "10" 
name = "Employee" 

parents = []

elements

end2 end1

Figure 6.3.: Initial source model for the ML2 to ML1 transformation.

which are navigable at both ends; each such ML2 bidirectional association is transformed into two

ML1 directed associations.

The initial source model I use for this transformation is shown in figure 6.3 (note that this is merely

the TM version of figure 2.3(a)). The resulting visualization of the transformation is shown in figure

6.4. At this point, there are only two hints that we are dealing with a PMT, and not an MT, transfor-

mation definition and execution: the:>= operator in line 9 is invalid in MT; identifiers in the target

model have a noticeably different format to those in MT transformations.

Let us now assume that the user has modified the target model asin figure 6.5, adding in a directed

association fromEmployee to Manager denoting an employee’s secondary manager. Let us then

assume that the user returns to the original source model andupdates it as in figure 6.6, adding in a

DepartmentHead class and an associated transformation. If the ML2 to ML1 transformation was

an MT transformation, the user would now have two choices. Ifthey were to rerun such a transfor-

mation, the original target model would be overwritten and thesecondary manager association

would not exist in the new target model. Alternatively the user could choose to manually port the

changes from the source model to the target model. In the former scenario, changes to one or the

other model are lost; in the latter, differences must be manually propagated between models.

It is at this point – corresponding to stage 3 as described in section 6.2.1 – in the transformation

execution cycle that PMT fundamentally distinguishes itself from MT, by automatically propagating

the changes made to the source model in figure 6.6 into the updated target model. The visualization

of the target model after change propagation can be seen in figure 6.7. As this figure shows, not only

have the changes to the source model been propagated into thetarget model, but the manual changes

made to the target model by the user have been preserved. It isimportant to note that the changes

made to the source and target models by the user in this example are entirely arbitrary.
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Figure 6.4.: Visualization of the initial execution of the ML2 to ML1 transformation.

The basics of PMT’s change propagation approach are very simple. Both model element patterns

and model element expressions play a key part in the process of propagation. PMT uses model ele-

ment patterns as the primary means of calculating target element identifiers (see section 6.1.4). When

a rule is executed, and its source clauses match successfully, a target element identifier is created,

based on unioning the identifiers of the source elements matched by model element expressions. Tar-

get element expressions in the target clauses use the targetelement identifier created by the source

clauses. When a model element expression is executed, it looks in the TM object repository to see

if an element with the same identifier as the target element identifier already exists. If no such ele-

ment exists, a new model element with that identifier is created and populated accordingly. If such

:ML1_Package

mod_id = "Package_To_Package_0__13" 
name = "Personnel" 

parents = []

:ML1_Association

mod_id = "Association_To_Association_0__12" 
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mod_id = "Association_To_Association_1__12" 
name = "employees" 
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:ML1_Class

mod_id = "Class_To_Class_0__11" 
name = "Manager" 

parents = []

elements

:ML1_Class

mod_id = "Class_To_Class_0__10" 
name = "Employee" 

parents = []

elements

:ML1_Association

mod_id = "17" 
name = "secondary_manager" 

multiplicity = 1

elements

to from from toto from

Figure 6.5.: The updated target model.
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:ML2_Class
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end1_name = "oversees" 
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end1_multiplicity = -1
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elements

end2end1 end1 end2

Figure 6.6.: The updated source model.

an element exists, it is taken from the object repository andits contents are adjusted as necessary to

satisfy the transformation. Sections 6.2.3 and 6.2.4 explain the creation of identifiers and altering of

elements in more depth.

6.2.3. Creating target element identifiers

The construction of target element identifiers is a vital part of PMT’s change propagation approach.

Target element identifiers should ideally satisfy two criteria: that they are unique with respect to

particular source elements and a particular rule execution; that they can be created deterministically

across multiple transformation executions. The need for the former criteria is self evident, the latter

perhaps less so. However PMT’s approach relies on the fact that the construction of target element

identifiers can be replicated over multiple transformationexecutions. Since satisfying either, or both,

of these two criteria is non-trivial, I consider it highly desirable that target element identifiers can be

automatically created and used without burdening the user unnecessarily. In this subsection I outline

in detail how PMT automatically creates target element identifiers; this process is somewhat more

involved than its description in previous sections has suggested.

The way in which target element identifiers are created and stored makes use of two internal TM

and PMT features. Firstly, as shown in figure 4.4, the identifier of a TM model element is a string.

Unioning identifiers thus becomes a case of simple string concatenation which, whilst not an entirely

robust technique, is adequate for the purposes of this thesis. Although TM supplies a default identifier,

a user supplied identifier – such as a PMT target element identifier – can be specified when elements

are created. Secondly, PMT uses the concept of model elements matched by model element patterns –

exactly as used by the tracing information creation mechanism (see section 5.4) – to determine which

source elements will have their identifiers unioned. Thus creating target element identifiers requires
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Figure 6.7.: Visualization of the ML2 to ML1 transformationafter change propagation.
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no new underlying machinery in the implementation.

Creating unique target element identifiers

Concatenating the identifiers of source elements is not sufficient on its own to generate a unique target

element identifier, since the same source elements may be used in more than one rule execution. PMT

thus also integrates the name of the rule being executed intothe target identifier to ensure that target

element identifiers are unique. However this then raises thepossibility that executing the same rule

with the same source elements may lead to conflicting target identifiers being generated. To avoid

this possibility, PMT rules keep a cache of source elements they have already transformed; if a rule

matches against the same source elements as it did in a previous execution, then the target elements

produced in that previous execution are returned. It shouldbe noted that this is different from MT,

which does not need to enforce such a constraint during its execution. This may potentially lead to

differences in the execution of seemingly identical MT and PMT transformations.

The rules given thus far generate a single unique target element identifiers. This is sufficient when a

rules target clauses contain a single model element expression which executes only once. If a rule has

multiple model element expressions in its target clauses, or if a model element expression can execute

more than once in a single execution of a rule (e.g. when a model element expression is suffixed with

for , as in MT), then a single target element identifier would result in multiple target elements being

created with the same identifier. For example, theAssociation To Association rule in

section 6.2.2 has two model element expressions in itstgtp clause. In such cases it is vital that

each model element expression is passed a unique target element identifier. In order to ensure that

this is the case, each rule execution keeps a counter of how many times model element expressions

have been executed during the rules execution. This counteris incorporated into the target element

identifier of model element expressions, thus ensuring the uniqueness of the identifiers even when a

rule executes more than one model element expression.

The general form of a target element identifier in PMT is as follows:

<rule name> <model element expression execution #> <union of source
identifiers>

Using this template, one can interpret the identifiers of target elements in figure 6.7 with respect to

the transformation of section 6.2.2.

It should be noted that in the current implementation when primitive data types are used in model

element expressions, it is possible for PMT to generate non-unique identifiers, since instances of

primitive data types do not have a proper element identifier.I consider this to be a relatively trivial

implementation detail.
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Deterministically creating target element identifiers

It is important for PMT that the target element identifiers itcreate be deterministic; that is, if a

transformation is rerun with exactly the same source elements as before, it should create exactly

the same target element identifiers. If target element identifiers are created differently over multiple

transformation executions then PMT will not able to identify target elements correctly. Although the

scheme outlined previously has proved reasonably successful in practise, using the model element

expression execution counter leads to a subtle, but potentially significant, flaw.

Non-ordered datatypes such as sets can cause the model element expression execution to become

de-synchronised over multiple transformation executionsdue to their inherent non-determinism. Sim-

ilarly, ordered data types such as lists can have elements inserted in them in-between transformation

executions; if elements are inserted at any point other thanthe end of the ordered datatype, then the

counter can again become de-synchronised.

A possible solution to this problem is as follows. Each modelelement expression in the target

clauses is statically assigned a number, starting from 1, and incremented with each model element

expression encountered during compilation. For model element expressions that can only be exe-

cuted once, this is sufficient to ensure uniqueness and determinism of the resultant target element

identifiers. For model element expressions which can be executed more than once, it is then neces-

sary to add something further to the target element identifier to ensure uniqueness. For example, one

could determine which source elements (which, in general, one would expect to be a strict subset of

the overall source elements matched by a rule) led to the creation of that particular model element,

and make their identifiers part of the target element identifier; note that in this scheme it would be

common for source element identifiers to appear more than once in a target element identifier. In

some cases PMT may be able to automatically determine which source elements are involved in the

creation of specific target elements, but in general this is not possible; the user will therefore need

a way to inform PMT of the required information. Note that whilst this solution is largely immune

to non-determinism problems, it still has some conceptual problems e.g. when dealing with ordered

lists which contain duplicated elements.

While solutions such as the one outlined may provide a more robust approach to creating target

element identifiers, I believe that further research will beneeded to find the best solution. For the

purposes of this thesis, PMT’s current solution, whilst notrobust, is adequate for exploring change

propagation.
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6.2.4. Making target elements conformant

When a model element expression is executed, it looks in the TM object repository to see if an element

with the same identifier as the target element identifier already exists. If no such element exists, PMT

executes largely as MT. However if such an element exists, PMT executes rather differently from

MT. The object in question is taken from the object repository and PMT and is altered into a form

conformant with the model element expression.

It is important to note the use of language in this subsection. When an element already exists

it is not necessarily changed to match the exact values dictated by the model element expression.

Instead the element has the minimal number of changes applied to it that make it conformant to

the model element expression. The word ‘conformant’ is important since, in the general case, an

infinite number of differing target elements may be conformant to a given execution of a model

element expression. This is because the user can make manualchanges and additions to the target

model which the transformation writer can, if they choose, allow to remain even when changes are

propagated.

In order to achieve this, model element expressions in PMT have additional syntax compared to

MT. Most importantly a model element expression in PMT comprises zero or moreslot conformances

(which are directly analogous to slot comparisons in model element patterns). In the example shown

earlier, one can see the use of twoconformance operators. PMT’s conformance operators are partially

inspired by operators found in xMOF (see section 3.3.9). Some conformance operators are as follows:

Operator Name Description

x := y update Forcibly sets the value of slotx to y .

x :== y update if not equal If the value of slotx is not equal toy , forcibly sets the value

of slotx to y .

x :>= y update superset The value of slotx must be a non-strict superset ofy ’s value.

Any elements iny not present inx will be added tox. x may

contain elements not present iny .

The update conformance operator forcibly propagates changes from the updated source model to

the target model. The update if not equal conformance operator performs the same action, but only

after checking that the value of the slot in the target element is not equal to the value generated by

its associated model expression. In practise, the two operators are very similar; however, since in

some cases distinct objects can compare equal the user may wish to specify precisely whether they

wish the slot value and model expression to hold exactly the same value, or merely two values which

are equal. The update superset conformance operator is moreinteresting since it does not imply,
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or force, the value of the slot in the target element to be directly equal to the value generated by

the model expression. Instead, the value of the slot in the target element is altered to make sure it

contains all the elements that the model expression says it should have; if it has extra elements then

those are left intact. In practise this operator is the chiefmeans of allowing changes to be propagated

non-destructively.

One important point that may not be immediately obvious is that transformation writers still need to

use careful thought to determine when each should be used. For example, an inexperienced transfor-

mation writer may choose to use the update operator in all slot conformances, since this will ensure

that all changes made to the source model. However if the slotin question contains a set then the

users’ manual changes made in the target model will be destroyed. In such cases, one would gener-

ally expect the transformation writer to use the updating slot conformance operator. In some cases,

however, the transformation writer may deliberately wish to ensure that the target model contains the

transformed set elements, and nothing else, in which case the update conformance operator is the

correct choice. Knowledge of the appropriate situations for each conformance operator is likely to be

gathered only through knowledge of the source and target domains, and experience with the change

propagating approach.

Later in this chapter I will examine other conformance operators. However the three conformance

operators detailed in this section are currently the only ones which forcibly alter target elements (the

other conformance operators described in section 6.4 check, rather than enforce, conformance). The

reason for this is that, between them, these operators appear to cover a very large part of the spectrum

of change propagation – certainly, they are sufficient for all examples in this chapter.

Changes which can not be propagated

There are various types of changes which PMT is incapable of propagating. The most obvious class

of such problems relates to when the propagation of a change results in an ill-formed model (i.e. one

which does not conform to its meta-model). In such cases, a standard TM exception is thrown, and

the user is informed. Whilst this is currently a somewhat crude mechanism, it does prevent incorrect

target models being created. The checking conformance operators detailed in section 6.4 provided an

alternative means of detecting, and reporting, changes which can not be propagated.

6.2.5. Running a PMT transformation

Running a PMT transformation is very different to MT (see section 5.3.6), which is largely a direct

result of the underlying conceptual difference between a stateless and a change propagating model

transformation approach. An MT transformation is passed a source model which it instantly trans-
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forms into a target model, creating tracing information as it executes. Since a PMT transformation

may be executed multiple times, and since between executions its data may have been serialized to

permanent storage, it operates in a fundamentally different fashion.

When run for the first time, a PMT transformation is initialized with only a source model. After the

transformation executes, the user can extract the target model and tracing information created during

the transformations execution. There are then two scenarios before change propagation will occur.

The first scenario is that, whilst the transformation is still ‘active’, the user modifies the source and

target models. Propagating changes then becomes a simple case of re-executing the transformation,

which will automatically pick up the changes made to the models. The second scenario is that after

execution, the source and target models, along with the tracing information, are serialized to a persis-

tent store. The transformation itself is then destroyed. Subsequent executions of the transformation

thus require the transformation to be reinitialized with the possibly updated source and target models,

and the tracing information (which must not have have been changed), all of which will have been

deserialized from their persistent store. Once suitably reinitialized, the transformation can then be

executed to propagate changes. Both these scenarios are likely to occur in the real world. Whilst the

former scenario is likely to occur in short-lived tasks, or when efficiency is key, the latter scenario re-

flects the practicalities of long-term use and development of particular models. PMT transformations

are designed to deal sensibly with both scenarios.

The code to run the example of section 6.2.2 looks as follows:

employee := ML2.ML2_Class("Employee")
manager := ML2.ML2_Class("Manager")
employee_manager := ML2.ML2_Association("PE", employee , manager, 0, 0, -1, 1, \

"employees", "manager")
personnel := ML2.ML2_Package("Personnel", Set{employee , manager, \

employee_manager})

transformation := ML2_to_ML1(personnel)
transformation.do_transform()

The unassuming, but important, difference between this andrunning an MT transformation is the

do transform function on a transformation object. This function can potentially be called multi-

ple times. Each time it is called it will propagate changes from the source model to the target model.

Extracting the target model and tracing information from a PMT transformation is identical to MT.

For those instances when models need to be serialized to a persistent store, the TM package defines

a Serializer module. This is capable of serializing (i.e. saving) and deserializing (i.e. loading)

models and tracing information via theserialize , serialize tracing , deserialize ,

anddeserialize tracing functions. A slightly simplified version of the code which serializes

the ML2 to ML1 transformation is as follows:

src_file.write(Serializer.serialize(transformation. get_source()))
tgt_file.write(Serializer.serialize(transformation. get_target()))
tracing_file.write(Serializer.serialize_tracing(tra nsformation.get_tracing(), \
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transformation.get_tracing_rules()))

Appendix E.2 shows the output from serializing the source and target models, and tracing information

after the first execution of the example in section 6.2.2.

Reinitializing a PMT transformation involves initializing the transformation not only with the up-

dated source and target models, but also with the tracing information generated on the previous trans-

formation run. The tracing information generated by the previous execution does not play a direct

part in the transformation; it is used to determine which elements can be safely deleted from the target

model (see section 6.2.6). An entirely fresh set of tracing information is generated on each execution.

A simplified version of the code which deserializes the ML2 toML1 transformation, and propagates

changes is as follows:

src_model := Serializer.deserialize(src_file.read())
tgt_model := Serializer.deserialize(tgt_file.read())
old_tracing, old_tracing_rules := Serializer.deseriali ze_tracing( \

tracing_file.read())

transformation := ML2_to_ML1(personnel)
transformation.set_target(tgt_model)
transformation.set_old_tracing(old_tracing)

transformation.do_transform()

Models can be transformed, serialized, altered and have changes propagated into them an arbitrary

number of times.

6.2.6. Removing elements from the target model

An important part of change propagation is to ensure that when elements are removed from the source

model, target elements which were created by transforming the source elements in question are re-

moved from the target model. This requirement may at first appear to be solved by examining all

target elements at the end of a transformation execution, and removing all target elements which were

not created as the direct result of transforming one or more source elements. However this simple so-

lution would also delete any elements manually added to the target model by the user, and as such is

clearly not suitable for the use cases PMT is aimed at. The critical problem is therefore to distinguish

which seemingly superfluous elements in the target model have been manually added by the user, and

which are no longer a part of the transformation.

In order to determine which elements can be safely deleted inthe target model, PMT utilises tracing

information – both that generated by an execution of the transformation, and that generated by its

previous execution. After changes have been propagated, a PMT transformation examines every

element in the target model, checking whether it is referenced in either or both of the current and

previous tracing information. Based on this, PMT draws a conclusion about the origins of the element

and whether it is a candidate for removal. The four possibilities for an element are as follows:
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In previous

tracing info.?

In current

tracing info.?

Conclusion Candidate

for removal?
√ √

Target element previously manually created by

PMT.

×

× √
Target element newly created by PMT. ×

× × Target element previous added to target by user. ×
√ × Target element previously created by PMT; cor-

responding source element now deleted.

√

Once every element has been examined, PMT performs a garbagecollection style ‘mark and sweep’

[JL99], using the transformed root set of source elements asthe starting point. Any self-contained

cycle consisting solely of elements marked as being candidates for removal, is then removed from the

target model. The need to identify self-contained cycles ofsuch elements is to prevent the removal of

elements cause the target model to become ill-formed. This could occur if elements are removed from

the model even though they are referred to by other objects. An example of elements being removed

after change propagation can be seen in section 6.3.2.

6.2.7. Propagating changes between containers

Propagating changes between containers (e.g. sets and lists) raises two challenges not tackled ear-

lier. The first relates to the removal of elements in containers. The second challenge relates to the

synchronising of ordered containers. In this subsection I detail PMT’s solutions to these challenges.

Removing elements when propagating changes between contai ners

When elements are deleted from a container in a source model,and that container is transformed

into a container in the target model, PMT needs to be able to work out which elements in the target

container should be removed. This is a less than easy task because PMT needs to distinguish elements

in the target container which have been manually added by theuser, and those that are the result of

transforming a now absent source element. In order to make this distinction, PMT uses a technique

similar to the general element removal technique of section6.2.6.

When the updating superset operator attempts to propagate the changes from a containery to a

slot x’s value in a target element, it first adds every element ofy to x’s value if it is not already

present therein. It then iterates overx’s value, noting any elements inx’s value which are not present

in y . When it finds such elements, it first checks to see if the element is present in the tracing

information of the previous transformation execution. If the element is not present, PMT assumes the
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additional element inx’s value is a manually added element, and ignores it. If the element is present

in the previous transformation execution’s tracing information, PMT assumes that the element was

originally added to the container by PMT, and can now be removed from the container.

Due to a lack of sufficiently fine-grained information, this scheme has one notable problem –

if a user manually adds a target element into a container, andthe source element that led to the

creation of that particular target element is subsequentlydeleted, then the element will be erroneously

removed from the container upon change propagation. Note that does not imply that the element will

necessarily be removed from the model; the element will onlybe removed – in the mark and sweep

phase – if its membership of the container was its only reference within the model.

Propagating change in ordered containers

Propagating changes to ordered containers is considerablymore complex than into unordered con-

tainers. Not only are elements ordered, but the same elementmay appear more than once. This

means that, for example, it is not acceptable to merely checkfor the existence of a given element,

since it may appear more than once. Similarly, between transformation executions, elements may

move their position within a list. When a user is adding, removing, or moving elements within an

ordered container, the purpose of each individual change isgenerally self-evident to them. From the

point of view of a system viewing an arbitrary number of such changes, any such intentions are lost.

The update superset conformance operator takes a simple minded approach to the problem. Given

a target slotx, and an ordered containery , it will ensure thatx’s value contains every element ofy in

the order that those elements are contained withiny . However it will tolerate an arbitrary number of

extra elements withinx. Elements fromy are added intox as necessary. Looked at a different way,

this mechanism ensures that there is an ordered sublist ofx which is exactly equal toy . This scheme

is less than ideal, since it can lead to an incorrect duplication of elements in the target container.

6.3. The execution of a PMT transformation

Up until this point I have been deliberately vague on exactlywhat actually happens when a PMT

transformation is executed. The reason for this is that PMT’s execution strategy runs contrary to a

standard intuition – as exemplified by Johann and Egyed [JE04] – of change propagation in operation.

By deferring the explanation of a PMT transformation until this point in the chapter, I hope that

enough material has been presented to make explanation of this vital point practical.

Intuitively, the concept of change propagation seems simple: given a change in the source model,

one simply needs to rerun the few transformation rules whichrelate to the changed source elements
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in order to propagate the change to the target model. For manysmall, localised changes – such as the

renaming of a class, as seen in the earlier example in this section – this strategy is adequate. Whilst

this intuition is highly appealing, it leads to a solution that can not propagate many types of changes

correctly. At best this may lead to a target model that is not synchronised with the source model; at

worst, it may cause the target model to become ill-formed.

In this section I first point out the problems with the intuitive change propagation approach, before

presenting PMT’s approach to transformation execution.

6.3.1. Propagating localised changes

The change propagating example of section 6.2.2 saw two maintypes of changes to the source model:

the alteration of the values of elements fields (e.g. changing a packages name), and the addition of

elements. The former type of change is intuitively simple topropagate. When thePersonnel

package was renamed toAcmeLtd in figure 6.6, all that is required to propagate the change is to

rerun the transformation rule(s) linked to by the tracing from the source element. A quick examination

of figure 6.4 shows that rerunning thePackage To Package rule with the source package in

question as input will result in the change being correctly propagated. The latter type of change is

slightly more complex, but intuitively somewhat similar. One approach would be to first pass the new

source element to thetransform function; any source elements which have new links to the new

element will be transformed using the same approach as for propagating the change in package name.

The fundamental premise behind this intuitive notion is that the propagated changes are what I

term localised. Note that this term does not directly relate to the localityof alterations in the source

model, but instead to the locality of the necessary changes to be propagated to the target model and

the relation of those changes to the altered source elements. Figure 6.8 shows an abstract example of

a transformation, and localised and non-localised change propagation. If changes are localised, then

changes to elements in the source model can be propagated by rerunning the rules which originally

applied to the those elements. This has two implications. Firstly, that changes in the source model

will lead to changes in the target model of a similar granularity; in other words, that changes local to

a particular part of the source model should lead to similarly local changes in the appropriate part of

the target model. The second implication follows from the first: that the source and target models are

likely to be mostly, or wholly, isomorphic.

Before I justify these two implications, it is instructive to see why they are implicit in the, rather

limited, literature on the subject. For example, Johann andEgyed [JE04] describe a system that

is almost wholly targeted at localised changes; despite notbeing directly model related, Varró and

Varró describe a similar system [VV04]. By assuming that changes are localised, both approaches
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Source model Target model

(a) Initial models.

Source model Target model

(b) A localised change relative to the initial
models.

Source model Target model

(c) A non-localised change relative to the initial
models.

Figure 6.8.: The concept of localised changes.

are able to make change propagation highly efficient by only running the rules directly related to a

particular change. The ability to highly optimise change propagation in the face of localised changes

is a compelling reason to treat such changes as a special case. Unfortunately neither approach is

capable of propagating non-localised changes correctly. Johann and Egyed [JE04] describe what they

term ‘semantic changes’ as ‘simple changes in the source model that cause a variety of ripple effects

among multiple/many target elements’, but do not present a solution to this problem. I believe the

reason for this omission is that many toy transformations, such as the example of section 6.2.2, are

expressed in such a way that only localised changes will everneed to be propagated.

Non-localised changes in practise

Two concrete examples demonstrate the problem of non-localised change. In order to demonstrate

this, I return to the advanced variant of the UML modelling language to relational database transfor-

mation, as defined in section 5.5.1. I assume that the hypothetical change propagating transformation

which would perform this task follows a similar structure tothe MT solution for this problem, as

defined in section 5.5.3.

Consider first the (slightly elided) source model of figure 6.9, and the corresponding target model in

figure 6.10. Imagine first what would happen were we to change the value of theis persistent

slot in Address class of figure 6.9 to1. When we execute the transformation to propagate transfor-

mations, intuitively we would expect to see the target modelcontain two tables, and for all the columns
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name = "address"

:Association

src dest

attrs attrs

name = "addr3"

:Attribute

is_primary = 0
type = String

name = "house"

:Attribute

is_primary = 1
type = String

name = "postcode"

:Attribute

is_primary = 0
type = String

name = "county"

:Attribute

is_primary = 0
type = String

name = "addr2"

:Attribute

is_primary = 0
type = String

attrs attrs attrs

name = "name"

:Attribute

is_primary = 1
type = String

attrs

name = "Customer"
is_persistent = 1

:Class
name = "Address"
is_persistent = 0

:Class

Figure 6.9.: Source model.

colspkey

name = "Customer"

:Table

name = "address_addr2"

:Column

type = String
name = "address_house"

:Column

type = String

cols

name = "name"

:Column

type = String
name = "address_addr3"

:Column

type = String

name = "address_county"

:Column

type = String
name = "address_postcode"

:Column

type = String

colscols

colscolspkey

Figure 6.10.: Target model.

prefixed withaddress to be removed from theCustomer table. Using a technique similar to that

outlined by Johann and Egyed, this intuitive idea may or may not be matched by reality. In the ini-

tial transformation execution theAssociation Non Persistent Class To Columns

would have matched theAddress class and transformed it. However by marking it as persistent, that

rule is no longer able to match (thePersistent Association To Columns would however

now match), and so change propagation can not occur using theoriginal rule. Johann and Egyed are

vague as to what happens when an alteration to the source model means that change propagation can

not occur with the original rule which transformed that element. However one can imagine that when

such a case is detected the transformation system would lookfor a different rule which does match

the changed source element.

Taking the same source model of figure 6.9, and the corresponding target model in figure 6.10

as the basis for the second example, consider the effect of changing thepostcode Attribute ’s

is primary key to1. Upon change propagation, one would expect to see a newpkey link from

theCustomer class to theaddress postcode column. Assuming, as in the previous example,

that alternative rules can be executed when an alteration toa source element invalidates the original

rule that transformed it, Johann and Egyed’s scheme will notbe able to create this link – in fact,
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the change propagation will not make any changes to the target model at all. This is due to the non-

localised nature of the change. Intuitively, although thepostcode Attribute is changed, the rule

which will be rerun (in this casePrimary Primitive Type Attribute To Columns )

will only transform theAttribute itself; any new primary key links it created will be discarded as

the transformation will be unaware that the link needs to be considered in an outer context. In other

words, although the primary key link will be created, since the transformation rule which transforms

classes to tables is not rerun, it will not be incorporated into the transformed table. In general, since the

appropriate outer context that needs to be considered may bean arbitrary number of levels away from

the element changed, and since the appropriate context can not be determined in advance, rerunning

only part of the transformation can never be guaranteed to propagate all changes correctly.

It is left as an exercise to the reader to spot other cases in this example which will similarly foil

a change propagation scheme only capable of propagating localised changes. As the examples of

this subsection have demonstrated, such schemes have a fundamental weakness when propagating

such changes. In the following section, I demonstrate how PMT’s more general scheme is capable of

propagating such changes correctly.

6.3.2. PMT’s approach

The fundamental challenge with non-localised changes is todetermine the particular rules to execute

given a particular alteration of the source model. This requires an analysis of all the transformation

rules in a system to determine which are relevant to particular changes. In a fully declarative approach

such analysis may be possible, although it may be impractical or even impossible depending on the

expressive power of the approach. However in a hybrid declarative / imperative approach such as

PMT’s, analysis of this sort is impossible in the general case – whilst PMT’s use of patterns may

facilitate analysis in some cases, any use of imperative code (particularly code which calls out to

Converge libraries) irreparably muddies the waters. The criteria for PMT’s execution approach is

thus simple: it must be capable of propagating non-localised changes successfully, and it must be

capable of doing so even when it can not analyse the transformation and its rules.

PMT’s execution approach thus takes the only solution whichcan ensure correct operation in all

cases: change propagation involves a complete re-execution of the transformation. By executing

the transformation from the beginning, PMT implicitly propagates even non-localised changes. The

downside to this approach is that rerunning the entire transformation is not efficient. However since

PMT is, by design, a batch change propagation approach (see section 6.1.3), I believe this is consid-

erably less of a problem than it would be for an immediate change propagation approach.

The efficacy of PMT’s approach is best seen by example. In order to present a meaningful compar-
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:Class

mod_id = "11" 
name = "Customer" 

is_persistent = 1

:Attribute

mod_id = "12" 
is_primary = 1
name = "name"

attrs

:PrimitiveDataType

mod_id = "10" 
name = "String"

type

:Association

mod_id = "19" 
name = "address"

src

:Class

mod_id = "13" 
name = "Address" 
is_persistent = 0

dest

:Attribute

mod_id = "14" 
is_primary = 1
name = "house"

attrs

:Attribute

mod_id = "15" 
is_primary = 0
name = "addr2"

attrs

:Attribute

mod_id = "16" 
is_primary = 0
name = "addr3"

attrs

:Attribute

mod_id = "17" 
is_primary = 0
name = "county"

attrs

:Attribute

mod_id = "18" 
is_primary = 0
name = "postcode"

attrs

type type type type type

Figure 6.11.: Initial source model.

ison, I use exactly the same example as in the previous subsection. In order to have a PMT version

of the advanced variant of the UML modelling language to relational database transformation from

section 5.5.3, one simply needs to substitute$<PMT.mt> for $<MT.mt> in the transformation code.

Although this does not lead to a particularly idiomatic PMT transformation, it saves duplicating the

code, and demonstrates how close MT and PMT are in many aspects. Figure 6.11 shows the initial

source model, and figure 6.12 the target model1 created by running theClasses To Tables

transformation. Figure 6.13 shows the updated source model, with the Address class marked as

being persistent, and thepostcode attribute marked as being part of a primary key. Figure 6.14

shows the result of change propagation on the target model.

As this example shows, PMT’s change propagation approach ensures that all changes – including

non-localised changes – are propagated successfully. I believe the relative inefficiency of this method

is thus offset by its ability to propagate non-localised changes correctly. Section 6.6 discusses poten-

tial techniques to increase the efficiency of PMT change propagation in some circumstances.

6.4. Checking conformance operators

In some situations in a change propagating transformation,the transformation writer may wish to

explicitly prevent some types of change propagation from occurring, or ensure that certain relation-

ships between the source and target models always hold. Thisis potentially very important for PMT’s

use cases, where the transformation writer may need to constrain the modifications that the user can

perform to the target model in order to ensure correct changepropagation.

1Note that the occurrence of four ‘’ characters in target identifiers is the result of an implementation detail regarding the
identifier of built-in Converge data types such as strings, and can be safely ignored.
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:Table

mod_id = "Persistent_Class_To_Table_0__11__19" 
fkeys = []

name = "Customer"

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0____12" 
type = "String" 

name = "name"

pkey cols

x

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0__address__15" 
type = "String" 

name = "address__addr2"

cols

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0__address__16" 
type = "String" 

name = "address__addr3"

cols

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0__address__14" 
type = "String" 

name = "address__house"

cols

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0__address__17" 
type = "String" 

name = "address__county"

cols

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0__address__18" 
type = "String" 

name = "address__postcode"

cols

y

Figure 6.12.: Initial target model.
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:Class

mod_id = "11" 
name = "Customer" 

is_persistent = 1

:Attribute

mod_id = "12" 
is_primary = 1
name = "name"

attrs

:PrimitiveDataType

mod_id = "10" 
name = "String"

type

:Association

mod_id = "19" 
name = "address"

src

:Class

mod_id = "13" 
name = "Address" 
is_persistent = 1

dest

:Attribute

mod_id = "14" 
is_primary = 1
name = "house"

attrs

:Attribute

mod_id = "15" 
is_primary = 0
name = "addr2"

attrs

:Attribute

mod_id = "16" 
is_primary = 0
name = "addr3"

attrs

:Attribute

mod_id = "17" 
is_primary = 0
name = "county"

attrs

:Attribute

mod_id = "18" 
is_primary = 1
name = "postcode"

attrs

type type type type type

Figure 6.13.: Updated source model before change propagation.

PMT provides support for such use cases by providingcheckingconformance operators (in contrast

to the updating conformance operators of section 6.2.4). Byusing checking conformance operators,

transformation writers are able to write change propagation specifications. Note that any given model

element expression may contain updatingand checking conformance operators; change propagation

specifications thus may live directly alongside change propagation implementations.

The following checking conformance operators are defined byPMT:

Operator Name Description

x == y equality Check that the value of slotx is equal to the value ofy .

x != y inequality Check that the value of slotx is not equal to the value ofy .

x >= y superset Check that the value of slotx is a non-strict superset ofy ’s value.

x <= y subset Check that the value of slotx is a non-strict subset ofy ’s value.

These operators perform the checks specified in the table, and produce aconflict report if the

checks fail. A conflict report consists of a number of conflictrecords. A conflict record pinpoints a

specific part of the target model as being non-conformant relative to the rule containing the failing

checking conformance operator. Individual conflict records may optionally be able to show what

changes would make the target model conformant. The intention of such reports is to report to the

user a particular sequence of modifications which, if manually applied to the target model by the user,

would make it conformant.

In order to demonstrate checking conformance operators, I once again reuse the example of section

6.2.2 replacing thePackage To Package rule with the following:

rule Package_To_Package:
srcp:
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:Table

mod_id = "Persistent_Class_To_Table_0__11__19" 
name = "Customer"

x

fkeys

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0__address__14" 
type = "String" 

name = "address__house"

cols

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0__address__18" 
type = "String" 

name = "address__postcode"

cols

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0____12" 
type = "String" 

name = "name"

cols pkey

y

:Table

mod_id = "Persistent_Class_To_Table_0__13" 
fkeys = []

name = "Address"

z

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0____17" 
type = "String" 

name = "county"

cols

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0____16" 
type = "String" 

name = "addr3"

cols

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0____14" 
type = "String" 

name = "house"

pkey cols

:Column

mod_id = "Primary_Primitive_Type_Attribute_To_Columns_0____18" 
type = "String" 

name = "postcode"

pkey cols

:Column

mod_id = "Non_Primary_Primitive_Type_Attribute_To_Columns_0____15" 
type = "String" 

name = "addr2"

cols

Figure 6.14.: Updated target model after change propagation.
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(ML2_Package)[name == <n>, elements == <elements>]

tgtp:
(ML1_Package)[name == n, elements >= tgt_elements]

Essentially this is the same rule as before, but with the updating conformance operators in thetgtp

clauses’ pattern replaced with equivalent checking conformance operators. Similarly I reuse the initial

source model of figure 6.3, which leads to the creation of the same target model as figure 6.4. I then

assume the user alters the target model as per figure 6.5, and the source model as per figure 6.6. When

propagating changes with the newPackage To Package rule in place, the result of the change

propagation is shown in figure 6.15. Conflicts are clearly shown in red.

The visualization of conflicts in PMT intentionally reuses the visualization techniques from other

parts of PMT, with the aim of reducing the learning burden forthe user. The ‘Conflict report’ in figure

6.15 is analogous to the ‘Tracing’ report. In a similar fashion to traces, conflicts are named cn where

n is an integer starting from 1. Each separate conflict is generated during a particular execution of

a transformation rule. Figure 6.15 shows two types of conflicts. Conflict ‘c1’ shows that thename

slot in thePersonnel package has an incorrect value. Note that the conflict text issurrounded by a

rounded box, and the link to the element is a dotted line – these visualizations only occur in conflict

reports, and can not be confused with the normal visualization of elements. Conflict ‘c2’ shows

elements missing from theelements slot of thePersonnel package. Model elements, and links,

in solid (as opposed to broken) red lines show that such elements need to be added to the target model

in order to make it conformant. The ‘+’ prefix is a reinforcement of this. Note that the conflict report

itself denotes only that the twoML1 Association elements, theML1 Class element and the

links from thePersonnel package to those elements, need be added to the target model.However

the visualization of the conflict also shows the links between these elements (theto andfrom links),

since these are implicitly required in order to make the target model well formed. It is important that

this information is shown to the user; if it was not, then fixing a conflict report may simply result in

another conflict report being generated for a part of the model just added.

Conflict reports create some interesting corner cases. To give a simple example of this, I assume

a fresh execution of theClasses To Tables , once again reusing the initial source and target

models of figures 6.3 and 6.4 respectively. Removing thePE association from the source model

and executing the transformation to propagate changes leads to figure 6.16. The long dashes on the

links from thePersonnel package (combined with the ‘-’ preceding the conflict name onthe link)

indicate that they should be removed from the target model inorder to make it conformant. However

one might have expected to see the twoML1 Association elements also being drawn in red

dashed lines to signify their removal. However, PMT is unable to do this because although the links

from thePersonnel shouldbe deleted from the target model, they are not yet deleted. Therefore
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:ML2_Package

mod_id = "13" 
name = "AcmeLtd"

:ML2_Association

mod_id = "12" 
name = "PE" 
end2_name = "manager" 
end1_name = "employees" 
end2_multiplicity = 1
end1_multiplicity = -1
end2_directed = 0

end1_directed = 0

elements

:ML2_Class

mod_id = "11" 
name = "Manager" 

parents = []

elements

:ML2_Class

mod_id = "10" 
name = "Employee" 

parents = []

elements

:ML2_Class

mod_id = "14" 
name = "DepartmentHead" 

parents = []

elements

:ML2_Association

mod_id = "15" 
name = "manager" 
end2_name = "reports_to" 
end1_name = "oversees" 
end2_multiplicity = 1
end1_multiplicity = -1
end2_directed = 0

end1_directed = 0

elements

:ML1_Package

mod_id = "Package_To_Package_0__13" 
name = "Personnel" 

parents = []

t6

end2end1

:ML1_Association

mod_id = "Association_To_Association_0__12" 
name = "manager" 

multiplicity = 1

t3

:ML1_Association

mod_id = "Association_To_Association_1__12" 
name = "employees" 

multiplicity = -1

t3

:ML1_Class

mod_id = "Class_To_Class_0__11" 
name = "Manager" 

parents = []

t2

:ML1_Class

mod_id = "Class_To_Class_0__10" 
name = "Employee" 

parents = []

t1

end1end2 elements elements

elementselements

:ML1_Association

mod_id = "17" 
name = "secondary_manager" 

multiplicity = 1

elements

:ML1_Class

mod_id = "Class_To_Class_0__14" 
name = "DepartmentHead" 

parents = []

c2: +elements

:ML1_Association

mod_id = "Association_To_Association_0__15" 
name = "reports_to" 

multiplicity = 1

c2: +elements

:ML1_Association

mod_id = "Association_To_Association_1__15" 
name = "oversees" 

multiplicity = -1

c2: +elements

tofrom fromto tofrom

Tracing
Class_To_Class: t1, t2, t4

Association_To_Association: t3, t5

Package_To_Package: t6

c1: Slot ’name’ should be set to ’AcmeLtd’

from toto from

Conflicts
Package_To_Package: c1, c2

Figure 6.15.: Target model with conflicts.
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:ML2_Package

mod_id = "13" 
name = "Personnel"

:ML2_Class

mod_id = "11" 
name = "Manager" 

parents = []

elements

:ML2_Class

mod_id = "10" 
name = "Employee" 

parents = []

elements

:ML1_Package

mod_id = "Package_To_Package_0__13" 
name = "Personnel" 

parents = []

t3

:ML1_Class

mod_id = "Class_To_Class_0__11" 
name = "Manager" 

parents = []

t1

:ML1_Class

mod_id = "Class_To_Class_0__10" 
name = "Employee" 

parents = []

t2elements elements

:ML1_Association

mod_id = "Association_To_Association_0__12" 
name = "manager" 

multiplicity = 1

c1: -elements

:ML1_Association

mod_id = "Association_To_Association_1__12" 
name = "employees" 

multiplicity = -1

c1: -elements

to fromfrom to

Tracing
Class_To_Class: t1, t2

Package_To_Package: t3

Conflicts
Package_To_Package: c1

Figure 6.16.: Target model with conflicts after elements areremoved from the source model.

the twoML1 Association elements are reachable via these links and via the garbage collection

style algorithm that PMT runs at the end of the transformation (see section 6.2.6) these two elements

are considered to be a valid part of the target model.

Section 6.5.2 explains the implementation of conflicts in PMT in more detail.

6.5. Implementation

Unsurprisingly, given its origins, PMT’s implementation is largely similar to MT’s. The majority

of PMT’s features are simple changes to MT code using the techniques outlined in section 5.6, and

as such are not documented in detail in this section. InsteadI detail two particular parts of PMT’s

implementation that are of additional interest over MT’s implementation. PMT’s grammar, which is

referenced throughout this section, can be found in appendix B.2.

6.5.1. Conformance operators

A simplified version of the t pt mep pattern traversal function, which only contains the

code for the>= checking conformance operator operating on unordered containers, is given below:

1 func t pt mep pattern(node):
2 // pt mep pattern ::= "(" "ID" ")" "[" "ID" pt mep pattern op expr { ","
3 // "ID" pt mep pattern op expr }* "]"
4

5 class := [| TM. CLASSES REPOSITORY[$<<CEI.lift(node[2].value)>>] |]
6 conformance operators := []
7 i := 5
8 while i < node.len() & node[i].type == "ID":

196



9 if node[i + 1][2].type == ">=":
10 // pt mep pattern op ::= ":" ">="
11 conformance operators.extend([|
12 val := $<<self.preorder(node[i + 2])>>
13 if Func Binding(&obj, Object.fields["get slot"])(" is initialized") \
14 == 0:
15 &obj.$<<CEI.name(node[i].value)>> := val
16 elif val.conforms to(Set):
17 should be in the set := []
18 should not be in the set := []
19

20 for set elem := &obj.$<<CEI.name(node[i].value)>>.iterate():
21 if not val.contains(set elem):
22 for in objs, out objs := &self. old tracing.iterate():
23 if out objs.contains(set elem):
24 should not be in the set.append(set elem)
25 break
26

27 for set elem := val.iterate():
28 if not &obj.$<<CEI.name(node[i].value)>>.contains(set elem):
29 should be in the set.append(set elem)
30

31 if should be in the set.len() == 0 & \
32 should not be in the set.len() == 0:
33 pass
34 else:
35 &self. conflict objects.append(Conflict.Set Conflict( \
36 $<<CEI.lift(self. rule name)>>, &matched objs, &obj, \
37 $<<CEI.lift(node[i].value)>>, should be in the set, \
38 should not be in the set))
39 else:
40 raise Type Exception(Set)
41 |])
42

43 return [|
44 func () {
45

46 new id := identifier based on rule name union of source elements etc.
47

48 if TM.OBJECTS REPOSITORY.contains(new id):
49 obj := TM.OBJECTS REPOSITORY[new id]
50 else:
51 obj := $<<class >>.new with id(new id)
52

53 $<<conformance operators>>
54

55 return obj
56 }()
57 |]

There are two distinct parts to this function. Lines 43 – 55 show the core of the extended model

element expressions in PMT. Line 45 calculates the identifier for the model element expression (see

section 6.2.3). Line 47 then checks the TM model element repository to see whether an element with

such an identifier already exists. If it does, that element isplucked from the repository (line 48). If it

does not, a blank element of the correct type is created (line50). The element, blank or otherwise, is

then handed to the various conformance operators (line 52).

The superset operator is indicative of the the conformance operators in general (sections 6.2.4 and

6.4). Firstly the the model element expression is evaluatedin line 12. Line 13 then checks to see

whether the element has been initialized (meaning that a blank element was created in line 50); if
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it has not, then the value of the user expression is simply assigned to the appropriate slot and the

conformance operator automatically succeeds. If the slot does contain a value, then lines 16 – 37

check the value of the slot for conflicts against the user expression. Lines 19 – 24 check for elements

in the slots value that PMT tentatively believes should not be there (see section 6.2.7), while lines 26

– 28 check for elements in the user expression which should bepresent in the list. If PMT detects that

there are elements in the set which should or should not be there, then it generates a conflict report in

lines 34 – 37.

6.5.2. Conflicts

Although conflict reports are generated by PMT, the conflict concept is housed within TM since

it needs to understand conflicts in order to be able to visualize them. TM defines a simple model

of conflicts which is used to record the required information. Although the model of conflicts is

largely an internal detail to PMT and TM, the model presentedin this subsection captures the required

information in a simple manner; I hope that as other types of conflict reports are needed, it serves as

a practical and efficient base for expansion.

TM currently defines three types of conflict records: slot conflicts, list conflicts, and set conflicts.

Conflict records conform to the model of figure 6.17. As this shows, all conflict records share certain

things in common. All conflicts are generated from a particular rule (captured by therule name

slot), are the result of transforming one or more source elements (thesrc objs association), and

are specific to a particularslot namewithin a give target element (thetgt obj association).

Slot conflicts show when a slot with a primitive type (e.g. strings or ints) has an incorrect value. In

such a case, theconflict obj records the value the slot should have. List and set conflictscan

be considered together, since they store highly similar information. In each case they record zero or

more elements which should be in the given container, and zero or more elements which should not

be in the container. As explained in section 6.2.7, at the time a conflict record is generated the list

of elements which should not be in the container is only tentative; PMT and TM currently record all

such elements, but dynamically filter them out when requiredto display conflict information.

6.6. Future work

Given its inherently experimental nature, PMT raises many questions and challenges for further work.

As part of this, several engineering issues will need to be addressed before real-world usage is a

possibility. Such issues include devising a practical mechanism for creating target identifiers that is

more robust than the current string concatenation method, and so on. However I believe that once
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src_objs

MObject
tgt_obj

*Conflict
rule_name : String
slot_name : String

Slot_Conflict List_Conflict Set_Conflict

conflict_obj
should_be_in_the_list

should_not_be_in_the_list
should_be_in_the_set

should_not_be_in_the_set

*

* * *

Figure 6.17.: Conflict report model.

engineering issues are put to one side, two higher-level challenges are of particular interest.

The first is a relatively short term goal. PMT’s approach to removing extraneous elements from

the target model is often effective, but fails to remove elements if the links to those elements have

existed for more than one round of change propagation. SincePMT uses the tracing information

of the previous execution, if an element survives being removed in more than one round of change

propagation, then PMT incorrectly assumes it has been manually added to the target model by the

user. PMT can also, in some rarer cases, erroneously delete manually added links from the target

model. Finding a practical means of accurately determiningwhich elements can be safely removed

from the target model would considerably improve the overall user experience of change propagation

in PMT.

The second challenge I would consider to be a longer term goal, and relates to the efficiency of the

approach. As explained in section 6.3.2, change propagation in PMT involves executing the whole

transformation from the beginning. Whilst has the advantage that it can propagate even non-localised

changes correctly, it is inevitably somewhat slow. On the other hand, approaches like Johann and

Egyed optimise change propagation, but at the considerableexpense of correctness. I believe that

PMT’s approach is a necessary ‘fall back’ option, but that there are two ways that may allow PMT to

execute only a subset of the transformation in some cases. The first mechanism is directly influenced

by Johann and Egyed. It may be possible to perform detailed analysis of some transformation rules,

since model element patterns and model element expressionsnot containing arbitrary Converge code

are effectively declarative statements relating two models. In such cases, it may then be possible

to use this knowledge to determine that certain small changes only affect certain rules. The second

mechanism may be complementary to the first: often the user will know whether certain of their

transformations will be involved in the propagation of certain changes. If the user knows that certain

types of changes are the ones most frequently propagated, they may be willing to ‘mark up’ parts of

the transformation to indicate that certain paths need not be taken or, alternatively, that certain paths

must be taken, in the context of specific changes. I believe that working out appropriate analyses, and
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also practical mechanisms for ‘marking up’ a transformation for change propagation are considerable,

but highly worthwhile, challenges.

6.7. Summary

In this chapter I presented the PMT change propagating modeltransformation language. I started

the chapter by examining in more depth some of the issues, anddesign decisions, facing any change

propagating model transformation approach. The motivating use case for PMT – allowing the user to

manually alter the target model, whilst still allowing changes to be propagated into the altered model

non-destructively – is important in understanding severalof PMT’s design decisions. I then presented

PMT itself, exploring its approach to change propagation byexample. PMT was shown to be capable

of propagating even non-localised changes correctly. Thisled to an identification of some areas where

PMT’s change propagation techniques were effective, and some areas where they fell short of what

one may wish for.

Despite its immaturity – particularly in comparison to MT upon which it is based – I believe that

PMT is among the very first change propagating model transformation approaches to make a genuine

attempt at exploring techniques for facilitating likely real-world scenarios. Although it can by no

means be considered to be production ready in its current form, I believe it provides a basis for

further exploration of this challenging and exciting area.
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Chapter 7.

Conclusions

7.1. Summary

In this thesis I presented a clear identification of the significant types of model transformations. I then

described the Converge programming language, a dynamic OO programming language, with compile-

time meta-programming. Converge integrates of a number of hitherto largely separate paradigms

– Python’s dynamicity, Icon’s generators and backtracking, ObjVLisp’s data model, and Template

Haskell’s compile-time meta-programming – into a coherentwhole. In so doing, I listed a number

of insights into the design decisions necessary to integrate such features into similar languages. Con-

verge’s compile-time meta-programming facility also contains several innovative features, such as

the ability to control error reporting via nested quasi-quoting. Compile-time meta-programming was

then used to provide a syntax extension facility in Converge, allowing DSLs to be directly embedded

within Converge code. As a simple demonstration of this, I presented a simple DSL for defining typed

modelling languages.

Converge was then used to implement the model transformation language MT. MT can be seen in

several ways as an evolution of the QVT-Partners model transformation approach. To demonstrate

this, I presented an in-depth analysis of the QVT-Partners approach, identifying a number of flaws and

limitations. MT was presented as solving many of these problems, as well as providing useful new

features such as pattern multiplicities. By integrating such features into a model transformation ap-

proach, I was able to express relatively powerful model transformations concisely. MT is also notable

because of its implementation as a Converge DSL. To the best of my knowledge, it is the first model

transformation approach to use a non-specialised programming language (Converge) to augment the

model transformation language. Through example it was seenthat MT’s integration of imperative

and declarative features provided a coherent model transformation environment. I also believe MT is

the first model transformation approach to present a detailed description of its implementation. By

making use of Converge features such as generators and backtracking, MT’s implementation is small



enough to be documented in the confines of a thesis. MT is also unique in several other areas e.g. its

detailed visualizations of transformations, and tracing information creation techniques.

PMT was then built as an extension of MT. PMT is, by its very nature, much more of an experiment

than MT. By using a number of simple techniques (e.g. its mechanism for creating target element

identifiers) PMT provides a syntactically simple language capable of expressing both change prop-

agating transformation implementations and specifications. Although several documents talk about

change propagating approaches of various forms, few appearto have a corresponding implementation.

PMT is thus one of the very first concrete instances of a changepropagating model transformation ap-

proach. I also believe that it is the first approach to identify many of the fundamental issues in change

propagation, and the first to provide partial (although not complete) solutions to some of them. For

example, PMT provides a real solution to the problem of non-localised changes, which has been oth-

erwise ignored in the slim literature on this area. PMT’s concept, and visualization, of conflicts is

novel in this context, and an important step towards making such transformations usable.

7.2. Conclusions

The three main parts of this thesis – the Converge programming language, and the MT and PMT

model transformation approaches – form a natural pyramid, with Converge at the bottom, MT in the

middle, and PMT at the top.

Looking at the pyramid from an evolutionary perspective, one can clearly see why the order of the

layers is important. Converge is a stand alone technology which facilitates the development of DSLs.

Once stable, Converge was used to design and implement the MTmodel transformation approach.

Practically speaking, MT could not have been conceived without Converge. Although this thesis

documents the final design of MT, it went through many wild varying iterations before arriving at that

point. Converge’s low-burden development environment notonly allowed such experimentation, but

means that MT is small enough in size that it can be described in the space confines of a thesis. Only

when MT was finished did PMT become a realistic research goal.Building on top of MT implicitly

meant that many design decisions were fixed, and that PMT needed only to focus on the novel aspects

of change propagation. Despite PMT’s relative immaturity compared to MT and Converge, I believe

it to be the first practical approach to change propagations,and the first with a publicly available

implementation.

Looking at the pyramid from a usability perspective, Converge is the most fully realised of the three

parts of this thesis, both in its design and implementation.This is not surprising – if Converge was less

than robust, then designing and implementing MT and PMT would have become a much harder task.
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Converge has already been used for tasks other than model transformations, and is currently being

evaluated and used by several international users, in both industry and academia. Relative to other

model transformation approaches, MT is feature rich, and its implementation relatively robust and

efficient. Whilst I do not consider MT to be anywhere near as complete as Converge, it has already

proved useful and is being evaluated by a handful of international users. I hope that MT provides

a good platform upon which more refined model transformationmay be based. PMT, on the other

hand, is realistically only useful at the research level, its design being less complete than MT, and its

implementation relatively fragile.

7.2.1. Future work

In terms of language design, Converge is essentially feature complete; the only major exception to

this is the syntax extension feature, which needs further research to uncover a way of more seamlessly

integrating it into the main language. In terms of engineering issues, the current implementation is

lacking in its library support and its efficiency. Because ofConverge’s applicability to many different

areas, I anticipate tackling all of these issues in the very near future.

Not considering engineering issues related to efficiency and robustness are, I believe that MT con-

tains the majority of features necessary to make it a useful,real-world model transformation approach.

However there is one area in which MT – along with every other model transformation approach of

which I am aware – is distinctly lacking: scalability. I believe the most important area of future

work for MT will be to investigate techniques for ordering, combining, and prioritising transforma-

tion rules. This will be necessary not only for efficiency purposes, but more importantly for human

comprehension. Currently transformations contain every possible transformation rule needed by the

transformation; ultimately this lack of modularity leads to many of the same usability issues noted

with XSLT [PBG01]. As suggested in section 5.8, I believe that analysing work on combinators in

functional languages may lead to new insights on how to better structure transformations. I further

believe that such analysis will be applicable to many model transformation approaches, and not just

MT.

As befits the most experimental, and least mature, of the three major parts of this thesis, PMT offers

countless opportunities for further research. Whilst there are many small to medium sized issues –

e.g. examining better approaches to creating and storing target element identifiers – I believe there

are two major issues which need to be addressed before a PMT-esque technology could be considered

fit for real world use. Firstly, PMT’s approach to removing extraneous elements from the target

model is often effective, but fails to remove elements in some cases; in one unpleasant corner case,

links can be erroneously removed from the target model. Finding a practical means of accurately
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determining which elements can be safely removed from the target model is likely to have a profound

effect on the user experience of such technologies. Secondly, PMT is currently very inefficient. This

is largely inherent, given PMT’s approach to propagating non-localised changes. However, in some

instances – particularly for simple, localised changes such as changing the name of a class in a source

model – PMT may, possibly with some help from the user, be ableto analyse transformations and

determine that only a small part of the transformation need be rerun. If such cases can be determined

and optimised, then change propagation may become a much more appealing prospect from a users

perspective.
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Appendix A.

Converge grammar

This section lists the CPK grammar for Converge. This is extracted directly from the Converge

compiler fileCompiler/CV Parser.cv :

top_level ::= definition { "NEWLINE" definition } *
::=

definition ::= class_def
::= func_def
::= import
::= var { "," var } * ":=" expr
::= splice

import ::= "IMPORT" dotted_name import_as { "," dotted_nam e import_as } *
dotted_name ::= "ID" { "." "ID" } *
import_as ::= "AS" "ID"

::=

class_def ::= "CLASS" class_name class_supers class_meta class ":" "INDENT"
class_fields "DEDENT"

class_name ::= "ID"
::= splice

class_supers ::= "(" expr { "," expr } * ")"
::=

class_metaclass ::= "METACLASS" expr
::=

class_fields ::= class_field { "NEWLINE" class_field } *
class_field ::= class_def

::= func_def
::= var ":=" expr
::= splice
::= "PASS"

func_def ::= func_type func_name "(" func_params ")" ":" "I NDENT"
func_nonlocals expr_body "DEDENT"

::= func_type func_name "(" func_params ")" "{" "INDENT"
func_nonlocals expr_body "DEDENT" "NEWLINE" "}"

func_type ::= "FUNC"
::= "BOUND_FUNC"
::= "UNBOUND_FUNC"

func_name ::= "ID"
::= "+"
::= "-"
::= "/"
::= " * "
::= "<"
::= ">"
::= "=="
::= "!="
::= ">="



::= "<="
::= splice
::=

func_params ::= func_params_elems "," func_varargs
::= func_params_elems
::= func_varargs
::=

func_params_elems ::= var func_param_default { "," var fun c_param_default } *
::= splice

func_param_default ::= ":=" expr
::=

func_varargs ::= " * " var
::= splice

func_nonlocals ::= "NONLOCAL" "ID" { "," "ID" } * "NEWLINE"
::=

expr_body ::= expr { "NEWLINE" expr } *

expr ::= class_def
::= func_def
::= while
::= if
::= for
::= try
::= number
::= var
::= dict
::= set
::= list
::= dict
::= string
::= slot_lookup %precedence 50
::= list
::= application %precedence 40
::= lookup %precedence 40
::= slice %precedence 40
::= exbi
::= return
::= yield
::= raise
::= assert
::= break
::= continue
::= conjunction %precedence 10
::= alternation %precedence 10
::= assignment %precedence 15
::= not %precedence 17
::= neg %precedence 35
::= binary %precedence 30
::= comparison %precedence 20
::= pass
::= import
::= splice %precedence 100
::= quasi_quotes
::= brackets

if ::= "IF" expr ":" "INDENT" expr_body "DEDENT" { if_elif } * if_else
::= "IF" expr "{" "INDENT" expr_body "DEDENT" "NEWLINE" "}" { if_elif } *

if_else
if_elif ::= "NEWLINE" "ELIF" expr ":" "INDENT" expr_body "D EDENT"

::= "NEWLINE" "ELIF" expr "{" "INDENT" expr_body "DEDENT" " NEWLINE" "}"
if_else ::= "NEWLINE" "ELSE" ":" "INDENT" expr_body "DEDEN T"

::= "NEWLINE" "ELSE" "{" "INDENT" expr_body "DEDENT" "NEWL INE" "}"
::=

while ::= "WHILE" expr ":" "INDENT" expr_body "DEDENT" exha usted broken
::= "WHILE" expr

for ::= "FOR" expr ":" "INDENT" expr_body "DEDENT" exhauste d broken
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::= "FOR" expr

try ::= "TRY" ":" "INDENT" expr_body "DEDENT" { try_catch } * try_else
try_catch ::= "NEWLINE" "CATCH" expr try_catch_var ":" "IN DENT" expr_body

"DEDENT"
try_catch_var ::= "INTO" var

::=
try_else ::= "NEWLINE" "ELSE" ":" "INDENT" expr_body "DEDE NT"

::=

exhausted ::= "NEWLINE" "EXHAUSTED" ":" "INDENT" expr_bod y "DEDENT"
::=

broken ::= "NEWLINE" "BROKEN" ":" "INDENT" expr_body "DEDE NT"
::=

number ::= "INT"

var ::= "ID"
::= "&" "ID"
::= splice

string ::= "STRING"

slot_lookup ::= expr "." "ID"
::= expr "." splice

list ::= "[" expr { "," expr } * "]"
::= "[" "]"

dict ::= "DICT{" expr ":" expr { "," expr ":" expr } * "}"
::= "DICT{" "}"

set ::= "SET{" expr { "," expr } * "}"
::= "SET{" "}"

application ::= expr "(" expr { "," expr } * ")"
::= expr "(" ")"

lookup ::= expr "[" expr "]"

slice ::= expr "[" expr ":" expr "]"
::= expr "[" ":" expr "]"
::= expr "[" expr ":" "]"
::= expr "[" ":" "]"

exbi ::= "EXBI" expr "." "ID"

return ::= "RETURN" expr
::= "RETURN"

yield ::= "YIELD" expr

raise ::= "RAISE" expr

assert ::= "ASSERT" expr

break ::= "BREAK"

continue ::= "CONTINUE"

conjunction ::= expr "&" expr { "&" expr } *

alternation ::= expr "|" expr { "|" expr } *

assignment ::= assignment_target { "," assignment_target } *
assignment_type expr

assignment_target ::= var
::= slot_lookup
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::= lookup
::= slice

assignment_type ::= ":="
::= " * ="
::= "/="
::= "+="
::= "-="

not ::= "NOT" expr

neg ::= "-" expr

binary ::= expr binary_op expr
binary_op ::= " * " %precedence 40

::= "/" %precedence 30
::= "%" %precedence 30
::= "+" %precedence 20
::= "-" %precedence 20

comparison ::= expr comparison_op expr
comparison_op ::= "IS"

::= "=="
::= "!="
::= "<="
::= ">="
::= "<"
::= ">"

pass ::= "PASS"

splice ::= expr_splice
::= block_splice

expr_splice ::= "$" "<" "<" expr ">" ">"
block_splice ::= "$" "<" expr ">" ":" "INDENT" "JUMBO" "DEDE NT"

quasi_quotes ::= expr_quasi_quotes
::= defn_quasi_quotes

expr_quasi_quotes ::= "[|" "INDENT" expr { "NEWLINE" expr } * "DEDENT"
"NEWLINE" "|]"

::= "[|" expr { "NEWLINE" expr } * "|]"
defn_quasi_quotes ::= "[D|" definition { "NEWLINE" defini tion } * "|]"

::= "[D|" "INDENT" definition { "NEWLINE" definition } *
"DEDENT" "NEWLINE" "|]"

brackets ::= "(" expr ")"
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Appendix B.

DSL grammars

B.1. MT Grammar

mt_rules ::= "TRANSFORMATION" "ID" "NEWLINE" mt_rule { "NE WLINE" mt_rule } *

mt_rule ::= "RULE" "ID" ":" "INDENT" mt_in "NEWLINE" mt_out "DEDENT"

mt_in ::= mt_inp mt_inc
mt_inp ::= "SRCP" ":" "INDENT" pt_ipattern { "NEWLINE" pt_i pattern } * "DEDENT"
mt_inc ::= "NEWLINE" "SRC_WHEN" ":" "INDENT" pt_ipattern " DEDENT"

::=

mt_tgt ::= mt_tgtp mt_tgtw mt_tracing
mt_tgtp ::= "TGTP" ":" "INDENT" mt_tgt_expr { "NEWLINE" exp r } * "DEDENT"
mt_tgtw ::= "NEWLINE" "TGT_WHERE" ":" "INDENT" expr { "NEWL INE" expr } * "DEDENT"

::=
mt_tracing ::= "NEWLINE" "TRACING_ADD" ":" "INDENT" expr " DEDENT"

::= "NEWLINE" "TRACING_OVERRIDE" ":" "INDENT" expr "DEDEN T"
::=

pt_ipattern ::= pt_ipattern_expr pt_ipattern_qualifier

pt_ipattern_expr ::= pt_iobj_pattern %precedence 10
::= pt_iset_pattern %precedence 10
::= pt_ivar %precedence 10
::= expr

pt_ipattern_qualifier ::= ":" pt_multiplicity "<" "ID" "> "
::=

pt_multiplicity ::= pt_multiplicity_upper_bound
::= expr "!"
::= " * " "!"
::= expr "." "." pt_multiplicity_upper_bound

pt_multiplicity_upper_bound ::= expr
::= expr "?"
::= " * "
::= " * " "?"

pt_iobj_pattern ::= "(" pt_iobj_pattern_self ")" "[" pt_i obj_slot
pt_iobj_pattern_comparison pt_ipattern_expr {

"," pt_iobj_slot pt_iobj_pattern_comparison
pt_ipattern_expr } * "]"

::= "(" pt_iobj_pattern_self ")" "[" "]"
pt_iobj_pattern_self ::= "ID" "," "<" "ID" ">"

::= "ID"
::=

pt_iobj_slot ::= "ID"
::= "ID" "(" expr { "," expr } * ")"



::= "ID" "(" ")"
pt_iobj_pattern_comparison ::= "=="

::= "!="
::= "<"
::= ">"
::= "<="
::= ">="

::= "IS"

pt_iset_pattern ::= "Set{" pt_iset_pattern_elems "|"
pt_iset_pattern_elems "}"

::= "Set{" pt_iset_pattern_elems "}"
pt_iset_pattern_elems ::= pt_ipattern { "," pt_ipattern } *

::=

pt_ivar ::= "<" "ID" ">"

mt_tgt_expr ::= expr mt_tgt_expr_qualifier
mt_tgt_expr_qualifier ::= "FOR" expr

::=

expr ::= pt_mep_pattern

pt_mep_pattern ::= "(" "ID" ")" "[" "ID" ":=" expr { "," "ID" " :=" expr } * "]"
::= "(" "ID" ")" "[" "]"

B.2. PMT Grammar

PMT’s grammar is identical to MT’s with the exception of thept mep pattern rule whose up-

dated definition is as follows:

pt_mep_pattern ::= "(" "ID" ")" "[" "ID" pt_mep_pattern_op expr { "," "ID"
pt_mep_pattern_op expr } * "]"

::= "(" "ID" ")" "[" "]"
pt_mep_pattern_op ::= ":="

::= "=="
::= ":" "=="
::= "!="
::= ">="
::= ":" ">="
::= "<="
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Appendix C.

Additional examples

C.1. Converting associations to foreign keys

This transformation is a simple example of a standard transformation: removing associations from a

model, replacing them with foreign key attributes in the appropriate classes. This is done in the con-

text of a simple UML-esque modelling language which allows attributes to be marked as constituting

part of a primary key or not. The metamodel is shown in figure C.1. When an association is replaced

by attributes, the name of the target class is prepended to attribute names to aid uniqueness of the

resultant names, and also as a grouping mechanism.

The full transformation module is as follows:

import Sys
import MT.MT
import TM.Visualizer
import Simple_UML

$<MT.mt>:

transformation Associations_To_Foreign_Keys
rule Class_To_Class:

srcp:
(Class, <c>)[name == <name>, attrs == <attrs>]
(Association)[src == c, dest == <dest>] : * <assocs>

tgtp:
(Class)[name := name, attrs := self.transform_all(attrs) + new_attrs]

tgt_where:
new_attrs := Set{}
for dict := assocs.iterate():

for attr := dict["dest"].attrs.iterate():
if attr.is_primary:

new_attr := (Attribute)[name := dict["dest"].name + "_" + \
attr.name, type := self.transform([attr.type]), \
is_primary := 0]

new_attrs.add(new_attr)

rule Remove_Association:
srcp:

(Association, <a>)[]

tgtp:



MObject

mod_id : String

to_string()
initialize()

of

Classifier

name : String

initialize()

Attribute

is_primary : bool
name : String

initialize()

PrimitiveDataType

 

initialize()

Class

 

initialize()

Association

 

initialize()

attrs
*

typedest src

Figure C.1.: Simple UML modelling language, with primary key support.

null

rule Default:
srcp:

(MObject, <mo>)[]

tgtp:
self.clone_and_transform(mo)

func main():

customer := Simple_UML.Class("Customer", Set{Simple_UM L.Attribute("name", \
Simple_UML.String, 1)})

order := Simple_UML.Class("Order", Set{Simple_UML.Attr ibute("order_no", \
Simple_UML.Integer, 1)})

employee := Simple_UML.Class("Employee", Set{Simple_UM L.Attribute("name", \
Simple_UML.String, 1), Simple_UML.Attribute("age", Sim ple_UML.Integer, 1)})

customer_order := Simple_UML.Association("order", cust omer, order)
order_employee := Simple_UML.Association("fulfilled_b y", order, employee)

class_model := [customer, order, employee, customer_orde r, order_employee]

Visualizer.visualize_model(class_model, [], fail)

transformation := Associations_To_Foreign_Keys.new.ap ply(class_model)
transformed := transformation.get_target()

Visualizer.visualize_model(transformed, [], 1)

An example of the input to this transformation can be seen in figure C.2, and the result of the
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:Class

mod_id = "10" 
name = "Customer"

:Attribute

mod_id = "9" 
is_primary = 1
name = "name"

attrs

:PrimitiveDataType

mod_id = "8" 
name = "String"

type

:Class

mod_id = "12" 
name = "Order"

:Attribute

mod_id = "11" 
is_primary = 1
name = "order_no"

attrs

:PrimitiveDataType

mod_id = "7" 
name = "Integer"

type

:Class

mod_id = "15" 
name = "Employee"

:Attribute

mod_id = "14" 
is_primary = 1
name = "age"

attrs

:Attribute

mod_id = "13" 
is_primary = 1
name = "name"

attrs

typetype

:Association

mod_id = "16" 
name = "order"

src dest

:Association

mod_id = "17" 
name = "fulfilled_by"

srcdest

Figure C.2.: ER source model.

:Class

mod_id = "22" 
name = "Customer"

:Attribute

mod_id = "21" 
is_primary = 1
name = "name"

attrs

:Attribute

mod_id = "19" 
is_primary = 0
name = "Order_order_no"

attrs

:PrimitiveDataType

mod_id = "20" 
name = "String"

type

:PrimitiveDataType

mod_id = "18" 
name = "Integer"

type

:Class

mod_id = "26" 
name = "Order"

:Attribute

mod_id = "25" 
is_primary = 1
name = "order_no"

attrs

:Attribute

mod_id = "23" 
is_primary = 0
name = "Employee_age"

attrs

:Attribute

mod_id = "24" 
is_primary = 0
name = "Employee_name"

attrs

type typetype

:Class

mod_id = "29" 
name = "Employee"

:Attribute

mod_id = "27" 
is_primary = 1
name = "age"

attrs

:Attribute

mod_id = "28" 
is_primary = 1
name = "name"

attrs

typetype

Figure C.3.: ER target model.

transformation seen in figure C.3.

C.2. Removing ‘many to many’ relations

This transformation is a simple example of a standard transformation: removing many to many asso-

ciations in an Entity-Relationship diagram. Figure C.4 shows a simple meta-model of ER diagrams

— this example is only concerned with entities and relationships.

The full transformation module is as follows:

import Sys
import PMT.PMT
import TM.Visualizer
import ER

$<PMT.mt>:
transformation Remove_Many_To_Many_Relations

rule Statemachine_To_Statemachine:
srcp:

213



MObject

mod_id : String

to_string()
initialize()

of

ERModel

 

initialize()

Element

 

initialize()

elements
*

Relation

end2_name : String
end1_name : String
end2_multiplicity : int
end1_multiplicity : int

initialize()

Entity

name : String

initialize()

end2 end1

Figure C.4.: ER diagram metamodel.

(ERModel)[elements == <ielements>]

tgtp:
(ERModel)[elements := oelements]

tgt_where:
oelements := []
for element := ielements.iterate():

oelements.extend(self.transform([element]))

rule Many_To_Many_Association:
srcp:

(Relation)[end1_multiplicity == -1, end2_multiplicity = = -1, \
end1_name == <iend1_name>, end2_name == <iend2_name>, end 1 == \
<iend1>, end2 == <iend2>]

tgtp:
(Relation)[end1_multiplicity := 1, end2_multiplicity := -1, \

end1 := self.transform([iend1]), end2 := intermediate_da ta, \
end1_name := iend1_name, end2_name := intermediate_name]

(Relation)[end1_multiplicity := -1, end2_multiplicity : = 1, \
end1 := intermediate_data, end2 := self.transform([iend2 ]), \
end1_name := intermediate_name, end2_name := iend2_name]

tgt_where:
intermediate_name := iend1_name + "_" + iend2_name
intermediate_data := (Entity)[name := intermediate_name ]

rule Default:
srcp:

(MObject, <mo>)[]
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:ERModel

mod_id = "9"

:Relation

mod_id = "8" 
end2_name = "employee" 
end1_name = "manager" 
end2_multiplicity = -1

end1_multiplicity = -1

elements

:Entity

mod_id = "7" 
name = "Employee"

elements

:Entity

mod_id = "6" 
name = "Manager"

elements

end2 end1

Figure C.5.: ER source model.

:ERModel

mod_id = "Statemachine_To_Statemachine_0__9"

:Relation

mod_id = "Many_To_Many_Association_1__8" 
end2_name = "manager_employee" 
end1_name = "manager" 
end2_multiplicity = -1

end1_multiplicity = 1

elements

:Relation

mod_id = "Many_To_Many_Association_2__8" 
end2_name = "employee" 
end1_name = "manager_employee" 
end2_multiplicity = 1

end1_multiplicity = -1

elements

:Entity

mod_id = "11" 
name = "Employee"

elements

:Entity

mod_id = "10" 
name = "Manager"

elements

end1

:Entity

mod_id = "Many_To_Many_Association_0__8" 
name = "manager_employee"

end2 end2end1

Figure C.6.: ER target model.

tgtp:
[self.clone_and_transform(mo)]

tgt_where:
Sys.println("Default")

func main():

manager := ER.Entity("Manager")
employee := ER.Entity("Employee")
manager_employee := ER.Relation(-1, -1, "manager", "empl oyee", manager, \

employee)

ermodel := ER.ERModel(Set{manager, employee, manager_em ployee})

Visualizer.visualize_model(ermodel, [], fail)

transformation := Remove_Many_To_Many_Relations(ermod el)
transformation.do_transform()
transformed := transformation.get_output()

Visualizer.visualize_model(transformed, [], 1)

An example of the input to this transformation can be seen in figure C.5, and the result of the

transformation seen in figure C.6.
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Appendix D.

Example translations

D.1. The ‘Simple UML’ modelling language

This section shows the pretty printed ITree that results from translating the Simple UML modelling

language shown in section 4.5.1. Note that this particular translation is slightly naı̈ve in nature –

it would be possible to engineer a modelling DSL that would cause variable capture (e.g. a model

attribute calledfor expr would lead to unpredictable results). As the more sophisticated transla-

tion of the model transformation language shows, such problems can be avoided, albeit at the cost of

increased implementation effort.

$$1$$ := bound_func initialize_Classifier( * args){
super_attrs := TM._all_attrs(TM.MObject, 1)
if args.len() > super_attrs.len() + 1:

raise TM.Exceptions.Parameters_Exception("Too many arg s")
super_args_pos := TM.Maths.min(super_attrs.len(), args .len())
TM.Func_Binding(self, TM.MObject.methods["initialize "]).apply(args[0 : \

super_args_pos])
if 0 < args.len() - super_args_pos:

self.name := args[super_args_pos + 0]
}

Classifier := TM.MClass(1, "Classifier", TM.MObject, Dic t{"name" : [3]}, \
["name"], Dict{"initialize" : $$1$$}, [])

$$2$$ := bound_func initialize_PrimitiveDataType( * args){
super_attrs := TM._all_attrs(TM._CLASSES_REPOSITORY[" Classifier"], 1)
if args.len() > super_attrs.len() + 0:

raise TM.Exceptions.Parameters_Exception("Too many arg s")
super_args_pos := TM.Maths.min(super_attrs.len(), args .len())
TM.Func_Binding(self, TM._CLASSES_REPOSITORY["Classi fier"]. \

methods["initialize"]).apply(args[0 : super_args_pos] )
}

PrimitiveDataType := TM.MClass(0, "PrimitiveDataType",
TM._CLASSES_REPOSITORY["Classifier"], Dict{}, [], Dict {"initialize" : \

$$2$$}, [])

$$3$$ := bound_func initialize_Class( * args){
super_attrs := TM._all_attrs(TM._CLASSES_REPOSITORY[" Classifier"], 1)
if args.len() > super_attrs.len() + 2:

raise TM.Exceptions.Parameters_Exception("Too many arg s")
super_args_pos := TM.Maths.min(super_attrs.len(), args .len())
TM.Func_Binding(self, TM._CLASSES_REPOSITORY["Classi fier"]. \

methods["initialize"]).apply(args[0 : super_args_pos] )



if 0 < args.len() - super_args_pos:
self.parents := args[super_args_pos + 0]

if 0 >= args.len() - super_args_pos:
self.parents := TM.TM_List(self)

if 1 < args.len() - super_args_pos:
self.attrs := args[super_args_pos + 1]

if 1 >= args.len() - super_args_pos:
self.attrs := TM.TM_List(self)

}

Class := TM.MClass(0, "Class", TM._CLASSES_REPOSITORY[" Classifier"],
Dict{"parents" : [0, "Class"], "attrs" : [0, "Attribute"]} , ["parents", \
"attrs"], Dict{"initialize" : $$3$$}, [["unique_names", unbound_func \
unique_names(self){
return unbound_func ocl_for(){

for_expr := self.attrs
for a1 := for_expr.iterate():

for a2 := for_expr.iterate():
if not unbound_func ocl_implies(){

if not unbound_func ocl_not_equals(){
lhs := a1
if lhs.conforms_to(TM.Int) | lhs.conforms_to(TM.String ):

return lhs != a2
else:

return not lhs is a2
}():

return 1
if unbound_func ocl_not_equals(){

lhs := a1.name
if lhs.conforms_to(TM.Int) | lhs.conforms_to(TM.String ):

return lhs != a2.name
else:

return not lhs is a2.name
}():

return 1
return TM.fail

}():
return TM.fail

return 1
}()

}]])

$$4$$ := bound_func initialize_Attribute( * args){
super_attrs := TM._all_attrs(TM.MObject, 1)
if args.len() > super_attrs.len() + 3:

raise TM.Exceptions.Parameters_Exception("Too many arg s")
super_args_pos := TM.Maths.min(super_attrs.len(), args .len())
TM.Func_Binding(self, TM.MObject.methods["initialize "]).apply( \

args[0 : super_args_pos])
if 0 < args.len() - super_args_pos:

self.name := args[super_args_pos + 0]
if 1 < args.len() - super_args_pos:

self.type := args[super_args_pos + 1]
if 2 < args.len() - super_args_pos:

self.is_primary := args[super_args_pos + 2]
}

Attribute := TM.MClass(0, "Attribute", TM.MObject, Dict{ "name" : [3], \
"type" : "Classifier", "is_primary" : [5]}, ["name", "type ", "is_primary"], \
Dict{"initialize" : $$4$$}, [])

D.2. Simple classes to tables transformation

Classes_To_Tables := class Classes_To_Tables:
_rule_names := ["Class_To_Table", "User_Type_Attr_To_C olumn", \

"Primitive_Type_Attr_To_Column"]
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bound_func init( * root_set){
self._root_set := root_set
self._transformed_cache := Dict{}
self._matched_objs := Set{}
self._tracing := []
self._tracing_rule := []
for rule_name := self._rule_names.iterate():

self._transformed_cache[rule_name] := Dict{}
self._output := self.transform_all(root_set)

}
bound_func get_source(){

return self._root_set
}
bound_func get_target(){

return self._output
}
bound_func get_conflict_objects(){

return []
}
bound_func transform( * objs){

for obj := objs.iterate():
if not obj.conforms_to(MT.List):

raise MT.Exceptions.Type_Exception(MT.List, obj.insta nce_of, \
obj.to_str())

for rule_name := self._rule_names.iterate():
if output := self.get_slot(rule_name).apply(objs):

return output
raise MT.Exceptions.Exception(MT.Strings.format( \

"Unable to transform ’%s’.", objs.to_str()))
}
bound_func transform_all(objs){

if objs.conforms_to(MT.List):
output_objs := []
for obj := objs.iterate():

output_objs.append(self.transform([obj]))
elif objs.conforms_to(MT.Set):

output_objs := Set{}
for obj := objs.iterate():

output_objs.add(self.transform([obj]))
else:

raise MT.Exceptions.Exception(objs.instance_of.name)
return output_objs

}
bound_func Class_To_Table( * objs){

$$18$$self$$ := self
if matched_objs, bindings := unbound_func ( * args){

if args.len() > 1:
return Input_Pattern_Creator.fail

matched_mp_elems := Set{}
bindings := Dict{}
if 0 < args.len():

$$7$$elements$$ := args[0]
else:

$$7$$elements$$ := self._root_set
$$8$$matched_mp_elems_backup$$ := matched_mp_elems
$$9$$bindings_backup$$ := bindings
for $$10$$new_matched_mp_elems$$, $$11$$new_bindings$ $, \

$$12$$matched_elem$$ := unbound_func (bindings, element s){
for element := elements.iterate() & yield unbound_func (bi ndings, \

element){
if not Input_Pattern_Creator.TM.type_match("Class", el ement):

return Input_Pattern_Creator.fail
for yield $$2$$ := unbound_func (bindings, element){

if bindings.contains("c") & not bindings["c"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"c" : element}, element]
}(bindings, element) & $$1$$ := bindings + $$2$$[1] & \

$$4$$ := unbound_func (bindings){
slot_element := element.name
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for matched_mp_elems, new_bindings, \
matched_elem := unbound_func (bindings, element){
if bindings.contains("n") & not bindings["n"] == \

element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"n" : element}, element]
}(bindings, slot_element):

if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \

matched_elem]
return Input_Pattern_Creator.fail

}($$1$$) & $$3$$ := $$1$$ + $$4$$[1] & $$6$$ := \
unbound_func (bindings){
slot_element := element.attrs
for matched_mp_elems, new_bindings, matched_elem := \

unbound_func (bindings, element){
if bindings.contains("A") & not bindings["A"] == \

element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"A" : element}, element]
}(bindings, slot_element):

if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \

matched_elem]
return Input_Pattern_Creator.fail

}($$3$$) & $$5$$ := $$3$$ + $$6$$[1] & [Set{element}, \
Input_Pattern_Creator.Functional.foldl( \

Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \

Input_Pattern_Creator._element1, [$$2$$, $$4$$, \
$$6$$])), element]

return Input_Pattern_Creator.fail
}(bindings, element)
return Input_Pattern_Creator.fail

}(bindings, $$7$$elements$$):
matched_mp_elems := matched_mp_elems + \

$$10$$new_matched_mp_elems$$
bindings := bindings + $$11$$new_bindings$$
return [matched_mp_elems, bindings]
matched_mp_elems := $$8$$matched_mp_elems_backup$$
bindings := $$9$$bindings_backup$$

return Input_Pattern_Creator.fail
}.apply(objs):

self._matched_objs.extend(matched_objs)
if not rtn := unbound_func (matched_objs, bindings){

concatted_id := Output_Pattern_Creator.concat_id(matc hed_objs)
if self._transformed_cache["Class_To_Table"].contain s( \

concatted_id):
return self._transformed_cache["Class_To_Table"][con catted_id]

tracing_i := self._tracing.len()
$$13$$c$$ := bindings["c"]
$$14$$n$$ := bindings["n"]
$$15$$A$$ := bindings["A"]
$$16$$columns$$ := []
for $$17$$attr$$ := $$15$$A$$.iterate():

$$16$$columns$$.extend($$18$$self$$.transform([""], \
[$$17$$attr$$]).flatten())

out_elems := []
out_elems.append(unbound_func (){

user_args := Dict{"name" : $$14$$n$$, "cols" : \
$$16$$columns$$}

all_args := []
args_processed := 0
for attr_name := Output_Pattern_Creator.TM. \

all_attrs_in_order(Output_Pattern_Creator.TM. \
_CLASSES_REPOSITORY["Table"]).iterate():

if args_processed == user_args.len():
break

if user_args.contains(attr_name):
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all_args.append(user_args[attr_name])
args_processed += 1

else:
all_args.append(Output_Pattern_Creator.null)

return Output_Pattern_Creator.TM._CLASSES_REPOSITORY \
["Table"].new.apply(all_args)

}())
out_elem := out_elems[0]
self._transformed_cache["Class_To_Table"][concatted _id] := \

out_elem
if not out_elem is Output_Pattern_Creator.null:

tracing := [Output_Pattern_Creator.List(matched_objs) , \
out_elems]

tracing := Output_Pattern_Creator.trace_reduce(tracin g)
self._tracing.insert(tracing_i, tracing)
self._tracing_rule.insert(tracing_i, "Class_To_Table ")

return out_elem
}(matched_objs, bindings):

raise MT.Exceptions.Exception(MT.Strings.format(\
"Output pattern of Class_To_Table failed to generate " +
"anything for ’%s’.", objs.to_str()))

return rtn
else:

return MT.fail
}
bound_func User_Type_Attr_To_Column( * objs){

$$48$$concat_name$$ := concat_name
$$49$$self$$ := self
if matched_objs, bindings := unbound_func ( * args){

if args.len() > 2:
return Input_Pattern_Creator.fail

matched_mp_elems := Set{}
bindings := Dict{}
if 0 < args.len():

$$37$$elements$$ := args[0]
else:

$$37$$elements$$ := self._root_set
$$38$$matched_mp_elems_backup$$ := matched_mp_elems
$$39$$bindings_backup$$ := bindings
for $$40$$new_matched_mp_elems$$, $$41$$new_bindings$ $, \

$$42$$matched_elem$$ := unbound_func (bindings, element s){
for element := elements.iterate() & yield \

unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match("String", e lement):

return Input_Pattern_Creator.fail
for yield $$20$$ := unbound_func (bindings, element){

if bindings.contains("prefix") & \
not bindings["prefix"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"prefix" : element}, element]
}(bindings, element) & $$19$$ := bindings + $$20$$[1] & \

[Set{element}, Input_Pattern_Creator.Functional.fold l( \
Input_Pattern_Creator._adder, \

Input_Pattern_Creator.Functional.map( \
Input_Pattern_Creator._element1, [$$20$$])), element]

return Input_Pattern_Creator.fail
}(bindings, element)
return Input_Pattern_Creator.fail

}(bindings, $$37$$elements$$):
matched_mp_elems := matched_mp_elems + \

$$40$$new_matched_mp_elems$$
bindings := bindings + $$41$$new_bindings$$
if 1 < args.len():

$$31$$elements$$ := args[1]
else:

$$31$$elements$$ := self._root_set
$$32$$matched_mp_elems_backup$$ := matched_mp_elems
$$33$$bindings_backup$$ := bindings
for $$34$$new_matched_mp_elems$$, $$35$$new_bindings$ $, \
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$$36$$matched_elem$$ := unbound_func (bindings, element s){
for element := elements.iterate() & yield \

unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match("Attribute ", \

element):
return Input_Pattern_Creator.fail

for yield $$21$$ := bindings & $$23$$ := \
unbound_func (bindings){
slot_element := element.name
for matched_mp_elems, new_bindings, matched_elem := \

unbound_func (bindings, element){
if bindings.contains("n") & \

not bindings["n"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"n" : element}, element]
}(bindings, slot_element):

if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \

matched_elem]
return Input_Pattern_Creator.fail

}($$21$$) & $$22$$ := $$21$$ + $$23$$[1] & $$30$$ := \
unbound_func (bindings){
slot_element := element.type
for matched_mp_elems, new_bindings, matched_elem := \

unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match(\

"Class", element):
return Input_Pattern_Creator.fail

for yield $$24$$ := bindings & \
$$26$$ := unbound_func (bindings){
slot_element := element.name
for matched_mp_elems, new_bindings, \

matched_elem := unbound_func (bindings, \
element){

if bindings.contains("cn") & \
not bindings["cn"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"cn" : element}, \
element]

}(bindings, slot_element):
if slot_element == matched_elem:

yield [matched_mp_elems, \
new_bindings, matched_elem]

return Input_Pattern_Creator.fail
}($$24$$) & $$25$$ := $$24$$ + $$26$$[1] & \

$$28$$ := unbound_func (bindings){
slot_element := element.attrs
for matched_mp_elems, new_bindings, \

matched_elem := unbound_func (bindings, \
element){

if bindings.contains("CA") & \
not bindings["CA"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"CA" : element}, \
element]

}(bindings, slot_element):
if slot_element == matched_elem:

yield [matched_mp_elems, \
new_bindings, matched_elem]

return Input_Pattern_Creator.fail
}($$25$$) & $$27$$ := $$25$$ + $$28$$[1] & \

[Set{element}, \
Input_Pattern_Creator.Functional.foldl( \

Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \
Input_Pattern_Creator._element1, \
[$$26$$, $$28$$])), element]

return Input_Pattern_Creator.fail
}(bindings, slot_element):
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if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \

matched_elem]
return Input_Pattern_Creator.fail

}($$22$$) & $$29$$ := $$22$$ + $$30$$[1] & \
[Set{element}, \
Input_Pattern_Creator.Functional.foldl( \
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \
Input_Pattern_Creator._element1, [$$23$$, $$30$$])), \
element]

return Input_Pattern_Creator.fail
}(bindings, element)
return Input_Pattern_Creator.fail

}(bindings, $$31$$elements$$):
matched_mp_elems := matched_mp_elems + \

$$34$$new_matched_mp_elems$$
bindings := bindings + $$35$$new_bindings$$
return [matched_mp_elems, bindings]
matched_mp_elems := $$32$$matched_mp_elems_backup$$
bindings := $$33$$bindings_backup$$

matched_mp_elems := $$38$$matched_mp_elems_backup$$
bindings := $$39$$bindings_backup$$

return Input_Pattern_Creator.fail
}.apply(objs):

self._matched_objs.extend(matched_objs)
if not rtn := unbound_func (matched_objs, bindings){

concatted_id := Output_Pattern_Creator.concat_id(matc hed_objs)
if self._transformed_cache["User_Type_Attr_To_Column "]. \

contains(concatted_id):
return self._transformed_cache["User_Type_Attr_To_Co lumn"] \

[concatted_id]
tracing_i := self._tracing.len()
$$43$$prefix$$ := bindings["prefix"]
$$44$$n$$ := bindings["n"]
$$45$$cn$$ := bindings["cn"]
$$46$$CA$$ := bindings["CA"]
out_elems := []
out_elems.append(unbound_func (){

output_objs := []
for $$47$$ca$$ := $$46$$CA$$.iterate():

output_objs.append($$49$$self$$.transform( \
[$$48$$concat_name$$($$43$$prefix$$, $$44$$n$$)], \
[$$47$$ca$$]))

return output_objs
}())
out_elem := out_elems[0]
self._transformed_cache["User_Type_Attr_To_Column"] \

[concatted_id] := out_elem
if not out_elem is Output_Pattern_Creator.null:

tracing := [Output_Pattern_Creator.List(matched_objs) , \
out_elems]

tracing := Output_Pattern_Creator.trace_reduce(tracin g)
self._tracing.insert(tracing_i, tracing)
self._tracing_rule.insert(tracing_i, \

"User_Type_Attr_To_Column")
return out_elem

}(matched_objs, bindings):
raise MT.Exceptions.Exception(MT.Strings.format( \

"Output pattern of User_Type_Attr_To_Column failed to " + \
"generate anything for ’%s’.", objs.to_str()))

return rtn
else:

return MT.fail
}
bound_func Primitive_Type_Attr_To_Column( * objs){

$$75$$concat_name$$ := concat_name
if matched_objs, bindings := unbound_func ( * args){

if args.len() > 2:
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return Input_Pattern_Creator.fail
matched_mp_elems := Set{}
bindings := Dict{}
if 0 < args.len():

$$66$$elements$$ := args[0]
else:

$$66$$elements$$ := self._root_set
$$67$$matched_mp_elems_backup$$ := matched_mp_elems
$$68$$bindings_backup$$ := bindings
for $$69$$new_matched_mp_elems$$, $$70$$new_bindings$ $, \

$$71$$matched_elem$$ := unbound_func (bindings, element s){
for element := elements.iterate() & yield \

unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match("String", e lement):

return Input_Pattern_Creator.fail
for yield $$51$$ := unbound_func (bindings, element){

if bindings.contains("prefix") & \
not bindings["prefix"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"prefix" : element}, element]
}(bindings, element) & $$50$$ := bindings + $$51$$[1] & \

[Set{element}, \
Input_Pattern_Creator.Functional.foldl( \
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \
Input_Pattern_Creator._element1, [$$51$$])), element]

return Input_Pattern_Creator.fail
}(bindings, element)
return Input_Pattern_Creator.fail

}(bindings, $$66$$elements$$):
matched_mp_elems := matched_mp_elems + \

$$69$$new_matched_mp_elems$$
bindings := bindings + $$70$$new_bindings$$
if 1 < args.len():

$$60$$elements$$ := args[1]
else:

$$60$$elements$$ := self._root_set
$$61$$matched_mp_elems_backup$$ := matched_mp_elems
$$62$$bindings_backup$$ := bindings
for $$63$$new_matched_mp_elems$$, $$64$$new_bindings$ $, \

$$65$$matched_elem$$ := unbound_func (bindings, element s){
for element := elements.iterate() & yield \

unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match("Attribute ", \

element):
return Input_Pattern_Creator.fail

for yield $$52$$ := bindings & $$54$$ := \
unbound_func (bindings){
slot_element := element.name
for matched_mp_elems, new_bindings, matched_elem \

:= unbound_func (bindings, element){
if bindings.contains("n") & \

not bindings["n"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"n" : element}, element]
}(bindings, slot_element):

if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \

matched_elem]
return Input_Pattern_Creator.fail

}($$52$$) & $$53$$ := $$52$$ + $$54$$[1] & $$59$$ := \
unbound_func (bindings){
slot_element := element.type
for matched_mp_elems, new_bindings, matched_elem := \

unbound_func (bindings, element){
if not Input_Pattern_Creator.TM.type_match( \

"PrimitiveDataType", element):
return Input_Pattern_Creator.fail

for yield $$55$$ := bindings & $$57$$ := \
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unbound_func (bindings){
slot_element := element.name
for matched_mp_elems, new_bindings, \

matched_elem := unbound_func (bindings, \
element){

if bindings.contains("pn") & \
not bindings["pn"] == element:
return Input_Pattern_Creator.fail

return [Set{}, Dict{"pn" : element}, \
element]

}(bindings, slot_element):
if slot_element == matched_elem:

yield [matched_mp_elems, \
new_bindings, matched_elem]

return Input_Pattern_Creator.fail
}($$55$$) & $$56$$ := $$55$$ + $$57$$[1] & \

[Set{element}, \
Input_Pattern_Creator.Functional.foldl( \
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \
Input_Pattern_Creator._element1, [$$57$$])), \
element]

return Input_Pattern_Creator.fail
}(bindings, slot_element):

if slot_element == matched_elem:
yield [matched_mp_elems, new_bindings, \

matched_elem]
return Input_Pattern_Creator.fail

}($$53$$) & $$58$$ := $$53$$ + $$59$$[1] & \
[Set{element}, \
Input_Pattern_Creator.Functional.foldl( \
Input_Pattern_Creator._adder, \
Input_Pattern_Creator.Functional.map( \
Input_Pattern_Creator._element1, [$$54$$, $$59$$])), \
element]

return Input_Pattern_Creator.fail
}(bindings, element)
return Input_Pattern_Creator.fail

}(bindings, $$60$$elements$$):
matched_mp_elems := matched_mp_elems + \

$$63$$new_matched_mp_elems$$
bindings := bindings + $$64$$new_bindings$$
return [matched_mp_elems, bindings]
matched_mp_elems := $$61$$matched_mp_elems_backup$$
bindings := $$62$$bindings_backup$$

matched_mp_elems := $$67$$matched_mp_elems_backup$$
bindings := $$68$$bindings_backup$$

return Input_Pattern_Creator.fail
}.apply(objs):

self._matched_objs.extend(matched_objs)
if not rtn := unbound_func (matched_objs, bindings){

concatted_id := Output_Pattern_Creator.concat_id(matc hed_objs)
if self._transformed_cache["Primitive_Type_Attr_To_C olumn"]. \

contains(concatted_id):
return self._transformed_cache \

["Primitive_Type_Attr_To_Column"][concatted_id]
tracing_i := self._tracing.len()
$$72$$prefix$$ := bindings["prefix"]
$$73$$n$$ := bindings["n"]
$$74$$pn$$ := bindings["pn"]
out_elems := []
out_elems.append([unbound_func (){

user_args := Dict{"name" : $$75$$concat_name$$( \
$$72$$prefix$$, $$73$$n$$), "type" : $$74$$pn$$}

all_args := []
args_processed := 0
for attr_name := Output_Pattern_Creator.TM. \

all_attrs_in_order(Output_Pattern_Creator.TM. \
_CLASSES_REPOSITORY["Column"]).iterate():
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if args_processed == user_args.len():
break

if user_args.contains(attr_name):
all_args.append(user_args[attr_name])
args_processed += 1

else:
all_args.append(Output_Pattern_Creator.null)

return Output_Pattern_Creator.TM._CLASSES_REPOSITORY \
["Column"].new.apply(all_args)

}()])
out_elem := out_elems[0]
self._transformed_cache["Primitive_Type_Attr_To_Col umn"] \

[concatted_id] := out_elem
if not out_elem is Output_Pattern_Creator.null:

tracing := [Output_Pattern_Creator.List(matched_objs) , \
out_elems]

tracing := Output_Pattern_Creator.trace_reduce(tracin g)
self._tracing.insert(tracing_i, tracing)
self._tracing_rule.insert(tracing_i, \

"Primitive_Type_Attr_To_Column")
return out_elem

}(matched_objs, bindings):
raise MT.Exceptions.Exception(MT.Strings.format( \

"Output pattern of Primitive_Type_Attr_To_Column failed to " + \
"generate anything for ’%s’.", objs.to_str()))

return rtn
else:

return MT.fail
}
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Appendix E.

Model serializer

E.1. Overview

The TM Serializer module comprises functions to serialize and deserialize TMmodels, and

tracing information. The serializer is essentially a simple graph walking function which flattens a

model into an XML tree structure; references between nodes are made by using model elements’

identifiers and an XML attributeid .

The deserializer is slightly more complex in operation. It utilizes Converge’sXML.Whole Par-

ser module which provides a simple mechanism for parsing and traversing an XML file. The prob-

lem the deserializer faces is that as it works through its input creating appropriate model elements, it

may find anid reference to an element which has not yet been created. In such cases, it creates a

blank TM model element which it uses as a dummy holder to be filled in later when the full definition

of the element is encountered in the file. This however means that during the process of deserializa-

tion the model being created may not be conformant to its meta-model. In order to prevent exceptions

being raised whilst the model is deserialized, the deserializer sets the is initialized field of

each element to0, ensuring that checks against the meta-model are not made. When all elements are

completely deserialized, it then goes back over each element, setting this field to1, finally running

the meta-models constraints against the meta-model to ensure that it has been recreated correctly.

E.2. Example output

This section shows the XML output from the TMSerializer model on the example of section

6.2.2. Firstly the ML2 input model:

<Model>
<Element id="13" of="ML2_Package">

<Attribute name="name">
<String val="Personnel" />

</Attribute>
<Attribute name="elements">



<Set>
<Ref ref="12" />
<Ref ref="11" />
<Ref ref="10" />

</Set>
</Attribute>

</Element>
<Element id="12" of="ML2_Association">

<Attribute name="name">
<String val="PE" />

</Attribute>
<Attribute name="end2_name">

<String val="manager" />
</Attribute>
<Attribute name="end1_name">

<String val="employees" />
</Attribute>
<Attribute name="end2_multiplicity">

<Int val="1" />
</Attribute>
<Attribute name="end1_multiplicity">

<Int val="-1" />
</Attribute>
<Attribute name="end2_directed">

<Int val="0" />
</Attribute>
<Attribute name="end1_directed">

<Int val="0" />
</Attribute>
<Attribute name="end2">

<Ref ref="11" />
</Attribute>
<Attribute name="end1">

<Ref ref="10" />
</Attribute>

</Element>
<Element id="11" of="ML2_Class">

<Attribute name="name">
<String val="Manager" />

</Attribute>
<Attribute name="parents">

<List>

</List>
</Attribute>

</Element>
<Element id="10" of="ML2_Class">

<Attribute name="name">
<String val="Employee" />

</Attribute>
<Attribute name="parents">

<List>

</List>
</Attribute>

</Element>
</Model>

Then the ML1 target model produced by the transformation on its initial execution:

<Model>
<Element id="Package_To_Package_0__13" of="ML1_Packag e">

<Attribute name="name">
<String val="Personnel" />

</Attribute>
<Attribute name="parents">

<List>

</List>
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</Attribute>
<Attribute name="elements">

<Set>
<Ref ref="Association_To_Association_0__12" />
<Ref ref="Association_To_Association_1__12" />
<Ref ref="Class_To_Class_0__11" />
<Ref ref="Class_To_Class_0__10" />

</Set>
</Attribute>

</Element>
<Element id="Association_To_Association_0__12" of="ML 1_Association">

<Attribute name="name">
<String val="manager" />

</Attribute>
<Attribute name="multiplicity">

<Int val="1" />
</Attribute>
<Attribute name="to">

<Ref ref="Class_To_Class_0__11" />
</Attribute>
<Attribute name="from">

<Ref ref="Class_To_Class_0__10" />
</Attribute>

</Element>
<Element id="Association_To_Association_1__12" of="ML 1_Association">

<Attribute name="name">
<String val="employees" />

</Attribute>
<Attribute name="multiplicity">

<Int val="-1" />
</Attribute>
<Attribute name="to">

<Ref ref="Class_To_Class_0__10" />
</Attribute>
<Attribute name="from">

<Ref ref="Class_To_Class_0__11" />
</Attribute>

</Element>
<Element id="Class_To_Class_0__11" of="ML1_Class">

<Attribute name="name">
<String val="Manager" />

</Attribute>
<Attribute name="parents">

<List>

</List>
</Attribute>

</Element>
<Element id="Class_To_Class_0__10" of="ML1_Class">

<Attribute name="name">
<String val="Employee" />

</Attribute>
<Attribute name="parents">

<List>

</List>
</Attribute>

</Element>
</Model>

And finally the tracing information generated by the transformation on its initial execution:

<Tracing>
<Trace rule="Class_To_Class">

<From>
<Ref ref="10" />

</From>
<To>

<Ref ref="Class_To_Class_0__10" />
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</To>
</Trace>
<Trace rule="Class_To_Class">

<From>
<Ref ref="11" />

</From>
<To>

<Ref ref="Class_To_Class_0__11" />
</To>

</Trace>
<Trace rule="Association_To_Association">

<From>
<Ref ref="12" />

</From>
<To>

<Ref ref="Association_To_Association_0__12" />
<Ref ref="Association_To_Association_1__12" />

</To>
</Trace>
<Trace rule="Package_To_Package">

<From>
<Ref ref="13" />

</From>
<To>

<Ref ref="Package_To_Package_0__13" />
</To>

</Trace>
</Tracing>
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Appendix F.

Glossary

Bidirectional A transformation which can both transform instances of M1 into instances of M2, and

instances of M2 into M1.

Bound function A Converge function which has its self variable bound to a particular object. Equiv-

alent to the term ‘method’ in many OO languages.

Change propagation The ability to take two models related in a transformation and, given changes

in one or the other model, to make the corresponding changes to the other model.

Conflict report A record of inconsistencies, relative to a transformation,between two models in-

volved in change propagation.

Conformance operator An operator relating model elements in a change propagatingtransforma-

tion.

Conjunction The Converge& operator which conjoins expressions. This also serves as Converge’s

equivalent of the standardand operator.

Disjunction The Converge| operator which successively generates each of its expressions. This also

serves as Converge’s equivalent of the standardor operator.

DSL block A block of code in a user-specified syntax embedded within a Converge source file.

DSL implementation function The function which introduces a DSL block, and which is responsi-

ble, at compile-time, for converting the DSL block into an ITree.

Declaration quasi-quotesA form of quasi-quotes which does not performα-renaming at the top-

level.

Generator A Converge function which generates multiple values via theyield keyword.



Goal-directed evaluation The evaluation strategy, inherited from Icon, which allowsbacktracking

amongst Converge expressions to find values which allow execution to continue.

ITree A converge Abstract Syntax Tree.

Key One or more attributes which collectively identify a model element.

Lifting The process of converting a normal Converge value, such as a string, into its ITree equivalent.

Metamodel Literally ‘the model of a model’. Often referred to as a modelling language. Defines

what its valid instances are, possibly by a denotational or creational style.

Model element expressionAn MT or PMT expression which creates model elements.

Model element pattern An MT or PMT expression which matches model elements.

Model expression An overarching MT and PMT term encompassing both normal Converge expres-

sions, model element expressions and model element patterns.

MT The MT language is a unidirectional stateless model transformation language.

Multiplicity A constraint specifying the number of times a pattern may match against model ele-

ments.

Pattern A syntactic convenience for matching data types, most commonly realised in the real world

as textual regular expressions.

PMT The PMT language is a unidirectional change propagating model transformation language.

Quasi-quotes A mechanism for expressing ITree’s via standard Converge concrete syntax.

Root set of source elementsThe elements initially passed to a transformation.

Rule A transformation is comprised of one or more transformationrules. A rule can be thought of

as being equivalent to a function.

Slot comparisons A standard MT model element pattern is comprised of one or more slot compar-

isons. Each slot comparison checks to see whether a given slot in a source model element is

correctly related to the value returned by a model expression.

Slot conformancesA standard PMT model element expression is comprised of one or more slot

conformances. Each slot conformance checks to see whether agiven slot in a target model

element is correctly related to the value returned by a modelexpression.
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Source / target clausesA transformation rule is said to be comprised of two or more clauses; at

least one source clause, matching source elements, and at least one target clause creating target

elements.

Splice A splice is an expression in a Converge file which will be evaluated at compile-time.

Splicing The act of replacing a splice with the ITree created by evaluated the expression at compile-

time.

TM The Typed Modelling (TM) language allows simple modelling languages to be expressed, and

model elements to be created from those meta-models.

Variable binding An MT or PMT variable which is bound to a particular model element as matching

proceeds.
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