
2 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

practical uses of such languages and shows how
they’re frequently a vehicle for innovation in
the development sphere.

What is a dynamically typed
language?

Simply put, a dynamically typed language
doesn’t require the user to statically specify
types—for example, no declarations of int i,
and so on. However, this doesn’t mean that
such languages are weakly typed. If, for exam-
ple, a user tries to add a string to a bool at run-
time, an error will immediately be raised. Stati-
cally typed languages enforce the declarations
of (at least a minimum of) types and notify the
user at compile time of type-related errors that
must be fixed. Shades of gray also exist between
the two extremes: many statically typed lan-
guages defer certain checks to runtime, while
dynamically typed languages often perform
some checks statically to warn users.

Many people familiar with statically typed
languages such as Java or C wonder if those who
use dynamically typed languages are too lazy to
declare types. Furthermore, they assume that not

declaring types will decrease the software’s qual-
ity: “Imagine how many runtime errors will re-
sult!” Not surprisingly, they view “prototyping”
or “scripting” languages as suitable only for very
small or toy programs. However, if these lan-
guages are so limited, why do leading companies
such as Google publicly proclaim the benefits of
large systems written in such languages? There
are two answers to this question.

First, current static type systems in main-
stream object-oriented languages have little ex-
pressive power. For example, although they
prevent users from adding a string to a bool,
they don’t prevent them from accessing the first
element of an empty list, creating off-by-one er-
rors, or using null pointers. In fact, static type
systems can’t detect most common program-
ming errors. Yet for such systems to work, de-
velopers must spoon-feed (and sometimes
strong-arm) the types at development time so
that the type system—which is in essence a sep-
arate system from the main language—knows
what the code is really doing.

The waters are muddied further because
even very simple approaches to testing capture

focus 1
Dynamically
Typed Languages

T
he languages discussed in this special issue have a long history,
which is perhaps why some have had several different names over
the years. One such language is Lisp, the second-oldest program-
ming language. For years, many somewhat dismissively described

languages such as Lisp as “scripting languages.” Today, we more commonly
refer to them as dynamically typed languages, typified by Python and Ruby,
and their impact is arguably greater than ever. This issue highlights the

guest editors’ introduction

Laurence Tratt, Bournemouth University

Roel Wuyts, IMEC

virtually all, if not all, the errors that a static
type system would capture. Plus, as many of us
unfortunately know, even extensive testing has
a hard job identifying off-by-one errors. Don
Roberts formulated it perfectly at OOPSLA

2005: “Static types give me the same feeling of
safety as the announcement that my seat cush-
ion can be used as a floatation device” (see http://
martinfowler.com/bliki/OOPSLA2005.html).

Second, static type systems—as their name
suggests—implicitly constrain the programmer
at both compile time and runtime. In other
words, static type systems tend to ossify pro-
grams, making them less flexible, more difficult
to work with, and less amenable to change.
When a user wants to modify one aspect of a sys-
tem, that system’s types could force numerous
rewrites in unrelated parts of the system. (Think
about all the problems for subclasses once over-
loading comes into the picture.) These rewrites
can seriously inhibit any system experimenta-
tion. In an age where we strive for reusable soft-
ware, and where software must adapt quickly to
external changes, programming languages that
reduce agility can be a significant disadvantage.

However, this issue doesn’t aim to be one-
sided zealotry for dynamically typed languages.
Sometimes, users will pay whatever it costs (in
time or money) for extra software reliability,
such as when requesting software for a nuclear
power plant or an airplane’s autopilot function.
So static type systems have their part to play, but
they’re by no means the only option. As in most
areas of life, the majority of software needs to
balance various factors, and in many cases the
advantages of dynamically typed languages
come to the fore. Rapid application develop-
ment, with its emphasis on quickly producing in-
cremental results, showcases this in many areas.

A distinguished history
People often say of the Velvet Underground

that although they didn’t sell many records,
every person who bought one of their records
started a band. Two dynamically typed lan-
guages deserve a similar epithet: Lisp and
Smalltalk. While neither ever quite gained
mainstream success, both had a huge influence
on later languages—including many statically
typed languages—and both are still used to-
day. They’re an important part of the long and
distinguished history of dynamically typed
languages.

Lisp was the source of many programming-

language firsts, such as automatic memory
management. It’s the ancestor of all extant
functional languages, although, interestingly,
most of its descendants are statically typed
languages. One notable exception is Scheme, a
very clean Lisp dialect with a sophisticated
macro mechanism and module system.

Smalltalk is a purely object-oriented lan-
guage that pioneered the bytecode virtual ma-
chine and graphical integrated development
environments, long before C++ or Java were
thought of. It inspired prototype-based (class-
less) languages, notably Self, a language whose
many advances in VM technology we now
take for granted via Java and.NET.

An excellent example of a highly performant
dynamically typed language is Lua. This small
but powerful language is extremely well suited to
being embedded into existing systems, as shown
in the article “Traveling Light, the Lua Way.”

However, for many years, dynamically
typed languages were viewed as slow, unreli-
able, and suitable only for small throw-away
tasks. Although a handful of people used dy-
namically typed languages for complex sys-
tems—such as the banks that embraced
Smalltalk in the beginning of the ’80s—it was
generally felt that “real” programmers used
statically typed languages.

As with many other areas of computing, the
emergence of the Web changed things. Creat-
ing dynamic Web pages in languages such as C
was painful, and the dynamically typed lan-
guage Perl quickly became synonymous with
Web systems. However, Perl’s origins in sys-
tems administration software—where small,
inscrutable solutions were often the order of
the day—prevented wider scale adoption.

In the late ’90s, the object-oriented language
Python—in many ways, a more traditional lan-
guage than Perl—came to the fore as a dynami-
cally typed language suitable for both small and
large systems. Python continues to be used in a
variety of applications. The article “A Common
Medium for Programming Operations-Research
Models” shows how to apply Python to do-
mains traditionally dominated by statically
typed languages. Today, languages such as Ruby
continue to emerge and prove themselves useful
in new spheres.

The present
For some time, the scarce resource when de-

veloping software hasn’t been hardware but

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 2 9

Lisp and
Smalltalk are
an important
part of the
long and

distinguished
history of

dynamically
typed languages.

rather developer time. With hardware develop-
ment continuing to follow, and sometimes sur-
pass, Moore’s law, execution performance or
memory consumption are no longer the major
bottlenecks for most applications (excluding
embedded systems or very large application
servers). This removes what many people con-
sider dynamically typed languages’ major obsta-
cle—performance. Although this perception has
often been at odds with reality (in several appli-
cations, CLOS runs nearly as fast as C, and pro-
duction Smalltalk systems have execution speeds
comparable to Java), in the modern world, per-
formance is generally irrelevant. Most applica-
tions running on a modern desktop computer
are fast enough, no matter what language was
used to write them. So, a chief benefit of dynam-
ically typed languages is significantly reduced de-
velopment time.

A fundamental property of dynamically
typed languages is their flexibility, and from
the earliest days of Lisp, developers have used
this property to turn the languages into do-
main-specific languages. Of course, you can
implement DSLs in statically typed languages,
but the complex syntax and semantics that
generally accompany static type systems make
this a more arduous task. DSLs in such lan-
guages often resort to a parser or XML/XSLT-
based approach, which defines a custom syn-
tax and translates it into another language.
Needless to say, developing such systems isn’t
for the faint of heart.

Building a DSL in a dynamically typed lan-
guage is far easier, as shown in “Building Do-
main-Specific Languages for Model-Driven
Development.” The article also highlights that

statically typed systems (such as modeling
software) are often implemented in dynami-
cally typed languages. Because the syntax of
most dynamically typed languages is quite
small and flexible, we can often forget parser
and transformation approaches altogether.
The resulting DSL is therefore more maintain-
able and amenable to evolution, better fitting
the domain users’ ever-changing needs.

Last, but certainly not least, we return to the
development of Web applications. Even though
scripting languages unlocked Web develop-
ment’s potential for many users, application de-
velopment on the Web is still much more chal-
lenging than traditional approaches. Simple user
features such as the browser back button can
wreak havoc on age-old programming models.
The article “Seaside: A Flexible Environment for
Building Web Applications” shows how to com-
bine the functional programming concept of
continuations with pure object-oriented princi-
ples to make developing sophisticated Web ap-
plications as easy as developing desktop appli-
cations.

In addition to solving “old” problems, dy-
namically typed languages are also playing
their trump cards of easy use and deployment
to help develop Web 2.0 or the Semantic Web.
“A Flexible Integration Framework for Se-
mantic Web 2.0 Applications” discusses the
benefits of dynamically typed languages in this
domain.

Looking forward
The outlook for dynamically typed lan-

guages is better than ever before. Industrial
uptake is increasingly rapid—for example, the
financial sector is using dynamically typed lan-
guages in critical systems such as JPMorgan’s
Kapital system. Supporting new types of
bonds and funds faster than your competitors
results in multibillion-dollar gains. Political
barriers to use are also diminishing.

Innovation in the dynamically typed lan-
guages sphere remains strong—for example,
advances in languages for distributed, concur-
rent, or parallel programming. We also expect
new, beneficial features to continue to emerge
and to gradually trickle down to the more
conservative statically typed languages. We
hope that this special issue gives you a flavor
of not only how dynamically typed languages
can help you and your organization today, but
how they might drive future innovation.

3 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Authors

Laurence Tratt is a senior lecturer at Bournemouth University and is a software con-
sultant. He’s also the chief designer and implementer of the Converge programming language.
His research interests include modeling (UML and MDD)—he has contributed to several inter-
national standards—and domain specific languages. He received his PhD from King’s College
London. He’s a member of the IEEE Software Advisory Board. Contact him at laurie@tratt.net;
http://tratt.net/laurie.

Roel Wuyts is a senior scientist at IMEC (Leuven, Belgium) and a part-time professor at
KU Leuven. His research interests include declarative metaprogramming, language symbiosis,
components and composition, and development environments. He’s especially interested in dy-
namic languages—primarily Smalltalk, Prolog, Self, and Scheme. He received his PhD from
the Programming Technology Lab at the Vrije Universteit Brussel. Contact him at IMEC, Kapel-
dreef 75, B-3001 Leuven, Belgium; roel.wuyts@imec.be.

