Language Design: Back to the Future?

Laurence Tratt
http://tratt.net/laurie/

Bournemouth University

2008/07/08

L. Tratt http://tratt.net/laurie 2008/07/08


http://tratt.net/laurie/
http://tratt.net/laurie/

Overview

@ Where are we at today?

@ Why are we where we are?

@ A glance backwards and sideways.
©Q A gaze forward.

L. Tratt http://tratt.net/laurie/ 2008/07/08 2/31


http://tratt.net/laurie/

Part I: Where are we at today?

2008/07/08 3/31


http://tratt.net/laurie/

Where are we at today?

L. Tratt http://tratt.net/laurie/ 2008/07/08 4/31


http://tratt.net/laurie/

We've come a long way

@ Always remember: software today is pretty good.
@ Many programming languages to choose from.

L. Tratt http://tratt.net/laurie/ 2008/07/08 5/31


http://tratt.net/laurie/

Facing reality

LISp sucks

L. Tratt http://tratt.net/laurie 2008/07/08 6/31


http://tratt.net/laurie/

Facing reality

Smalltalk
SUCKS

L. Tratt http://tratt.net/laurie 2008/07/08 6/31


http://tratt.net/laurie/

Facing reality

Python
sucks

L. Tratt http://tratt.net/laurie 2008/07/08 6/31


http://tratt.net/laurie/

Facing reality

Ruby
sucks

L. Tratt http://tratt.r 2008/07/08 6/31


http://tratt.net/laurie/

Facing reality

Converge
sucks

L. Tratt http://tratt.net/laurie 2008/07/08 6/31


http://tratt.net/laurie/

Facing reality

It sucks
too!

L. Tratt http://tratt.r 2008/07/08 6/31


http://tratt.net/laurie/

The situation

@ Every programming language has flaws.

L. Tratt http: ratt.net/laurie 2008/07/08 7/31


http://tratt.net/laurie/

The situation

@ Every programming language has flaws.
@ Programming languages vary little.

L. Tratt http://tratt.net/laurie 2008/07/08 7/31


http://tratt.net/laurie/

The situation

@ Every programming language has flaws.
@ Programming languages vary little.
@ InC:

for (int 1

L. Tratt http: ratt.net/laurie/ 2008/07/08 7/31


http://tratt.net/laurie/

The situation

@ Every programming language has flaws.
@ Programming languages vary little.
@ InC:

for (int 1

@ In Java:

for (int 1

L. Tratt http: att.net/ 2008/07/08


http://tratt.net/laurie/

The situation

Every programming language has flaws.
Programming languages vary little.
In C:

for (int 1

@ In Java:

for (int 1

@ InD:

for (1nt 1

L. Tratt http: att.net/ 2008/07/08


http://tratt.net/laurie/

The situation

Every programming language has flaws.
Programming languages vary little.
In C:

for (int i

@ In Java:

for (int 1

@ InD:

for (1nt 1

@ In Cyclone:

for (int i

Is this a problem?

L. Tratt http://tratt.net/ 2008/07/08 7/31


http://tratt.net/laurie/

The situation

Every programming language has flaws.
Programming languages vary little.
In C:

for (int i

@ In Java:

for (int 1

@ InD:

for (1nt 1

@ In Cyclone:

for (int i

Is this a problem?

If language A isn’t good for your problem, language B probably
isn’t either...

L. Tratt http://tratt.net/ 2008/07/08 7/31


http://tratt.net/laurie/

Part II: Why are we where we are?

2008/07/08 8/31


http://tratt.net/laurie/

History is written by the victors.

- Winston Churchill (1874 - 1965)

L. Tratt http://tratt.net/laurie/ 2008/07/08 9/31


http://tratt.net/laurie/

The gene pool

Source: Wikipedia

L. Tratt htt au 2008/07/08 10/31


http://en.wikipedia.org/wiki/Image:Roman_Baths_in_Bath_Spa,_England_-_July_2006.jpg
http://tratt.net/laurie/

Homogeneity

@ Most languages draw influences from the same small pool.
@ Acliché (but true): syntax is often the main differentiator.
@ Differences are perceived as much larger than they really are.

L. Tratt http://tratt.net/laurie/ 2008/07/08 11/31


http://tratt.net/laurie/

Homogeneity

@ Most languages draw influences from the same small pool.

@ Acliché (but true): syntax is often the main differentiator.

@ Differences are perceived as much larger than they really are.
@ Why do languages vary so little?

L. Tratt http://tratt.net/laurie/ 2008/07/08 11/31


http://tratt.net/laurie/

Language communities

@ Prefer languages ‘to look familiar’.

L. Tratt http://tratt.net/laurie 2008/07/08 12/31


http://tratt.net/laurie/

Language communities

@ Prefer languages ‘to look familiar’.
@ Demand backwards compatibility.

L. Tratt http://tratt.net/laurie 2008/07/08 12/31


http://tratt.net/laurie/

Language communities

@ Prefer languages ‘to look familiar’.
@ Demand backwards compatibility.
@ Language communities are insular.

L. Tratt http://tratt.net/laurie/ 2008/07/08 12/31


http://tratt.net/laurie/

Language communities

@ Prefer languages ‘to look familiar’.
@ Demand backwards compatibility.
@ Language communities are tribal?

L. Tratt http://tratt.net/laurie/ 2008/07/08 12/31


http://tratt.net/laurie/

Language communities

@ Prefer languages ‘to look familiar’.
@ Demand backwards compatibility.

@ Language communities are tribal?
@ Informed comparisons are rare.

L. Tratt http://tratt.net/laurie/ 2008/07/08


http://tratt.net/laurie/

Language communities

@ Prefer languages ‘to look familiar’.

@ Demand backwards compatibility.

@ Language communities are tribal?

@ Informed comparisons are rare.

@ Language communities beget language designers.

L. Tratt http://tratt.net/laurie/ 2008/07/08


http://tratt.net/laurie/

Language designers

@ The obvious culprit?
@ Problem #1: really learning a language is hard.
@ Tend to have one dominant influence.

L. Tratt http://tratt.net/laurie/ 2008/07/08 13/31


http://tratt.net/laurie/

Language designers

@ The obvious culprit?
@ Problem #1: really learning a language is hard.

@ Tend to have one dominant influence. Sometimes only one
influence.

L. Tratt http://tratt.net/laurie/ 2008/07/08 13/31


http://tratt.net/laurie/

Language designers

@ The obvious culprit?
@ Problem #1: really learning a language is hard.

@ Tend to have one dominant influence. Sometimes only one
influence.

@ Problem #2: designer vs. implementer.

@ Implementation considered hard and expensive but vital for
feedback.

@ Problem #3: fear of failure.

L. Tratt http://tratt.net/laurie/ 2008/07/08


http://tratt.net/laurie/

Examples of a narrow perspective

@ Scoping.
@ Statements vs. expressions.

L. Tratt http://tratt.net/laurie 2008/07/08 14/31


http://tratt.net/laurie/

Examples of a narrow perspective

@ Scoping.

@ Statements vs. expressions.

@ Python: confusion of class meta-levels.
@ Ruby: blocks aren't first-class.

@ Converge: brain-dead class hierarchy.

L. Tratt http://tratt.net/laurie/ 2008/07/08


http://tratt.net/laurie/

The risk of innovation

@ New features are risky. Will they work?
@ Most languages either:

@ Have no new features.
@ Have one or two new features.

L. Tratt http://tratt.net/laurie/ 2008/07/08 15/31


http://tratt.net/laurie/

The risk of innovation

@ New features are risky. Will they work?
@ Most languages either:

@ Have no new features.
@ Have one or two new features.
© Didn’'t mean to have new features but bad design introduced them.

@ Little risk of ‘failure’ if there are no new features.

L. Tratt http://tratt.net/laurie/ 2008/07/08 15/31


http://tratt.net/laurie/

An example

@ Java checked exceptions.
@ Possibly Java 1.0’s only novel feature.

@ public void f() throws X; means callers of £ have to
catch x.

@ Common user solution?

L. Tratt http:/ at 2008/07/08


http://tratt.net/laurie/

An example

@ Java checked exceptions.
@ Possibly Java 1.0’s only novel feature.

@ public void f() throws X; means callers of £ have to
catch x.

@ Common user solution?

try {
£0);
}
catch (X) {

// Empty catch statement. Ouch.
}

@ Checked exceptions: a bad idea.
@ The fate of most novel language features:

L. Tratt http://tratt.net/laurie/ 2008/07/08


http://tratt.net/laurie/

An example

@ Java checked exceptions.
@ Possibly Java 1.0’s only novel feature.

@ public void f() throws X; means callers of £ have to
catch x.

@ Common user solution?

try {
£0);
}
catch (X) {

// Empty catch statement. Ouch.
}

@ Checked exceptions: a bad idea.
@ The fate of most novel language features: ridicule.

L. Tratt http://tratt.net/laurie/ 2008/07/08


http://tratt.net/laurie/

Language paper writers

@ People who write papers: designers, extenders, pedants.
@ Nearly always framed in terms of one language...
@ ...its syntax, semantics,

L. Tratt http://tratt.net/laurie/ 2008/07/08 17/31


http://tratt.net/laurie/

Language paper writers

@ People who write papers: designers, extenders, pedants.
@ Nearly always framed in terms of one language...

@ ...its syntax, semantics, and culture.

@ Extracting widely applicable ideas is extremely difficult.

L. Tratt http://tratt.net/laurie/ 2008/07/08


http://tratt.net/laurie/

@ Language communities are tribal and ignorant.

L. Tratt http: ratt.net/laurie 2008/07/08 18/31


http://tratt.net/laurie/

@ Language communities are tribal and ignorant.
@ Language designers are timid and ignorant.

L. Tratt http: ratt.net/laurie/ 2008/07/08 18/31


http://tratt.net/laurie/

@ Language communities are tribal and ignorant.
@ Language designers are timid and ignorant.
@ Paper writers are obfuscators.

L. Tratt http: ratt.net/laurie/ 2008/07/08 18/31


http://tratt.net/laurie/

@ Language communities are tribal and ignorant.
@ Language designers are timid and ignorant.
@ Paper writers are obfuscators. And ignorant.

L. Tratt http: ratt.net/laurie/ 2008/07/08 18/31


http://tratt.net/laurie/

Part Ill: A glance backward ands
sideways.

2008/07/08 19/31


http://tratt.net/laurie/

Icon

@ The (indirect) successor to SNOBOL4.

@ Dynamically typed PASCAL-ish language. But with unique
expression evaluation system.

@ Particularly intended for string processing.

@ Expressions succeed (and produce a value) or fail and don't.
@ if x := £():

g (x)
else:
// %X has no value

L. Tratt http://tratt.net/laurie/ 2008/07/08


http://tratt.net/laurie/

Icon

@ Generators:
procedure upto (x)
i :=0
while 1 < x do {
suspend i
i :=1i+ 1
}

end

procedure main ()

every x := upto(l0) do write (x)
end
@ Conjunction:
every x := upto(l0) & x $ 2 == 0 do write (x)

L. Tratt ht t/laurie 2008/07/08 21/31


http://tratt.net/laurie/

Icon

@ Print all words (from the lcon book):
text ? {
while tab (upto(&letters)) do
write (tab (many (&letters)))
}

L. Tratt http: t.n 2008/07/08 22/31


http://tratt.net/laurie/

Icon

@ Pretty cool stuff (ignoring minor, rectifiable, design flaws).
@ Integrated pretty much wholesale into Converge.

L. Tratt http://tratt.net/laurie/ 2008/07/08 23/31


http://tratt.net/laurie/

Icon

@ Pretty cool stuff (ignoring minor, rectifiable, design flaws).
@ Integrated pretty much wholesale into Converge.

@ Problem #1: text.split (" ").

@ Problem #2: regular expressions.

L. Tratt http://tratt.net/laurie/ 2008/07/08


http://tratt.net/laurie/

Icon

@ Pretty cool stuff (ignoring minor, rectifiable, design flaws).
@ Integrated pretty much wholesale into Converge.

@ Problem #1: text.split (" ").

@ Problem #2: regular expressions.

@ Conclusion: much innovation, but only generators and failure in i £
useful.

L. Tratt http://tratt.net/laurie/ 2008/07/08 23/31


http://tratt.net/laurie/

Compile-time meta-programming

o AK.A. macros.
@ They came from Lisp.

L. Tratt http://tratt.net/laurie 2008/07/08 24 /31


http://tratt.net/laurie/

Compile-time meta-programming

o AK.A. macros.

@ They came from Lisp.

@ ...and they ended with Lisp.
@ Why?

L. Tratt http://tratt.net/laurie 2008/07/08 24 /31


http://tratt.net/laurie/

Compile-time meta-programming

o AK.A. macros.

@ They came from Lisp.

@ ...and they ended with Lisp.

o Why?

@ Until: MetaML (and Template Haskell).

@ Simple inversion of Lisp: ‘macros’ are normal functions but ‘macro
calls’ are special.

@ $<f>is amacro call.

@ Codeisn'tlists; [| 2 + 3 |] evaluates to an AST
plus (int (2), int(3)).

L. Tratt http://tratt.net/laurie/ 2008/07/08 24 /31


http://tratt.net/laurie/

An example

func expand_power (n, x):

if n ==
return [| 1 |]
else:
return [| $c{x} * $c{expand_power(n - 1, x)} |]

func mk_power (n) :
return [|

func (x):
return $c{expand_power(n, [| x [])}
|']
power3 := S$<mk_power (3)>

means that power3 looks like:

power3 := func (x):
return x * X * X * 1

by the time it is compiled to bytecode.

L. Tratt http: t.n 2008/07/08


http://tratt.net/laurie/

The macros dark ages

@ Oh the irony.

L. Tratt http://tratt.net/laurie 2008/07/08 26 /31


http://tratt.net/laurie/

The macros dark ages

@ Oh the irony.
@ An example of insularity?
@ Sometimes other communities see things our own can't.

L. Tratt http://tratt.net/laurie/ 2008/07/08 26 /31


http://tratt.net/laurie/

XOM

@ Nowadays a language needs good libraries.
@ Same principles.
@ Converge needed an XML library. XML is easy, right?

L. Tratt http://tratt.net/laurie/ 2008/07/08 27 /31


http://tratt.net/laurie/

XOM

@ Nowadays a language needs good libraries.

@ Same principles.

@ Converge needed an XML library. XML is easy, right? No.
@ XML is simple if you don’t care about being correct.

@ Standard answer: roll your own.

@ Think outside the box: steal from XOM.

L. Tratt http://tratt.net/laurie/ 2008/07/08


http://tratt.net/laurie/

XOM

@ Nowadays a language needs good libraries.

@ Same principles.

@ Converge needed an XML library. XML is easy, right? No.

@ XML is simple if you don’t care about being correct.

@ Standard answer: roll your own.

@ Think outside the box: steal from XOM.

@ Thought: libraries effect users almost as much as languages.

L. Tratt http://tratt.net/laurie/ 2008/07/08


http://tratt.net/laurie/

Part IV: A gaze forward.

L. Tratt http://tratt.net/laurie/ 2008/07/08 28 /31


http://tratt.net/laurie/

History will be kind to me, for | intend
to write it.

- Winston Churchill (1874 - 1965)

2008/07/08 29/31


http://tratt.net/laurie/

Conclusions

@ Language communities need to look outside their own box more.
e Orthodoxies aren’t always right.

L. Tratt http: t.n 2008/07/08 30/ 31


http://tratt.net/laurie/

Conclusions

@ Language communities need to look outside their own box more.
e Orthodoxies aren’t always right.

@ Language designers need to experiment more.
o Look back as well as sideways.

L. Tratt http://tratt.net/laurie/ 2008/07/08 30/ 31


http://tratt.net/laurie/

Conclusions

@ Language communities need to look outside their own box more.
e Orthodoxies aren’t always right.

@ Language designers need to experiment more.
o Look back as well as sideways.

@ Paper writers should focus less on an individual language and
more on generic issues.

L. Tratt http: ratt.net/laurie/ 2008/07/08 30/ 31


http://tratt.net/laurie/

Success is not final, failure is not
fatal: it is the courage to continue
that counts.

- Winston Churchill (1874 - 1965)

2008/07/08 31/31


http://tratt.net/laurie/

