
Experiences with an Icon-like Expression Evaluation
System

Laurence Tratt
http://tratt.net/laurie/

Middlesex University

2010/10/18

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 1 / 24

http://tratt.net/laurie/
http://tratt.net/laurie/


The story

1 Find an unusual feature in an ‘old’ language.

2 Try putting it in a ‘new’ language.
3 Fix problems.
4 Report experience.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 2 / 24

http://tratt.net/laurie/


The story

1 Find an unusual feature in an ‘old’ language.
2 Try putting it in a ‘new’ language.

3 Fix problems.
4 Report experience.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 2 / 24

http://tratt.net/laurie/


The story

1 Find an unusual feature in an ‘old’ language.
2 Try putting it in a ‘new’ language.
3 Fix problems.

4 Report experience.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 2 / 24

http://tratt.net/laurie/


The story

1 Find an unusual feature in an ‘old’ language.
2 Try putting it in a ‘new’ language.
3 Fix problems.
4 Report experience.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 2 / 24

http://tratt.net/laurie/


Icon history

Designed by Ralph Griswold (Arizona) in mid/late 70s (v1, late
1978).
Successor of sorts to SNOBOL4 (via SL5).
SNOBOL4: essentially a string-matching DSL.
Icon: a dynamically typed Algol-ish language.
Very active development until late 80s; (some?) development
continuing (v9.5.0 April 2010); runs happily on modern machines.
Successor languages e.g. Unicon.

[Personal aside: I ‘found’ Icon through its influence, via Tim
Peters, on Python generators.]

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 3 / 24

http://tratt.net/laurie/


Icon history

Designed by Ralph Griswold (Arizona) in mid/late 70s (v1, late
1978).
Successor of sorts to SNOBOL4 (via SL5).
SNOBOL4: essentially a string-matching DSL.
Icon: a dynamically typed Algol-ish language.
Very active development until late 80s; (some?) development
continuing (v9.5.0 April 2010); runs happily on modern machines.
Successor languages e.g. Unicon.
[Personal aside: I ‘found’ Icon through its influence, via Tim
Peters, on Python generators.]

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 3 / 24

http://tratt.net/laurie/


Why Icon is interesting

Programming languages tend to be variations on a theme.

Icon explicitly wanted to try new things.
For its day, several unusual ideas.
Some still unusual.
Case in point: its expression evaluation system. Allows
backtracking in an imperative language.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 4 / 24

http://tratt.net/laurie/


Why Icon is interesting

Programming languages tend to be variations on a theme.
Icon explicitly wanted to try new things.
For its day, several unusual ideas.

Some still unusual.
Case in point: its expression evaluation system. Allows
backtracking in an imperative language.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 4 / 24

http://tratt.net/laurie/


Why Icon is interesting

Programming languages tend to be variations on a theme.
Icon explicitly wanted to try new things.
For its day, several unusual ideas.
Some still unusual.

Case in point: its expression evaluation system. Allows
backtracking in an imperative language.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 4 / 24

http://tratt.net/laurie/


Why Icon is interesting

Programming languages tend to be variations on a theme.
Icon explicitly wanted to try new things.
For its day, several unusual ideas.
Some still unusual.
Case in point: its expression evaluation system.

Allows
backtracking in an imperative language.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 4 / 24

http://tratt.net/laurie/


Why Icon is interesting

Programming languages tend to be variations on a theme.
Icon explicitly wanted to try new things.
For its day, several unusual ideas.
Some still unusual.
Case in point: its expression evaluation system. Allows
backtracking in an imperative language.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 4 / 24

http://tratt.net/laurie/


Icon

Procedural; dynamically typed; Algol-ish syntax.

In 2010, a little ‘old-fashioned’: e.g. differentiating values and
references, default values for variables.
[Not a criticism: we’re all products of our time.]

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 5 / 24

http://tratt.net/laurie/


Icon

Procedural; dynamically typed; Algol-ish syntax.
In 2010, a little ‘old-fashioned’: e.g. differentiating values and
references, default values for variables.
[Not a criticism: we’re all products of our time.]

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 5 / 24

http://tratt.net/laurie/


A little example

Icon version of wc -l:
procedure main(argv)
f := open(argv[1], "rt")
i := 0
while read(f) do {
i := i + 1

}
write(i)

end

All fairly standard...

except the read function.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 6 / 24

http://tratt.net/laurie/


A little example

Icon version of wc -l:
procedure main(argv)
f := open(argv[1], "rt")
i := 0
while read(f) do {
i := i + 1

}
write(i)

end

All fairly standard... except the read function.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 6 / 24

http://tratt.net/laurie/


Success and failure

Standard language: expressions produce values.

Icon expressions:
which succeed produce values
which fail do not produce a value and transmit failure to their
container.

Note: failure is not like throwing an exception.
Exception Something unexpected (probably bad) happened.

Failure An expression can produce no more values.
Orthogonal concepts: both can appear in a language.
Success / failure are run-time concepts.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 7 / 24

http://tratt.net/laurie/


Success and failure

Standard language: expressions produce values.
Icon expressions:

which succeed produce values
which fail do not produce a value and transmit failure to their
container.

Note: failure is not like throwing an exception.
Exception Something unexpected (probably bad) happened.

Failure An expression can produce no more values.
Orthogonal concepts: both can appear in a language.
Success / failure are run-time concepts.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 7 / 24

http://tratt.net/laurie/


Success and failure

Standard language: expressions produce values.
Icon expressions:

which succeed produce values
which fail do not produce a value and transmit failure to their
container.

Note: failure is not like throwing an exception.
Exception Something unexpected (probably bad) happened.

Failure An expression can produce no more values.

Orthogonal concepts: both can appear in a language.
Success / failure are run-time concepts.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 7 / 24

http://tratt.net/laurie/


Success and failure

Standard language: expressions produce values.
Icon expressions:

which succeed produce values
which fail do not produce a value and transmit failure to their
container.

Note: failure is not like throwing an exception.
Exception Something unexpected (probably bad) happened.

Failure An expression can produce no more values.
Orthogonal concepts: both can appear in a language.

Success / failure are run-time concepts.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 7 / 24

http://tratt.net/laurie/


Success and failure

Standard language: expressions produce values.
Icon expressions:

which succeed produce values
which fail do not produce a value and transmit failure to their
container.

Note: failure is not like throwing an exception.
Exception Something unexpected (probably bad) happened.

Failure An expression can produce no more values.
Orthogonal concepts: both can appear in a language.
Success / failure are run-time concepts.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 7 / 24

http://tratt.net/laurie/


Success / failure and boolean logic

Consider x < y:

succeeds (and produces 3) if x is 2 and y is 3.
fails if x is 2 and y is 1.

Icon has no standard boolean logic; no boolean datatype; no
boolean operators.
Yet ‘standard’ code works as expected:
if x < y then {
write(x)

}

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 8 / 24

http://tratt.net/laurie/


Success / failure and boolean logic

Consider x < y:
succeeds (and produces 3) if x is 2 and y is 3.

fails if x is 2 and y is 1.

Icon has no standard boolean logic; no boolean datatype; no
boolean operators.
Yet ‘standard’ code works as expected:
if x < y then {
write(x)

}

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 8 / 24

http://tratt.net/laurie/


Success / failure and boolean logic

Consider x < y:
succeeds (and produces 3) if x is 2 and y is 3.
fails if x is 2 and y is 1.

Icon has no standard boolean logic; no boolean datatype; no
boolean operators.
Yet ‘standard’ code works as expected:
if x < y then {
write(x)

}

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 8 / 24

http://tratt.net/laurie/


Success / failure and boolean logic

Consider x < y:
succeeds (and produces 3) if x is 2 and y is 3.
fails if x is 2 and y is 1.

Icon has no standard boolean logic; no boolean datatype; no
boolean operators.

Yet ‘standard’ code works as expected:
if x < y then {
write(x)

}

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 8 / 24

http://tratt.net/laurie/


Success / failure and boolean logic

Consider x < y:
succeeds (and produces 3) if x is 2 and y is 3.
fails if x is 2 and y is 1.

Icon has no standard boolean logic; no boolean datatype; no
boolean operators.
Yet ‘standard’ code works as expected:
if x < y then {
write(x)

}

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 8 / 24

http://tratt.net/laurie/


Generators

Icon functions conventionally split into:
Procedures generate exactly one value.

Generators generate zero or more values.
Example generator:
procedure ito(x)
i := 0
while i < x do {

suspend i
i := i + 1

}
end
procedure main()
every x := ito(10) do { write(x) }

end

[suspend is like Python’s yield.]
every is similar to for: it pumps a generator to produce all its
values.
Once the generator fails, every fails too.
c.f. while: while evaluates its expression anew on every iteration.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 9 / 24

http://tratt.net/laurie/


Generators

Icon functions conventionally split into:
Procedures generate exactly one value.
Generators generate zero or more values.

Example generator:
procedure ito(x)
i := 0
while i < x do {

suspend i
i := i + 1

}
end
procedure main()
every x := ito(10) do { write(x) }

end

[suspend is like Python’s yield.]
every is similar to for: it pumps a generator to produce all its
values.
Once the generator fails, every fails too.
c.f. while: while evaluates its expression anew on every iteration.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 9 / 24

http://tratt.net/laurie/


Generators

Icon functions conventionally split into:
Procedures generate exactly one value.
Generators generate zero or more values.
Example generator:
procedure ito(x)
i := 0
while i < x do {

suspend i
i := i + 1

}
end
procedure main()
every x := ito(10) do { write(x) }

end

[suspend is like Python’s yield.]
every is similar to for: it pumps a generator to produce all its
values.
Once the generator fails, every fails too.

c.f. while: while evaluates its expression anew on every iteration.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 9 / 24

http://tratt.net/laurie/


Generators

Icon functions conventionally split into:
Procedures generate exactly one value.
Generators generate zero or more values.
Example generator:
procedure ito(x)
i := 0
while i < x do {

suspend i
i := i + 1

}
end
procedure main()
every x := ito(10) do { write(x) }

end

[suspend is like Python’s yield.]
every is similar to for: it pumps a generator to produce all its
values.
Once the generator fails, every fails too.
c.f. while: while evaluates its expression anew on every iteration.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 9 / 24

http://tratt.net/laurie/


Other generators

i to j: a built-in ito.

Alternation a | b subsumes boolean OR.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 10 / 24

http://tratt.net/laurie/


Other generators

i to j: a built-in ito.
Alternation a | b subsumes boolean OR.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 10 / 24

http://tratt.net/laurie/


Goal-directed evaluation

A limited form of backtracking.

Conjunction a & b succeeds iff both a and b succeed.
If a fails, the conjunction fails.
If b fails, a is pumped for a new value and b retried.
Print out the even numbers between 0 and 9 inclusive:
procedure main()
every x := ito(10) & x % 2 == 0 do {

write(x)
}

end

Other backtracking features e.g.: reversible assignment x <- x
and limited generation e \ i.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 11 / 24

http://tratt.net/laurie/


Goal-directed evaluation

A limited form of backtracking.
Conjunction a & b succeeds iff both a and b succeed.

If a fails, the conjunction fails.
If b fails, a is pumped for a new value and b retried.
Print out the even numbers between 0 and 9 inclusive:
procedure main()
every x := ito(10) & x % 2 == 0 do {

write(x)
}

end

Other backtracking features e.g.: reversible assignment x <- x
and limited generation e \ i.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 11 / 24

http://tratt.net/laurie/


Goal-directed evaluation

A limited form of backtracking.
Conjunction a & b succeeds iff both a and b succeed.
If a fails, the conjunction fails.
If b fails, a is pumped for a new value and b retried.
Print out the even numbers between 0 and 9 inclusive:
procedure main()
every x := ito(10) & x % 2 == 0 do {

write(x)
}

end

Other backtracking features e.g.: reversible assignment x <- x
and limited generation e \ i.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 11 / 24

http://tratt.net/laurie/


Goal-directed evaluation

A limited form of backtracking.
Conjunction a & b succeeds iff both a and b succeed.
If a fails, the conjunction fails.
If b fails, a is pumped for a new value and b retried.
Print out the even numbers between 0 and 9 inclusive:
procedure main()
every x := ito(10) & x % 2 == 0 do {

write(x)
}

end

Other backtracking features e.g.: reversible assignment x <- x
and limited generation e \ i.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 11 / 24

http://tratt.net/laurie/


The extent of backtracking

Is this like Prolog?

No.
Backtracking is local in nature.
Chief mechanism: bounded expressions.
Roughly: backtracking only occurs within individual lines.
Line 2 does not cause backtracking to line 1.
A good thing: unlimited backtracking in an imperative language
not desirable.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 12 / 24

http://tratt.net/laurie/


The extent of backtracking

Is this like Prolog? No.
Backtracking is local in nature.
Chief mechanism: bounded expressions.
Roughly: backtracking only occurs within individual lines.
x := 1 | 3

y := x > 2

Line 2 does not cause backtracking to line 1.
A good thing: unlimited backtracking in an imperative language
not desirable.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 12 / 24

http://tratt.net/laurie/


The extent of backtracking

Is this like Prolog? No.
Backtracking is local in nature.
Chief mechanism: bounded expressions.
Roughly: backtracking only occurs within individual lines.
x := 1 | 3

y := x > 2
Line 2 does not cause backtracking to line 1.

A good thing: unlimited backtracking in an imperative language
not desirable.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 12 / 24

http://tratt.net/laurie/


The extent of backtracking

Is this like Prolog? No.
Backtracking is local in nature.
Chief mechanism: bounded expressions.
Roughly: backtracking only occurs within individual lines.
x := 1 | 3

y := x > 2
Line 2 does not cause backtracking to line 1.
A good thing: unlimited backtracking in an imperative language
not desirable.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 12 / 24

http://tratt.net/laurie/


Pluses

Conceptually neat design.
Backtracking natural for string processing: Icon has special
functions for it.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 13 / 24

http://tratt.net/laurie/


Minuses

Functions fail by default.

procedure f(x)
if x > 0 then {

return 1
}

end

procedure main()
write(f(-1))

end

prints nothing...
Continual encoding of a boolean datatype.
Generators tend to be hidden.
every f(g(h(...)))

Performance issues.
And something else (I’ll come back to it).

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 14 / 24

http://tratt.net/laurie/


Minuses

Functions fail by default.
procedure f(x)
if x > 0 then {
return 1

}
end

procedure main()
write(f(-1))

end

prints nothing...

Continual encoding of a boolean datatype.
Generators tend to be hidden.
every f(g(h(...)))

Performance issues.
And something else (I’ll come back to it).

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 14 / 24

http://tratt.net/laurie/


Minuses

Functions fail by default.
procedure f(x)
if x > 0 then {
return 1

}
end

procedure main()
write(f(-1))

end

prints nothing...
Continual encoding of a boolean datatype.

Generators tend to be hidden.
every f(g(h(...)))

Performance issues.
And something else (I’ll come back to it).

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 14 / 24

http://tratt.net/laurie/


Minuses

Functions fail by default.
procedure f(x)
if x > 0 then {
return 1

}
end

procedure main()
write(f(-1))

end

prints nothing...
Continual encoding of a boolean datatype.
Generators tend to be hidden.
every f(g(h(...)))

Performance issues.
And something else (I’ll come back to it).

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 14 / 24

http://tratt.net/laurie/


Minuses

Functions fail by default.
procedure f(x)
if x > 0 then {
return 1

}
end

procedure main()
write(f(-1))

end

prints nothing...
Continual encoding of a boolean datatype.
Generators tend to be hidden.
every f(g(h(...)))

Performance issues.

And something else (I’ll come back to it).

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 14 / 24

http://tratt.net/laurie/


Minuses

Functions fail by default.
procedure f(x)
if x > 0 then {
return 1

}
end

procedure main()
write(f(-1))

end

prints nothing...
Continual encoding of a boolean datatype.
Generators tend to be hidden.
every f(g(h(...)))

Performance issues.
And something else (I’ll come back to it).

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 14 / 24

http://tratt.net/laurie/


Converge

A ‘modern’ Python-ish language with macros.
First non-Icon clone with an Icon-like expression evaluation
system.
Initially slurped in wholesale from Icon...
...then tweaked over time.
More at http://convergepl.org/

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 15 / 24

http://convergepl.org/
http://tratt.net/laurie/


Fix #1

Recap: functions fail by default.

Functions return null by default.
Must explicitly use (equivalent of) return fail.
Debugging suddenly much easier.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 16 / 24

http://tratt.net/laurie/


Fix #1

Recap: functions fail by default.
Functions return null by default.
Must explicitly use (equivalent of) return fail.
Debugging suddenly much easier.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 16 / 24

http://tratt.net/laurie/


(Attempted) fix #2

Recap: continual encoding of a boolean datatype.

Lack of a boolean datatype a real irritant.
Is there an Icon-esque solution?
Introduce fail singleton object.
If evaluated in e.g. an if conditional, causes failure.
Ta-da! Works well for all common cases.
Except... fail is a top-level variable in every module.
Module can return the value associated with a var.
x := mod.get_var("fail") where mod_var does return
fail, so no assignment is made to x.
I lost two days debugging this one. Unfortunate conclusion: it
doesn’t really work.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 17 / 24

http://tratt.net/laurie/


(Attempted) fix #2

Recap: continual encoding of a boolean datatype.
Lack of a boolean datatype a real irritant.
Is there an Icon-esque solution?

Introduce fail singleton object.
If evaluated in e.g. an if conditional, causes failure.
Ta-da! Works well for all common cases.
Except... fail is a top-level variable in every module.
Module can return the value associated with a var.
x := mod.get_var("fail") where mod_var does return
fail, so no assignment is made to x.
I lost two days debugging this one. Unfortunate conclusion: it
doesn’t really work.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 17 / 24

http://tratt.net/laurie/


(Attempted) fix #2

Recap: continual encoding of a boolean datatype.
Lack of a boolean datatype a real irritant.
Is there an Icon-esque solution?
Introduce fail singleton object.
If evaluated in e.g. an if conditional, causes failure.

Ta-da! Works well for all common cases.
Except... fail is a top-level variable in every module.
Module can return the value associated with a var.
x := mod.get_var("fail") where mod_var does return
fail, so no assignment is made to x.
I lost two days debugging this one. Unfortunate conclusion: it
doesn’t really work.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 17 / 24

http://tratt.net/laurie/


(Attempted) fix #2

Recap: continual encoding of a boolean datatype.
Lack of a boolean datatype a real irritant.
Is there an Icon-esque solution?
Introduce fail singleton object.
If evaluated in e.g. an if conditional, causes failure.
Ta-da! Works well for all common cases.

Except... fail is a top-level variable in every module.
Module can return the value associated with a var.
x := mod.get_var("fail") where mod_var does return
fail, so no assignment is made to x.
I lost two days debugging this one. Unfortunate conclusion: it
doesn’t really work.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 17 / 24

http://tratt.net/laurie/


(Attempted) fix #2

Recap: continual encoding of a boolean datatype.
Lack of a boolean datatype a real irritant.
Is there an Icon-esque solution?
Introduce fail singleton object.
If evaluated in e.g. an if conditional, causes failure.
Ta-da! Works well for all common cases.
Except...

fail is a top-level variable in every module.
Module can return the value associated with a var.
x := mod.get_var("fail") where mod_var does return
fail, so no assignment is made to x.
I lost two days debugging this one. Unfortunate conclusion: it
doesn’t really work.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 17 / 24

http://tratt.net/laurie/


(Attempted) fix #2

Recap: continual encoding of a boolean datatype.
Lack of a boolean datatype a real irritant.
Is there an Icon-esque solution?
Introduce fail singleton object.
If evaluated in e.g. an if conditional, causes failure.
Ta-da! Works well for all common cases.
Except... fail is a top-level variable in every module.
Module can return the value associated with a var.

x := mod.get_var("fail") where mod_var does return
fail, so no assignment is made to x.
I lost two days debugging this one. Unfortunate conclusion: it
doesn’t really work.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 17 / 24

http://tratt.net/laurie/


(Attempted) fix #2

Recap: continual encoding of a boolean datatype.
Lack of a boolean datatype a real irritant.
Is there an Icon-esque solution?
Introduce fail singleton object.
If evaluated in e.g. an if conditional, causes failure.
Ta-da! Works well for all common cases.
Except... fail is a top-level variable in every module.
Module can return the value associated with a var.
x := mod.get_var("fail") where mod_var does return
fail, so no assignment is made to x.

I lost two days debugging this one. Unfortunate conclusion: it
doesn’t really work.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 17 / 24

http://tratt.net/laurie/


(Attempted) fix #2

Recap: continual encoding of a boolean datatype.
Lack of a boolean datatype a real irritant.
Is there an Icon-esque solution?
Introduce fail singleton object.
If evaluated in e.g. an if conditional, causes failure.
Ta-da! Works well for all common cases.
Except... fail is a top-level variable in every module.
Module can return the value associated with a var.
x := mod.get_var("fail") where mod_var does return
fail, so no assignment is made to x.
I lost two days debugging this one. Unfortunate conclusion: it
doesn’t really work.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 17 / 24

http://tratt.net/laurie/


Fix #3

Recap: generators are hidden.

Fix: conventionally prefix all generator names with iter_.
Simple and effective.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 18 / 24

http://tratt.net/laurie/


Fix #3

Recap: generators are hidden.
Fix: conventionally prefix all generator names with iter_.
Simple and effective.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 18 / 24

http://tratt.net/laurie/


Item #4

Recap: performance issues.

Icon and Converge stack-based VMs.
Goal-directed evaluation requires huge numbers of stack
operations.
The only optimised part of the Converge VM and still very slow.
Icon seems to require a stack-based VM. Or does it?
Full paper has suggestions for an efficient register-based VM.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 19 / 24

http://tratt.net/laurie/


Item #4

Recap: performance issues.
Icon and Converge stack-based VMs.
Goal-directed evaluation requires huge numbers of stack
operations.
The only optimised part of the Converge VM and still very slow.

Icon seems to require a stack-based VM. Or does it?
Full paper has suggestions for an efficient register-based VM.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 19 / 24

http://tratt.net/laurie/


Item #4

Recap: performance issues.
Icon and Converge stack-based VMs.
Goal-directed evaluation requires huge numbers of stack
operations.
The only optimised part of the Converge VM and still very slow.
Icon seems to require a stack-based VM.

Or does it?
Full paper has suggestions for an efficient register-based VM.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 19 / 24

http://tratt.net/laurie/


Item #4

Recap: performance issues.
Icon and Converge stack-based VMs.
Goal-directed evaluation requires huge numbers of stack
operations.
The only optimised part of the Converge VM and still very slow.
Icon seems to require a stack-based VM. Or does it?
Full paper has suggestions for an efficient register-based VM.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 19 / 24

http://tratt.net/laurie/


Experiences (bad)

The bad news: Converge users don’t use most of the Icon
features.
Explanation #1: too stuck in our ways.

Explanation #2: backtracking great for string processing. But we
have regular expressions and formal parsing systems.
In Icon:
sentence ? while tab(upto(letters)) do
write(tab(many(letters))

is (in Python) roughly:
print re.split("\\s+", sentence)

Explanation #3: backtracking isn’t expressive enough. Icon’s
backtracking can’t (shouldn’t!) match Prolog’s; inevitably less
expressive.
My conclusion: for normal modern programming, goal-directed
evaluation isn’t that useful.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 20 / 24

http://tratt.net/laurie/


Experiences (bad)

The bad news: Converge users don’t use most of the Icon
features.
Explanation #1: too stuck in our ways.
Explanation #2: backtracking great for string processing. But we
have regular expressions and formal parsing systems.

In Icon:
sentence ? while tab(upto(letters)) do
write(tab(many(letters))

is (in Python) roughly:
print re.split("\\s+", sentence)

Explanation #3: backtracking isn’t expressive enough. Icon’s
backtracking can’t (shouldn’t!) match Prolog’s; inevitably less
expressive.
My conclusion: for normal modern programming, goal-directed
evaluation isn’t that useful.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 20 / 24

http://tratt.net/laurie/


Experiences (bad)

The bad news: Converge users don’t use most of the Icon
features.
Explanation #1: too stuck in our ways.
Explanation #2: backtracking great for string processing. But we
have regular expressions and formal parsing systems.
In Icon:
sentence ? while tab(upto(letters)) do
write(tab(many(letters))

is (in Python) roughly:
print re.split("\\s+", sentence)

Explanation #3: backtracking isn’t expressive enough. Icon’s
backtracking can’t (shouldn’t!) match Prolog’s; inevitably less
expressive.
My conclusion: for normal modern programming, goal-directed
evaluation isn’t that useful.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 20 / 24

http://tratt.net/laurie/


Experiences (bad)

The bad news: Converge users don’t use most of the Icon
features.
Explanation #1: too stuck in our ways.
Explanation #2: backtracking great for string processing. But we
have regular expressions and formal parsing systems.
In Icon:
sentence ? while tab(upto(letters)) do
write(tab(many(letters))

is (in Python) roughly:
print re.split("\\s+", sentence)

Explanation #3: backtracking isn’t expressive enough. Icon’s
backtracking can’t (shouldn’t!) match Prolog’s; inevitably less
expressive.

My conclusion: for normal modern programming, goal-directed
evaluation isn’t that useful.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 20 / 24

http://tratt.net/laurie/


Experiences (bad)

The bad news: Converge users don’t use most of the Icon
features.
Explanation #1: too stuck in our ways.
Explanation #2: backtracking great for string processing. But we
have regular expressions and formal parsing systems.
In Icon:
sentence ? while tab(upto(letters)) do
write(tab(many(letters))

is (in Python) roughly:
print re.split("\\s+", sentence)

Explanation #3: backtracking isn’t expressive enough. Icon’s
backtracking can’t (shouldn’t!) match Prolog’s; inevitably less
expressive.
My conclusion: for normal modern programming, goal-directed
evaluation isn’t that useful.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 20 / 24

http://tratt.net/laurie/


Experiences (good)

Generators are great (we all knew that).

Failure is a natural idiom.
Consider this common idiom ‘print an item x if it’s in the dict’:
d := Dict{"a" : 2, "b" : 8}
if d.contains("a"):
Sys::println(d.get("a"))

Note duplicated lookup: slow and maintenance nightmare.
Not uncommon to see:
d := Dict{"a" : 2, "b" : 8}
try:
v := d.get("j")
Sys::println(v)

catch Exceptions::Key_Exception:
pass

Eugh!

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 21 / 24

http://tratt.net/laurie/


Experiences (good)

Generators are great (we all knew that).
Failure is a natural idiom.
Consider this common idiom ‘print an item x if it’s in the dict’:
d := Dict{"a" : 2, "b" : 8}
if d.contains("a"):
Sys::println(d.get("a"))

Note duplicated lookup: slow and maintenance nightmare.
Not uncommon to see:
d := Dict{"a" : 2, "b" : 8}
try:
v := d.get("j")
Sys::println(v)

catch Exceptions::Key_Exception:
pass

Eugh!

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 21 / 24

http://tratt.net/laurie/


Experiences (good)

Generators are great (we all knew that).
Failure is a natural idiom.
Consider this common idiom ‘print an item x if it’s in the dict’:
d := Dict{"a" : 2, "b" : 8}
if d.contains("a"):
Sys::println(d.get("a"))

Note duplicated lookup: slow and maintenance nightmare.
Not uncommon to see:
d := Dict{"a" : 2, "b" : 8}
try:
v := d.get("j")
Sys::println(v)

catch Exceptions::Key_Exception:
pass

Eugh!

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 21 / 24

http://tratt.net/laurie/


Experiences (good)

Generators are great (we all knew that).
Failure is a natural idiom.
Consider this common idiom ‘print an item x if it’s in the dict’:
d := Dict{"a" : 2, "b" : 8}
if d.contains("a"):
Sys::println(d.get("a"))

Note duplicated lookup: slow and maintenance nightmare.
Not uncommon to see:
d := Dict{"a" : 2, "b" : 8}
try:
v := d.get("j")
Sys::println(v)

catch Exceptions::Key_Exception:
pass

Eugh!

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 21 / 24

http://tratt.net/laurie/


Experiences (good) (cont.)

In Converge:
if x := d.find("a"):
Sys::println(x)

The idiom:
find(x) succeeds if x is found; fails otherwise.
get(x) throws an exception if x is not found.

A beautiful idiom: used throughout the Converge libraries.

Failure in ifs, in general, is great.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 22 / 24

http://tratt.net/laurie/


Experiences (good) (cont.)

In Converge:
if x := d.find("a"):
Sys::println(x)

The idiom:
find(x) succeeds if x is found; fails otherwise.
get(x) throws an exception if x is not found.

A beautiful idiom: used throughout the Converge libraries.
Failure in ifs, in general, is great.

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 22 / 24

http://tratt.net/laurie/


Summary

Icon’s expression evaluation system is unique, brilliantly designed,
and clever.

Useful back in the day; less so now (but perhaps for DSLs?).
But failure in ifs is a thing of beauty.
Open question: does failure in ifs require an Icon-like approach?
Would it fit into other languages?

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 23 / 24

http://tratt.net/laurie/


Summary

Icon’s expression evaluation system is unique, brilliantly designed,
and clever.
Useful back in the day; less so now (but perhaps for DSLs?).

But failure in ifs is a thing of beauty.
Open question: does failure in ifs require an Icon-like approach?
Would it fit into other languages?

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 23 / 24

http://tratt.net/laurie/


Summary

Icon’s expression evaluation system is unique, brilliantly designed,
and clever.
Useful back in the day; less so now (but perhaps for DSLs?).
But failure in ifs is a thing of beauty.

Open question: does failure in ifs require an Icon-like approach?
Would it fit into other languages?

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 23 / 24

http://tratt.net/laurie/


Summary

Icon’s expression evaluation system is unique, brilliantly designed,
and clever.
Useful back in the day; less so now (but perhaps for DSLs?).
But failure in ifs is a thing of beauty.
Open question: does failure in ifs require an Icon-like approach?
Would it fit into other languages?

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 23 / 24

http://tratt.net/laurie/


Final thoughts

It seems like a mixed message. But I’m glad I tried.

Icon a great example of a language which defies conventions.
I wish there were more languages that took that route!

Thanks for listening

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 24 / 24

http://tratt.net/laurie/


Final thoughts

It seems like a mixed message. But I’m glad I tried.
Icon a great example of a language which defies conventions.
I wish there were more languages that took that route!

Thanks for listening

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 24 / 24

http://tratt.net/laurie/


Final thoughts

It seems like a mixed message. But I’m glad I tried.
Icon a great example of a language which defies conventions.
I wish there were more languages that took that route!

Thanks for listening

L. Tratt http://tratt.net/laurie/ Icon-like expression evaluation system 2010/10/18 24 / 24

http://tratt.net/laurie/

