
An Overview of Domain Specific Languages

Laurence Tratt
http://tratt.net/laurie/

Middlesex University

2010/06/09

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 1 / 25

http://tratt.net/laurie/
http://tratt.net/laurie/


A question

What’s this?

Is it a language for computers or a language for railway timetables?

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 2 / 25

http://tratt.net/laurie/


A question

What’s this?

Is it a language for computers or a language for railway timetables?

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 2 / 25

http://tratt.net/laurie/


A question

What’s this?

Is it a language for computers or a language for railway timetables?
L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 2 / 25

http://tratt.net/laurie/


The situation

To express a solution we need a language.

On computers we turn to General Purpose Languages
(GPLs)—e.g. Java, C#(), C++, Python, Ruby...
For new or unusual problems, GPLs are nearly always great.
But not always for repetitive tasks. Why?

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 3 / 25

http://tratt.net/laurie/


The situation

To express a solution we need a language.
On computers we turn to General Purpose Languages
(GPLs)—e.g. Java, C#(), C++, Python, Ruby...

For new or unusual problems, GPLs are nearly always great.
But not always for repetitive tasks. Why?

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 3 / 25

http://tratt.net/laurie/


The situation

To express a solution we need a language.
On computers we turn to General Purpose Languages
(GPLs)—e.g. Java, C#(), C++, Python, Ruby...
For new or unusual problems, GPLs are nearly always great.
But not always for repetitive tasks. Why?

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 3 / 25

http://tratt.net/laurie/


Why do we have GPLs?

Let’s take Java.
Main features: packages, classes, functions, static types, garbage
collection, variables, if, while, for, and so on.

Really: building blocks.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 4 / 25

http://tratt.net/laurie/


Why do we have GPLs?

Let’s take Java.
Main features: packages, classes, functions, static types, garbage
collection, variables, if, while, for, and so on.
Really: building blocks.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 4 / 25

http://tratt.net/laurie/


Building blocks

Virtually anything can be built with them...

Photo: David Iliff (licence)

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 5 / 25

http://en.wikipedia.org/wiki/File:Natural_History_Museum_London_Jan_2006.jpg
http://tratt.net/laurie/


Building blocks

...but it can be repetitive.

Photo: Mark Murphy (licence)
L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 5 / 25

http://commons.wikimedia.org/wiki/File:Terraced_houses_at_fortuneswell.jpg
http://tratt.net/laurie/


GPLs summary

Low level building blocks.
Virtually any task will need some (often all) of the building blocks.

But few naturally map onto them.
Very general; jacks of all trades, masters of none.
The railway timetable uses only a tiny fraction of a GPLs power...

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 6 / 25

http://tratt.net/laurie/


GPLs summary

Low level building blocks.
Virtually any task will need some (often all) of the building blocks.
But few naturally map onto them.

Very general; jacks of all trades, masters of none.
The railway timetable uses only a tiny fraction of a GPLs power...

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 6 / 25

http://tratt.net/laurie/


GPLs summary

Low level building blocks.
Virtually any task will need some (often all) of the building blocks.
But few naturally map onto them.
Very general; jacks of all trades, masters of none.
The railway timetable uses only a tiny fraction of a GPLs power...

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 6 / 25

http://tratt.net/laurie/


My GPL is better than yours

But wait—my favourite language is better than Java!

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 7 / 25

http://tratt.net/laurie/


My GPL is better than yours

But wait—my favourite language is better than Java!

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 7 / 25

http://tratt.net/laurie/


My GPL is better than yours

But wait—my favourite language is better than Java!

(l-r) Java, C++, Python, C#, Haskell

Source: Library & Archives Canada (licence)

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 7 / 25

http://collectionscanada.gc.ca/pam_archives/index.php?fuseaction=genitem.displayItem&rec_nbr=3192103
http://tratt.net/laurie/


My GPL is better than yours

But wait—my favourite language is better than Java!
GPLs are nearly all extremely similar.
We magnify small differences for cultural reasons.
They’re all jack of all trades, master of none.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 7 / 25

http://tratt.net/laurie/


DSLs—the basic idea

DSL: a small language targetted at a specific class of problems.
Allows you to specify repetitive tasks with small amounts of
variation.
‘Do one thing and do it well.’

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 8 / 25

http://tratt.net/laurie/


DSL examples

SQL (databases)

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 9 / 25

http://tratt.net/laurie/


DSL examples

make (software builds)

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 9 / 25

http://tratt.net/laurie/


Hardware DSLs

Question: are DSLs only for low-level software activities?

Verilog: hardware description language.
module counter (clk,rst,enable,count);
input clk, rst, enable;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk or posedge rst)
if (rst) begin
count <= 0;

end else begin : COUNT
while (enable) begin

count <= count + 1;
disable COUNT;

end
end

endmodule

Source: Deepak Kumar Tala

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 10 / 25

http://www.asic-world.com/verilog/verilog_one_day2.html
http://tratt.net/laurie/


Hardware DSLs

Question: are DSLs only for low-level software activities?
Verilog: hardware description language.
module counter (clk,rst,enable,count);
input clk, rst, enable;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk or posedge rst)
if (rst) begin
count <= 0;

end else begin : COUNT
while (enable) begin

count <= count + 1;
disable COUNT;

end
end

endmodule

Source: Deepak Kumar Tala

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 10 / 25

http://www.asic-world.com/verilog/verilog_one_day2.html
http://tratt.net/laurie/


Why would we want DSLs?

DSLs are good when we do the same type of task repeatedly.
But is that it?

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 11 / 25

http://tratt.net/laurie/


Consideration 1: accessibility

Programming is how we tell computers what to do.

DSLs can remove complex confusing features.
income tax {
2010-2011 {

allowance {
age < 65: £6,475
age >= 65 and age <= 74: £9,490
age > 74: £9,640

reduction: if income > £100,000 then
max(0, allowance - ((income - £100,000) / 2))

}
}

}

Tax rules source: HMRC

Pros / cons:
+ Can allow non-programmers to do programming-like things.
- Sometimes complexity is fundamental.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 12 / 25

http://www.hmrc.gov.uk/rates/it.htm
http://tratt.net/laurie/


Consideration 1: accessibility

Programming is how we tell computers what to do.
Many (most?) people struggle with programming...
[c.f. the huge failure rates in undergrad programming.]

DSLs can remove complex confusing features.
income tax {
2010-2011 {

allowance {
age < 65: £6,475
age >= 65 and age <= 74: £9,490
age > 74: £9,640

reduction: if income > £100,000 then
max(0, allowance - ((income - £100,000) / 2))

}
}

}

Tax rules source: HMRC

Pros / cons:
+ Can allow non-programmers to do programming-like things.
- Sometimes complexity is fundamental.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 12 / 25

http://www.hmrc.gov.uk/rates/it.htm
http://tratt.net/laurie/


Consideration 1: accessibility

DSLs can remove complex confusing features.

income tax {
2010-2011 {

allowance {
age < 65: £6,475
age >= 65 and age <= 74: £9,490
age > 74: £9,640

reduction: if income > £100,000 then
max(0, allowance - ((income - £100,000) / 2))

}
}

}

Tax rules source: HMRC

Pros / cons:
+ Can allow non-programmers to do programming-like things.
- Sometimes complexity is fundamental.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 12 / 25

http://www.hmrc.gov.uk/rates/it.htm
http://tratt.net/laurie/


Consideration 1: accessibility

DSLs can remove complex confusing features.
income tax {
2010-2011 {
allowance {

age < 65: £6,475
age >= 65 and age <= 74: £9,490
age > 74: £9,640

reduction: if income > £100,000 then
max(0, allowance - ((income - £100,000) / 2))

}
}

}

Tax rules source: HMRC

Pros / cons:
+ Can allow non-programmers to do programming-like things.
- Sometimes complexity is fundamental.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 12 / 25

http://www.hmrc.gov.uk/rates/it.htm
http://tratt.net/laurie/


Consideration 1: accessibility

DSLs can remove complex confusing features.
income tax {
2010-2011 {
allowance {

age < 65: £6,475
age >= 65 and age <= 74: £9,490
age > 74: £9,640

reduction: if income > £100,000 then
max(0, allowance - ((income - £100,000) / 2))

}
}

}

Tax rules source: HMRC

Pros / cons:
+ Can allow non-programmers to do programming-like things.

- Sometimes complexity is fundamental.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 12 / 25

http://www.hmrc.gov.uk/rates/it.htm
http://tratt.net/laurie/


Consideration 1: accessibility

DSLs can remove complex confusing features.
income tax {
2010-2011 {
allowance {

age < 65: £6,475
age >= 65 and age <= 74: £9,490
age > 74: £9,640

reduction: if income > £100,000 then
max(0, allowance - ((income - £100,000) / 2))

}
}

}

Tax rules source: HMRC

Pros / cons:
+ Can allow non-programmers to do programming-like things.
- Sometimes complexity is fundamental.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 12 / 25

http://www.hmrc.gov.uk/rates/it.htm
http://tratt.net/laurie/


Consideration 2: implementation flexibility

Virtually all programming is done in imperative languages.

Advantage: explicitness. Disadvantage: explicitness.
DSLs are an abstraction over a domain.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 13 / 25

http://tratt.net/laurie/


Consideration 2: implementation flexibility

Virtually all programming is done in imperative languages.
Advantage: explicitness.

Disadvantage: explicitness.
DSLs are an abstraction over a domain.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 13 / 25

http://tratt.net/laurie/


Consideration 2: implementation flexibility

Virtually all programming is done in imperative languages.
Advantage: explicitness. Disadvantage: explicitness.

DSLs are an abstraction over a domain.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 13 / 25

http://tratt.net/laurie/


Consideration 2: implementation flexibility

Virtually all programming is done in imperative languages.
Advantage: explicitness. Disadvantage: explicitness.
DSLs are an abstraction over a domain.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 13 / 25

http://tratt.net/laurie/


Consideration 2: implementation flexibility

SQL:
SELECT * FROM nodes WHERE node.parent=NULL;

C:
table *nodes = get_table(db, "nodes");
cursor *c = mk_cursor(nodes);
row *r;
results res = mk_results();
while ((r = get_next(c)) != null) {
if (get_column(r, "parent") == null)
add_result(res, r);

}

How do you make parallelized versions of each?
C: rewrite your program (pthreads etc.).
SQL: a cleverer SQL implementation.

Pros / cons:
+ Moves the burden from programmer to language implementer.
- Over-abstraction can preclude some reasonable programs.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 14 / 25

http://tratt.net/laurie/


Consideration 2: implementation flexibility

SQL:
SELECT * FROM nodes WHERE node.parent=NULL;

C:
table *nodes = get_table(db, "nodes");
cursor *c = mk_cursor(nodes);
row *r;
results res = mk_results();
while ((r = get_next(c)) != null) {
if (get_column(r, "parent") == null)
add_result(res, r);

}

How do you make parallelized versions of each?

C: rewrite your program (pthreads etc.).
SQL: a cleverer SQL implementation.

Pros / cons:
+ Moves the burden from programmer to language implementer.
- Over-abstraction can preclude some reasonable programs.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 14 / 25

http://tratt.net/laurie/


Consideration 2: implementation flexibility

SQL:
SELECT * FROM nodes WHERE node.parent=NULL;

C:
table *nodes = get_table(db, "nodes");
cursor *c = mk_cursor(nodes);
row *r;
results res = mk_results();
while ((r = get_next(c)) != null) {
if (get_column(r, "parent") == null)
add_result(res, r);

}

How do you make parallelized versions of each?
C: rewrite your program (pthreads etc.).

SQL: a cleverer SQL implementation.

Pros / cons:
+ Moves the burden from programmer to language implementer.
- Over-abstraction can preclude some reasonable programs.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 14 / 25

http://tratt.net/laurie/


Consideration 2: implementation flexibility

SQL:
SELECT * FROM nodes WHERE node.parent=NULL;

C:
table *nodes = get_table(db, "nodes");
cursor *c = mk_cursor(nodes);
row *r;
results res = mk_results();
while ((r = get_next(c)) != null) {
if (get_column(r, "parent") == null)
add_result(res, r);

}

How do you make parallelized versions of each?
C: rewrite your program (pthreads etc.).
SQL: a cleverer SQL implementation.

Pros / cons:
+ Moves the burden from programmer to language implementer.
- Over-abstraction can preclude some reasonable programs.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 14 / 25

http://tratt.net/laurie/


Consideration 2: implementation flexibility

SQL:
SELECT * FROM nodes WHERE node.parent=NULL;

C:
table *nodes = get_table(db, "nodes");
cursor *c = mk_cursor(nodes);
row *r;
results res = mk_results();
while ((r = get_next(c)) != null) {
if (get_column(r, "parent") == null)
add_result(res, r);

}

How do you make parallelized versions of each?
C: rewrite your program (pthreads etc.).
SQL: a cleverer SQL implementation.

Pros / cons:
+ Moves the burden from programmer to language implementer.

- Over-abstraction can preclude some reasonable programs.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 14 / 25

http://tratt.net/laurie/


Consideration 2: implementation flexibility

SQL:
SELECT * FROM nodes WHERE node.parent=NULL;

C:
table *nodes = get_table(db, "nodes");
cursor *c = mk_cursor(nodes);
row *r;
results res = mk_results();
while ((r = get_next(c)) != null) {
if (get_column(r, "parent") == null)
add_result(res, r);

}

How do you make parallelized versions of each?
C: rewrite your program (pthreads etc.).
SQL: a cleverer SQL implementation.

Pros / cons:
+ Moves the burden from programmer to language implementer.
- Over-abstraction can preclude some reasonable programs.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 14 / 25

http://tratt.net/laurie/


Consideration 3: Economics

The bottom line: does it save money?

If you’re using someone elses DSL: almost certainly yes.
But if you need to build a DSL: it depends.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 15 / 25

http://tratt.net/laurie/


Consideration 3: Economics

The bottom line: does it save money?
If you’re using someone elses DSL: almost certainly yes.
But if you need to build a DSL: it depends.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 15 / 25

http://tratt.net/laurie/


Consideration 3: Economics

Source: P. Hudak ‘Modular domain specific languages and tools’

+ It can save serious amounts of money.
- Short-term hit for long-term gain.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 16 / 25

http://tratt.net/laurie/


Consideration 3: Economics

Source: P. Hudak ‘Modular domain specific languages and tools’

+ It can save serious amounts of money.
- Short-term hit for long-term gain.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 16 / 25

http://tratt.net/laurie/


Consideration 3: Economics

Source: P. Hudak ‘Modular domain specific languages and tools’

+ It can save serious amounts of money.

- Short-term hit for long-term gain.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 16 / 25

http://tratt.net/laurie/


Consideration 3: Economics

Source: P. Hudak ‘Modular domain specific languages and tools’

+ It can save serious amounts of money.
- Short-term hit for long-term gain.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 16 / 25

http://tratt.net/laurie/


What defines a DSL?

[Inherently subjective and ill-defined. But... ]

Has a well-defined problem domain.
Has its own syntax.
[Practically speaking: its own implementation]

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 17 / 25

http://tratt.net/laurie/


What defines a DSL?

[Inherently subjective and ill-defined. But... ]
Has a well-defined problem domain.

Has its own syntax.
[Practically speaking: its own implementation]

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 17 / 25

http://tratt.net/laurie/


What defines a DSL?

[Inherently subjective and ill-defined. But... ]
Has a well-defined problem domain.
Has its own syntax.
[Practically speaking: its own implementation]

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 17 / 25

http://tratt.net/laurie/


What DSLs aren’t

Haskell and Ruby people talk about ‘internal DSLs’.
Just a [clever?] way of using libraries.
IMHO: not DSLs. Better called fluent interfaces.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 18 / 25

http://martinfowler.com/bliki/FluentInterface.html
http://tratt.net/laurie/


DSL flavours

make: standalone

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 19 / 25

http://tratt.net/laurie/


DSL flavours

SQL: embedded, syntactically distinct, run-time

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 19 / 25

http://tratt.net/laurie/


DSL flavours

SQL: embedded, syntactically distinct, compile-time

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 19 / 25

http://tratt.net/laurie/


DSL flavours

UML: diagrammatic

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 19 / 25

http://tratt.net/laurie/


DSL flavours

Metro systems: diagrammatic

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 19 / 25

http://tratt.net/laurie/


How to build a DSL

Assume you want to build a DSL.
How? Who? How long?

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 20 / 25

http://tratt.net/laurie/


Questions to ask when building a DSL

Has someone else done it?
Who will use it? Are there real users? Are they willing to use
DSLs?
How often will they use it? Will it save money?
How will they use it? Diagrammatic? Stand-alone? Embedded? ...
How will it integrate? IDE plugin? Compiler extension? ...
How will it evolve? ...

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 21 / 25

http://tratt.net/laurie/


Questions to ask when building a DSL

Has someone else done it?

Who will use it? Are there real users? Are they willing to use
DSLs?
How often will they use it? Will it save money?
How will they use it? Diagrammatic? Stand-alone? Embedded? ...
How will it integrate? IDE plugin? Compiler extension? ...
How will it evolve? ...

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 21 / 25

http://tratt.net/laurie/


Questions to ask when building a DSL

Has someone else done it?
Who will use it? Are there real users? Are they willing to use
DSLs?

How often will they use it? Will it save money?
How will they use it? Diagrammatic? Stand-alone? Embedded? ...
How will it integrate? IDE plugin? Compiler extension? ...
How will it evolve? ...

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 21 / 25

http://tratt.net/laurie/


Questions to ask when building a DSL

Has someone else done it?
Who will use it? Are there real users? Are they willing to use
DSLs?
How often will they use it? Will it save money?

How will they use it? Diagrammatic? Stand-alone? Embedded? ...
How will it integrate? IDE plugin? Compiler extension? ...
How will it evolve? ...

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 21 / 25

http://tratt.net/laurie/


Questions to ask when building a DSL

Has someone else done it?
Who will use it? Are there real users? Are they willing to use
DSLs?
How often will they use it? Will it save money?
How will they use it? Diagrammatic? Stand-alone? Embedded? ...

How will it integrate? IDE plugin? Compiler extension? ...
How will it evolve? ...

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 21 / 25

http://tratt.net/laurie/


Questions to ask when building a DSL

Has someone else done it?
Who will use it? Are there real users? Are they willing to use
DSLs?
How often will they use it? Will it save money?
How will they use it? Diagrammatic? Stand-alone? Embedded? ...
How will it integrate? IDE plugin? Compiler extension? ...

How will it evolve? ...

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 21 / 25

http://tratt.net/laurie/


Questions to ask when building a DSL

Has someone else done it?
Who will use it? Are there real users? Are they willing to use
DSLs?
How often will they use it? Will it save money?
How will they use it? Diagrammatic? Stand-alone? Embedded? ...
How will it integrate? IDE plugin? Compiler extension? ...
How will it evolve? ...

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 21 / 25

http://tratt.net/laurie/


DSL evolution

The inevitable pattern: design a DSL for a small problem; users
like it; want more; extend the DSL.
Repeat ad nauseum.

Result: DSLs tend to evolve messily.
e.g. textual DSLs tend to end up resembling designed GPLs.
This doesn’t happen to GPLs: why not?
GPLs are so similar, we know how to do them.
Each DSL tends to be a journey of exploration.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 22 / 25

http://tratt.net/laurie/


DSL evolution

The inevitable pattern: design a DSL for a small problem; users
like it; want more; extend the DSL.
Repeat ad nauseum.
Result: DSLs tend to evolve messily.
e.g. textual DSLs tend to end up resembling designed GPLs.
This doesn’t happen to GPLs: why not?

GPLs are so similar, we know how to do them.
Each DSL tends to be a journey of exploration.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 22 / 25

http://tratt.net/laurie/


DSL evolution

The inevitable pattern: design a DSL for a small problem; users
like it; want more; extend the DSL.
Repeat ad nauseum.
Result: DSLs tend to evolve messily.
e.g. textual DSLs tend to end up resembling designed GPLs.
This doesn’t happen to GPLs: why not?
GPLs are so similar, we know how to do them.
Each DSL tends to be a journey of exploration.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 22 / 25

http://tratt.net/laurie/


DSL implementation techniques

A representative sample:
Stand alone.
Converge (embedded, homogeneous).
Stratego (embedded / standalone, heterogeneous).
Intentional (embedded, heterogeneous).
MPS (embedded, homogeneous).
Xtext (standalone, heterogeneous).

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 23 / 25

http://convergepl.org
http://strategoxt.org/
http://intentsoft.com/
http://www.jetbrains.com/mps/
http://www.eclipse.org/Xtext/
http://tratt.net/laurie/


Further reading

Fowler: Language workbenches
Stahl, Völter: Model-Driven Software Development
Vasudevan, Tratt: Comparative study of DSL tools

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 24 / 25

http://martinfowler.com/articles/languageWorkbench.html
http://www.voelter.de/publications/books-mdsd-en.html
http://tratt.net/laurie/research/publications/
http://tratt.net/laurie/


Summary

There are more DSLs in existence than we first think...
...and there will be a lot more.

When DSLs are the right tool, they can lead to real savings.
If you ask yourself the right questions, DSLs can work for you.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 25 / 25

http://tratt.net/laurie/


Summary

There are more DSLs in existence than we first think...
...and there will be a lot more.
When DSLs are the right tool, they can lead to real savings.
If you ask yourself the right questions, DSLs can work for you.

L. Tratt http://tratt.net/laurie/ DSLs 2010/06/09 25 / 25

http://tratt.net/laurie/

